1
|
Xu C, Shen T, Feng L, Wang L, Li S, Ding R, Geng Z, Fan M, Xiao T, Zheng J, Shen L, Qu X. FTO facilitates colorectal cancer chemoresistance via regulation of NUPR1-dependent iron homeostasis. Redox Biol 2025; 83:103647. [PMID: 40334546 DOI: 10.1016/j.redox.2025.103647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
Drug resistance in colorectal cancer (CRC) poses a major challenge for cancer therapy and stands as the primary cause of cancer-related mortality. The N6-methyladenosine (m6A) modification has emerged as a pivotal regulator in cancer biology, yet the precise m6A regulators that propel CRC progression and chemoresistance remain elusive. Our study established a significant correlation between m6A regulatory gene expression profiles and CRC severity. Notably, based on the knockout cellular and mouse model created by CRISPR/Cas9-mediated genome engineering, we identified m6A demethylase FTO emerged as a pivotal orchestrator of CRC chemoresistance through the regulation of NUPR1, a critical transcription factor involved in iron homeostasis via LCN2 and FTH1. Mechanistic study revealed that FTO stabilized NUPR1 mRNA by specifically targeting the +451 m6A site, thereby preventing YTHDF2-mediated degradation of NUPR1 mRNA. Moreover, the simultaneous targeting of FTO and NUPR1 dramatically enhanced the efficacy of chemotherapy in CRC cells. Our findings underscore the potential of modulating the m6A methylome to overcome chemoresistance and highlight the FTO-NUPR1 axis as a critical determinant in CRC pathobiology.
Collapse
Affiliation(s)
- Changwei Xu
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Tong Shen
- Department of Digestive Surgery, Xi'an International Medical Center, Xi'an, Shaanxi, China
| | - Lin Feng
- Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lei Wang
- Xi'an Beihuan Hospital, Xi'an, Shaanxi, China
| | - Shisen Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruxin Ding
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhi Geng
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minmin Fan
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tian Xiao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianyong Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Liangliang Shen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Xuan Qu
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.
| |
Collapse
|
2
|
Szymulewska-Konopko K, Reszeć-Giełażyn J, Małeczek M. Ferritin as an Effective Prognostic Factor and Potential Cancer Biomarker. Curr Issues Mol Biol 2025; 47:60. [PMID: 39852175 PMCID: PMC11763953 DOI: 10.3390/cimb47010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Ferritin is found in all cells of the body, serving as a reservoir of iron and protecting against damage to the molecules that make up cellular structures. It has emerged as a biomarker not only for iron-related disorders but also for inflammatory diseases and conditions in which inflammation plays a key role, including cancer, neurodegeneration, and infection. Oxidative stress, which can cause cellular damage, is induced by reactive oxygen species generated during the Fenton reaction, activating signaling pathways associated with tumor growth and proliferation. This review primarily emphasizes basic studies on the identification and function of ferritin, its essential role in iron metabolism, its involvement in inflammatory diseases, and its potential as an important prognostic factor and biomarker for cancer detection.
Collapse
Affiliation(s)
| | - Joanna Reszeć-Giełażyn
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-089 Białystok, Poland; (K.S.-K.); (M.M.)
| | | |
Collapse
|
3
|
Ni Q, Yang H, Rao H, Zhang L, Xiong M, Han X, Deng B, Wang L, Chen J, Shi Y. The role of the C5a-C5aR pathway in iron metabolism and gastric cancer progression. Front Immunol 2025; 15:1522181. [PMID: 39850877 PMCID: PMC11754390 DOI: 10.3389/fimmu.2024.1522181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Gastric cancer continues to be a leading global health concern, with current therapeutic approaches requiring significant improvement. While the disruption of iron metabolism in the advancement of gastric cancer has been well-documented, the underlying regulatory mechanisms remain largely unexplored. Additionally, the complement C5a-C5aR pathway has been identified as a crucial factor in gastric cancer development. The impact of the complement system on iron metabolism and its role in gastric cancer progression is an area warranting further investigation. Our research demonstrates that the C5a-C5aR pathway promotes gastric cancer progression by enhancing iron acquisition in tumor cells through two mechanisms. First, it drives macrophage polarization toward the M2 phenotype, which has a strong iron-release capability. Second, it increases the expression of LCN2, a high-affinity iron-binding protein critical for iron export from tumor-associated macrophages, by activating endoplasmic reticulum stress in these cells. Both mechanisms facilitate the transfer of iron from macrophages to cancer cells, thereby promoting tumor cell proliferation. This study aims to elucidate the connection between the complement C5a-C5aR pathway and iron metabolism within the tumor microenvironment. Our data suggest a pivotal role of the C5a-C5aR pathway in tumor iron management, indicating that targeting its regulatory mechanisms may pave the way for future iron-targeted therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Qinxue Ni
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Hong Yang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hang Rao
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Liyong Zhang
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Mengyuan Xiong
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| | - Xiao Han
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Boshao Deng
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lulu Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Chen
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yan Shi
- The First Affiliated Hospital of Army Military Medical University, Department of General Surgery, Chongqing, China
| |
Collapse
|
4
|
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, Babula P, Kaplánek R, Přibyl T, Zelenka J, Ruml T, Vokurka M, Martásek P, Jakubek M. Iron chelators as mitophagy agents: Potential and limitations. Biomed Pharmacother 2024; 179:117407. [PMID: 39265234 DOI: 10.1016/j.biopha.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Collapse
Affiliation(s)
- Tereza Brogyanyi
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - Michal Masařik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Petr Babula
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic.
| |
Collapse
|
5
|
Lin H, Lin S, Shi L, Xu G, Lin M, Li S, Chen J, Li Z, Nakazibwe C, Xiao Y, Li X, Pan X, Wang C. FGFR1 governs iron homeostasis via regulating intracellular protein degradation pathways of IRP2 in prostate cancer cells. Commun Biol 2024; 7:1011. [PMID: 39154074 PMCID: PMC11330447 DOI: 10.1038/s42003-024-06704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
The acquisition of ectopic fibroblast growth factor receptor 1 (FGFR1) expression is well documented in prostate cancer (PCa) progression, notably in conferring tumor growth advantage and facilitating metastasis. However, how FGFR1 contributes to PCa progression is not fully revealed. Here we report that ectopic FGFR1 in PCa cells promotes transferrin receptor 1 (TFR1) expression and expands the labile iron pool (LIP), and vice versa. We further demonstrate that FGFR1 stabilizes iron regulatory proteins 2 (IRP2) and therefore, upregulates TFR1 via promoting IRP2 binding to the IRE of TFR1. Deletion of FGFR1 in DU145 cells decreases the LIP, which potentiates the anticancer efficacy of iron chelator. Intriguingly, forced expression of IRP2 in FGFR1 depleted cells reinstates TFR1 expression and LIP, subsequently restoring the tumorigenicity of the cells. Together, our results here unravel a new mechanism by which FGFR1 drives PCa progression and suggest a potential novel target for PCa therapy.
Collapse
Affiliation(s)
- Hui Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuaijun Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liuhong Shi
- Department of Head and Neck Surgery, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guangsen Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Manjie Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Supeng Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiale Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiquan Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Catherine Nakazibwe
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunbei Xiao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Ribeiro KS, Karmakar E, Park C, Garg R, Kung GP, Kadakia I, Gopianand JS, Arun T, Kisselev O, Gnana-Prakasam JP. Iron Regulates Cellular Proliferation by Enhancing the Expression of Glucose Transporter GLUT3 in the Liver. Cells 2024; 13:1147. [PMID: 38994998 PMCID: PMC11240476 DOI: 10.3390/cells13131147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Iron is often accumulated in the liver during pathological conditions such as cirrhosis and cancer. Elevated expression of glucose transporters GLUT1 and GLUT3 is associated with reduced overall survival in patients with hepatocellular carcinoma. However, it is not known whether iron can regulate glucose transporters and contribute to tumor proliferation. In the present study, we found that treatment of human liver cell line HepG2 with ferric ammonium citrate (FAC) resulted in a significant upregulation of GLUT3 mRNA and protein in a dose-dependent manner. Similarly, iron accumulation in mice fed with high dietary iron as well as in mice injected intraperitoneally with iron dextran enhanced the GLUT3 expression drastically in the liver. We demonstrated that iron-induced hepatic GLUT3 upregulation is mediated by the LKB1/AMPK/CREB1 pathway, and this activation was reversed when treated with iron chelator deferiprone. In addition, inhibition of GLUT3 using siRNA prevented iron-mediated increase in the expression of cell cycle markers and cellular hyperproliferation. Furthermore, exogenous sodium beta-hydroxybutyrate treatment prevented iron-mediated hepatic GLUT3 activation both in vitro and in vivo. Together, these results underscore the importance of iron, AMPK, CREB1 and GLUT3 pathways in cell proliferation and highlight the therapeutic potential of sodium beta-hydroxybutyrate in hepatocellular carcinoma with high GLUT3 expression.
Collapse
|
7
|
Li D, Ju F, Wang H, Fan C, Jacob JC, Gul S, Zaliani A, Wartmann T, Polidori MC, Bruns CJ, Zhao Y. Combination of the biomarkers for aging and cancer? - Challenges and current status. Transl Oncol 2023; 38:101783. [PMID: 37716258 PMCID: PMC10514562 DOI: 10.1016/j.tranon.2023.101783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
The proportion of patients diagnosed with cancer has been shown to rise with the increasing aging global population. Advanced age is a major risk factor for morbidity and mortality in older adults. As individuals experience varying health statuses, particularly with age, it poses a challenge for medical professionals in the cancer field to obtain standardized treatment outcomes. Hence, relying solely on chronological age and disease-related parameters is inadequate for clinical decision-making for elderly patients. With functional, multimorbidity-related, and psychosocial changes that occur with aging, oncologic diseases may develop and be treated differently from younger patients, leading to unique challenges in treatment efficacy and tolerance. To overcome this challenge, personalized therapy using biomarkers has emerged as a promising solution. Various categories of biomarkers, including inflammatory, hematological, metabolic, endocrine, and DNA modification-related indicators, may display features related to both cancer and aging, aiding in the development of innovative therapeutic approaches for patients with cancer in old age. Furthermore, physical functional measurements as non-molecular phenotypic biomarkers are being investigated for their potential complementary role in structured multidomain strategies to combat age-related diseases such as cancer. This review provides insight into the current developments, recent discoveries, and significant challenges in cancer and aging biomarkers, with a specific focus on their application in advanced age.
