1
|
Noro F, Pepe G, Pizzati L, Di Pardo A, Donati MB, de Gaetano G, Iacoviello L, Maglione V, Cerletti C. Brain-derived gangliosides prime human platelet aggregation and induce platelet-leukocyte aggregate formation. J Thromb Haemost 2024; 22:3221-3234. [PMID: 39122190 DOI: 10.1016/j.jtha.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Platelet activation and interaction with leukocytes are crucial in inflammation. Gangliosides, sialic acid-containing glycosphingolipids, have been linked to different inflammatory conditions related to cardio- and neurodegenerative disorders. The role of gangliosides in platelet and leukocyte function, although reported, still needs further investigation. OBJECTIVES We aimed to study the role of gangliosides in platelet activation and platelet-leukocyte interaction in vitro. METHODS Platelet activation was studied through aggregometry in platelet-rich plasma from apparently healthy human volunteers. Signaling protein phosphorylation was analyzed by immunoblotting. Platelet P-selectin expression and platelet-leukocyte aggregate formation were measured by flow cytometry. RESULTS The gangliosides monosialoganglioside GM1, disialoganglioside GD1a, and trisialoganglioside GT1b did not induce by themselves any platelet aggregation. Conversely, when preincubated with platelets, they potentiate platelet aggregation induced by submaximal adenosine diphosphate and collagen concentrations and increased P-selectin expression. Incubation of platelets with free sialic acid and the soluble part of monosialoganglioside GM1 induced a similar potentiating effect on platelet aggregation but not on platelet P-selectin expression. Consistently, analyzing the signaling protein phosphorylation, only the entire gangliosides activated extracellular stimuli-responsive kinase 1/2 suggesting that a complete ganglioside is crucial for its action on platelets. Both the priming effect on platelet aggregation and ERK1/2 activation were prevented by aspirin. Moreover, incubation of citrated whole blood with gangliosides induced platelet-leukocyte aggregate formation accompanied by increased expression of granulocyte and monocyte CD11b compared with untreated blood, suggesting a primary leukocyte activation. CONCLUSION Gangliosides may act in vitro both on platelet and leukocyte activation and on their interaction. The observed effects might contribute to inflammatory processes in clinical conditions.
Collapse
Affiliation(s)
- Fabrizia Noro
- Department of Epidemiology and Prevention, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Giuseppe Pepe
- Neurogenetics laboratory, Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Ludovica Pizzati
- Neurogenetics laboratory, Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Alba Di Pardo
- Neurogenetics laboratory, Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy; Libera Università Mediterranea (LUM) "Degennaro", Casamassima, Bari, Italy.
| | - Vittorio Maglione
- Neurogenetics laboratory, Istituto di Ricovero e Cura Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
2
|
Luckett T, Abudula M, Ireland L, Glenn M, Bellomo G, Stafferton R, Halloran C, Ghaneh P, Jones R, Schmid MC, Mielgo A. Mesothelin Secretion by Pancreatic Cancer Cells Co-opts Macrophages and Promotes Metastasis. Cancer Res 2024; 84:527-544. [PMID: 38356443 DOI: 10.1158/0008-5472.can-23-1542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease, yet effective treatments to inhibit PDAC metastasis are lacking. The rich PDAC tumor microenvironment plays a major role in disease progression. Macrophages are the most abundant immune cell population in PDAC tumors and can acquire a range of functions that either hinder or promote tumor growth and metastasis. Here, we identified that mesothelin secretion by pancreatic cancer cells co-opts macrophages to support tumor growth and metastasis of cancer cells to the lungs, liver, and lymph nodes. Mechanistically, secretion of high levels of mesothelin by metastatic cancer cells induced the expression of VEGF alpha (VEGFA) and S100A9 in macrophages. Macrophage-derived VEGFA fed back to cancer cells to support tumor growth, and S100A9 increased neutrophil lung infiltration and formation of neutrophil extracellular traps. These results reveal a role for mesothelin in regulating macrophage functions and interaction with neutrophils to support PDAC metastasis. SIGNIFICANCE Mesothelin secretion by cancer cells supports pancreatic cancer metastasis by inducing macrophage secretion of VEGFA and S100A9 to support cancer cell proliferation and survival, recruit neutrophils, and stimulate neutrophil extracellular trap formation. See related commentary by Alewine, p. 513.
Collapse
Affiliation(s)
- Teifion Luckett
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maidinaimu Abudula
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Lucy Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Mark Glenn
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Gaia Bellomo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ruth Stafferton
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Chris Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Rob Jones
- Department of Hepatobiliary Surgery, Liverpool University Teaching Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Ainhoa Mielgo
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
3
|
van der Haar Àvila I, Windhouwer B, van Vliet SJ. Current state-of-the-art on ganglioside-mediated immune modulation in the tumor microenvironment. Cancer Metastasis Rev 2023; 42:941-958. [PMID: 37266839 PMCID: PMC10584724 DOI: 10.1007/s10555-023-10108-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/13/2023] [Indexed: 06/03/2023]
Abstract
Gangliosides are sialylated glycolipids, mainly present at the cell surface membrane, involved in a variety of cellular signaling events. During malignant transformation, the composition of these glycosphingolipids is altered, leading to structural and functional changes, which are often negatively correlated to patient survival. Cancer cells have the ability to shed gangliosides into the tumor microenvironment, where they have a strong impact on anti-tumor immunity and promote tumor progression. Since most ganglioside species show prominent immunosuppressive activities, they might be considered checkpoint molecules released to counteract ongoing immunosurveillance. In this review, we highlight the current state-of-the-art on the ganglioside-mediated immunomodulation, specified for the different immune cells and individual gangliosides. In addition, we address the dual role that certain gangliosides play in the tumor microenvironment. Even though some ganglioside species have been more extensively studied than others, they are proven to contribute to the defense mechanisms of the tumor and should be regarded as promising therapeutic targets for inclusion in future immunotherapy regimens.
Collapse
Affiliation(s)
- Irene van der Haar Àvila
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Britt Windhouwer
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan, 1117, Amsterdam, the Netherlands.
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Hu P, Miller AE, Yeh CR, Bingham GC, Civelek M, Barker TH. SEMA7a primes integrin α5β1 engagement instructing fibroblast mechanotransduction, phenotype and transcriptional programming. Matrix Biol 2023; 121:179-193. [PMID: 37422024 DOI: 10.1016/j.matbio.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
Integrins are cellular receptors that bind the extracellular matrix (ECM) and facilitate the transduction of biochemical and biophysical microenvironment cues into cellular responses. Upon engaging the ECM, integrin heterodimers must rapidly strengthen their binding with the ECM, resulting in the assembly of force-resistant and force-sensitive integrin associated complexes (IACs). The IACs constitute an essential apparatus for downstream signaling and fibroblast phenotypes. During wound healing, integrin signaling is essential for fibroblast motility, proliferation, ECM reorganization and, ultimately, restoration of tissue homeostasis. Semaphorin 7A (SEMA7a) has been previously implicated in post-injury inflammation and tissue fibrosis, yet little is known about SEMA7a's role in directing stromal cell, particularly fibroblast, behaviors. We demonstrate that SEMA7a regulates integrin signaling through cis-coupling with active integrin α5β1 on the plasma membrane, enabling rapid integrin adhesion strengthening to fibronectin (Fn) and normal downstream mechanotransduction. This molecular function of SEMA7a potently regulates fibroblast adhesive, cytoskeletal, and migratory phenotype with strong evidence of downstream alterations in chromatin structure resulting in global transcriptomic reprogramming such that loss of SEMA7a expression is sufficient to impair the normal migratory and ECM assembly phenotype of fibroblasts resulting in significantly delayed tissue repair in vivo.
Collapse
Affiliation(s)
- Ping Hu
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA
| | - Andrew E Miller
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA
| | - Chiuan-Ren Yeh
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA
| | - Grace C Bingham
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA
| | - Mete Civelek
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA; Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, Schools of Engineering and Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
Zhao K, Zhang L, Zhang M, Tian H, He D, Zheng J. Response Surface Optimization of Enzyme Pretreatment Improves Yield of Ethanol‐Extracted Lipids from
Nannochloropsis oceanica. EUR J LIPID SCI TECH 2022. [DOI: 10.1002/ejlt.202100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kangyu Zhao
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Liwei Zhang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
- Key Laboratory of Deep Processing of Major Grain and Oil Ministry of Education Wuhan 430023 China
| | - Meilan Zhang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Hua Tian
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Dongping He
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
- Key Laboratory of Deep Processing of Major Grain and Oil Ministry of Education Wuhan 430023 China
| | - Jingcheng Zheng
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
- Key Laboratory of Deep Processing of Major Grain and Oil Ministry of Education Wuhan 430023 China
| |
Collapse
|
6
|
Cavalcante T, Medeiros MM, Mule SN, Palmisano G, Stolf BS. The Role of Sialic Acids in the Establishment of Infections by Pathogens, With Special Focus on Leishmania. Front Cell Infect Microbiol 2021; 11:671913. [PMID: 34055669 PMCID: PMC8155805 DOI: 10.3389/fcimb.2021.671913] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Carbohydrates or glycans are ubiquitous components of the cell surface which play crucial biological and structural roles. Sialic acids (Sias) are nine-carbon atoms sugars usually present as terminal residues of glycoproteins and glycolipids on the cell surface or secreted. They have important roles in cellular communication and also in infection and survival of pathogens. More than 20 pathogens can synthesize or capture Sias from their hosts and incorporate them into their own glycoconjugates and derivatives. Sialylation of pathogens’ glycoconjugates may be crucial for survival inside the host for numerous reasons. The role of Sias in protozoa such as Trypanosoma and Leishmania was demonstrated in previous studies. This review highlights the importance of Sias in several pathogenic infections, focusing on Leishmania. We describe in detail the contributions of Sias, Siglecs (sialic acid binding Ig-like lectins) and Neuraminidase 1 (NEU 1) in the course of Leishmania infection. A detailed view on the structural and functional diversity of Leishmania-related Sias and host-cell receptors will be provided, as well as the results of functional studies performed with different Leishmania species.
