1
|
Gonçalves JP, Promlok D, Ivanov T, Tao S, Rheinberger T, Jo SM, Yu Y, Graf R, Wagner M, Crespy D, Wurm FR, Caire da Silva L, Jiang S, Landfester K. Confining the Sol-Gel Reaction at the Water/Oil Interface: Creating Compartmentalized Enzymatic Nano-Organelles for Artificial Cells. Angew Chem Int Ed Engl 2023; 62:e202216966. [PMID: 36517933 DOI: 10.1002/anie.202216966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Living organisms compartmentalize their catalytic reactions in membranes for increased efficiency and selectivity. To mimic the organelles of eukaryotic cells, we develop a mild approach for in situ encapsulating enzymes in aqueous-core silica nanocapsules. In order to confine the sol-gel reaction at the water/oil interface of miniemulsion, we introduce an aminosilane to the silica precursors, which serves as both catalyst and an amphiphilic anchor that electrostatically assembles with negatively charged hydrolyzed alkoxysilanes at the interface. The semi-permeable shell protects enzymes from proteolytic attack, and allows the transport of reactants and products. The enzyme-carrying nanocapsules, as synthetic nano-organelles, are able to perform cascade reactions when enveloped in a polymer vesicle, mimicking the hierarchically compartmentalized reactions in eukaryotic cells. This in situ encapsulation approach provides a versatile platform for the delivery of biomacromolecules.
Collapse
Affiliation(s)
- Jenifer Pendiuk Gonçalves
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Federal University of Paraná, Av. Cel Francisco H dos Santos, s/n, CEP, 81530-980, Curitiba, PR, Brazil
| | - Duangkamol Promlok
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tsvetomir Ivanov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Shijia Tao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Timo Rheinberger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Seong-Min Jo
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yingjie Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Robert Graf
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Shuai Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
2
|
Lei X, Qin Z, Ye B, Wu Y, Liu L. Effect of pH on lipid oxidation mediated by hemoglobin in washed chicken muscle. Food Chem 2022; 372:131253. [PMID: 34818728 DOI: 10.1016/j.foodchem.2021.131253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/25/2021] [Accepted: 09/25/2021] [Indexed: 12/25/2022]
Abstract
To investigate the effect of pH on lipid oxidation of chicken muscle, chicken hemolysates were added to washed chicken muscles to analyze lipid oxidation at pH 5.7, 6.3, and 7.2. The results showed that with a blue shift of the Soret peak, oxyhemoglobin gradually transformed to methemoglobin during storage, the shape of porphyrin rings of heme in fluorescence electron microscopy changed from round to trail-like structure. These changes were more significant at low pH. Comparing hemoglobin (Hb) structure, the distance ofamino acids between the E10 of lysine and metHb-7-propionate groups is longer at pH 5.7 than other pHs, which makes solvent easily enter the heme cavity, leading tothe severe destruction of Hb. The linear correlation between color and lipid oxidation also further confirmed that the increased oxidation of chicken Hb causes more rapid lipid oxidation in pH 5.7 than the other 2 pHs (p < 0.05).
Collapse
Affiliation(s)
- Xueqing Lei
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, Dongling Street No.120, Shenyang, China
| | - Zhiwei Qin
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, Dongling Street No.120, Shenyang, China
| | - Bo Ye
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, Dongling Street No.120, Shenyang, China; Liaoning Modern Agricultural Engineering Center, Changjiang North Street No.39, 110031 Shenyang, China
| | - Yao Wu
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, Dongling Street No.120, Shenyang, China
| | - Ling Liu
- The College of Food Science, Shenyang Agricultural University, Shenyang 110866, Dongling Street No.120, Shenyang, China
| |
Collapse
|
3
|
Initial biophysical characterization of Amynthas gracilis giant extracellular hemoglobin (HbAg). EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:473-484. [PMID: 32813035 DOI: 10.1007/s00249-020-01455-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
The aim of the present work was the biophysical characterization of the Amynthas gracilis hemoglobin (HbAg). The oxy-HbAg optical absorption data, with Soret and Q bands centered at 415, 540 and 575 nm, were stable and unchanged at pH 7.0. An increase in pH promotes decrease in the intensity in the optical absorption bands, suggesting an oligomeric dissociation and partial oxidation. Identical stability at pH 7.0 was observed in DLS results that presented a hydrodynamic diameter of 28 nm, characteristic of the whole oligomer. DLS shows that HbAg undergoes oligomeric dissociation and an aggregation/denaturation process that corroborates spectroscopic data. Our results showed that the monomer d presents four isoforms with molecular mass (MM) ranging from 16,244 to 16,855 Da; the trimer subunit presents two isoforms, (abc)1 and (abc)2, with MM of 51,415 ± 20 Da and 51,610 ± 14 Da, respectively, and a less intense species, at 67,793 Da, assigned to the tetramer abcd. Monomeric chains a, obtained from reduction of the disulfide-bonded trimer abc, present four isoforms with MM 17,015 Da, 17,061 Da, 17,138 Da and 17,259 Da. DLS and LSI revealed an isoeletric point (pI) of oxy-HbAg of 6.0 ± 0.3 and 5.5, respectively. Data analysis by IEF-SDS-PAGE revealed that the pI of oxy-HbAg is 6.11, correlating with DLS and LSI data. These studies indicate that oxy-HbAg is very stable, at pH 7.0, and has differing properties from orthologous giant hemoglobins.
