1
|
Yan Z, Yang S, Lin C, Yan J, Liu M, Tang S, Jia W, Liu J, Liu H. Advances in plant oxygen sensing: endogenous and exogenous mechanisms. J Genet Genomics 2024:S1673-8527(24)00329-1. [PMID: 39638088 DOI: 10.1016/j.jgg.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Oxygen is essential for the biochemical processes that sustain life in eukaryotic organisms. Although plants produce oxygen through photosynthesis, they often struggle to survive in low-oxygen environments, such as during flooding or submergence. To endure these conditions, they must reprogram their developmental and metabolic networks, and the adaptation process involves the continuous detection of both exogenous hypoxic signals and endogenous oxygen gradients. Recent research has significantly advanced our understanding of how plants respond to both endogenous and exogenous hypoxia signals. In this review, we explore advancements in both areas, comparing them to responses in animals, with a primary focus on how plants perceive and respond to exogenous hypoxic conditions, particularly those caused by flooding or submergence, as well as the hypoxia signaling pathways in different crops. Additionally, we discuss the interplay between endogenous and exogenous hypoxia signals in plants. Finally, we discuss future research directions aimed at improving crop resilience to flooding by integrating the perception and responses to both endogenous and exogenous signals. Through these efforts, we aspire to contribute to the development of crop varieties that are not only highly resistant but also experience minimal growth and yield penalties, thereby making substantial contributions to agricultural science.
Collapse
Affiliation(s)
- Zhen Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China
| | - Songyi Yang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jin Yan
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Meng Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Si Tang
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weitao Jia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Jianquan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huanhuan Liu
- Key Laboratory for Bio-resources and Eco-environment & State Key Lab of Hydraulics & Mountain River Engineering, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China; National Demonstration Center for Experimental Biology Education (Sichuan University), Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Mandalasi MN, Gas-Pascual E, Baptista CG, Deng B, van der Wel H, Kruijtzer JAW, Boons GJ, Blader IJ, West CM. Oxygen-dependent regulation of F-box proteins in Toxoplasma gondii is mediated by Skp1 glycosylation. J Biol Chem 2024; 300:107801. [PMID: 39307307 PMCID: PMC11570480 DOI: 10.1016/j.jbc.2024.107801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 11/07/2024] Open
Abstract
A dynamic proteome is required for cellular adaption to changing environments including levels of O2, and the SKP1/CULLIN-1/F-box protein/RBX1 (SCF) family of E3 ubiquitin ligases contributes importantly to proteasome-mediated degradation. We examine, in the apicomplexan parasite Toxoplasma gondii, the influence on the interactome of SKP1 by its novel glycan attached to hydroxyproline generated by PHYa, the likely ortholog of the HIFα PHD2 oxygen-sensor of human host cells. Strikingly, the representation of several putative F-box proteins (FBPs) is substantially reduced in PHYaΔ parasites grown in fibroblasts. One, FBXO13, is a predicted lysyl hydroxylase related to the human JmjD6 oncogene except for its F-box domain. The abundance of FBXO13, epitope-tagged at its genetic locus, was reduced in PHYaΔ parasites thus explaining its diminished presence in the SKP1 interactome. A similar effect was observed for FBXO14, a cytoplasmic protein of unknown function that may have co-evolved with PHYa in apicomplexans. Similar findings in glycosylation-mutant cells, rescue by proteasomal inhibitors, and unchanged transcript levels suggested the involvement of the SCF in their degradation. The effect was selective because FBXO1 was not affected by loss of PHYa. These findings are physiologically significant because the effects were phenocopied in parasites reared at 0.5% O2. Modest impact on steady-state SKP1 modification levels suggests that effects are mediated during a lag phase in hydroxylation of nascent SKP1. The dependence of FBP abundance on O2-dependent SKP1 modification likely contributes to the reduced virulence of PHYaΔ parasites owing to impaired ability to sense O2 as an environmental signal.