Collapse
Affiliation(s)
- Tainá Cavalcante
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mariana Medina Medeiros
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Beatriz Simonsen Stolf
- Laboratory of Leishmaniasis, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Bartish M, Del Rincón SV, Rudd CE, Saragovi HU. Aiming for the Sweet Spot: Glyco-Immune Checkpoints and γδ T Cells in Targeted Immunotherapy. Front Immunol 2020; 11:564499. [PMID: 33133075 PMCID: PMC7550643 DOI: 10.3389/fimmu.2020.564499] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022] Open
Abstract
Though a healthy immune system is capable of recognizing and eliminating emergent cancerous cells, an established tumor is adept at escaping immune surveillance. Altered and tumor-specific expression of immunosuppressive cell surface carbohydrates, also termed the “tumor glycocode,” is a prominent mechanism by which tumors can escape anti-tumor immunity. Given their persistent and homogeneous expression, tumor-associated glycans are promising targets to be exploited as biomarkers and therapeutic targets. However, the exploitation of these glycans has been a challenge due to their low immunogenicity, immunosuppressive properties, and the inefficient presentation of glycolipids in a conventional major histocompatibility complex (MHC)-restricted manner. Despite this, a subset of T-cells expressing the gamma and delta chains of the T-cell receptor (γδ T cells) exist with a capacity for MHC-unrestricted antigen recognition and potent inherent anti-tumor properties. In this review, we discuss the role of tumor-associated glycans in anti-tumor immunity, with an emphasis on the potential of γδ T cells to target the tumor glycocode. Understanding the many facets of this interaction holds the potential to unlock new ways to use both tumor-associated glycans and γδ T cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Margarita Bartish
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Christopher E Rudd
- Division of Immuno-Oncology, Research Center Maisonneuve-Rosemont Hospital, Montreal, QC, Canada.,Département de Médecine, Université de Montréal, Montreal, QC, Canada
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Translational Center for Research in Cancer, McGill University, Montreal, QC, Canada.,Oncology and Experimental Medicine, McGill University, Montreal, QC, Canada.,Pharmacology and Therapeutics, and Ophthalmology and Vision Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Holm J, Hansen SI. Characterization of soluble folate receptors (folate binding proteins) in humans. Biological roles and clinical potentials in infection and malignancy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140466. [PMID: 32526472 DOI: 10.1016/j.bbapap.2020.140466] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 01/25/2023]
Abstract
This review surveys soluble Folate Receptors (FOLRs) in humans. FOLR1 and FOLR2 are equipped with cellular glycosylphosphatidylinositol (GPI) anchors. FOLR1 is secreted from epithelia with or without a micelle-encapsulated GPI-anchor into milk and other body fluids/secretions, e.g. semen where its interaction with spermatozoa indicates a role in male fertility. FOLR1 and FOLR2 serve as serum biomarkers of various diseases. FOLR3 possesses no GPI-anchor and originates from secretory granules of neutrophil granulocytes; its concentration in serum correlates to the FOLR3 content in leukocytes and rises with increased leukocyte counts (infection, malignancy and pregnancy). FOLR3 exerts anti-microbial and anti-tumor effects by depriving bacteria and tumor cells of natural folates. Megalin receptors mediate reabsorption of ultrafiltered folate-bound FOLR into cells of proximal kidney tubules and of folate-bound FOLR uptake in growing embryos. Megalin receptors overexpressed in malignant tumors could be suitable therapeutic targets for folate-conjugated cytotoxic agents utilizing soluble FOLRs as vectors.
Collapse
Affiliation(s)
- Jan Holm
- Department of Clinical Biochemistry, Nordsjællands Hospital - Hillerød, University Hospital Copenhagen, Dyrehavevej 29, DK 3400 Hillerød, Denmark.
| | - Steen Ingemann Hansen
- Department of Clinical Biochemistry, Nordsjællands Hospital - Hillerød, University Hospital Copenhagen, Dyrehavevej 29, DK 3400 Hillerød, Denmark.
| |
Collapse
|
9
|
Wu T, Yin F, Guang S, He F, Yang L, Peng J. The Glycosylphosphatidylinositol biosynthesis pathway in human diseases. Orphanet J Rare Dis 2020; 15:129. [PMID: 32466763 PMCID: PMC7254680 DOI: 10.1186/s13023-020-01401-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/06/2020] [Indexed: 01/15/2023] Open
Abstract
Glycosylphosphatidylinositol biosynthesis defects cause rare genetic disorders characterised by developmental delay/intellectual disability, seizures, dysmorphic features, and diverse congenital anomalies associated with a wide range of additional features (hypotonia, hearing loss, elevated alkaline phosphatase, and several other features). Glycosylphosphatidylinositol functions as an anchor to link cell membranes and protein. These proteins function as enzymes, adhesion molecules, complement regulators, or co-receptors in signal transduction pathways. Biallelic variants involved in the glycosylphosphatidylinositol anchored proteins biosynthetic pathway are responsible for a growing number of disorders, including multiple congenital anomalies-hypotonia-seizures syndrome; hyperphosphatasia with mental retardation syndrome/Mabry syndrome; coloboma, congenital heart disease, ichthyosiform dermatosis, mental retardation, and ear anomalies/epilepsy syndrome; and early infantile epileptic encephalopathy-55. This review focuses on the current understanding of Glycosylphosphatidylinositol biosynthesis defects and the associated genes to further understand its wide phenotype spectrum.
Collapse
Affiliation(s)
- Tenghui Wu
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Fei Yin
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Shiqi Guang
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Fang He
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Li Yang
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China
| | - Jing Peng
- Department of Pediatrics, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
- Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
10
|
Müller GA. The release of glycosylphosphatidylinositol-anchored proteins from the cell surface. Arch Biochem Biophys 2018; 656:1-18. [DOI: 10.1016/j.abb.2018.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/07/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
|
11
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
12
|
Benktander JD, Gizaw ST, Gaunitz S, Novotny MV. Analytical Scheme Leading to Integrated High-Sensitivity Profiling of Glycosphingolipids Together with N- and O-Glycans from One Sample. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1125-1137. [PMID: 29744812 PMCID: PMC6226365 DOI: 10.1007/s13361-018-1933-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 05/15/2023]
Abstract
Glycoconjugates are directly or indirectly involved in many biological processes. Due to their complex structures, the structural elucidation of glycans and the exploration of their role in biological systems have been challenging. Glycan pools generated through release from glycoprotein or glycolipid mixtures can often be very complex. For the sake of procedural simplicity, many glycan profiling studies choose to concentrate on a single class of glycoconjugates. In this paper, we demonstrate it feasible to cover glycosphingolipids, N-glycans, and O-glycans isolated from the same sample. Small volumes of human blood serum and ascites fluid as well as small mouse brain tissue samples are sufficient to profile sequentially glycans from all three classes of glycoconjugates and even positively identify some mixture components through MALDI-MS and LC-ESI-MS. The results show that comprehensive glycan profiles can be obtained from the equivalent of 500-μg protein starting material or possibly less. These methodological improvements can help accelerating future glycomic comprehensive studies, especially for precious clinical samples. Graphical Abstract Outline of glycan profiling procedures.
Collapse
Affiliation(s)
- John D Benktander
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Solomon T Gizaw
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Stefan Gaunitz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA
| | - Milos V Novotny
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47405, USA.
| |
Collapse
|
13
|
Immune Protection of Retroviral Vectors Upon Molecular Painting with the Complement Regulatory Protein CD59. Mol Biotechnol 2017; 58:480-8. [PMID: 27170144 PMCID: PMC4899500 DOI: 10.1007/s12033-016-9944-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glycosylphosphatidylinositol anchoring is a type of post-translational modification that allows proteins to be presented on the exterior side of the cell membrane. Purified glycosylphosphatidylinositol-anchored protein can spontaneously re-insert into lipid bilayer membranes in a process termed Molecular Painting. Here, we demonstrate the possibility of inserting purified, recombinant CD59 into virus particles produced from a murine retroviral producer cell line. CD59 is a regulator of the complement system that helps protect healthy cells from the lytic activity of the complement cascade. In this study, we could show that Molecular Painting confers protection from complement activity upon murine retroviral vector particles. Indeed, increased infectivity of CD59-modified virus particles was observed upon challenge with human serum, indicating that Molecular Painting is suitable for modulating the immune system in gene therapy or vaccination applications.