Collapse
Affiliation(s)
- Dai Li
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Feng Ju
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Han Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chunfu Fan
- Medical faculty, University of Cologne, Germany
| | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, d-22525 Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Schnackenburgallee 114, d-22525 Hamburg, Germany
| | - Thomas Wartmann
- Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany
| | - Maria Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress-Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne Germany
| | - Christiane J Bruns
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany; Center for Integrated Oncology (CIO) Aachen, Bonn, Cologne and Düsseldorf, Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Tumor and Transplantation Surgery, University Hospital of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| |
Collapse
|
8
|
Wijesinghe TP, Kaya B, Gonzálvez MA, Harmer JR, Gholam Azad M, Bernhardt PV, Dharmasivam M, Richardson DR. Steric Blockade of Oxy-Myoglobin Oxidation by Thiosemicarbazones: Structure-Activity Relationships of the Novel PPP4pT Series. J Med Chem 2023; 66:15453-15476. [PMID: 37922410 DOI: 10.1021/acs.jmedchem.3c01612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The di-2-pyridylketone thiosemicarbazones demonstrated marked anticancer efficacy, prompting progression of DpC to clinical trials. However, DpC induced deleterious oxy-myoglobin oxidation, stifling development. To address this, novel substituted phenyl thiosemicarbazone (PPP4pT) analogues and their Fe(III), Cu(II), and Zn(II) complexes were prepared. The PPP4pT analogues demonstrated potent antiproliferative activity (IC50: 0.009-0.066 μM), with the 1:1 Cu:L complexes showing the greatest efficacy. Substitutions leading to decreased redox potential of the PPP4pT:Cu(II) complexes were associated with higher antiproliferative activity, while increasing potential correlated with increased redox activity. Surprisingly, there was no correlation between redox activity and antiproliferative efficacy. The PPP4pT:Fe(III) complexes attenuated oxy-myoglobin oxidation significantly more than the clinically trialed thiosemicarbazones, Triapine, COTI-2, and DpC, or earlier thiosemicarbazone series. Incorporation of phenyl- and styryl-substituents led to steric blockade, preventing approach of the PPP4pT:Fe(III) complexes to the heme plane and its oxidation. The 1:1 Cu(II):PPP4pT complexes were inert to transmetalation and did not induce oxy-myoglobin oxidation.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Busra Kaya
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Miguel A Gonzálvez
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Mahan Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane 4111, Australia
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
9
|
D'Acunto CW, Gbelcová H, Kaplánek R, Pospíšilová M, Havlík M, Ruml T. Chelators as Antineuroblastomas Agents. Physiol Res 2023; 72:S277-S286. [PMID: 37888971 PMCID: PMC10669945 DOI: 10.33549/physiolres.935184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 12/01/2023] Open
Abstract
Neuroblastoma represents 8-10 % of all malignant tumors in childhood and is responsible for 15 % of cancer deaths in the pediatric population. Aggressive neuroblastomas are often resistant to chemotherapy. Canonically, neuroblastomas can be classified according to the MYCN (N-myc proto-oncogene protein) gene amplification, a common marker of tumor aggressiveness and poor prognosis. It has been found that certain compounds with chelating properties may show anticancer activity, but there is little evidence for the effect of chelators on neuroblastoma. The effect of new chelators characterized by the same functional group, designated as HLZ (1-hydrazino phthalazine), on proliferation (WST-1 and methylene blue assay), cell cycle (flow cytometry), apoptosis (proliferation assay after use of specific pharmacological inhibitors and western blot analysis) and ROS production (fluorometric assay based on dichlorofluorescein diacetate metabolism) was studied in three neuroblastoma cell lines with different levels of MYCN amplification. The molecules were effective only on MYCN-non-amplified cells in which they arrested the cell cycle in the G0/G1 phase. We investigated the mechanism of action and identified the activation of cell signaling that involves protein kinase C.
Collapse
Affiliation(s)
- C W D'Acunto
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague 6, Czech Republic; Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
10
|
Formica V, Riondino S, Morelli C, Guerriero S, D'Amore F, Di Grazia A, Del Vecchio Blanco G, Sica G, Arkenau HT, Monteleone G, Roselli M. HIF2α, Hepcidin and their crosstalk as tumour-promoting signalling. Br J Cancer 2023; 129:222-236. [PMID: 37081189 PMCID: PMC10338631 DOI: 10.1038/s41416-023-02266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Not all aspects of the disruption of iron homeostasis in cancer have been fully elucidated. Iron accumulation in cancer cells is frequent for many solid tumours, and this is often accompanied by the contemporary rise of two key iron regulators, HIF2α and Hepcidin. This scenario is different from what happens under physiological conditions, where Hepcidin parallels systemic iron concentrations while HIF2α levels are inversely associated to Hepcidin. The present review highlights the increasing body of evidence for the pro-tumoral effect of HIF2α and Hepcidin, discusses the possible imbalance in HIF2α, Hepcidin and iron homeostasis during cancer, and explores therapeutic options relying on these pathways as anticancer strategies.
Collapse
Affiliation(s)
- Vincenzo Formica
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Cristina Morelli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
- PhD Program in Systems and Experimental Medicine (XXXV cycle), University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Simona Guerriero
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Federica D'Amore
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Antonio Di Grazia
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Giuseppe Sica
- Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Giovanni Monteleone
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| |
Collapse
|
11
|
Xu Z, Sung YS, Tomat E. Design of Tetrazolium Cations for the Release of Antiproliferative Formazan Chelators in Mammalian Cells. J Am Chem Soc 2023; 145:15197-15206. [PMID: 37410992 PMCID: PMC10521327 DOI: 10.1021/jacs.3c02033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cancer cells generally present a higher demand for iron, which plays crucial roles in tumor progression and metastasis. This iron addiction provides opportunities to develop broad spectrum anticancer drugs that target iron metabolism. In this context, prochelation approaches are investigated to release metal-binding compounds under specific conditions, thereby limiting off-target toxicity. Here, we demonstrate a prochelation strategy inspired by the bioreduction of tetrazolium cations widely employed to assess the viability of mammalian cells. We designed a series of tetrazolium-based compounds for the intracellular release of metal-binding formazan ligands. The combination of reduction potentials appropriate for intracellular reduction and an N-pyridyl donor on the formazan scaffold led to two effective prochelators. The reduced formazans bind as tridentate ligands and stabilize low-spin Fe(II) centers in complexes of 2:1 ligand-to-metal stoichiometry. The tetrazolium salts are stable in blood serum for over 24 h, and antiproliferative activities at micromolar levels were recorded in a panel of cancer cell lines. Additional assays confirmed the intracellular activation of the prochelators and their ability to affect cell cycle progression, induce apoptotic death, and interfere with iron availability. Demonstrating the role of iron in their intracellular effects, the prochelators impacted the expression levels of key iron regulators (i.e., transferrin receptor 1 and ferritin), and iron supplementation mitigated their cytotoxicity. Overall, this work introduces the tetrazolium core as a platform to build prochelators that can be tuned for activation in the reducing environment of cancer cells and produce antiproliferative formazan chelators that interfere with cellular iron homeostasis.
Collapse
Affiliation(s)
- Zoufeng Xu
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson AZ 85721 (USA)
| | - Yu-Shien Sung
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson AZ 85721 (USA)
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson AZ 85721 (USA)
| |
Collapse
|
12
|
Liu N, Liu G, Jiang H, Yu J, Jin Y, Wang H. Effect of the Mitogen-Activated Protein Kinase Pathway on the Erastin-Induced Ferroptosis of Molt-4 Cells. DNA Cell Biol 2023. [PMID: 37140570 DOI: 10.1089/dna.2022.0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The role of ferroptosis in human acute lymphoblastic leukemia and its possible molecular mechanisms of action are still unknown. In this study, harvested Molt-4 cells were exposed to different concentrations of erastin, and their proliferation capacity was tested by using the cell counting kit-8 assay. Lipid peroxidation levels were detected through flow cytometry. Mitochondrial alterations were observed through transmission electron microscopy. The expression levels of SLC7A11, glutathione peroxidase 4 (GPX4), and mitogen-activated protein kinase (MAPK) were detected by using quantitative real-time PCR and Western blot analysis. This study found that erastin inhibited the growth of Molt-4 cells. This inhibitory effect could be partially reversed by the ferroptosis inhibitor Ferrostatin-1 and the p38 MAPK inhibitor. The mitochondria of Molt-4 cells treated with erastin shortened and condensed. Compared with those in the control group, the levels of reactive oxygen species and malondialdehyde had increased, whereas the levels of glutathione had decreased in the treatment group. The treatment of Molt-4 cells with erastin decreased the levels of SLC7A11 and GPX4 mRNA and increased the expression levels of p38 MAPK, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase. These findings suggested that erastin caused the ferroptosis of Molt-4 cells. This process may be correlated with the inhibition of the cystine/glutamate antiporter system and GPX4 and the activation of p38 MAPK and ERK1/2.