Collapse
|
4
|
Vashishat R, Chabba S, Mahajan RK. Surface active ionic liquid induced conformational transition in aqueous medium of hemoglobin. RSC Adv 2017. [DOI: 10.1039/c7ra00075h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The molecular interactions and effect of SAILs on the conformation of human hemoglobin (Hb) has been studied using various techniques.
Collapse
Affiliation(s)
- Rajni Vashishat
- Department of Chemistry
- UGC-Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Shruti Chabba
- Department of Chemistry
- UGC-Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Rakesh Kumar Mahajan
- Department of Chemistry
- UGC-Centre for Advanced Studies
- Guru Nanak Dev University
- Amritsar-143005
- India
| |
Collapse
|
5
|
An insight into the binding of an ester functionalized gemini surfactant to hemoglobin. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Carvalho FAO, Alves FR, Tabak M. Ionic surfactants-Glossoscolex paulistus hemoglobin interactions: Characterization of species in the solution. Int J Biol Macromol 2016; 92:670-681. [PMID: 27456123 DOI: 10.1016/j.ijbiomac.2016.07.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/18/2022]
Abstract
Glossoscolex paulistus hemoglobin (HbGp) is an oligomeric multisubunit protein with molecular mass of 3600kDa. In the current study, the interaction of sodium dodecyl sulfate (SDS) and cetyl trimethylammonium chloride (CTAC) surfactants with the monomer d and the whole oxy-HbGp, at pH 7.0, was investigated. For pure monomer d solution, SDS promotes the dimerization of subunit d, and the monomeric and dimeric forms have sedimentation coefficient values, s20,w, around 2.1-2.4 S and 2.9-3.2 S, respectively. Analytical ultracentrifugation (AUC) and isothermal titration calorimetry (ITC) data suggest that up to 26 DS- anions are bound to the monomer. In the presence of CTAC, only the monomeric form is observed in solution for subunit d. For the oxy-HbGp, SDS induces the dissociation into smaller subunits, such as, monomer d, trimer abc, and tetramer abcd, and unfolding without promoting the protein aggregation. On the other hand, lower CTAC concentration promotes protein aggregation, mainly of trimer, while higher concentration induces the unfolding of dissociated species. Our study provides strong evidence that surfactant effects upon the HbGp-subunits are different, and depend on the surfactant: protein concentration ratio and the charges of surfactant headgroups.
Collapse
Affiliation(s)
- Francisco A O Carvalho
- Instituto de Química de São Carlos, Universidade de São Paulo, Brazil; Faculdade de Química, Universidade Federal do Sul e Sudeste do Pará, Brazil.