Collapse
|
14
|
Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2016; 147:175-198. [DOI: 10.1007/s00418-016-1518-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
|
15
|
Daniotti JL, Lardone RD, Vilcaes AA. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents. Front Oncol 2016; 5:300. [PMID: 26779443 PMCID: PMC4703717 DOI: 10.3389/fonc.2015.00300] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/14/2015] [Indexed: 12/14/2022] Open
Abstract
Glycolipids are complex molecules consisting of a ceramide lipid moiety linked to a glycan chain of variable length and structure. Among these are found the gangliosides, which are sialylated glycolipids ubiquitously distributed on the outer layer of vertebrate plasma membranes. Changes in the expression of certain species of gangliosides have been described to occur during cell proliferation, differentiation, and ontogenesis. However, the aberrant and elevated expression of gangliosides has been also observed in different types of cancer cells, thereby promoting tumor survival. Moreover, gangliosides are actively released from the membrane of tumor cells, having a strong impact on impairing anti-tumor immunity. Beyond the undesirable effects of gangliosides in cancer cells, a substantial number of cancer immunotherapies have been developed in recent years that have used gangliosides as the main target. This has resulted in successful immune cell- or antibody-responses against glycolipids, with promising results having been obtained in clinical trials. In this review, we provide a general overview on the metabolism of glycolipids, both in normal and tumor cells, as well as examining glycolipid-mediated immune modulation and the main successes achieved in immunotherapies using gangliosides as molecular targets.
Collapse
Affiliation(s)
- Jose Luis Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Ricardo D Lardone
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute at Providence Saint John's Health Center , Santa Monica, CA , USA
| | - Aldo A Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, UNC-CONICET), Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
16
|
Furukawa JI, Sakai S, Yokota I, Okada K, Hanamatsu H, Kobayashi T, Yoshida Y, Higashino K, Tamura T, Igarashi Y, Shinohara Y. Quantitative GSL-glycome analysis of human whole serum based on an EGCase digestion and glycoblotting method. J Lipid Res 2015; 56:2399-407. [PMID: 26420879 PMCID: PMC4655979 DOI: 10.1194/jlr.d062083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/04/2015] [Indexed: 12/14/2022] Open
Abstract
Glycosphingolipids (GSLs) are lipid molecules linked to carbohydrate units that form the plasma membrane lipid raft, which is clustered with sphingolipids, sterols, and specific proteins, and thereby contributes to membrane physical properties and specific recognition sites for various biological events. These bioactive GSL molecules consequently affect the pathophysiology and pathogenesis of various diseases. Thus, altered expression of GSLs in various diseases may be of importance for disease-related biomarker discovery. However, analysis of GSLs in blood is particularly challenging because GSLs are present at extremely low concentrations in serum/plasma. In this study, we established absolute GSL-glycan analysis of human serum based on endoglycoceramidase digestion and glycoblotting purification. We established two sample preparation protocols, one with and the other without GSL extraction using chloroform/methanol. Similar amounts of GSL-glycans were recovered with the two protocols. Both protocols permitted absolute quantitation of GSL-glycans using as little as 20 μl of serum. Using 10 healthy human serum samples, up to 42 signals corresponding to GSL-glycan compositions could be quantitatively detected, and the total serum GSL-glycan concentration was calculated to be 12.1-21.4 μM. We further applied this method to TLC-prefractionated serum samples. These findings will assist the discovery of disease-related biomarkers by serum GSL-glycomics.
Collapse
Affiliation(s)
- Jun-ichi Furukawa
- Laboratories of Medical and Functional Glycomics Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Shota Sakai
- Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Ikuko Yokota
- Laboratories of Medical and Functional Glycomics Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kazue Okada
- Laboratories of Medical and Functional Glycomics Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hisatoshi Hanamatsu
- Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Takashi Kobayashi
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo 001-0021, Japan
| | - Yasunobu Yoshida
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo 001-0021, Japan
| | - Kenichi Higashino
- Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Sapporo 001-0021, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Yasuyuki Igarashi
- Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasuro Shinohara
- Laboratories of Medical and Functional Glycomics Graduate School of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
17
|
Zoldoš V, Grgurević S, Lauc G. Epigenetic regulation of protein glycosylation. Biomol Concepts 2015; 1:253-61. [PMID: 25962001 DOI: 10.1515/bmc.2010.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Protein N-glycosylation is an ancient metabolic pathway that still exists in all three domains of life (Archaea, Bacteria and Eukarya). The covalent addition of one or more complex oligosaccharides (glycans) to protein backbones greatly diversifies their structures and makes the glycoproteome several orders of magnitude more complex than the proteome itself. Contrary to polypeptides, which are defined by a sequence of nucleotides in the corresponding genes, the glycan part of glycoproteins are encoded in a complex dynamic network of hundreds of proteins, whereby activity is defined by both genetic sequence and the regulation of gene expression. Owing to the complex nature of their biosynthesis, glycans are particularly versatile and apparently a large part of human variation derives from differences in protein glycosylation. Composition of the individual glycome appears to be rather stable, and thus differences in the pattern of glycan synthesis between individuals could originate either from genetic polymorphisms or from stable epigenetic regulation of gene expression in different individuals. Studies of epigenetic modification of genes involved in protein glycosylation are still scarce, but their results indicate that this process might be very important for the regulation of protein glycosylation.
Collapse
|
18
|
Dolezal S, Hester S, Kirby PS, Nairn A, Pierce M, Abbott KL. Elevated levels of glycosylphosphatidylinositol (GPI) anchored proteins in plasma from human cancers detected by C. septicum alpha toxin. Cancer Biomark 2015; 14:55-62. [PMID: 24643042 DOI: 10.3233/cbm-130377] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The glycosylphosphatidylinositol (GPI) anchor is a glycan and lipid posttranslational modification added to proteins in the endoplasmic reticulum. Certain enzymes within the GPI biosynthetic pathway, particularly the subunits of the GPI transamidase, are elevated in various human cancers. Specific GPI anchored proteins, such as carcinoembryonic antigen and mesothelin, have been described as potential biomarkers for certain cancers; however, the overall levels of GPI anchored proteins present in plasma from cases of human cancers have not been evaluated. We have developed the use of a bacterial toxin known as alpha toxin from Clostridium septicum to detect GPI anchored proteins in vitro. In this study, we use alpha toxin to detect GPI anchored proteins present in plasma from cases of several types of human cancers. Our data indicate that human cancers with previously documented elevations of GPI transamidase subunits show increased alpha toxin binding to plasma from patients with these cancers, indicating increased levels of GPI anchored proteins. Furthermore, our results reveal very low levels of alpha toxin binding to plasma from patients with no malignant disease indicating few GPI anchored proteins are present. These data suggest that GPI anchored proteins present in plasma from these cancers represent biomarkers with potential use for cancer detection.
Collapse
Affiliation(s)
- Samuel Dolezal
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Shanterian Hester
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Pamela S Kirby
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Allison Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael Pierce
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Karen L Abbott
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
19
|
Kim JC, Tae G. Recent Advances in Cell surface Engineering Focused on Cell Therapy. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jong Chul Kim
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 500-712 Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; Gwangju 500-712 Republic of Korea
| |
Collapse
|
20
|
Wondimu A, Liu Y, Su Y, Bobb D, Ma JSY, Chakrabarti L, Radoja S, Ladisch S. Gangliosides drive the tumor infiltration and function of myeloid-derived suppressor cells. Cancer Res 2014; 74:5449-57. [PMID: 25115301 DOI: 10.1158/0008-5472.can-14-0927] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although it is now widely appreciated that antitumor immunity is critical to impede tumor growth and progression, there remain significant gaps in knowledge about the mechanisms used by tumors to escape immune control. In tumor cells, we hypothesized that one mechanism of immune escape used by tumors involves the synthesis and extracellular shedding of gangliosides, a class of biologically active cell surface glycosphingolipids with known immunosuppressive properties. In this study, we report that tumor cells engineered to be ganglioside deficient exhibit impaired tumorigenicity, supporting a link between ganglioside-dependent immune escape and tumor outgrowth. Notably, we documented a dramatic reduction in the numbers and function of tumor-infiltrating myeloid-derived suppressor cells (MDSC) in ganglioside-deficient tumors, in contrast with the large MDSC infiltrates seen in ganglioside-rich littermate control tumors. Transient ganglioside reconstitution of the tumor cell inoculum was sufficient to increase MDSC infiltration, supporting a direct connection between ganglioside production by tumor cells and the recruitment of immunosuppressive MDSC into the tumor microenvironment. Our results reveal a novel mechanism of immune escape that supports tumor growth, with broad implications given that many human tumors produce and shed high levels of gangliosides.