Collapse
Affiliation(s)
- Nana Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Ge Liu
- Wuhan Center For Disease Control & Prevention, Wuhan, China
| | - Haihong Jiang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Jing Yu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Yunqin Jin
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Hong Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Fathy A, Ibrahim AB, Elkhalik SA, Villinger A, Abbas S. New iron(III) complexes with 2-formylpyridine thiosemicarbazones: Synthetic aspects, structural and spectral analyses and cytotoxicity screening against MCF-7 human cancer cells. Heliyon 2023; 9:e13008. [PMID: 36711299 PMCID: PMC9880397 DOI: 10.1016/j.heliyon.2023.e13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
2-Formylpyridine thiosemicarbazone - iron (III) chelates [F e L 2 ] C l • 2 H 2 O {L = L1 (C1) [HL 1 = 4-(4-Nitrophenyl)-1-((pyridin-2-yl)methylene)thiosemicarbazide] and L = L2 (C2) [HL 2 = 4-(2,5-Dimethoxyphenyl)-1-((pyridin-2-yl)methylene)thiosemicarbazide]} were prepared. The two ligand anions in each complex resulted in saturation of the iron coordination number and consequently the existence of these complexes as 1:1 electrolytes. As well, the iron in these complexes exhibits low-spin electronic configuration. X-ray crystallography of complex C1 indicated its triclinic crystal system and P1 ‾ space group. In addition, it proved the ligation through a thiol sulfur atom and two nitrogen atoms of pyridine and azomethine groups. This is while the presence of two water molecules of crystallization in the complex structure was also indicated. The ligand HL 1 was selected for cytotoxicity screening against human MCF-7, A-549, HEPG-2 and HCT-116 cancer cells and the most enhanced activities were detected against the breast cells. Against these cells, the compounds HL 1 , HL 2 , C1 and C2 induced cytotoxicity, respectively, with IC50 values of 52.4, 145.4, 34.3 and 62.0 μM. However, against the healthy BHK cells, HL 1 and HL 2 caused cytotoxicity, respectively, with IC50 values of 54.8 and 110.6 μM and cytotoxicity with percent viabilities of 56.7 and 55.4% of the BHK cells by the complexes (137.4 μM of C1 and 131.9 μM of C2) was determined. These activities against MCF-7 cells are less significant compared with the measured value for doxorubicin. But this standard is more toxic to normal cells than the thiosemicarbazones (IC50 (doxorubicin) = 9.66 μM against MCF-7 cells and 36.42 μM against BHK cells).
Collapse
Affiliation(s)
- Amany Fathy
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Ahmed B.M. Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - S. Abd Elkhalik
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - S.M. Abbas
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
14
|
Pinto AT, Machado AB, Osório H, Pinto ML, Vitorino R, Justino G, Santa C, Castro F, Cruz T, Rodrigues C, Lima J, Sousa JLR, Cardoso AP, Figueira R, Monteiro A, Marques M, Manadas B, Pauwels J, Gevaert K, Mareel M, Rocha S, Duarte T, Oliveira MJ. Macrophage Resistance to Ionizing Radiation Exposure Is Accompanied by Decreased Cathepsin D and Increased Transferrin Receptor 1 Expression. Cancers (Basel) 2022; 15:270. [PMID: 36612268 PMCID: PMC9818572 DOI: 10.3390/cancers15010270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To identify a molecular signature of macrophages exposed to clinically relevant ionizing radiation (IR) doses, mirroring radiotherapy sessions. METHODS Human monocyte-derived macrophages were exposed to 2 Gy/ fraction/ day for 5 days, mimicking one week of cancer patient's radiotherapy. Protein expression profile by proteomics was performed. RESULTS A gene ontology analysis revealed that radiation-induced protein changes are associated with metabolic alterations, which were further supported by a reduction of both cellular ATP levels and glucose uptake. Most of the radiation-induced deregulated targets exhibited a decreased expression, as was the case of cathepsin D, a lysosomal protease associated with cell death, which was validated by Western blot. We also found that irradiated macrophages exhibited an increased expression of the transferrin receptor 1 (TfR1), which is responsible for the uptake of transferrin-bound iron. TfR1 upregulation was also found in tumor-associated mouse macrophages upon tumor irradiation. In vitro irradiated macrophages also presented a trend for increased divalent metal transporter 1 (DMT1), which transports iron from the endosome to the cytosol, and a significant increase in iron release. CONCLUSIONS Irradiated macrophages present lower ATP levels and glucose uptake, and exhibit decreased cathepsin D expression, while increasing TfR1 expression and altering iron metabolism.
Collapse
Affiliation(s)
- Ana Teresa Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Beatriz Machado
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Champalimaud Centre for the Unknown, Fundação Champalimaud, 1400-038 Lisboa, Portugal
| | - Hugo Osório
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
- Departament of Pathology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Marta Laranjeiro Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Gonçalo Justino
- Centro de Química Estrutural–Institute of Molecular Sciences, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
| | - Cátia Santa
- CNC–Center for Neuroscience and Cell Biology, Universidade de Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), Universidade de Coimbra, 3030-789 Coimbra, Portugal
| | - Flávia Castro
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Tânia Cruz
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Rodrigues
- REQUIMTE–LAQV, Chemistry Department, NOVA School of Science and Technology, Universidade de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Lima
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - José Luís R. Sousa
- Personal Health Data Science Group, Sano-Centre for Computational Personalised Medicine, 30-054 Krakow, Poland
| | - Ana Patrícia Cardoso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita Figueira
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Margarida Marques
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Bruno Manadas
- Institute for Interdisciplinary Research (III), Universidade de Coimbra, 3030-789 Coimbra, Portugal
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Marc Mareel
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sónia Rocha
- Institute of System, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3 GE, UK
| | - Tiago Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria José Oliveira
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departament of Pathology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
15
|
Wen GM, Xu XY, Xia P. Metabolism in Cancer Stem Cells: Targets for Clinical Treatment. Cells 2022; 11:3790. [PMID: 36497050 PMCID: PMC9736883 DOI: 10.3390/cells11233790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer stem cells (CSCs) have high tumorigenicity, high metastasis and high resistance to treatment. They are the key factors for the growth, metastasis and drug resistance of malignant tumors, and are also the important reason for the occurrence and recurrence of tumors. Metabolic reprogramming refers to the metabolic changes that occur when tumor cells provide sufficient energy and nutrients for themselves. Metabolic reprogramming plays an important role in regulating the growth and activity of cancer cells and cancer stem cells. In addition, the immune cells or stromal cells in the tumor microenvironment (TME) will change due to the metabolic reprogramming of cancer cells. Summarizing the characteristics and molecular mechanisms of metabolic reprogramming of cancer stem cells will provide new ideas for the comprehensive treatment of malignant tumors. In this review, we summarized the changes of the main metabolic pathways in cancer cells and cancer stem cells.
Collapse
Affiliation(s)
- Gui-Min Wen
- Department of Basic Nursing, College of Nursing, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiao-Yan Xu
- College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Pu Xia
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
16
|
Zhu T, Xiao Z, Yuan H, Tian H, Chen T, Chen Q, Chen M, Yang J, Zhou Q, Guo W, Xue K, Xia M, Bao J, Yang C, Duan H, Wang H, Huang Z, Liu C, Zhou J. ACO1 and IREB2 downregulation confer poor prognosis and correlate with autophagy-related ferroptosis and immune infiltration in KIRC. Front Oncol 2022; 12:929838. [PMID: 36059676 PMCID: PMC9428356 DOI: 10.3389/fonc.2022.929838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background ACO1 and IREB2 are two homologous cytosolic regulatory proteins, which sense iron levels and change iron metabolism–linked molecules. These two genes were noticeably decreased in kidney renal clear cell carcinoma (KIRC), which confer poor survival. Meanwhile, there is a paucity of information about the mechanisms and clinical significance of ACO1 and IREB2 downregulation in renal cancers. Methods The expression profiles of ACO1 and IREB2 were assessed using multiple public data sets via several bioinformatics platforms. Clinical and pathological information was utilized to stratify cohorts for comparison. Patient survival outcomes were evaluated using the Kaplan–Meier plotter, a meta-analysis tool. The correlations of ACO1 and IREB2 with ferroptosis were further evaluated in The Cancer Genome Atlas (TCGA)–KIRC database. Tumor immune infiltration was analyzed using the CIBERSORT, TIMER, and GEPIA data resources. ACO1 antagonist sodium oxalomalate (OMA) and IREB2 inhibitor sodium nitroprusside (SNP) was used to treat renal cancer ACHN cells together with sorafenib. Results KIRC patients with low ACO1 or IREB2 contents exhibited a remarkably worse survival rate in contrast with those with high expression in Kaplan–Meier survival analyses. Meanwhile, ACO1 and IREB2 regulate autophagy-linked ferroptosis along with immune cell invasion in the tumor microenvironment in KIRC patients. Blocking the activation of these two genes by their inhibitors OMA and SNP ameliorated sorafenib-triggered cell death, supporting that ACO1 and IREB2 could be participated in its cytotoxic influence on renal cancer cells. Conclusion ACO1 and IREB2 downregulation in renal cancers were correlated with cancer aggressiveness, cellular iron homeostasis, cytotoxic immune cell infiltration, and patient survival outcomes. Our research is integral to verify the possible significance of ACO1 and IREB2 contents as a powerful signature for targeted treatment or novel immunotherapy in clinical settings.