Collapse
Affiliation(s)
- Msano N Mandalasi
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Carlos Gustavo Baptista
- Department of Microbiology & Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Bowen Deng
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hanke van der Wel
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - John A W Kruijtzer
- Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, CG Utrecht, The Netherlands; Department of Chemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Ira J Blader
- Department of Microbiology & Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
3
|
Kawabe Y, Du Q, Narita TB, Bell C, Schilde C, Kin K, Schaap P. Emerging roles for diguanylate cyclase during the evolution of soma in dictyostelia. BMC Ecol Evol 2023; 23:60. [PMID: 37803310 PMCID: PMC10559540 DOI: 10.1186/s12862-023-02169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Cyclic di-guanylate (c-di-GMP), synthesized by diguanylate cyclase, is a major second messenger in prokaryotes, where it triggers biofilm formation. The dictyostelid social amoebas acquired diguanylate cyclase (dgcA) by horizontal gene transfer. Dictyostelium discoideum (Ddis) in taxon group 4 uses c-di-GMP as a secreted signal to induce differentiation of stalk cells, the ancestral somatic cell type that supports the propagating spores. We here investigated how this role for c-di-GMP evolved in Dictyostelia by exploring dgcA function in the group 2 species Polysphondylium pallidum (Ppal) and in Polysphondylium violaceum (Pvio), which resides in a small sister clade to group 4. RESULTS Similar to Ddis, dgcA is upregulated after aggregation in Ppal and Pvio and predominantly expressed in the anterior region and stalks of emerging fruiting bodies. DgcA null mutants in Ppal and Pvio made fruiting bodies with very long and thin stalks and only few spores and showed delayed aggregation and larger aggregates, respectively. Ddis dgcA- cells cannot form stalks at all, but showed no aggregation defects. The long, thin stalks of Ppal and Pvio dgcA- mutants were also observed in acaA- mutants in these species. AcaA encodes adenylate cyclase A, which mediates the effects of c-di-GMP on stalk induction in Ddis. Other factors that promote stalk formation in Ddis are DIF-1, produced by the polyketide synthase StlB, low ammonia, facilitated by the ammonia transporter AmtC, and high oxygen, detected by the oxygen sensor PhyA (prolyl 4-hydroxylase). We deleted the single stlB, amtC and phyA genes in Pvio wild-type and dgcA- cells. Neither of these interventions affected stalk formation in Pvio wild-type and not or very mildly exacerbated the long thin stalk phenotype of Pvio dgcA- cells. CONCLUSIONS The study reveals a novel role for c-di-GMP in aggregation, while the reduced spore number in Pvio and Ppal dgcA- is likely an indirect effect, due to depletion of the cell pool by the extended stalk formation. The results indicate that in addition to c-di-GMP, Dictyostelia ancestrally used an as yet unknown factor for induction of stalk formation. The activation of AcaA by c-di-GMP is likely conserved throughout Dictyostelia.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Qingyou Du
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
| | - Takaaki B Narita
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- Department of Life Science, Faculty of Advanced Engineering, Chiba Institute of Technology, Chiba, 275-0016, Japan
| | - Craig Bell
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- West of Scotland Innovation Hub, NHS Greater Glasgow and Clyde, Queen Elizabeth University Hospital, Glasgow, G514LB, UK
| | - Christina Schilde
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- D'Arcy Thompson Unit, School of Life Sciences, University of Dundee, Dundee, DD14HN, UK
| | - Koryu Kin
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, 08003, Spain
| | - Pauline Schaap
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD15EH, UK.
| |
Collapse
|
4
|
Bhattacharya A, Shukla VK, Kachariya N, Preeti, Sehrawat P, Kumar A. Disorder in the Human Skp1 Structure is the Key to its Adaptability to Bind Many Different Proteins in the SCF Complex Assembly. J Mol Biol 2022; 434:167830. [PMID: 36116539 DOI: 10.1016/j.jmb.2022.167830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
Skp1(S-phase kinase-associated protein 1 - Homo sapiens) is an adapter protein of the SCF(Skp1-Cullin1-Fbox) complex, which links the constant components (Cul1-RBX) and the variable receptor (F-box proteins) in Ubiquitin E3 ligase. It is intriguing how Skp1 can recognise and bind to a variety of structurally different F-box proteins. For practical reasons, previous efforts have used truncated Skp1, and thus it has not been possible to track the crucial aspects of the substrate recognition process. In this background, we report the solution structure of the full-length Skp1 protein determined by NMR spectroscopy for the first time and investigate the sequence-dependent dynamics in the protein. The solution structure reveals that Skp1 has an architecture: β1-β2-H1-H2-L1-H3-L2-H4-H5-H6-H7(partially formed) and a long tail-like disordered C-terminus. Structural analysis using DALI (Distance Matrix Alignment) reveals conserved domain structure across species for Skp1. Backbone dynamics investigated using NMR relaxation suggest substantial variation in the motional timescales along the length of the protein. The loops and the C-terminal residues are highly flexible, and the (R2/R1) data suggests μs-ms timescale motions in the helices as well. Further, the dependence of amide proton chemical shift on temperature and curved profiles of their residuals indicate that the residues undergo transitions between native state and excited state. The curved profiles for several residues across the length of the protein suggest that there are native-like low-lying excited states, particularly for several C-terminal residues. Our results provide a rationale for how the protein can adapt itself, bind, and get functionally associated with other proteins in the SCF complex by utilising its flexibility and conformational sub-states.