| | - Fernanda R Alves
- Instituto de Química de São Carlos, Universidade de São Paulo, Brazil
| | - Marcel Tabak
- Instituto de Química de São Carlos, Universidade de São Paulo, Brazil
| |
Collapse
|
7
|
Carvalho JWP, Carvalho FAO, Santiago PS, Tabak M. Thermal stability of extracellular hemoglobin of Rhinodrilus alatus (HbRa): DLS and SAXS studies. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:549-63. [DOI: 10.1007/s00249-016-1121-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 02/02/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
|
8
|
Alves FR, Carvalho FAO, Carvalho JWP, Tabak M. Interaction of cationic dodecyl-trimethyl-ammonium bromide with oxy-HbGp by isothermal titration and differential scanning calorimetric studies: Effect of proximity of isoelectric point. Biopolymers 2015; 105:199-211. [PMID: 26574155 DOI: 10.1002/bip.22777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 11/10/2022]
Abstract
In this work, isothermal titration and differential scanning calorimetric methods, in combination with pyrene fluorescence emission and dynamic light scattering have been used to investigate the interaction of dodecyltrimethylammonium bromide (DTAB) with the giant extracellular Glossoscolex paulistus hemoglobin (HbGp) in the oxy-form, at pH values around the isoelectric point (pI ≈ 5.5). Our ITC results have shown that the interaction of DTAB with the hemoglobin is more intense at pH 7.0, with a smaller cac (critical aggregation concentration) value. The increase of protein concentration does not influence the cac value of the interaction, at both pH values. Therefore, the beginning of the DTAB-oxy-HbGp premicellar aggregates formation, in the cac region, is not affected by the increase of protein concentration. HSDSC studies show higher Tm values at pH 5.0, in the absence and presence of DTAB, when compared with pH 7.0. Furthermore, at pH 7.0, an aggregation process is observed with DTAB in the range from 0.75 to 1.5 mmol/L, noticed by the exothermic peak, and similar to that observed for pure oxy-HbGp, at pH 5.0, and in the presence of DTAB. DLS melting curves show a decrease on the hemoglobin thermal stability for the oxy-HbGp-DTAB mixtures and formation of larger aggregates, at pH 7.0. Our present data, together with previous results, support the observation that the protein structural changes, at pH 7.0, occur at smaller DTAB concentrations, as compared with pH 5.0, due to the acidic pI of protein that favors the oxy-HbGp-cationic surfactant interaction at neutral pH.
Collapse
Affiliation(s)
- Fernanda Rosa Alves
- Instituto De Química De São Carlos, Universidade De São Paulo, São Carlos, SP, Brazil
| | | | | | - Marcel Tabak
- Instituto De Química De São Carlos, Universidade De São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
9
|
Barros AE, Carvalho FA, Alves FR, Carvalho JW, Tabak M. Denaturant effects on HbGp hemoglobin as monitored by 8-anilino-1-naphtalene-sulfonic acid (ANS) probe. Int J Biol Macromol 2015; 74:327-36. [DOI: 10.1016/j.ijbiomac.2014.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 10/24/2022]
|
10
|
Fotouhi L, Yousefinejad S, Salehi N, Saboury AA, Sheibani N, Moosavi-Movahedi AA. Application of merged spectroscopic data combined with chemometric analysis for resolution of hemoglobin intermediates during chemical unfolding. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt C:1974-1981. [PMID: 25468440 PMCID: PMC6690049 DOI: 10.1016/j.saa.2014.10.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
Using tetradecyltrimethylammonium bromide (TTAB) as a surfactant denaturant, and augmentation of different spectroscopic data, helped to detect the intermediates of hemoglobin (Hb) during unfolding process. UV-vis, fluorescence, and circular dichroism spectroscopy were used simultaneously to monitor different aspects of hemoglobin species from the tertiary or secondary structure points of view. Application of the multivariate curve resolution-alternating least square (MCR-ALS), using the initial estimates of spectral profiles and appropriate constraints on different parts of augmented spectroscopic data, showed good efficiency for characterization of intermediates during Hb unfolding. These results indicated the existence of five protein species, including three intermediate-like compounds in this process. The unfolding pathway in the presence of TTAB included conversion of oxyhemoglobin into deoxyhemoglobin, and then ferrylhemoglobin, ferrihemoglobin or aquamethemoglobin, which finally transformed into hemichrome. This is the first application of chemometric analysis on the merged spectroscopic data related to chemical denaturation of a protein. These types of analysis in multisubunit proteins not only increase the domain of information, but also can reduce the ambiguities of the obtained results.