Collapse
Affiliation(s)
- Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhuoyu Xiao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Haoyu Yuan
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hu Tian
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Taoyi Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qi Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Mingkun Chen
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jiankun Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qizhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wenbin Guo
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kangyi Xue
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ming Xia
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jiming Bao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Cheng Yang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Haifeng Duan
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hongyi Wang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhipeng Huang
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Cundong Liu
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Junhao Zhou, ; Cundong Liu,
| | - Junhao Zhou
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Junhao Zhou, ; Cundong Liu,
| |
Collapse
|
17
|
Wang X, Teng Y, Ji C, Wu H, Li F. Critical target identification and human health risk ranking of metal ions based on mechanism-driven modeling. CHEMOSPHERE 2022; 301:134724. [PMID: 35487360 DOI: 10.1016/j.chemosphere.2022.134724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Huge amounts of metals have been released into environment due to various anthropogenic activities, such as smelting and processing of metals and subsequent application in construction, automobiles, batteries, optoelectronic devices, and so on, resulting in widespread detection in environmental media. However, some metal ions are considered as "Environmental health hazards", leading to serious human health concerns through affecting critical targets. Hence, it is necessary to quickly and effectively recognize the key target of metal ions in living organisms. Fortunately, the development of high-throughput analysis and in silico approaches offer a promising tool for target identification. In this study, the key oncogenic target (tumor suppressor protein, p53) was screened by network analysis based on the comparative toxicogenomics database (CTD). Some metal ions could bind to p53 core domain, impair its function and induce the development of cancer risk, but its mechanisms were still unclear. Therefore, a quantitative structure-activity relationship (QSAR) model was constructed to characterize the binding constants (Ka) between DNA binding domain of p53 (p53 DBD) and nine metal ions (Mg2+, Ca2+, Cu2+, Zn2+, Co2+, Ni2+, Mn2+, Fe3+ and Ba2+). It had good robustness and predictive ability, which could be used to predict the Ka values of other six metal ions (Li+, Ag+, Cs+, Cd2+, Hg2+ and Pb2+) within application domain. The results showed strong binding affinity between Cd2+/Hg2+/Pb2+ and p53 DBD. Subsequent mechanism analyses revealed that first hydrolysis constant (|logKOH|) and polarization force (Z2/r) were key metal ion-characteristic parameters. The metal ions with weak hydrolysis constants and strong polarization forces could readily interact with N-containing histidine and S-containing cysteine of p53 DBD, which resulted in high Ka values. This study identified p53 as potential target for metal ions, revealed the key characteristics affecting the actions and provide a basic understanding of metal ions-p53 DBD interaction.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuefa Teng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China.
| |
Collapse
|
18
|
Xu Y, Wang Y, An J, Sedgwick AC, Li M, Xie J, Hu W, Kang J, Sen S, Steinbrueck A, Zhang B, Qiao L, Wageh S, Arambula JF, Liu L, Zhang H, Sessler JL, Kim JS. 2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioact Mater 2022; 14:76-85. [PMID: 35310350 PMCID: PMC8892152 DOI: 10.1016/j.bioactmat.2021.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
An increased demand for iron is a hallmark of cancer cells and is thought necessary to promote high cell proliferation, tumor progression and metastasis. This makes iron metabolism an attractive therapeutic target. Unfortunately, current iron-based therapeutic strategies often lack effectiveness and can elicit off-target toxicities. We report here a dual-therapeutic prodrug, DOXjade, that allows for iron chelation chemo-photothermal cancer therapy. This prodrug takes advantage of the clinically approved iron chelator deferasirox (ExJade®) and the topoisomerase 2 inhibitor, doxorubicin (DOX). Loading DOXjade onto ultrathin 2D Ti3C2 MXene nanosheets produces a construct, Ti 3 C 2 -PVP@DOXjade, that allows the iron chelation and chemotherapeutic functions of DOXjade to be photo-activated at the tumor sites, while potentiating a robust photothermal effect with photothermal conversion efficiencies of up to 40%. Antitumor mechanistic investigations reveal that upon activation, Ti 3 C 2 -PVP@DOXjade serves to promote apoptotic cell death and downregulate the iron depletion-induced iron transferrin receptor (TfR). A tumor pH-responsive iron chelation/photothermal/chemotherapy antitumor effect was achieved both in vitro and in vivo. The results of this study highlight what may constitute a promising iron chelation-based phototherapeutic approach to cancer therapy.
Collapse
Affiliation(s)
- Yunjie Xu
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Yingwei Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, 410083, China
| | - Jusung An
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Mingle Li
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jianlei Xie
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Weibin Hu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Jianlong Kang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Sajal Sen
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Axel Steinbrueck
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Bin Zhang
- Institute of Translation Medicine Shenzhen Second People's Hospital First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Lijun Qiao
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jonathan F. Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Liping Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics; International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Shenzhen Institute of Translational Medicine, Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
19
|
Huff SE, Winter JM, Dealwis CG. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Biomolecules 2022; 12:biom12060815. [PMID: 35740940 PMCID: PMC9221315 DOI: 10.3390/biom12060815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023] Open
Abstract
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| | - Jordan M. Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Akron, OH 44106, USA;
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
20
|
Yamaki J, Chawla S, Tong S, Lozada KA, Yang S. Iron Effects on Clostridioides difficile Toxin Production and Antimicrobial Susceptibilities. Antibiotics (Basel) 2022; 11:537. [PMID: 35625180 PMCID: PMC9137654 DOI: 10.3390/antibiotics11050537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
Despite the benefits of red blood cell (RBC) transfusion therapy, it can render patients vulnerable to iron overload. The excess iron deposits in various body tissues cause severe complications and organ damage such as cardiotoxicity and mold infections. Clostridioides difficile infection (CDI) is the most common cause of nosocomial diarrhea among cancer patients and is associated with significant morbidity and mortality. Our study aims to determine the role of iron overload and the effects of iron chelators on CDI. Our results demonstrated that iron (Fe3+) stimulated the growth of C. difficile with increased colony formation units (CFU) in a dose-dependent manner. Exposure to excess iron also increased the gene expression levels of tcdA and tcdB. The production of C. difficile toxin A, necessary for the pathogenesis of C. difficile, was also elevated after iron treatment. In the presence of excess iron, C. difficile becomes less susceptible to metronidazole with significantly elevated minimum inhibitory concentration (MIC) but remains susceptible to vancomycin. Iron-stimulated colony formation and production of C. difficile toxins were effectively diminished by iron chelator deferoxamine co-treatment. Incorporating iron overload status as a potential factor in developing a risk prediction model of CDI and antibiotic treatment response may aid clinical practitioners in optimizing CDI management in oncology patients.
Collapse
Affiliation(s)
- Jason Yamaki
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (J.Y.); (S.C.)
| | - Swati Chawla
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (J.Y.); (S.C.)
| | - Shirley Tong
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.T.); (K.A.L.)
| | - Kate Alison Lozada
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (S.T.); (K.A.L.)
| | - Sun Yang
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (J.Y.); (S.C.)
| |
Collapse
|
21
|
Deferoxamine Inhibits Acute Lymphoblastic Leukemia Progression through Repression of ROS/HIF-1α, Wnt/β-Catenin, and p38MAPK/ERK Pathways. JOURNAL OF ONCOLOGY 2022; 2022:8281267. [PMID: 35237325 PMCID: PMC8885176 DOI: 10.1155/2022/8281267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/31/2021] [Accepted: 01/17/2022] [Indexed: 01/10/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer, with a feature of easy to induce multidrug resistance and relapse. Abundant studies have proved that iron overload strengthens the growth and metastasis of tumor cells. Herein, we found that deferoxamine (DFO) effectively decreased the concentration of intracellular iron in ALL cells. DFO inhibited proliferation, induced apoptosis, and obstructed cell cycle of ALL cells, whereas DFO and dextriferron (Dex) used in combination significantly decreased the sensitivity of ALL cells to DFO. Reactive oxygen species (ROS) level was reduced in ALL cells treated with DFO, and the combination of DFO and Dex reversed the effects of DFO. In vivo, DFO inhibited mouse tumor growth. Besides, cyclinD1, β-catenin, c-Myc, hypoxia inducible factor 1 (HIF-1), p-p38MAPK, and p-ERK1/2 protein levels were significantly downregulated, and the levels of prolyl hydroxylase-2 (PHD-2) were upregulated after treated with DFO, whereas Dex treatment reversed those in vivo and in vitro. In conclusion, DFO inhibited the proliferation and ALL xenograft tumor growth, obstructed the cell cycle, and induced apoptosis of ALL cells, probably via inactivating the ROS/HIF-1α, Wnt/β-catenin, and p38MAPK/ERK signaling.
Collapse
|
22
|
Er OF, Kivrak H, Ozok O, Çelik S, Kivrak A. A novel electrochemical sensor for monitoring ovarian cancer tumor protein CA 125 on benzothiophene derivative based electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Selyutina OY, Kononova PA, Koshman VE, Shelepova EA, Azad MG, Afroz R, Dharmasivam M, Bernhardt PV, Polyakov NE, Richardson DR. Ascorbate-and iron-driven redox activity of Dp44mT and emodin facilitates peroxidation of micelles and bicelles. Biochim Biophys Acta Gen Subj 2021; 1866:130078. [PMID: 34974127 DOI: 10.1016/j.bbagen.2021.130078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Iron (Fe)-induced oxidative stress leads to reactive oxygen species that damage biomembranes, with this mechanism being involved in the activity of some anti-cancer chemotherapeutics. METHODS Herein, we compared the effect of Fe complexes of the ligand, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), or the potential ligand, Emodin, on lipid peroxidation in cell membrane models (micelles and bicelles). These studies were performed in the presence of hydrogen peroxide (H2O2) and the absence or presence of ascorbate. RESULTS In the absence of ascorbate, Fe(II)/Emodin mixtures incubated with H2O2 demonstrated slight pro-oxidant properties on micelles versus Fe(II) alone, while the Fe(III)-Dp44mT complex exhibited marked antioxidant properties. Examining more physiologically relevant phospholipid-containing bicelles, the Fe(II)- and Fe(III)-Dp44mT complexes demonstrated antioxidant activity without ascorbate. Upon adding ascorbate, there was a significant increase in the peroxidation of micelles and bicelles in the presence of unchelated Fe(II) and H2O2. The addition of ascorbate to Fe(III)-Dp44mT substantially increased the peroxidation of micelles and bicelles, with the Fe(III)-Dp44mT complex being reduced by ascorbate to the Fe(II) state, explaining the increased reactivity. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radical anion generation after mixing ascorbate and Emodin, with signal intensity being enhanced by H2O2. This finding suggested Emodin semiquinone radical formation that could play a role in its reactivity via ascorbate-driven redox cycling. Examining cultured melanoma cells in vitro, ascorbate at pharmacological levels enhanced the anti-proliferative activity of Dp44mT and Emodin. CONCLUSIONS AND GENERAL SIGNIFICANCE Ascorbate-driven redox cycling of Dp44mT and Emodin promotes their anti-proliferative activity.