Collapse
Affiliation(s)
- Assefa Wondimu
- Center for Cancer and Immunology Research, Children's Research Institute, George Washington University School of Medicine, Washington, DC
| | - Yihui Liu
- Center for Cancer and Immunology Research, Children's Research Institute, George Washington University School of Medicine, Washington, DC. Departments of Pediatrics, George Washington University School of Medicine, Washington, DC
| | - Yan Su
- Center for Cancer and Immunology Research, Children's Research Institute, George Washington University School of Medicine, Washington, DC
| | - Daniel Bobb
- Center for Cancer and Immunology Research, Children's Research Institute, George Washington University School of Medicine, Washington, DC
| | - Jennifer S Y Ma
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, George Washington University School of Medicine, Washington, DC
| | - Lina Chakrabarti
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, George Washington University School of Medicine, Washington, DC
| | - Saša Radoja
- Departments of Pediatrics, George Washington University School of Medicine, Washington, DC. Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, George Washington University School of Medicine, Washington, DC
| | - Stephan Ladisch
- Center for Cancer and Immunology Research, Children's Research Institute, George Washington University School of Medicine, Washington, DC. Departments of Pediatrics, George Washington University School of Medicine, Washington, DC. Department of Biochemistry/Molecular Biology, George Washington University School of Medicine, Washington, DC.
| |
Collapse
|
21
|
Cai B, Xie S, Liu F, Simone LC, Caplan S, Qin X, Naslavsky N. Rapid degradation of the complement regulator, CD59, by a novel inhibitor. J Biol Chem 2014; 289:12109-12125. [PMID: 24616098 DOI: 10.1074/jbc.m113.547083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is increased interest in immune-based monoclonal antibody therapies for different malignancies because of their potential specificity and limited toxicity. The activity of some therapeutic monoclonal antibodies is partially dependent on complement-dependent cytolysis (CDC), in which the immune system surveys for invading pathogens, infected cells, and malignant cells and facilitates their destruction. CD59 is a ubiquitously expressed cell-surface glycosylphosphatidylinositol-anchored protein that protects cells from CDC. However, in certain tumors, CD59 expression is enhanced, posing a significant obstacle for treatment, by hindering effective monoclonal antibody-induced CDC. In this study, we used non-small lung carcinoma cells to characterize the mechanism of a novel CD59 inhibitor: the 114-amino acid recombinant form of the 4th domain of intermedilysin (rILYd4), a pore forming toxin secreted by Streptococcus intermedius. We compared the rates of internalization of CD59 in the presence of rILYd4 or anti-CD59 antibodies and determined that rILYd4 induces more rapid CD59 uptake at early time points. Most significantly, upon binding to rILYd4, CD59 is internalized and undergoes massive degradation in lysosomes within minutes. The remaining rILYd4·CD59 complexes recycle to the PM and are shed from the cell. In comparison, upon internalization of CD59 via anti-CD59 antibody binding, the antibody·CD59 complex is recycled via early and recycling endosomes, mostly avoiding degradation. Our study supports a novel role for rILYd4 in promoting internalization and rapid degradation of the complement inhibitor CD59, and highlights the potential for improving CDC-based immunotherapy.
Collapse
Affiliation(s)
- Bishuang Cai
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shuwei Xie
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Fengming Liu
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Laura C Simone
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska 68198.
| | - Xuebin Qin
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
22
|
Yao D, McGonigal R, Barrie JA, Cappell J, Cunningham ME, Meehan GR, Fewou SN, Edgar JM, Rowan E, Ohmi Y, Furukawa K, Furukawa K, Brophy PJ, Willison HJ. Neuronal expression of GalNAc transferase is sufficient to prevent the age-related neurodegenerative phenotype of complex ganglioside-deficient mice. J Neurosci 2014; 34:880-91. [PMID: 24431446 PMCID: PMC3891965 DOI: 10.1523/jneurosci.3996-13.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/15/2013] [Accepted: 11/23/2013] [Indexed: 11/21/2022] Open
Abstract
Gangliosides are widely expressed sialylated glycosphingolipids with multifunctional properties in different cell types and organs. In the nervous system, they are highly enriched in both glial and neuronal membranes. Mice lacking complex gangliosides attributable to targeted ablation of the B4galnt1 gene that encodes β-1,4-N-acetylegalactosaminyltransferase 1 (GalNAc-transferase; GalNAcT(-/-)) develop normally before exhibiting an age-dependent neurodegenerative phenotype characterized by marked behavioral abnormalities, central and peripheral axonal degeneration, reduced myelin volume, and loss of axo-glial junction integrity. The cell biological substrates underlying this neurodegeneration and the relative contribution of either glial or neuronal gangliosides to the process are unknown. To address this, we generated neuron-specific and glial-specific GalNAcT rescue mice crossed on the global GalNAcT(-/-) background [GalNAcT(-/-)-Tg(neuronal) and GalNAcT(-/-)-Tg(glial)] and analyzed their behavioral, morphological, and electrophysiological phenotype. Complex gangliosides, as assessed by thin-layer chromatography, mass spectrometry, GalNAcT enzyme activity, and anti-ganglioside antibody (AgAb) immunohistology, were restored in both neuronal and glial GalNAcT rescue mice. Behaviorally, GalNAcT(-/-)-Tg(neuronal) retained a normal "wild-type" (WT) phenotype throughout life, whereas GalNAcT(-/-)-Tg(glial) resembled GalNAcT(-/-) mice, exhibiting progressive tremor, weakness, and ataxia with aging. Quantitative electron microscopy demonstrated that GalNAcT(-/-) and GalNAcT(-/-)-Tg(glial) nerves had significantly increased rates of axon degeneration and reduced myelin volume, whereas GalNAcT(-/-)-Tg(neuronal) and WT appeared normal. The increased invasion of the paranode with juxtaparanodal Kv1.1, characteristically seen in GalNAcT(-/-) and attributed to a breakdown of the axo-glial junction, was normalized in GalNAcT(-/-)-Tg(neuronal) but remained present in GalNAcT(-/-)-Tg(glial) mice. These results indicate that neuronal rather than glial gangliosides are critical to the age-related maintenance of nervous system integrity.
Collapse
Affiliation(s)
- Denggao Yao
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Rhona McGonigal
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Jennifer A. Barrie
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Joanna Cappell
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Madeleine E. Cunningham
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Gavin R. Meehan
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Simon N. Fewou
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Julia M. Edgar
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Edward Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, United Kingdom
| | - Yuhsuke Ohmi
- Department of Biochemistry II, Nagoya University School of Medicine, Nagoya 466-0065, Japan, and
| | - Keiko Furukawa
- Department of Biochemistry II, Nagoya University School of Medicine, Nagoya 466-0065, Japan, and
| | - Koichi Furukawa
- Department of Biochemistry II, Nagoya University School of Medicine, Nagoya 466-0065, Japan, and
| | - Peter J. Brophy
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Hugh J. Willison
- Institute of Infection, Immunity, and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| |
Collapse
|
23
|
Immunoreactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Primary Lymphoid Tumors and Lymph Node Metastasis. PATHOLOGY RESEARCH INTERNATIONAL 2013; 2013:920972. [PMID: 24381785 PMCID: PMC3863531 DOI: 10.1155/2013/920972] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/30/2013] [Accepted: 10/10/2013] [Indexed: 12/22/2022]
Abstract
The reactivity of the 14F7 Mab, a highly specific IgG1 against N-glycolyl GM3 ganglioside (NeuGcGM3) in normal tissues, lymphomas, lymph node metastasis, and other metastatic sites was assessed by immunohistochemistry. In addition, the effect of chemical fixation on the 14F7 Mab staining using monolayers of P3X63Ag.653 cells was also evaluated. Moreover, the ability of 14F7 to bind NeuGcGM3 ganglioside inducing complement-independent cytotoxicity by a flow cytometry-based assay was measured. The 14F7 Mab was reactive in unfixed, 4% paraformaldehyde, 4% formaldehyde, and acetone fixed cells. Postfixation with acetone did not alter the localization of NeuGcGM3, while the staining with 14F7 Mab was significantly eliminated in both cells fixed and postfixed with methanol but only partially reduced with ethanol. The staining with 14F7 Mab was evidenced in the 89.2%, 89.4%, and 88.9% of lymphomas, lymph node metastasis, and other metastatic sites, respectively, but not in normal tissues. The treatment with 14F7 Mab affected both morphology and membrane integrity of P3X63Ag.653 cells. This cytotoxic activity was dose-dependent and ranged from 24.0 to 84.7% (10-1000 μ g/mL) as compared to the negative control. Our data could support the possible use of NeuGcGM3 as target for both active and passive immunotherapy against malignancies expressing this molecule.