Collapse
Affiliation(s)
- L Fotouhi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - S Yousefinejad
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - N Salehi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - A A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - N Sheibani
- Department of Ophthalmology and Visual Sciences and McPherson Eye Research Institute, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - A A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Alves FR, Carvalho FAO, Carvalho JWP, Tabak M. Glossoscolex paulistus extracellular hemoglobin (HbGp) oligomeric dissociation upon interaction with sodium dodecyl sulfate: Isothermal titration calorimetry (ITC). Biopolymers 2014; 101:1065-76. [DOI: 10.1002/bip.22506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/06/2014] [Accepted: 05/13/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Fernanda Rosa Alves
- Instituto de Química de São Carlos; Departamento de Química e Física Molecular, Universidade de São Paulo, São Carlos, SP; Brazil
| | - Francisco Adriano O. Carvalho
- Instituto de Química de São Carlos; Departamento de Química e Física Molecular, Universidade de São Paulo, São Carlos, SP; Brazil
| | - José Wilson P. Carvalho
- Instituto de Química de São Carlos; Departamento de Química e Física Molecular, Universidade de São Paulo, São Carlos, SP; Brazil
- Universidade do Estado de Mato Grosso; Campus Rene Barbour; Barra do Bugres MT Brazil
| | - Marcel Tabak
- Instituto de Química de São Carlos; Departamento de Química e Física Molecular, Universidade de São Paulo, São Carlos, SP; Brazil
| |
Collapse
|
12
|
Carvalho JWP, Carvalho FAO, Batista T, Santiago PS, Tabak M. Cetyltrimethylammonium chloride (CTAC) effect on the thermal stability of oxy-HbGp: Dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) studies. Colloids Surf B Biointerfaces 2014; 118:14-24. [DOI: 10.1016/j.colsurfb.2014.03.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/05/2014] [Accepted: 03/12/2014] [Indexed: 01/27/2023]
|
13
|
Characterization of Rhinodrilus alatus hemoglobin (HbRa) and its subunits: Evidence for strong interaction with cationic surfactants DTAB and CTAC. Comp Biochem Physiol B Biochem Mol Biol 2014; 167:23-9. [DOI: 10.1016/j.cbpb.2013.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 11/15/2022]
|
14
|
Sodium dodecyl sulfate (SDS) effect on the thermal stability of oxy-HbGp: Dynamic light scattering (DLS) and small angle X-ray scattering (SAXS) studies. Colloids Surf B Biointerfaces 2013; 111:561-70. [DOI: 10.1016/j.colsurfb.2013.06.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/10/2013] [Accepted: 06/28/2013] [Indexed: 11/20/2022]
|
15
|
Carvalho FAO, Carvalho JWP, Alves FR, Tabak M. pH effect upon HbGp oligomeric stability: characterization of the dissociated species by AUC and DLS studies. Int J Biol Macromol 2013; 59:333-41. [DOI: 10.1016/j.ijbiomac.2013.04.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
|
16
|
Carvalho FA, Carvalho JWP, Santiago PS, Tabak M. Urea-induced unfolding of Glossoscolex paulistus hemoglobin, in oxy- and cyanomet-forms: A dissociation model. Int J Biol Macromol 2013; 52:340-8. [DOI: 10.1016/j.ijbiomac.2012.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/22/2012] [Accepted: 09/25/2012] [Indexed: 10/27/2022]
|
17
|
Carvalho FAO, Santiago PS, Tabak M. On the stability of the extracellular hemoglobin of Glossoscolex paulistus, in two iron oxidation states, in the presence of urea. Arch Biochem Biophys 2012; 519:46-58. [DOI: 10.1016/j.abb.2012.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/04/2012] [Accepted: 01/10/2012] [Indexed: 01/04/2023]
|
18
|
Moreira LM, Poli AL, Lyon JP, Aimbire F, Toledo JC, Costa-Filho AJ, Imasato H. Ligand changes in ferric species of the giant extracellular hemoglobin of Glossoscolex paulistusas function of pH: correlations between redox, spectroscopic and oligomeric properties and general implications with different hemoproteins. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s108842461000201x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present review is focused on the relationship between oligomeric and heme properties of HbGp, emphasizing the characteristics that can be generalized to other hemoproteins. This study represents the state-of-the-art with respect to the approaches for investigating giant extracellular hemoglobins as well as the correlation between oligomeric assembly alterations and their consequent changes in the first coordination sphere. A wide introduction focused on the properties of this hemoglobin is developed. Indeed, this hemoprotein is considered an interesting prototype of blood substitute and biosensor due to its peculiar properties, such as resistance to autoxidation and oligomeric stability. Previous studies by our group employing UV-vis, EPR and CD spectroscopies have been revised in a complete approach, in agreement with recent and relevant data from the literature. In fact, a consistent and inter-related spectroscopic study is described propitiating a wide assignment of "fingerprint" peaks found in the techniques evaluated in this paper. This review furnishes physicochemical information regarding the identification of ferric heme species of hemoproteins and metallic complexes through their spectroscopic bands. This effort at the attribution of UV-vis, EPR and CD peaks is not restricted to HbGp, and includes a comparative analysis of several hemoproteins involving relevant implications regarding several types of iron-porphyrin systems.