Collapse
Affiliation(s)
- O Yu Selyutina
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St., 18, 630128 Novosibirsk, Russia.
| | - P A Kononova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - V E Koshman
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - E A Shelepova
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia
| | - M Gholam Azad
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - R Afroz
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - M Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - P V Bernhardt
- Department of Chemistry, University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - N E Polyakov
- Institute of Chemical Kinetics and Combustion, Institutskaya St., 3, 630090 Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St., 18, 630128 Novosibirsk, Russia
| | - D R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
24
|
Iron chelates in the anticancer therapy. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-02001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIron plays a significant role in the metabolism of cancer cells. In comparison with normal cells, neoplastic ones exhibit enhanced vulnerability to iron. Ferric ions target tumor via the ferroptotic death pathway—a process involving the iron-mediated lipid oxidation. Ferric ion occurs in complex forms in the physiological conditions. Apart from iron, ligands are the other factors to affect the biological activity of the iron complexes. In recent decades the role of iron chelates in targeting the growth of the tumor was extensively examined. The ligand may possess a standalone activity to restrict cancer’s growth. However, a wrong choice of the ligand might lead to the enhanced cancer cell’s growth in in vitro studies. The paper aims to review the role of iron complex compounds in the anticancer therapy both in the experimental and clinical applications. The anticancer properties of the iron complex rely both on the stability constant of the complex and the ligand composition. When the stability constant is high, the properties of the drug are unique. However, when the stability constant remains low, both components—ferric ions and ligands, act separately on the cells. In the paper we show how the difference in complex stability implies the action of ligand and ferric ions in the cancer cell. Iron complexation strategy is an interesting attempt to transport the anticancer Fe2+/3+ ions throughout the cell membrane and release it when the pH of the microenvironment changes. Last part of the paper summarizes the results of clinical trials and in vitro studies of novel iron chelates such as: PRLX 93,936, Ferumoxytol, Talactoferrin, DPC, Triapine, VLX600, Tachypyridine, Ciclopiroxamine, Thiosemicarbazone, Deferoxamine and Deferasirox.
Collapse
|
25
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021. [DOI: 10.3390/ijms222212333
expr 804735418 + 979474750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
26
|
Crescenzi E, Leonardi A, Pacifico F. NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:12333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333&set/a 915137580+984946846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, “Federico II” University of Naples, Via S. Pansini, 5-80131 Naples, Italy;
| | - Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
27
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222212333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
28
|
Yang J, Xu J, Zhang B, Tan Z, Meng Q, Hua J, Liu J, Wang W, Shi S, Yu X, Liang C. Ferroptosis: At the Crossroad of Gemcitabine Resistance and Tumorigenesis in Pancreatic Cancer. Int J Mol Sci 2021; 22:10944. [PMID: 34681603 PMCID: PMC8539929 DOI: 10.3390/ijms222010944] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The overall five-year survival rate of pancreatic cancer has hardly changed in the past few decades (less than 10%) because of resistance to all known therapies, including chemotherapeutic drugs. In the past few decades, gemcitabine has been at the forefront of treatment for pancreatic ductal adenocarcinoma, but more strategies to combat drug resistance need to be explored. One promising possibility is ferroptosis, a form of a nonapoptotic cell death that depends on intracellular iron and occurs through the accumulation of lipid reactive oxygen species, which are significant in drug resistance. In this article, we reviewed gemcitabine-resistance mechanisms; assessed the relationship among ferroptosis, tumorigenesis and gemcitabine resistance, and explored a new treatment method for pancreatic cancer.
Collapse
Affiliation(s)
- Jianhui Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhen Tan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (J.Y.); (J.X.); (B.Z.); (Z.T.); (Q.M.); (J.H.); (J.L.); (W.W.); (S.S.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Wijesinghe TP, Dharmasivam M, Dai CC, Richardson DR. Innovative therapies for neuroblastoma: The surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc. Pharmacol Res 2021; 173:105889. [PMID: 34536548 DOI: 10.1016/j.phrs.2021.105889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022]
Abstract
Iron is an indispensable requirement for essential biological processes in cancer cells. Due to the greater proliferation of neoplastic cells, their demand for iron is considerably higher relative to normal cells, making them highly susceptible to iron depletion. Understanding this sensitive relationship led to research exploring the effect of iron chelation therapy for cancer treatment. The classical iron-binding ligand, desferrioxamine (DFO), has demonstrated effective anti-proliferative activity against many cancer-types, particularly neuroblastoma tumors, and has the surprising activity of down-regulating the potent oncogene, N-myc, which is a major oncogenic driver in neuroblastoma. Even more significant is the ability of DFO to simultaneously up-regulate the potent metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which plays a plethora of roles in suppressing a variety of oncogenic signaling pathways. However, DFO suffers the disadvantage of demonstrating poor membrane permeability and short plasma half-life, requiring administration by prolonged subcutaneous or intravenous infusions. Considering this, the specifically designed di-2-pyridylketone thiosemicarbazone (DpT) series of metal-binding ligands was developed in our laboratory. The lead agent from the first generation DpT series, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), showed exceptional anti-cancer properties compared to DFO. However, it exhibited cardiotoxicity in mouse models at higher dosages. Therefore, a second generation of agents was developed with the lead compound being di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) that progressed to Phase I clinical trials. Importantly, DpC showed better anti-proliferative activity than Dp44mT and no cardiotoxicity, demonstrating effective anti-cancer activity against neuroblastoma tumors in vivo.
Collapse
Affiliation(s)
- Tharushi P Wijesinghe
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Mahendiran Dharmasivam
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Charles C Dai
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
30
|
dos Santos PVP, Ribeiro CM, Pavan FR, Corbi PP, Bergamini FR, Carvalho MA, D'Oliveria KA, Cuin A. Promising Ag(I) complexes with N-acylhydrazones from aromatic aldehydes and isoniazid against multidrug resistance in tuberculosis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
A Deferasirox Derivative That Acts as a Multifaceted Platform for the Detection and Quantification of Fe3+. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we report that ExSO3H, a synthetically accessible, water-soluble, non-toxic derivative of the clinical iron chelator deferasirox, acts as a colorimetric chemosensor that permits the detection and quantification of Fe3+ in aqueous samples at pH 2–5. In addition, we observed that a fluorescent turn-on response was produced when this chelator was allowed to interact with human serum albumin (HSA). This fluorescence was quenched in the presence of Fe3+, thus allowing us to monitor the presence of this biologically important metal cation via two independent methods.
Collapse
|
32
|
Sandoval-Acuña C, Torrealba N, Tomkova V, Jadhav SB, Blazkova K, Merta L, Lettlova S, Adamcová MK, Rosel D, Brábek J, Neuzil J, Stursa J, Werner L, Truksa J. Targeting Mitochondrial Iron Metabolism Suppresses Tumor Growth and Metastasis by Inducing Mitochondrial Dysfunction and Mitophagy. Cancer Res 2021; 81:2289-2303. [PMID: 33685989 DOI: 10.1158/0008-5472.can-20-1628] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/20/2020] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Deferoxamine (DFO) represents a widely used iron chelator for the treatment of iron overload. Here we describe the use of mitochondrially targeted deferoxamine (mitoDFO) as a novel approach to preferentially target cancer cells. The agent showed marked cytostatic, cytotoxic, and migrastatic properties in vitro, and it significantly suppressed tumor growth and metastasis in vivo. The underlying molecular mechanisms included (i) impairment of iron-sulfur [Fe-S] cluster/heme biogenesis, leading to destabilization and loss of activity of [Fe-S] cluster/heme containing enzymes, (ii) inhibition of mitochondrial respiration leading to mitochondrial reactive oxygen species production, resulting in dysfunctional mitochondria with markedly reduced supercomplexes, and (iii) fragmentation of the mitochondrial network and induction of mitophagy. Mitochondrial targeting of deferoxamine represents a way to deprive cancer cells of biologically active iron, which is incompatible with their proliferation and invasion, without disrupting systemic iron metabolism. Our findings highlight the importance of mitochondrial iron metabolism for cancer cells and demonstrate repurposing deferoxamine into an effective anticancer drug via mitochondrial targeting. SIGNIFICANCE: These findings show that targeting the iron chelator deferoxamine to mitochondria impairs mitochondrial respiration and biogenesis of [Fe-S] clusters/heme in cancer cells, which suppresses proliferation and migration and induces cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2289/F1.large.jpg.
Collapse
Affiliation(s)
- Cristian Sandoval-Acuña
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Natalia Torrealba
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Veronika Tomkova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Sukanya B Jadhav
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Kristyna Blazkova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Ladislav Merta
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Sandra Lettlova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Miroslava K Adamcová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Rosel
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Jan Brábek
- Faculty of Sciences, BIOCEV Research Center, Charles University, Vestec, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic.,School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jan Stursa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Lukas Werner
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic.
| |
Collapse
|
33
|
Nevil G, Roth M, Gill J, Zhang W, Teicher B, Erickson SW, Gatto G, Smith M, Kolb EA, Gorlick R. Initial in vivo testing of TPO-receptor agonist eltrombopag in osteosarcoma patient-derived xenograft models by the pediatric preclinical testing consortium. Pediatr Hematol Oncol 2021; 38:8-13. [PMID: 32804009 PMCID: PMC8670012 DOI: 10.1080/08880018.2020.1802539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eltrombopag is a small molecule, thrombopoietin receptor agonist approved for the treatment of patients with aplastic anemia and chronic immune thrombocytopenia. It is also a polyvalent cation chelator and inhibits leukemia cell proliferation via reduction of intracellular iron. The in vivo efficacy of eltrombopag was tested against a panel of six Pediatric Preclinical Testing Consortium osteosarcoma xenografts at doses of 5 mg/kg/day (moderate dose) and 50 mg/kg/day (high dose). Eltrombopag, at moderate doses, failed to significantly improve event-free survival (EFS) in 6/6 models. At high doses, eltrombopag significantly prolonged EFS in 2/2 models, though the effect size was small. All models tested demonstrated progressive disease. While eltrombopag did not meaningfully inhibit osteosarcoma growth, it also did not stimulate tumor growth, suggesting it may be safely investigated as a supportive care agent to enhance platelet recovery post chemotherapy.