Collapse
|
24
|
Tsai YT, Yu RK. Epigenetic activation of mouse ganglioside synthase genes: implications for neurogenesis. J Neurochem 2013; 128:101-10. [PMID: 24102378 DOI: 10.1111/jnc.12456] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 02/03/2023]
Abstract
The quantity and expression pattern of gangliosides in mammalian brain change drastically during development and are mainly regulated through stage-specific expression of ganglioside synthase genes. Despite extensive investigations in the past, it remains largely unclear how the transcriptional activation of the genes encoding glycosyltransferases is regulated. Here, we show that in the neuronogenic cultures of mouse embryonic brain-derived neuroepithelial cells, histone modifications including acetylated histone H3 and histone H4, but not histone H3 trimethylation at lysine 27 of two genes encoding two key regulatory GTs, namely, N-acetylgalactosaminyltransferase I and sialyltransferase II, were extensively and gradually enhanced, respectively. As a consequence, the level of each GT mRNA was increased correspondingly. Hyperacetylation of histones on the GalNAcT promoter resulted in recruitment of the trans-activation factors Sp2 and AP-1 when cellular histone deacetylases 1 and 2 were knocked down with RNA interference or inhibited by treatment with valproic acid. Moreover, epigenetic activation of GalNAcT was also detected, as accompanied by a pronounced induction of neural differentiation in primary neuroepithelium culture responding to an exogenous supplement of ganglioside GM1, a downstream product of the gene's encoding enzyme. Our findings thus provide direct evidence of novel pathways for ganglioside expression via the epigenetic up-regulation of ganglioside synthase genes during neural development.
Collapse
Affiliation(s)
- Yi-Tzang Tsai
- Institute of Molecular Medicine and Genetics and the Institute of Neuroscience, Georgia Regents University, Augusta, Georgia, USA
| | | |
Collapse
|
25
|
Abstract
In this study, we describe a versatile, flexible, and quick method to label different families of enveloped viruses with glycosylphosphatidylinositol-modified green fluorescent protein, termed fluorescence molecular painting (FMP). As an example for a potential application, we investigated virus attachment by means of flow cytometry to determine if viral binding behavior may be analyzed after FMP of enveloped viruses. Virus attachment was inhibited by using either dextran sulfate or by blocking attachment sites with virus pre-treatment. Results from the FMP-flow cytometry approach were verified by immunoblotting and enzyme-linked immunosorbent assay. Since the modification strategy is applicable to a broad range of proteins and viruses, variations of this method may be useful in a range of research and applied applications from bio-distribution studies to vaccine development and targeted infection for gene delivery.
Collapse
Affiliation(s)
- Christoph Metzner
- Institute of Virology, University of Veterinary Medicine, Vienna, Veterinarplatz 1, 1210 Vienna, Austria
| | - Feliks Kochan
- Institute of Virology, University of Veterinary Medicine, Vienna, Veterinarplatz 1, 1210 Vienna, Austria
| | - John A. Dangerfield
- Institute of Virology, University of Veterinary Medicine, Vienna, Veterinarplatz 1, 1210 Vienna, Austria
- Anovasia Pte Ltd, 20 Biopolis Way, #05-518 Centros, Singapore, 138668 Singapore
| |
Collapse
|
26
|
Kolter T. Ganglioside biochemistry. ISRN BIOCHEMISTRY 2012; 2012:506160. [PMID: 25969757 PMCID: PMC4393008 DOI: 10.5402/2012/506160] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 01/21/2023]
Abstract
Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized.
Collapse
Affiliation(s)
- Thomas Kolter
- Program Unit Membrane Biology & Lipid Biochemistry, LiMES, University of Bonn, Gerhard-Domagk Straße 1, 53121 Bonn, Germany
| |
Collapse
|
27
|
Abstract
Biomarkers are of tremendous importance for the prediction, diagnosis, and observation of the therapeutic success of common complex multifactorial metabolic diseases, such as type II diabetes and obesity. However, the predictive power of the traditional biomarkers used (eg, plasma metabolites and cytokines, body parameters) is apparently not sufficient for reliable monitoring of stage-dependent pathogenesis starting with the healthy state via its initiation and development to the established disease and further progression to late clinical outcomes. Moreover, the elucidation of putative considerable differences in the underlying pathogenetic pathways (eg, related to cellular/tissue origin, epigenetic and environmental effects) within the patient population and, consequently, the differentiation between individual options for disease prevention and therapy - hallmarks of personalized medicine - plays only a minor role in the traditional biomarker concept of metabolic diseases. In contrast, multidimensional and interdependent patterns of genetic, epigenetic, and phenotypic markers presumably will add a novel quality to predictive values, provided they can be followed routinely along the complete individual disease pathway with sufficient precision. These requirements may be fulfilled by small membrane vesicles, which are so-called exosomes and microvesicles (EMVs) that are released via two distinct molecular mechanisms from a wide variety of tissue and blood cells into the circulation in response to normal and stress/pathogenic conditions and are equipped with a multitude of transmembrane, soluble and glycosylphosphatidylinositol-anchored proteins, mRNAs, and microRNAs. Based on the currently available data, EMVs seem to reflect the diverse functional and dysfunctional states of the releasing cells and tissues along the complete individual pathogenetic pathways underlying metabolic diseases. A critical step in further validation of EMVs as biomarkers will rely on the identification of unequivocal correlations between critical disease states and specific EMV signatures, which in future may be determined in rapid and convenient fashion using nanoparticle-driven biosensors.
Collapse
Affiliation(s)
- Günter Müller
- Department of Biology I, Genetics, Ludwig-Maximilians University Munich, Biocenter, Munich, Germany
| |
Collapse
|
28
|
Simon MC, Kusch J. Communicative functions of GPI-anchored surface proteins in unicellular eukaryotes. Crit Rev Microbiol 2012; 39:70-8. [DOI: 10.3109/1040841x.2012.691459] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Murakami Y, Kanzawa N, Saito K, Krawitz PM, Mundlos S, Robinson PN, Karadimitris A, Maeda Y, Kinoshita T. Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol deficiency in patients with hyperphosphatasia mental retardation syndrome. J Biol Chem 2012; 287:6318-25. [PMID: 22228761 DOI: 10.1074/jbc.m111.331090] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperphosphatasia mental retardation syndrome (HPMR), an autosomal recessive disease characterized by mental retardation and elevated serum alkaline phosphatase (ALP) levels, is caused by mutations in the coding region of the phosphatidylinositol glycan anchor biosynthesis, class V (PIGV) gene, the product of which is a mannosyltransferase essential for glycosylphosphatidylinositol (GPI) biosynthesis. Mutations found in four families caused amino acid substitutions A341E, A341V, Q256K, and H385P, which drastically decreased expression of the PIGV protein. Hyperphosphatasia resulted from secretion of ALP, a GPI-anchored protein normally expressed on the cell surface, into serum due to PIGV deficiency. In contrast, a previously reported PIGM deficiency, in which there is a defect in the transfer of the first mannose, does not result in hyperphosphatasia. To provide insights into the mechanism of ALP secretion in HPMR patients, we took advantage of CHO cell mutants that are defective in various steps of GPI biosynthesis. Secretion of ALP requires GPI transamidase, which in normal cells, cleaves the C-terminal GPI attachment signal peptide and replaces it with GPI. The GPI-anchored protein was secreted substantially into medium from PIGV-, PIGB-, and PIGF-deficient CHO cells, in which incomplete GPI bearing mannose was accumulated. In contrast, ALP was degraded in PIGL-, DPM2-, or PIGX-deficient CHO cells, in which incomplete shorter GPIs that lacked mannose were accumulated. Our results suggest that GPI transamidase recognizes incomplete GPI bearing mannose and cleaves a hydrophobic signal peptide, resulting in secretion of soluble ALP. These results explain the molecular mechanism of hyperphosphatasia in HPMR.
Collapse
Affiliation(s)
- Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases, and Laboratory of Immunoglycobiology, WPI Immunology Frontier Research Center, Osaka, Japan 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Müller A, Klöppel C, Smith-Valentine M, Van Houten J, Simon M. Selective and programmed cleavage of GPI-anchored proteins from the surface membrane by phospholipase C. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:117-24. [DOI: 10.1016/j.bbamem.2011.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 01/22/2023]
|
31
|
Dangaj D, Abbott KL, Mookerjee A, Zhao A, Kirby PS, Sandaltzopoulos R, Powell DJ, Lamazière A, Siegel DL, Wolf C, Scholler N. Mannose receptor (MR) engagement by mesothelin GPI anchor polarizes tumor-associated macrophages and is blocked by anti-MR human recombinant antibody. PLoS One 2011; 6:e28386. [PMID: 22163010 PMCID: PMC3232216 DOI: 10.1371/journal.pone.0028386] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/07/2011] [Indexed: 12/18/2022] Open
Abstract
Tumor-infiltrating macrophages respond to microenvironmental signals by developing a tumor-associated phenotype characterized by high expression of mannose receptor (MR, CD206). Antibody cross-linking of CD206 triggers anergy in dendritic cells and CD206 engagement by tumoral mucins activates an immune suppressive phenotype in tumor-associated macrophages (TAMs). Many tumor antigens are heavily glycosylated, such as tumoral mucins, and/or attached to tumor cells by mannose residue-containing glycolipids (GPI anchors), as for example mesothelin and the family of carcinoembryonic antigen (CEA). However, the binding to mannose receptor of soluble tumor antigen GPI anchors via mannose residues has not been systematically studied. To address this question, we analyzed the binding of tumor-released mesothelin to ascites-infiltrating macrophages from ovarian cancer patients. We also modeled functional interactions between macrophages and soluble mesothelin using an in vitro system of co-culture in transwells of healthy donor macrophages with human ovarian cancer cell lines. We found that soluble mesothelin bound to human macrophages and that the binding depended on the presence of GPI anchor and of mannose receptor. We next challenged the system with antibodies directed against the mannose receptor domain 4 (CDR4-MR). We isolated three novel anti-CDR4-MR human recombinant antibodies (scFv) using a yeast-display library of human scFv. Anti-CDR4-MR scFv #G11 could block mesothelin binding to macrophages and prevent tumor-induced phenotype polarization of CD206(low) macrophages towards TAMs. Our findings indicate that tumor-released mesothelin is linked to GPI anchor, engages macrophage mannose receptor, and contributes to macrophage polarization towards TAMs. We propose that compounds able to block tumor antigen GPI anchor/CD206 interactions, such as our novel anti-CRD4-MR scFv, could prevent tumor-induced TAM polarization and have therapeutic potential against ovarian cancer, through polarization control of tumor-infiltrating innate immune cells.