Collapse
Affiliation(s)
- Leonardo Marmo Moreira
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, 12244-000 São José dos Campos SP, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970 São Carlos SP, Brazil
- Instituto de Pesquisa e Qualidade Acadêmica (IPQA), Universidade Camilo Castelo Branco, São José dos Campos SP, Brazil
| | - Alessandra Lima Poli
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970 São Carlos SP, Brazil
| | - Juliana Pereira Lyon
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, 12244-000 São José dos Campos SP, Brazil
| | - Flávio Aimbire
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, 12244-000 São José dos Campos SP, Brazil
- Instituto de Pesquisa e Qualidade Acadêmica (IPQA), Universidade Camilo Castelo Branco, São José dos Campos SP, Brazil
| | | | | | - Hidetake Imasato
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970 São Carlos SP, Brazil
| |
Collapse
|
19
|
Further characterization of the subunits of the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) by SDS-PAGE electrophoresis and MALDI-TOF-MS. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zou AH, Liu J, Mu BZ. Interaction between the natural lipopeptide [Glu1, Asp5] surfactin-C15 and hemoglobin: A spectroscopic and electrochemical investigation. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Santiago PS, Carvalho FAO, Domingues MM, Carvalho JWP, Santos NC, Tabak M. Isoelectric point determination for Glossoscolex paulistus extracellular hemoglobin: oligomeric stability in acidic pH and relevance to protein-surfactant interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:9794-801. [PMID: 20423061 DOI: 10.1021/la100060p] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 MDa. It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole pH range. Our zeta-potential data are consistent with light scattering results. Average values of pI obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at pH 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5.0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.
Collapse
Affiliation(s)
- Patrícia S Santiago
- Instituto de Química de São Carlos, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
de Lima CJ, Moreira LM, Lyon JP, Villaverde AB, Pacheco MTT. Catheters: instrumental advancements in biomedical applications of optical fibers. Lasers Med Sci 2008; 24:621-6. [PMID: 18780141 DOI: 10.1007/s10103-008-0608-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
This review is focused on the advancements in biomedical engineering regarding the elaboration of new prototypes of optical fiber catheters to be applied in spectroscopic analysis, such as Raman and fluorescence spectroscopy. Our group has contributed to the development of new prototypes with interesting properties, such as side-viewing signal excitation and collection, distal tip with bending control, and Raman scattering minimization from the optical fiber. In addition, several groups have contributed to other new catheter-improving properties of this spectroscopic device. However, a relatively small number of studies has been published in the literature, due to industrial interest in this interdisciplinary and multidisciplinary area. To our knowledge, no review that has focused on the applications of catheters to several modes of spectroscopy has been published. In this work we revised this topic, analyzing the advancements and limitations of the recent biomedical catheters.