Collapse
Affiliation(s)
- Grace Nevil
- Division of Pediatric Oncology, MD Anderson Children’s Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Roth
- Division of Pediatric Oncology, MD Anderson Children’s Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan Gill
- Division of Pediatric Oncology, MD Anderson Children’s Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wendong Zhang
- Division of Pediatric Oncology, MD Anderson Children’s Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Gregory Gatto
- RTI International, Research Triangle Park, North Carolina, USA
| | - Malcom Smith
- National Cancer Institute, Bethesda, maryland, USA
| | - E. Anders Kolb
- Division of Pediatric Hematology/Oncology, A.I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Richard Gorlick
- Division of Pediatric Oncology, MD Anderson Children’s Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
34
|
Fagundes DA, Leonel LV, Fernandez-Outon LE, Ardisson JD, Dos Santos RG. Radiosensitizing effects of citrate-coated cobalt and nickel ferrite nanoparticles on breast cancer cells. Nanomedicine (Lond) 2020; 15:2823-2836. [PMID: 33241971 DOI: 10.2217/nnm-2020-0313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Evaluation of the biocompatibility and radiosensitizer potential of citrate-coated cobalt (cit-CF) and nickel (cit-NF) ferrite nanoparticles (NPs). Materials & methods: Normal fibroblast and breast cancer cells were treated with different concentrations of citrate-coated ferrite NPs (cit-NPs) and irradiated with a cobalt-60 source at doses of 1 and 3 Gy. After 24 h, cell metabolism, morphology alterations and nanoparticle uptake were evaluated. Results: Cit-CF and cit-NF NPs showed no toxicity to normal cells up to 250 and 100 μg.ml-1, respectively. Combination of cit-NP and ionizing radiation resulted in up to fivefold increase in the radiation therapeutic efficacy against breast cancer cells. Conclusion: Cit-CF and cit-NF NPs are suitable candidates for application as breast cancer cell radiosensitizers.
Collapse
Affiliation(s)
- Daniele A Fagundes
- Unidade de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.,Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil
| | - Liliam V Leonel
- Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil
| | - Luis E Fernandez-Outon
- Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil.,Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - José D Ardisson
- Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil
| | - Raquel G Dos Santos
- Unidade de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
35
|
Bouché M, Hognon C, Grandemange S, Monari A, Gros PC. Recent advances in iron-complexes as drug candidates for cancer therapy: reactivity, mechanism of action and metabolites. Dalton Trans 2020; 49:11451-11466. [PMID: 32776052 DOI: 10.1039/d0dt02135k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.
Collapse
Affiliation(s)
- Mathilde Bouché
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| | - Cécilia Hognon
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | | | - Antonio Monari
- Université de Lorraine, CNRS, LPCT UMR 7019, F-54000 Nancy, France
| | - Philippe C Gros
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000 Nancy, France.
| |
Collapse
|
36
|
Anemia of Chronic Diseases: Wider Diagnostics-Better Treatment? Nutrients 2020; 12:nu12061784. [PMID: 32560029 PMCID: PMC7353365 DOI: 10.3390/nu12061784] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
Anemia of chronic diseases is a condition that accompanies a specific underlying disease, in which there is a decrease in hemoglobin, hematocrit and erythrocyte counts due to a complex process, usually initiated by cellular immunity mechanisms and pro-inflammatory cytokines and hepcidin. This is the second most common type of anemia after iron deficiency anemia in the world. Its severity generally correlates with the severity of the underlying disease. This disease most often coexists with chronic inflammation, autoimmune diseases, cancer, and kidney failure. Before starting treatment, one should undertake in-depth diagnostics, which includes not only assessment of complete blood count and biochemical parameters, but also severity of the underlying disease. The differential diagnosis of anemia of chronic diseases is primarily based on the exclusion of other types of anemia, in particular iron deficiency. The main features of anemia of chronic diseases include mild to moderate lowering of hemoglobin level, decreased percentage of reticulocyte count, low iron and transferrin concentration, but increased ferritin. Due to the increasingly better knowledge of the pathomechanism of chronic diseases and cancer biology, the diagnosis of this anemia is constantly expanding with new biochemical indicators. These include: the concentration of other hematopoietic factors (folic acid, vitamin B12), hepcidin, creatinine and erythropoietin. The basic form of treatment of anemia of chronic diseases remains supplementation with iron, folic acid and vitamin B12 as well as a diet rich in the above-mentioned hematopoietic factors. The route of administration (oral, intramuscular or intravenous) requires careful consideration of the benefits and possible side effects, and assessment of the patient’s clinical status. New methods of treating both the underlying disease and anemia are raising hopes. The novel methods are associated not only with supplementing deficiencies, but also with the administration of drugs molecularly targeted to specific proteins or receptors involved in the development of anemia of chronic diseases.
Collapse
|
37
|
Shakya B, Yadav PN. Thiosemicarbazones as Potent Anticancer Agents and their Modes of Action. Mini Rev Med Chem 2020; 20:638-661. [DOI: 10.2174/1389557519666191029130310] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/17/2019] [Accepted: 10/03/2019] [Indexed: 11/22/2022]
Abstract
:Thiosemicarbazones (TSCs) are a class of Schiff bases usually obtained by the condensation of thiosemicarbazide with a suitable aldehyde or ketone. TSCs have been the focus of chemists and biologists due to their wide range of pharmacological effects. One of the promising areas in which these excellent metal chelators are being developed is their use against cancer. TSCs have a wide clinical antitumor spectrum with efficacy in various tumor types such as leukemia, pancreatic cancer, breast cancer, non-small cell lung cancer, cervical cancer, prostate cancer and bladder cancer. To obtain better activity, different series of TSCs have been developed by modifying the heteroaromatic system in their molecules. These compounds possessed significant antineoplastic activity when the carbonyl attachment of the side chain was located at a position α to the ring nitrogen atom, whereas attachment of the side chain β or γ to the heterocyclic N atom resulted in inactive antitumor agents. In addition, replacement of the heterocyclic ring N with C also resulted in a biologically inactive compound suggesting that a conjugated N,N,S-tridentate donor set is essential for the biological activities of thiosemicarbazones. Several possible mechanisms have been implemented for the anticancer activity of thiosemicarbazones.
Collapse
Affiliation(s)
- Bhushan Shakya
- Amrit Campus, Tribhuvan University, Thamel, Kathmandu, Nepal
| | - Paras Nath Yadav
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
38
|
Development of a synthetic strategy for Water soluble tripodal receptors: Two novel fluorescent receptors for highly selective and sensitive detections of Fe3+ and Cu2+ ions and biological evaluation. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
AL-Refaei MA, Makki RM, Ali HM. Structure prediction of transferrin receptor protein 1 (TfR1) by homology modelling, docking, and molecular dynamics simulation studies. Heliyon 2020; 6:e03221. [PMID: 32021925 PMCID: PMC6994855 DOI: 10.1016/j.heliyon.2020.e03221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/04/2020] [Accepted: 01/10/2020] [Indexed: 12/26/2022] Open
Abstract
Transferrin receptor protein 1 (TfR1) is an important molecule in anti-cancer therapy. Targeted delivery of such therapeutic compounds improves their cellular uptake and circulation time, thereby enhancing therapeutic efficacy. Drug designing is therefore used to engineer molecules with structures that facilitate specific interactions. However, this process requires a thorough knowledge of all the interactions, including the three-dimensional (3D) and quaternary structures (QS) of the interacting molecules. Since structural information is available for only a part of the full TfR1 sequence, in the present study, we predicted the whole structure of TfR1 using homology modelling, docking, and molecular dynamics simulations. Homology modelling is used to generate 3D structures of TfR1 using MODELLER, I-TASSER, and RaptorX programs. Verify3D and Rampage server evaluated the quality of the resultant models. According to this evaluation, the model built by the RaptorX server and validated by Verify3D (compatibility: 83.82%) had the highest number of residues (95.5%) within the favoured regions of the Ramachandran plot, making it the most reliable 3D protein structure for TfR1 compared with others. The QS of TfR1 was built using HADDOCK and SymmDock docking software, and the results were evaluated by the ligand root mean square deviation (l-RMSD) value computed using the ProFit software. This showed that both HADDOCK and SymmDock gave acceptable results. However, the HADDOCK result was more stable and closest to the native complex structure with disulfide bonds. Therefore, the HADDOCK complex was further refined using both SymmRef and GalaxyRefineComplex until the medium l-RMSD rank was reached. This QS was successfully verified using nanoscale molecular dynamics (NAMD) energy minimization. This model could pave the way for further functional, structural, and therapeutic studies on TfR1.
Collapse
Affiliation(s)
- Maha Ateeq AL-Refaei
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | |
Collapse
|
40
|
Saha P, Yeoh BS, Xiao X, Golonka RM, Kumarasamy S, Vijay-Kumar M. Enterobactin, an iron chelating bacterial siderophore, arrests cancer cell proliferation. Biochem Pharmacol 2019; 168:71-81. [PMID: 31228465 PMCID: PMC6733644 DOI: 10.1016/j.bcp.2019.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Iron is essential for many biological functions, including being a cofactor for enzymes involved in cell proliferation. In line, it has been shown that cancer cells can perturb their iron metabolism towards retaining an abundant iron supply for growth and survival. Accordingly, it has been suggested that iron deprivation through the use of iron chelators could attenuate cancer progression. While they have exhibited anti-tumor properties in vitro, the current therapeutic iron chelators are inadequate due to their low efficacy. Therefore, we investigated whether the bacterial catecholate-type siderophore, enterobactin (Ent), could be used as a potent anti-cancer agent given its strong iron chelation property. We demonstrated that iron-free Ent can exert cytotoxic effects specifically towards monocyte-related tumor cell lines (RAW264.7 and J774A.1), but not primary cells, i.e. bone marrow-derived macrophages (BMDMs), through two mechanisms. First, we observed that RAW264.7 and J774A.1 cells preserve a bountiful intracellular labile iron pool (LIP), whose homeostasis can be disrupted by Ent. This may be due, in part, to the lower levels of lipocalin 2 (Lcn2; an Ent-binding protein) in these cell lines, whereas the higher levels of Lcn2 in BMDMs could prevent Ent from hindering their LIP. Secondly, we observed that Ent could dose-dependently impede reactive oxygen species (ROS) generation in the mitochondria. Such disruption in LIP balance and mitochondrial function may in turn promote cancer cell apoptosis. Collectively, our study highlights Ent as an anti-cancer siderophore, which can be exploited as an unique agent for cancer therapy.