Collapse
Affiliation(s)
- Denarda Dangaj
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Karen L. Abbott
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Ananda Mookerjee
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aizhi Zhao
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pamela S. Kirby
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Daniel J. Powell
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Antonin Lamazière
- Department of Biochemistry, School of Medicine Saint Antoine, Université Pierre et Marie Curie, Paris, France
| | - Don L. Siegel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Claude Wolf
- Department of Biochemistry, School of Medicine Saint Antoine, Université Pierre et Marie Curie, Paris, France
| | - Nathalie Scholler
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
32
|
Chapin C, Bailey NA, Gonzales LW, Lee JW, Gonzalez RF, Ballard PL. Distribution and surfactant association of carcinoembryonic cell adhesion molecule 6 in human lung. Am J Physiol Lung Cell Mol Physiol 2011; 302:L216-25. [PMID: 22037359 DOI: 10.1152/ajplung.00055.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carcinoembryonic cell adhesion molecule 6 (CEACAM6) is a glycosylated, glycophosphatidylinositol-anchored protein expressed in epithelial cells of various primate tissues. It binds gram-negative bacteria and is overexpressed in human cancers. CEACAM6 is associated with lamellar bodies of cultured type II cells of human fetal lung and protects surfactant function in vitro. In this study, we characterized CEACAM6 expression in vivo in human lung. CEACAM6 was present in lung lavage of premature infants at birth and increased progressively in intubated infants with lung disease. Of surfactant-associated CEACAM6, ∼80% was the fully glycosylated, 90-kDa form that contains the glycophosphatidylinositol anchor, and the concentration (3.9% of phospholipid for adult lung) was comparable to that for surfactant proteins (SP)-A/B/C. We examined the affinity of CEACAM6 by purification of surfactant on density gradient centrifugation; concentrations of CEACAM6 and SP-B per phospholipid were unchanged, whereas levels of total protein and SP-A decreased by 60%. CEACAM6 mRNA content decreased progressively from upper trachea to peripheral fetal lung, whereas protein levels were similar in all regions of adult lung, suggesting proximal-to-distal developmental expression in lung epithelium. In adult lung, most type I cells and ∼50% of type II cells were immunopositive. We conclude that CEACAM6 is expressed by alveolar and airway epithelial cells of human lung and is secreted into lung-lining fluid, where fully glycosylated protein binds to surfactant. Production appears to be upregulated during neonatal lung disease, perhaps related to roles of CEACAM6 in surfactant function, cell proliferation, and innate immune defense.
Collapse
Affiliation(s)
- Cheryl Chapin
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
33
|
Detection of N-glycolyl GM3 ganglioside in neuroectodermal tumors by immunohistochemistry: an attractive vaccine target for aggressive pediatric cancer. Clin Dev Immunol 2011; 2011:245181. [PMID: 21941577 PMCID: PMC3177098 DOI: 10.1155/2011/245181] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/22/2011] [Indexed: 11/20/2022]
Abstract
The N-glycolylated ganglioside NeuGc-GM3 has been described in solid tumors such as breast carcinoma, nonsmall cell lung cancer, and melanoma, but is usually not detected in normal human cells. Our aim was to evaluate the presence of NeuGc-GM3 in pediatric neuroectodermal tumors by immunohistochemistry. Twenty-seven archival cases of neuroblastoma and Ewing sarcoma family of tumors (ESFT) were analyzed. Formalin-fixed, paraffin-embedded tumor samples were cut into 5 μm sections. The monoclonal antibody 14F7, a mouse IgG1 that specifically recognizes NeuGc-GM3, and a peroxidase-labeled polymer conjugated to secondary antibodies were used. Presence of NeuGc-GM3 was evident in 23 of 27 cases (85%), with an average of about 70% of positive tumors cells. Immunoreactivity was moderate to intense in most tumors, showing a diffuse cytoplasmic and membranous staining, although cases of ESFT demonstrated a fine granular cytoplasmic pattern. No significant differences were observed between neuroblastoma with and without NMYC oncogene amplification, suggesting that expression of NeuGc-GM3 is preserved in more aggressive cancers. Until now, the expression of N-glycolylated gangliosides in pediatric neuroectodermal tumors has not been investigated. The present study evidenced the expression of NeuGc-GM3 in a high proportion of neuroectodermal tumors, suggesting its potential utility as a specific target of immunotherapy.
Collapse
|
34
|
Enzymatic shaving of the tegument surface of live schistosomes for proteomic analysis: a rational approach to select vaccine candidates. PLoS Negl Trop Dis 2011; 5:e993. [PMID: 21468311 PMCID: PMC3066142 DOI: 10.1371/journal.pntd.0000993] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 03/02/2011] [Indexed: 11/19/2022] Open
Abstract
Background The membrane-associated and membrane-spanning constituents of the Schistosoma mansoni tegument surface, the parasite's principal interface with the host bloodstream, have recently been characterized using proteomic techniques. Biotinylation of live worms using membrane-impermeant probes revealed that only a small subset of the proteins was accessible to the reagents. Their position within the multilayered architecture of the surface has not been ascertained. Methodology/Principal Findings An enzymatic shaving approach on live worms has now been used to release the most accessible components, for analysis by MS/MS. Treatment with trypsin, or phosphatidylinositol-specific phospholipase C (PiPLC), only minimally impaired membrane integrity. PiPLC-enriched proteins were distinguished from those released in parasite vomitus or by handling damage, using isobaric tagging. Trypsin released five membrane proteins, Sm200, Sm25 and three annexins, plus host CD44 and the complement factors C3 and C4. Nutrient transporters and ion channels were absent from the trypsin fraction, suggesting a deeper location in the surface complex; surprisingly, two BAR-domain containing proteins were released. Seven parasite and two host proteins were enriched by PiPLC treatment, the vaccine candidate Sm29 being the most prominent along with two orthologues of human CD59, potentially inhibitors of complement fixation. The enzymes carbonic anhydrase and APD-ribosyl cyclase were also enriched, plus Sm200 and alkaline phosphatase. Host GPI-anchored proteins CD48 and CD90, suggest ‘surface painting’ during worm peregrination in the portal system. Conclusions/Significance Our findings suggest that the membranocalyx secreted over the tegument surface is not the inert barrier previously proposed, some tegument proteins being externally accessible to enzymes and thus potentially located within it. Furthermore, the detection of C3 and C4 indicates that the complement cascade is initiated, while two CD59 orthologues suggest a potential mechanism for its inhibition. The detection of several host proteins is a testimonial to the acquisitive properties of the tegument surface. The exposed parasite proteins could represent novel vaccine candidates for combating this neglected disease. Adult schistosome parasites can reside in the host bloodstream for decades surrounded by components of the immune system. It was originally proposed that their survival depended on the secretion of an inert bilayer, the membranocalyx, to protect the underlying plasma membrane from attack. We have investigated whether any proteins were exposed on the surface of live worms using incubation with selected hydrolases, in combination with mass spectrometry to identify released proteins. We show that a small number of parasite proteins are accessible to the enzymes and so could represent constituents of the membranocalyx. We also identified several proteins acquired by the parasite on contact with host cells. In addition, components of the cytolytic complement pathway were detected, but these appeared not to harm the worm, indicating that some of its own surface proteins could inhibit the lytic pathway. We suggest that, collectively, the ‘superficial’ parasite proteins may provide good candidates for a schistosome vaccine.
Collapse
|
35
|
Lauc G, Zoldoš V. Protein glycosylation--an evolutionary crossroad between genes and environment. MOLECULAR BIOSYSTEMS 2010; 6:2373-9. [PMID: 20957246 DOI: 10.1039/c0mb00067a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The majority of molecular processes in higher organisms are performed by various proteins and are thus determined by genes that encode these proteins. However, a significant structural component of at least half of all cellular proteins is not a polypeptide encoded by a single gene, but an oligosaccharide (glycan) synthesized by a network of proteins, resulting from the expression of hundreds of different genes. Relationships between hundreds of individual proteins that participate in glycan biosynthesis are very complex which enables the influence of environmental factors on the final structure of glycans, either by direct effects on individual enzymatic processes, or by induction of epigenetic changes that modify gene expression patterns. Until recently, the complexity of glycan structures prevented large scale studies of protein glycosylation, but recent advances in both glycan analysis and genotyping technologies, enabled the first insights into the intricate field of complex genetics of protein glycosylation. Mutations which inactivate genes involved in the synthesis of common N-glycan precursors are embryonically lethal. However, mutations in genes involved in modifications of glycan antennas are common and apparently contribute largely to individual phenotypic variations that exist in humans and other higher organisms. Some of these variations can be recognized as specific glyco-phenotypes that might represent specific evolutionary advantages or disadvantages. They are however, amenable to environmental influences and are thus less pre-determined than classical Mendelian mutations.