Collapse
Affiliation(s)
- Carlos J de Lima
- Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Bairro Urbanova, São José dos Campos, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
24
|
Moreira LM, Poli AL, Lyon JP, Saade J, Costa-Filho AJ, Imasato H. Ferric species of the giant extracellular hemoglobin of Glossoscolex paulistus as function of pH: An EPR study on the irreversibility of the heme transitions. Comp Biochem Physiol B Biochem Mol Biol 2008; 150:292-300. [DOI: 10.1016/j.cbpb.2008.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 03/19/2008] [Accepted: 03/21/2008] [Indexed: 10/22/2022]
|
25
|
Oliveira MS, Moreira LM, Tabak M. Interaction of giant extracellular Glossoscolex paulistus hemoglobin (HbGp) with ionic surfactants: A MALDI-TOF-MS study. Int J Biol Macromol 2008; 42:111-9. [DOI: 10.1016/j.ijbiomac.2007.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
|
26
|
Moreira LM, Poli AL, Costa-Filho AJ, Imasato H. Ferric species equilibrium of the giant extracellular hemoglobin of Glossoscolex paulistus in alkaline medium: HALS hemichrome as a precursor of pentacoordinate species. Int J Biol Macromol 2008; 42:103-10. [DOI: 10.1016/j.ijbiomac.2007.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 09/10/2007] [Accepted: 10/01/2007] [Indexed: 11/25/2022]
|
27
|
Moreira LM, Santiago PS, de Almeida EV, Tabak M. Interaction of giant extracellular Glossoscolex paulistus hemoglobin (HbGp) with zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS): Effects of oligomeric dissociation. Colloids Surf B Biointerfaces 2008; 61:153-63. [PMID: 17825537 DOI: 10.1016/j.colsurfb.2007.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 07/27/2007] [Accepted: 07/28/2007] [Indexed: 10/23/2022]
Abstract
The present work focuses on the interaction between the zwitterionic surfactant N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS) and the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp). Electronic optical absorption, fluorescence emission and circular dichroism spectroscopy techniques, together with Gel-filtration chromatography, were used in order to evaluate the oligomeric dissociation as well as the autoxidation of HbGp as a function of the interaction with HPS. A peculiar behavior was observed for the HPS-HbGp interaction: a complex ferric species formation equilibrium was promoted, as a consequence of the autoxidation and oligomeric dissociation processes. At pH 7.0, HPS is more effective up to 1mM while at pH 9.0 the surfactant effect is more intense above 1mM. Furthermore, the interaction of HPS with HbGp was clearly less intense than the interaction of this hemoglobin with cationic (CTAC) and anionic (SDS) surfactants. Probably, this lower interaction with HPS is due to two factors: (i) the lower electrostatic attraction between the HPS surfactant and the protein surface ionic sites when compared to the electrostatic interaction between HbGp and cationic and anionic surfactants, and (ii) the low cmc of HPS, which probably reduces the interaction of the surfactant in the monomeric form with the protein. The present work emphasizes the importance of the electrostatic contribution in the interaction between ionic surfactants and HbGp. Furthermore, in the whole HPS concentration range used in this study, no folding and autoxidation decrease induced by this surfactant were observed. This is quite different from the literature data on the interaction between surfactants and tetrameric hemoglobins, that supports the occurrence of this behavior for the intracellular hemoglobins at low surfactant concentration range. Spectroscopic data are discussed and compared with the literature in order to improve the understanding of hemoglobin-surfactant interaction as well as the acid isoelectric point (pI) influence of the giant extracellular hemoglobins on their structure-activity relationship.
Collapse
Affiliation(s)
- Leonardo M Moreira
- Instituto de Química de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
28
|
Moreira LM, Vieira dos Santos F, Lyon JP, Maftoum-Costa M, Pacheco-Soares C, Soares da Silva N. Photodynamic Therapy: Porphyrins and Phthalocyanines as Photosensitizers. Aust J Chem 2008. [DOI: 10.1071/ch08145] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present work is focussed on the principles of photodynamic therapy (PDT), emphasizing the photochemical mechanisms of reactive oxygen species formation and the consequent biochemical processes generated by the action of reactive oxygen species on various biological macromolecules and organelles. This paper also presents some of the most used photosensitizers, including Photofrin, and the new prototypes of photosensitizers, analysing their physicochemical and spectroscopic properties. At this point, the review discusses the therapeutic window of absorption of specific wavelengths involving first- and second-generation photosensitizers, as well as the principal light sources used in PDT. Additionally, the aggregation process, which consists in a phenomenon common to several photosensitizers, is studied. J-aggregates and H-aggregates are discussed, along with their spectroscopic effects. Most photosensitizers have a significant hydrophobic character; thus, the study of the types of aggregation in aqueous solvent is very relevant. Important aspects of the coordination chemistry of metalloporphyrins and metallophthalocyanines used as photosensitizers are also discussed. The state-of-the-art in PDT is evaluated, discussing recent articles in this area. Furthermore, macrocyclic photosensitizers, such as porphyrins and phthalocyanines, are specifically described. The present review is an important contribution, because PDT is one of the most auspicious advances in the therapy against cancer and other non-malignant diseases.