Collapse
Affiliation(s)
- Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xia Xiao
- Division of Nephrology, MGH, Harvard Medical School, Boston, MA 02114, USA
| | - Rachel M Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sivarajan Kumarasamy
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| |
Collapse
|
41
|
Okuno K, Naito Y, Yasumura S, Sawada H, Asakura M, Masuyama T, Ishihara M. Haploinsufficiency of Transferrin Receptor 1 Impairs Angiogenesis with Reduced Mitochondrial Complex I in Mice with Limb Ischemia. Sci Rep 2019; 9:13658. [PMID: 31541184 PMCID: PMC6754437 DOI: 10.1038/s41598-019-49983-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/03/2019] [Indexed: 02/05/2023] Open
Abstract
Limb ischemia (LI) is a major consequence of peripheral artery disease (PAD) with a high mortality rate. Iron is an essential mineral to maintain physiological function of multiple organs. Intracellular iron transport is regulated by transferrin receptor 1 (TfR1). Although increase in serum ferritin levels has been reported in PAD patients, the mechanism of iron metabolism in LI is still unclear. The aim of this study is to investigate whether TfR1 deletion attenuates LI formation. To generate LI, the left femoral artery of 8-10 week-old C57BL6/J male mice was ligated. Adductor muscles were harvested at 28 days after surgery to investigate iron metabolism. The level of ferritin, intracellular iron storage protein, was higher in ischemic adductor muscles compared to non-ischemic adductor muscles. Level of intracellular iron transport protein, TfR1, was decreased in ischemic adductor muscles. LI was then generated in TfR1 heterozygous deleted mice (TfR1+/-) to examine whether TfR1 contributes to the pathophysiology of LI. Laser Doppler blood flowmetry revealed that blood flow recovery was attenuated in TfR1+/- mice compared to wild type (WT) littermates, along with decreased expression of ferritin and CD31 in ischemic adductor muscles. Since iron is used for energy production in mitochondria, we then assessed mitochondrial complexes in the ischemic adductor muscle. Of interest, expression of mitochondrial complex I, but not complexes II, III, and V in ischemic adductor muscles was significantly reduced in TfR1+/- mice compared to WT mice. Haploinsufficiency of TfR1 attenuated angiogenesis via reduction of mitochondrial complex I in LI in mice.
Collapse
Affiliation(s)
- Keisuke Okuno
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshiro Naito
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Seiki Yasumura
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hisashi Sawada
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masanori Asakura
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tohru Masuyama
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
42
|
Babosova O, Kapralova K, Raskova Kafkova L, Korinek V, Divoky V, Prchal JT, Lanikova L. Iron chelation and 2-oxoglutarate-dependent dioxygenase inhibition suppress mantle cell lymphoma's cyclin D1. J Cell Mol Med 2019; 23:7785-7795. [PMID: 31517438 PMCID: PMC6815829 DOI: 10.1111/jcmm.14655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 01/21/2023] Open
Abstract
The patients with mantle cell lymphoma (MCL) have translocation t(11;14) associated with cyclin D1 overexpression. We observed that iron (an essential cofactor of dioxygenases including prolyl hydroxylases [PHDs]) depletion by deferoxamine blocked MCL cells' proliferation, increased expression of DNA damage marker γH2AX, induced cell cycle arrest and decreased cyclin D1 level. Treatment of MCL cell lines with dimethyloxalylglycine, which blocks dioxygenases involving PHDs by competing with their substrate 2-oxoglutarate, leads to their decreased proliferation and the decrease of cyclin D1 level. We then postulated that loss of EGLN2/PHD1 in MCL cells may lead to down-regulation of cyclin D1 by blocking the degradation of FOXO3A, a cyclin D1 suppressor. However, the CRISPR/Cas9-based loss-of-function of EGLN2/PHD1 did not affect cyclin D1 expression and the loss of FOXO3A did not restore cyclin D1 levels after iron chelation. These data suggest that expression of cyclin D1 in MCL is not controlled by ENGL2/PHD1-FOXO3A pathway and that chelation- and 2-oxoglutarate competition-mediated down-regulation of cyclin D1 in MCL cells is driven by yet unknown mechanism involving iron- and 2-oxoglutarate-dependent dioxygenases other than PHD1. These data support further exploration of the use of iron chelation and 2-oxoglutarate-dependent dioxygenase inhibitors as a novel therapy of MCL.
Collapse
Affiliation(s)
- Olga Babosova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Katarina Kapralova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic.,Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah School of Medicine and VAH, Salt Lake City, Utah
| | - Leona Raskova Kafkova
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vladimir Divoky
- Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Josef T Prchal
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah School of Medicine and VAH, Salt Lake City, Utah
| | - Lucie Lanikova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Department of Biology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic.,Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah School of Medicine and VAH, Salt Lake City, Utah
| |
Collapse
|
43
|
Iliev I, Kontrec D, Detcheva R, Georgieva M, Balacheva A, Galić N, Pajpanova T. Cancer cell growth inhibition by aroylhydrazone derivatives. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1608302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Ivan Iliev
- Department of Pathology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Molecular Design and Biochemical Pharmacology, Institute of Molecular Biology “Roumen Tsanev” Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Darko Kontrec
- Laboratory for Stereoselective Catalysis and Biocatalysis Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Roumiana Detcheva
- Department of Molecular Design and Biochemical Pharmacology, Institute of Molecular Biology “Roumen Tsanev” Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Molecular Design and Biochemical Pharmacology, Institute of Molecular Biology “Roumen Tsanev” Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anelia Balacheva
- Department of Molecular Design and Biochemical Pharmacology, Institute of Molecular Biology “Roumen Tsanev” Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nives Galić
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Tamara Pajpanova
- Department of Molecular Design and Biochemical Pharmacology, Institute of Molecular Biology “Roumen Tsanev” Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
44
|
Guan X, Yang B, Xie M, Ban DK, Zhao X, Lal R, Zhang F. MRI reporter gene MagA suppresses transferrin receptor and maps Fe 2+ dependent lung cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102064. [PMID: 31326524 DOI: 10.1016/j.nano.2019.102064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023]
Abstract
As a magnetic resonance imaging (MRI) reporter gene, MagA has become a powerful tool to monitor dynamic gene expression and allowed concomitant high resolution anatomical and functional imaging of subcellular genetic information. Here we establish a stably expressed MagA method for lung cancer MRI. The results show that MagA can not only enhance both in vitro and in vivo MRI contrast by specifically alternating the transverse relaxation rate of water, but also inhibit the malignant growth of lung tumor. In addition, MagA can regulate magnetic nanoparticle production in grafted tissues and also suppress transferrin receptor expression by acting as an iron transporter, and meanwhile can permit iron biomineralization in the presence of mammalian iron homeostasis. This work provides experimental evidence for the safe preclinical applications of MagA as both a potential inhibitor and an MRI-based tracing tool for iron ion-dependent lung cancer.
Collapse
Affiliation(s)
- Xiaoying Guan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomat ology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bin Yang
- State Key Laboratory of Respiratory Disease, The Sixth Affiliated Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Maobin Xie
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomat ology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Deependra Kumar Ban
- Department of Mechanical and Aerospace Engineering, University of California San Diego, California, United States
| | - Xinmin Zhao
- State Key Laboratory of Respiratory Disease, The Sixth Affiliated Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ratnesh Lal
- Materials Science and Engineering Program and Department of Mechanical and Aerospace Engineering, Department of Bioengineering, University of California San Diego, California, United States.
| | - Feng Zhang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomat ology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, The Sixth Affiliated Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
45
|
Cui C, Cheng X, Yan L, Ding H, Guan X, Zhang W, Tian X, Hao C. Downregulation of TfR1 promotes progression of colorectal cancer via the JAK/STAT pathway. Cancer Manag Res 2019; 11:6323-6341. [PMID: 31372038 PMCID: PMC6628123 DOI: 10.2147/cmar.s198911] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/20/2019] [Indexed: 01/05/2023] Open
Abstract
Background: Colorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies. The incidence of CRC has been rapidly increasing in China. Transferrin receptor 1 (TfR1) is a key regulator of cellular iron homeostasis. Several studies have demonstrated TfR1 overexpression in a variety of human tumors, but the association between TfR1 and CRC remains unclear. Methods: TfR1 expression was evaluated in six CRC cell lines and tumor tissues. A total of 201 CRC patients were included for immunohistochemistry and 19 pairs of frozen tissues were used for real-time PCR. Cell proliferation, cell cycle, cell migration and invasion, and in vivo carcinogenesis were tested after downregulation of TfR1 by lentivirus. Protein microarray and Western blot analyses were used to explore the underlying mechanisms of TfR1 in CRC. Results: TfR1 expression was higher in CRC tissues than in normal tissues (57.2% vs 22.9%, P<0.001). TfR1 expression was obviously higher in CRC tissues with well differentiation (P=0.008), no lymph node metastasis (P=0.002), no distant metastasis (P=0.006), no vascular invasion (P<0.001) and early TNM stage (P=0.013). CRC patients with TfR1-positive expression had a better survival than those with TfR1-negative expression (P=0.044). Downregulation of TfR1 expression inhibited cell proliferation, promoted cells from G1 phase to S phase and facilitated cell migration and invasion. Knockdown of TfR1 also suppressed tumor growth in BALB/C-nu mice. Protein microarray and Western blot analyses showed that the Janus protein tyrosine kinase/signal transducer and activator of transcription pathway was activated along with downregulation of TfR1 expression. Conclusion: Though TfR1 was overexpressed in colorectal cancer tissues, there was evidence that downregulation of TfR1 could promote cancer progression.