Collapse
Affiliation(s)
- Gordan Lauc
- Genos Ltd, Glycobiology Division, Planinska 1, 10000 Zagreb, Croatia.
| | | |
Collapse
|
36
|
Valenti MT, Giannini S, Donatelli L, Zanatta M, Bertoldo F, Sella S, Vilei MT, Ossi E, Realdi G, Lo Cascio V, Dalle Carbonare L. The effect of risedronate on osteogenic lineage is mediated by cyclooxygenase-2 gene upregulation. Arthritis Res Ther 2010; 12:R163. [PMID: 20738860 PMCID: PMC2945066 DOI: 10.1186/ar3122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 08/02/2010] [Accepted: 08/25/2010] [Indexed: 12/16/2022] Open
Abstract
Introduction The purpose of this study was to evaluate the effects of risedronate (Ris) in the modulation of bone formation in rats with glucocorticoid (GC)-induced osteoporosis by histomorphometric, immunohistochemical and gene expression analyses. Methods We analyzed structure, turnover and microarchitecture, cyclooxygenase 2 (COX-2) levels and osteocyte apoptosis in 40 female rats divided as follows: 1) vehicle of methylprednisolone (vGC) + vehicle of risedronate (vRis); 2) Ris 5 μg/Kg + vGC; 3) methylprednisolone (GC) 7 mg/Kg + vRis; 4) GC 7 mg/Kg +Ris 5 μg/Kg. In addition, we evaluated cell proliferation and expression of COX-2 and bone alkaline phosphatase (b-ALP) genes in bone marrow cells and MLO-y4 osteocytes treated with Ris alone or in co-treatment with the selective COX-2 inhibitor NS-398 or with dexametasone. Results Ris reduced apoptosis induced by GC of osteocytes (41% vs 86%, P < 0.0001) and increased COX-2 expression with respect to controls (Immuno-Hystochemical Score (IHS): 8.75 vs 1.00, P < 0.0001). These positive effects of Ris in bone formation were confirmed by in vitro data as the viability and expression of b-ALP gene in bone marrow cells resulted increased in a dose dependent manner. Conclusions These findings suggest a positive effect of Ris in bone formation and support the hypothesis that the up-regulation of COX-2 could be an additional mechanism of anabolic effect of Ris.
Collapse
|
37
|
Philippova M, Suter Y, Toggweiler S, Schoenenberger AW, Joshi MB, Kyriakakis E, Erne P, Resink TJ. T-cadherin is present on endothelial microparticles and is elevated in plasma in early atherosclerosis. Eur Heart J 2010; 32:760-71. [PMID: 20584775 DOI: 10.1093/eurheartj/ehq206] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS The presence of endothelial cell (EC)-derived surface molecules in the circulation is among hallmarks of endothelial activation and damage in vivo. Previous investigations suggest that upregulation of T-cadherin (T-cad) on the surface of ECs may be a characteristic marker of EC activation and stress. We investigated whether T-cad might also be shed from ECs and in amounts reflecting the extent of activation or damage. METHODS AND RESULTS Immunoblotting showed the presence of T-cad protein in the culture medium from normal proliferating ECs and higher levels in the medium from stressed/apoptotic ECs. Release of T-cad into the circulation occurs in vivo and in association with endothelial dysfunction. Sandwich ELISA revealed negligible T-cad protein in the plasma of healthy volunteers (0.90 ± 0.90 ng/mL, n = 30), and increased levels in the plasma from patients with non-significant atherosclerosis (9.23 ± 2.61 ng/mL, n = 63) and patients with chronic coronary artery disease (6.93 ± 1.31 ng/mL, n = 162). In both patient groups there was a significant (P = 0.043) dependency of T-cad and degree of endothelial dysfunction as measured by reactive hyperaemia peripheral tonometry. Flow cytometry analysis showed that the major fraction of T-cad was released into the EC culture medium and the plasma as a surface component of EC-derived annexin V- and CD144/CD31-positive microparticles (MPs). Gain-of-function and loss-of-function studies demonstrate that MP-bound T-cad induced Akt phosphorylation and activated angiogenic behaviour in target ECs via homophilic-based interactions. CONCLUSION Our findings reveal a novel mechanism of T-cad-dependent signalling in the vascular endothelium. We identify T-cad as an endothelial MP antigen in vivo and demonstrate that its level in plasma is increased in early atherosclerosis and correlates with endothelial dysfunction.
Collapse
Affiliation(s)
- Maria Philippova
- Department of Biomedicine, Laboratory for Signal Transduction, Basel University Hospital, ZLF 316 Hebelstrasse 20, CH 4031, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Scursoni AM, Galluzzo L, Camarero S, Pozzo N, Gabri MR, de Acosta CM, Vázquez AM, Alonso DF, de Dávila MTG. Detection and characterization of N-glycolyated gangliosides in Wilms tumor by immunohistochemistry. Pediatr Dev Pathol 2010; 13:18-23. [PMID: 19435393 DOI: 10.2350/08-10-0544.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gangliosides are glycolipids present on the cell surface. The N-glycolylated ganglioside NeuGc-GM3 has been described in some neoplasms, such as breast carcinoma and melanoma, but is usually not detected in normal human cells. Our aim was to evaluate the presence of NeuGc-GM3 in Wilms tumor by immunohistochemistry. Postchemotherapy tumors were grouped into different histologic subtypes considering the main preserved component. Formalin-fixed, paraffin-embedded tumor samples were cut into 5-microm sections. The monoclonal antibody 14F7, a mouse IgG1 that specifically recognizes NeuGc-GM3, and a peroxidase-labeled polymer conjugated to secondary antibodies were used. Sections from breast carcinoma were employed as positive controls. Presence of NeuGc-GM3 was evident in 22 of 25 (88%) cases. The staining was stronger in the epithelial component, with a membrane pattern and cytoplasmic diffusion. The stromal component expressed cytoplasmic NeuGc-GM3 in cells with rhabdomyoblastic differentiation. Tubules of adjacent renal tissue were also positive, but no expression of NeuGc-GM3 was detected in nontumoral fetal kidney. Until now, the expression of N-glycolylated gangliosides in pediatric solid tumors has not been investigated. The present study evidenced the expression of NeuGc-GM3 in a high proportion of Wilms tumors, suggesting its potential utility as a specific target of immunotherapy.
Collapse
Affiliation(s)
- Alejandra M Scursoni
- Pathology Department, Pediatric Hospital, "Prof Dr Juan P. Garrahan", Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lauc G, Rudan I, Campbell H, Rudd PM. Complex genetic regulation of proteinglycosylation. ACTA ACUST UNITED AC 2010; 6:329-35. [DOI: 10.1039/b910377e] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Klöppel C, Müller A, Marker S, Simon M. Two isoforms of eukaryotic phospholipase C in Paramecium affecting transport and release of GPI-anchored proteins in vivo. Eur J Cell Biol 2009; 88:577-92. [DOI: 10.1016/j.ejcb.2009.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 01/17/2023] Open
|
41
|
Kim SY, Wang TK, Singh RD, Wheatley CL, Marks DL, Pagano RE. Proteomic identification of proteins translocated to membrane microdomains upon treatment of fibroblasts with the glycosphingolipid, C8-β-D
-lactosylceramide. Proteomics 2009; 9:4321-8. [DOI: 10.1002/pmic.200900077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Schnabl KL, Larcelet M, Thomson ABR, Clandinin MT. Uptake and fate of ganglioside GD3 in human intestinal Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 2009; 297:G52-9. [PMID: 19423750 DOI: 10.1152/ajpgi.90599.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ganglioside GD3 is a glycosphingolipid found in colostrum, developing tissues, and tumors and is known to regulate cell growth, differentiation, apoptosis, and inflammation. Feeding a GD3-enriched diet to rats increases GD3 in intestinal lipid rafts and blood. The mechanism, efficiency, and fate of ganglioside absorption by human enterocytes have not been investigated. A model to study GD3 uptake by human intestinal cells was developed to test the hypothesis that enterocyte GD3 uptake is time and concentration dependent, with uptake efficiency and fate influenced by route of delivery. Caco-2 cells were exposed to GD3 on the apical or basolateral membrane (BLM) side for 6, 24, and 48 h. GD3 uptake, retention, transfer, and metabolism was determined. GD3 uptake across the apical and BLM was time and concentration dependent and reached a plateau. GD3 uptake across the BLM was more efficient than apical delivery. Apical GD3 was metabolized with some cell retention and transfer, whereas basolateral GD3 was mostly metabolized. This study demonstrates efficient GD3 uptake by enterocytes and suggests that the route of delivery influences ganglioside uptake and fate.