Collapse
|
29
|
Dynamic light scattering and optical absorption spectroscopy study of pH and temperature stabilities of the extracellular hemoglobin of Glossoscolex paulistus. Biophys J 2007; 94:2228-40. [PMID: 18065453 DOI: 10.1529/biophysj.107.116780] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted of subunits containing heme groups, monomers and trimers, and nonheme structures, called linkers, and the whole protein has a minimum molecular mass near 3.1 x 10(6) Da. This and other proteins of the same family are useful model systems for developing blood substitutes due to their extracellular nature, large size, and resistance to oxidation. HbGp samples were studied by dynamic light scattering (DLS). In the pH range 6.0-8.0, HbGp is stable and has a monodisperse size distribution with a z-average hydrodynamic diameter (D(h)) of 27 +/- 1 nm. A more alkaline pH induced an irreversible dissociation process, resulting in a smaller D(h) of 10 +/- 1 nm. The decrease in D(h) suggests a complete hemoglobin dissociation. Gel filtration chromatography was used to show unequivocally the oligomeric dissociation observed at alkaline pH. At pH 9.0, the dissociation kinetics is slow, taking a minimum of 24 h to be completed. Dissociation rate constants progressively increase at higher pH, becoming, at pH 10.5, not detectable by DLS. Protein temperature stability was also pH-dependent. Melting curves for HbGp showed oligomeric dissociation and protein denaturation as a function of pH. Dissociation temperatures were lower at higher pH. Kinetic studies were also performed using ultraviolet-visible absorption at the Soret band. Optical absorption monitors the hemoglobin autoxidation while DLS gives information regarding particle size changes in the process of protein dissociation. Absorption was analyzed at different pH values in the range 9.0-9.8 and at two temperatures, 25 degrees C and 38 degrees C. At 25 degrees C, for pH 9.0 and 9.3, the kinetics monitored by ultraviolet-visible absorption presents a monoexponential behavior, whereas for pH 9.6 and 9.8, a biexponential behavior was observed, consistent with heme heterogeneity at more alkaline pH. The kinetics at 38 degrees C is faster than that at 25 degrees C and is biexponential in the whole pH range. DLS dissociation rates are faster than the autoxidation dissociation rates at 25 degrees C. Autoxidation and dissociation processes are intimately related, so that oligomeric protein dissociation promotes the increase of autoxidation rate and vice versa. The effect of dissociation is to change the kinetic character of the autoxidation of hemes from monoexponential to biexponential, whereas the reverse change is not as effective. This work shows that DLS can be used to follow, quantitatively and in real time, the kinetics of changes in the oligomerization of biologic complex supramolecular systems. Such information is relevant for the development of mimetic systems to be used as blood substitutes.
Collapse
|
30
|
Liu W, Guo X, Guo R. The interaction between hemoglobin and two surfactants with different charges. Int J Biol Macromol 2007; 41:548-57. [PMID: 17889934 DOI: 10.1016/j.ijbiomac.2007.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 07/15/2007] [Accepted: 07/16/2007] [Indexed: 10/23/2022]
Abstract
The interactions of hemoglobin (Hb) with sodium dodecyl sulfate (SDS) and dodecyl trimethylammonium bromide (DTAB) are investigated by several methods. We observed the formation of hemichrome below the critical micelle concentration (cmc) of surfactant and the release of heme from Hb above the cmc. When pH value of Hb/surfactant system is lower than isoelectric point (pI) of Hb, the interaction of SDS with Hb is both electrostatic and hydrophobic, while the interaction of DTAB with Hb is hydrophobic mainly. On the contrary, when pH>pI, the interaction of SDS with Hb is hydrophobic mainly, while the interaction of DTAB with Hb is both electrostatic and hydrophobic. In the case where both the electrostatic interaction and hydrophobic interaction exist, the electrostatic interaction plays a more important role. Thus, SDS tends to interact with Hb more obviously than DTAB does when pH<pI and the interaction between DTAB and Hb is stronger when pH>pI.
Collapse
Affiliation(s)
- Wenjie Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | | | | |
Collapse
|