Collapse
Affiliation(s)
- Can Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Xiaojing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Carcinoma Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Huirong Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Wenlong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, People's Republic of China
| |
Collapse
|
46
|
DpdtbA-Induced Growth Inhibition in Human Esophageal Cancer Cells Involved Inactivation of the p53/EGFR/AKT Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5414670. [PMID: 31354907 PMCID: PMC6636558 DOI: 10.1155/2019/5414670] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Esophageal cancer (ESC) is one of the most deadly diseases for human. p53 in most cancers, including ESC cell, is mutated, and the mutated p53 losses its original function and acquires “gain of function” that allows for promoting the hallmarks of cancer, such as antiapoptosis, metastasis, invasion, angiogenesis, and resistance to chemotherapy. Targeting p53 through either introducing wild-type or degrading mutated p53 is an important strategy in cancer therapy. Di-2,2′-pyridine ketone dithiocarbamate s-butyric acid (DpdtbA) has significant growth inhibition against gastric cancer lines in previous study. Similar action in ESC cell lines but a novel molecular mechanism was observed in the present study. The results showed that DpdtbA exhibited an excellent antiproliferative effect for ESC cell lines (IC50 ≤ 4.5 ± 0.4 μM for Kyse 450, 3.2 ± 0.6 μM for Kyse 510 cell, and 10.0 ± 0.6 μM for Kyse 150) and led to cell cycle arrest at the S phase which correlated to CDK2 downregulation. The mechanistic study suggested that growth inhibition was related to ROS-mediated apoptosis, and ROS production was due to SOD inhibition initiated by DpdtbA rather than occurrence of ferritinophagy. In addition, DpdtbA also induced a downregulation of EGFR, p53, and AKT, which hinted that mutant p53 still played a role in the regulation of its downstream targets. Further study revealed that the downregulation of p53 was through stub1- (chip-) mediated autophagic degradation rather than MDM2-mediated ubiquitination. Taken together, the DpdtbA-induced growth inhibition in a mechanism was through inactivating the p53/EGFR/AKT signal pathway.
Collapse
|
47
|
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W, Wang J. Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med 2019; 23:4900-4912. [PMID: 31232522 PMCID: PMC6653007 DOI: 10.1111/jcmm.14511] [Citation(s) in RCA: 448] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Ferroptosis is a newly defined programmed cell death process with the hallmark of the accumulation of iron‐dependent lipid peroxides. The term was first coined in 2012 by the Stockwell Lab, who described a unique type of cell death induced by the small molecules erastin or RSL3. Ferroptosis is distinct from other already established programmed cell death and has unique morphological and bioenergetic features. The physiological role of ferroptosis during development has not been well characterized. However, ferroptosis shows great potentials during the cancer therapy. Great progress has been made in exploring the mechanisms of ferroptosis. In this review, we focus on the molecular mechanisms of ferroptosis, the small molecules functioning in ferroptosis initiation and ferroptosis sensitivity in different cancers. We are also concerned with the new arising questions in this particular research area that remains unanswered.
Collapse
Affiliation(s)
- Tao Xu
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, China
| | - Xiaoyu Ji
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xiang Ao
- Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Ying Liu
- Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Wanpeng Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Center for Regenerative Medicine, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
48
|
Bajbouj K, Shafarin J, Hamad M. Estrogen-dependent disruption of intracellular iron metabolism augments the cytotoxic effects of doxorubicin in select breast and ovarian cancer cells. Cancer Manag Res 2019; 11:4655-4668. [PMID: 31213891 PMCID: PMC6536718 DOI: 10.2147/cmar.s204852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/16/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction: Increased iron content in cancer cells is associated with resistance to chemotherapy. Recent studies have demonstrated that estrogen (E2) suppresses hepcidin synthesis and enhances intracellular iron efflux. Herein, we investigated whether E2-driven intracellular iron efflux renders cancer cells more susceptible to doxorubicin (Dox)-induced cytotoxicity. Methods: Breast, ovarian, and liver cancer cell lines treated with E2, Dox, or a combination of both were assessed for intracellular iron status, mitochondrial function, cell cycle, and apoptosis. Results: E2+Dox treatment in MCF7, SKOV3 and MDA-MB231 cells resulted in enhanced apoptosis compared with Dox-treated cells. Expression of γH2AX was significantly higher and that of survivin significantly lower in E2+Dox-treated cells than Dox-treated cells. At 48 hours, E2+Dox had induced a significant increase in the percentage of sub-G1 apoptotic cells, increased CHK1 expression, and decreased cyclin D1, CDK4, and CDK6 expression. Ferroportin and ferritin expression was significantly higher and that of TfR1 significantly lower in E2+Dox-treated cells than Dox-treated cells. Intracellular iron content was significantly reduced in E2+Dox-treated cells at 48 hours posttreatment. Lastly, E2+Dox-treated cells showed higher levels of mitochondrial membrane hyperpolarization than Dox-treated cells. Conclusion: These findings suggest that E2 disrupts intracellular iron metabolism in such a way that increases cell susceptibility to Dox-induced cytotoxicity.
Collapse
Affiliation(s)
- Khuloud Bajbouj
- Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Sharjah Institute for Medical Research, Sharjah, United Arab Emirates.,Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
49
|
Čížková J, Erbanová M, Sochor J, Jindrová A, Strnadová K, Horák V. Relationship between haematological profile and progression or spontaneous regression of melanoma in the Melanoma-bearing Libechov Minipigs. Vet J 2019; 249:1-9. [PMID: 31239158 DOI: 10.1016/j.tvjl.2019.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022]
Abstract
Haematological parameters, plasma iron concentration, and bodyweight were monitored in Melanoma-bearing Libechov Minipigs (MeLiM) from 5 to 18 weeks old. Animals with melanoma progression (P group) and spontaneous regression (SR group) were compared. The P group showed the lowest median values of red blood cell counts (RBC), haematocrit (HCT), haemoglobin concentration (HGB), and bodyweight, whereas the control white (tumour-free) pigs (C group) revealed the highest mean values of these parameters. The mean values of pigs with SR fell between the P and C groups. In addition, a stable concentration of plasma iron was found in the C group, while iron deficiency that increases with age was observed in the MeLiM groups. These results indicate that MeLiM are affected by cancer-related microcytic hypochromic anaemia. The lowest values of HGB, RBC, and HCT, together with the highest number of platelets (PLT) in the P group correspond to melanoma progression. Higher values of these parameters and lower PLT in the MeLiM pigs with SR reflected health improvement due to the destruction of melanoma cells during spontaneous regression. Monitoring of these haematological parameters can help distinguish MeLiM piglets with progression and spontaneous regression of melanoma in the early stages of postnatal development. The findings of this study correspond to findings in human patients in which cancer-related anaemia, thrombocytosis, and iron deficiency are often diagnosed.
Collapse
Affiliation(s)
- J Čížková
- Czech Academy of Sciences, Institute of Animal Physiology and Genetics,v.v.i., Laboratory of Applied Proteome Analyses, and Laboratory of Tumour Biology, Rumburska 89, CZ-277 21 Libechov, Czech Republic; Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Kamycka 129, CZ-165 00 Prague, Czech Republic
| | - M Erbanová
- Czech Academy of Sciences, Institute of Animal Physiology and Genetics,v.v.i., Laboratory of Applied Proteome Analyses, and Laboratory of Tumour Biology, Rumburska 89, CZ-277 21 Libechov, Czech Republic
| | - J Sochor
- Mendel University in Brno, Department of Viticulture and Enology, Valticka 337, CZ-691 44 Lednice, Czech Republic; Department of Chemistry and Biochemistry, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - A Jindrová
- Czech University of Life Sciences Prague, Faculty of Economics and Management, Department of Statistics, Prague, Czech Republic
| | - K Strnadová
- Czech Academy of Sciences, Institute of Animal Physiology and Genetics,v.v.i., Laboratory of Applied Proteome Analyses, and Laboratory of Tumour Biology, Rumburska 89, CZ-277 21 Libechov, Czech Republic; Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Veterinary Sciences, Kamycka 129, CZ-165 00 Prague, Czech Republic
| | - V Horák
- Czech Academy of Sciences, Institute of Animal Physiology and Genetics,v.v.i., Laboratory of Applied Proteome Analyses, and Laboratory of Tumour Biology, Rumburska 89, CZ-277 21 Libechov, Czech Republic.
| |
Collapse
|
50
|
Moussa RS, Park KC, Kovacevic Z, Richardson DR. Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radic Biol Med 2019; 133:276-294. [PMID: 29572098 DOI: 10.1016/j.freeradbiomed.2018.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/02/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
Abstract
Iron (Fe) has become an important target for the development of anti-cancer therapeutics with a number of Fe chelators entering human clinical trials for advanced and resistant cancer. An important aspect of the activity of these compounds is their multiple molecular targets, including those that play roles in arresting the cell cycle, such as the cyclin-dependent kinase inhibitor, p21. At present, the exact mechanism by which Fe chelators regulate p21 expression remains unclear. However, recent studies indicate the ability of chelators to up-regulate p21 at the mRNA level was dependent on the chelator and cell-type investigated. Analysis of the p21 promoter identified that the Sp1-3-binding site played a significant role in the activation of p21 transcription by Fe chelators. Furthermore, there was increased Sp1/ER-α and Sp1/c-Jun complex formation in melanoma cells, suggesting these complexes were involved in p21 promoter activation. Elucidating the mechanisms involved in the regulation of p21 expression in response to Fe chelator treatment in neoplastic cells will further clarify how these agents achieve their anti-tumor activity. It will also enhance our understanding of the complex roles p21 may play in neoplastic cells and lead to the development of more effective and specific anti-cancer therapies.
Collapse
Affiliation(s)
- Rayan S Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Medical Foundation Building (K25), The University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|