Collapse
Affiliation(s)
- Kareena L Schnabl
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | | | | | | |
Collapse
|
43
|
Lauc G, Zoldos V. Epigenetic regulation of glycosylation could be a mechanism used by complex organisms to compete with microbes on an evolutionary scale. Med Hypotheses 2009; 73:510-2. [PMID: 19560282 DOI: 10.1016/j.mehy.2009.03.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/29/2009] [Accepted: 03/31/2009] [Indexed: 11/19/2022]
Abstract
Glycosylation is the most diverse post-translational protein modification. It is essential for multicellular life and its complete absence is embryonically lethal. Hundreds of specific enzymes are involved in the synthesis of complex oligosaccharide structures that are covalently bound to protein backbones. This process is not template driven and thus results in a huge complexity of glycoproteome, estimated to be several orders of magnitude larger than proteome. Large structural variability provided by glycans represents a significant evolutionary advantage and nearly all proteins invented after the appearance of the multicellular life are glycosylated. Glycosylation represents a way how complex organisms could develop novel structural features without introducing probably deleterious changes in their genome. Intricate mechanisms by which the interplay of gene expression and intracellular localization of their products give rise to specific glycan structures is only starting to be understood, but some evidence suggests that epigenetic regulation of glycosylation might be used to create novel biological structures. Here we suggest a hypothesis that epigenetic regulation of genes involved in glycan synthesis might represent a way how newly developed structural advantages could be transmitted through generations, thus providing a tool for complex organisms to compete with high speed of evolution of unicellular organisms.
Collapse
Affiliation(s)
- Gordan Lauc
- University of Osijek School of Medicine, J. Huttlera 4, HR-31000 Osijek, Croatia.
| | | |
Collapse
|
44
|
Lipid-modified morphogens: functions of fats. Curr Opin Genet Dev 2009; 19:308-14. [PMID: 19442512 DOI: 10.1016/j.gde.2009.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 04/09/2009] [Indexed: 11/20/2022]
Abstract
Despite their location in the aqueous extracellular environment, a number of secreted proteins carry hydrophobic lipid modifications. These modifications include glycosylphosphatidylinositol, cholesterol, and both saturated and unsaturated fatty acids, and they are attached in the secretory pathway by different classes of enzymes. Lipid attachments make crucial contributions to protein function in vivo through a diverse array of mechanisms. They can promote protein maturation and secretion, membrane tethering, targeting to specific membrane subdomains, or receptor binding and activation. Additionally, secretion of lipid-modified morphogens of the Wnt and Hh families requires dedicated accessory proteins and may involve their packaging into lipoprotein particles for long-range transport.
Collapse
|
45
|
Gavella M, Garaj-Vrhovac V, Lipovac V, Antica M, Gajski G, Car N. Ganglioside GT1b protects human spermatozoa from hydrogen peroxide-induced DNA and membrane damage. ACTA ACUST UNITED AC 2009; 33:536-44. [PMID: 19490186 DOI: 10.1111/j.1365-2605.2009.00962.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have reported previously that various gangliosides, the sialic acid containing glycosphingolipids, provide protection against sperm injury caused by reactive oxygen species (ROS). In this study, we investigated the effect of treatment of human spermatozoa with ganglioside GT1b on hydrogen peroxide (H(2)O(2))-induced DNA fragmentation and plasma membrane damage. Single-cell gel electrophoresis (Comet assay) used in the assessment of sperm DNA integrity showed that in vitro supplemented GT1b (100 microm) significantly reduced DNA damage induced by H(2)O(2) (200 microm) (p < 0.05). Measurements of Annexin V binding in combination with the propidium iodide vital dye labelling demonstrated that the spermatozoa pre-treated with GT1b exhibited a significant increase (p < 0.05) in the percentage of live cells with intact membrane and decreased phosphatidylserine translocation after exposure to H(2)O(2). Flow cytometry using the intracellular ROS-sensitive fluorescence dichlorodihydrofluorescein diacetate dye employed to investigate the transport of the extracellularly supplied H(2)O(2) into the cell interior revealed that ganglioside GT1b completely inhibited the passage of H(2)O(2) through the sperm membrane. These results suggest that ganglioside GT1b may protect human spermatozoa from H(2)O(2)-induced damage by rendering sperm membrane more hydrophobic, thus inhibiting the diffusion of H(2)O(2) across the membrane.
Collapse
Affiliation(s)
- Mirjana Gavella
- Department for Cell Biochemistry, Vuk Vrhovac University Clinic for Diabetes, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
46
|
Dziedziejko V, Safranow K, Slowik-Zylka D, Machoy-Mokrzynska A, Millo B, Machoy Z, Chlubek D. Characterisation of rat and human tissue alkaline phosphatase isoforms by high-performance liquid chromatography and agarose gel electrophoresis. Biochimie 2009; 91:445-52. [DOI: 10.1016/j.biochi.2008.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 11/24/2008] [Indexed: 01/13/2023]
|
47
|
Pizette S, Rabouille C, Cohen SM, Thérond P. Glycosphingolipids control the extracellular gradient of the Drosophila EGFR ligand Gurken. Development 2009; 136:551-61. [PMID: 19144719 DOI: 10.1242/dev.031104] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycosphingolipids (GSLs) are present in all eukaryotic membranes and are implicated in neuropathologies and tumor progression in humans. Nevertheless, their in vivo functions remain poorly understood in vertebrates, partly owing to redundancy in the enzymes elongating their sugar chains. In Drosophila, a single GSL biosynthetic pathway is present that relies on the activity of the Egghead and Brainiac glycosyltransferases. Mutations in these two enzymes abolish GSL elongation and yield oogenesis defects, providing a unique model system in which to study GSL roles in signaling in vivo. Here, we use egghead and brainiac mutants to show that GSLs are necessary for full activation of the EGFR pathway during oogenesis in a time-dependent manner. In contrast to results from in vitro studies, we find that GSLs are required in cells producing the TGFalpha-like ligand Gurken, but not in EGFR-expressing cells. Strikingly, we find that GSLs are not essential for Gurken trafficking and secretion. However, we characterize for the first time the extracellular Gurken gradient and show that GSLs affect its formation by controlling Gurken planar transport in the extracellular space. This work presents the first in vivo evidence that GSLs act in trans to regulate the EGFR pathway and shows that extracellular EGFR ligand distribution is tightly controlled by GSLs. Our study assigns a novel role for GSLs in morphogen diffusion, possibly through regulation of their conformation.
Collapse
Affiliation(s)
- Sandrine Pizette
- Institute of Developmental Biology and Cancer, Centre de Biochimie, Université de Nice, Parc Valrose, 06108 Nice Cedex 02, France.
| | | | | | | |
Collapse
|
48
|
Rafts, anchors and viruses — A role for glycosylphosphatidylinositol anchored proteins in the modification of enveloped viruses and viral vectors. Virology 2008; 382:125-31. [DOI: 10.1016/j.virol.2008.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 12/18/2022]
|
49
|
MT4-(MMP17) and MT6-MMP (MMP25), A unique set of membrane-anchored matrix metalloproteinases: properties and expression in cancer. Cancer Metastasis Rev 2008; 27:289-302. [PMID: 18286233 DOI: 10.1007/s10555-008-9129-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The process of cancer progression involves the action of multiple proteolytic systems, among which the family of matrix metalloproteinases (MMPs) play a pivotal role. The MMPs evolved to accomplish their proteolytic tasks in multiple cellular and tissue microenvironments including lipid rafts by incorporation and deletions of specific structural domains. The membrane type-MMPs (MT-MMPs) incorporated membrane anchoring domains that display these proteases at the cell surface, and thus they are optimal pericellular proteolytic machines. Two members of the MT-MMP subfamily, MMP-17 (MT4-MMP) and MMP-25 (MT6-MMP), are anchored to the plasma membrane via a glycosyl-phosphatidyl inositol (GPI) anchor, which confers these enzymes a unique set of regulatory and functional mechanisms that separates them from the rest of the MMP family. Discovered almost a decade ago, the body of work on GPI-MT-MMPs today is still surprisingly limited when compared to other MT-MMPs. However, new evidence shows that the GPI-MT-MMPs are highly expressed in human cancer, where they are associated with progression. Accumulating biochemical and functional evidence also highlights their distinct properties. In this review, we summarize the structural, biochemical, and biological properties of GPI-MT-MMPs and present an overview of their expression and role in cancer. We further discuss the potential implications of GPI-anchoring for enzyme function. Finally, we comment on the new scientific challenges that lie ahead to better understand the function and role in cancer of these intriguing but yet unique MMPs.
Collapse
|
50
|
Brattig NW, Kowalsky K, Liu X, Burchard GD, Kamena F, Seeberger PH. Plasmodium falciparum glycosylphosphatidylinositol toxin interacts with the membrane of non-parasitized red blood cells: a putative mechanism contributing to malaria anemia. Microbes Infect 2008; 10:885-91. [DOI: 10.1016/j.micinf.2008.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/22/2008] [Accepted: 05/04/2008] [Indexed: 10/22/2022]
|