Collapse
Affiliation(s)
- Amrita Bhattacharya
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vaibhav Kumar Shukla
- Biophysical Chemistry & Structural Biology Laboratory, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India. https://twitter.com/bhu_vaibhav
| | - Nitin Kachariya
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Preeti
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Parveen Sehrawat
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
5
|
Kufs JE, Reimer C, Steyer E, Valiante V, Hillmann F, Regestein L. Scale-up of an amoeba-based process for the production of the cannabinoid precursor olivetolic acid. Microb Cell Fact 2022; 21:217. [PMID: 36266656 PMCID: PMC9585784 DOI: 10.1186/s12934-022-01943-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background The availability of new biological platform organisms to get access to innovative products and processes is fundamental for the progress in biotechnology and bioeconomy. The amoeba Dictyostelium discoideum represents a novel host system that has recently been employed for both the discovery of new natural products and as a cell factory for the production of bioactive compounds such as phytochemicals. However, an essential parameter to evaluate the potential of a new host system is the demonstration of its scalability to allow industrial applicability. Here, we aimed to develop a bioprocess for the production of olivetolic acid, the main precursor of cannabinoids synthesized by a recently engineered D. discoideum strain. Results In this study, a sophisticated approach is described to scale-up an amoeba-based polyketide production process in stirred tank bioreactors. Due to the shear sensitivity of the cell wall lacking amoebae, the maximum local energy dissipation rate (εmax) was selected as a measure for the hydromechanical stress level among different scales. By performing 1.6-L scale batch fermentations with different stress conditions, we determined a maximum tolerable εmax of 3.9 W/kg for D. discoideum. Further, we used this parameter as scale-up criterion to develop a bioprocess for olivetolic acid production starting from a 7-L stirred tank reactor to the industrially relevant 300-L scale with a product concentration of 4.8 µg/L, a productivity of 0.04 µg/L/h and a yield of 0.56 µg/g glucose. Conclusion We developed a robust and reliable scale-up strategy for amoeba-based bioprocesses and evaluated its applicability for the production of the cannabinoid precursor olivetolic acid. By determining the maximum tolerable hydromechanical stress level for D. discoideum, we were able to scale-up the process from shake flasks to the 300-L stirred tank reactor without any yield reduction from cell shearing. Hence, we showed the scalability and biotechnological exploitation of amoeba-based processes that can provide a reasonable alternative to chemical syntheses or extractions of phytochemicals from plant biomass. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01943-w.
Collapse
Affiliation(s)
- Johann E Kufs
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Christin Reimer
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Emily Steyer
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.,Biochemistry/Biotechnology, Faculty of Engineering, Hochschule Wismar University of Applied Sciences Technology, Business and Design, Wismar, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| |
Collapse
|
6
|
Kim WD, Mathavarajah S, Huber RJ. The Cellular and Developmental Roles of Cullins, Neddylation, and the COP9 Signalosome in Dictyostelium discoideum. Front Physiol 2022; 13:827435. [PMID: 35586714 PMCID: PMC9108976 DOI: 10.3389/fphys.2022.827435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Cullins (CULs) are a core component of cullin-RING E3 ubiquitin ligases (CRLs), which regulate the degradation, function, and subcellular trafficking of proteins. CULs are post-translationally regulated through neddylation, a process that conjugates the ubiquitin-like modifier protein neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) to target cullins, as well as non-cullin proteins. Counteracting neddylation is the deneddylase, COP9 signalosome (CSN), which removes NEDD8 from target proteins. Recent comparative genomics studies revealed that CRLs and the CSN are highly conserved in Amoebozoa. A well-studied representative of Amoebozoa, the social amoeba Dictyostelium discoideum, has been used for close to 100 years as a model organism for studying conserved cellular and developmental processes owing to its unique life cycle comprised of unicellular and multicellular phases. The organism is also recognized as an exceptional model system for studying cellular processes impacted by human diseases, including but not limited to, cancer and neurodegeneration. Recent work shows that the neddylation inhibitor, MLN4924 (Pevonedistat), inhibits growth and multicellular development in D. discoideum, which supports previous work that revealed the cullin interactome in D. discoideum and the roles of cullins and the CSN in regulating cellular and developmental processes during the D. discoideum life cycle. Here, we review the roles of cullins, neddylation, and the CSN in D. discoideum to guide future work on using this biomedical model system to further explore the evolutionarily conserved functions of cullins and neddylation.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
7
|
Hirose S, Rieu JP, Anjard C, Cochet-Escartin O, Kikuchi H, Funamoto K. Aerotaxis and aerokinesis of Dictyostelium discoideum under hypoxic microenvironments. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1187-1190. [PMID: 34891499 DOI: 10.1109/embc46164.2021.9629752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although spatiotemporal changes of oxygen in a microenvironment are known to affect the cellular dynamics of various eukaryotes, the details are not fully understood. Here, we describe the aerotaxis and aerokinesis of Dictyostelium discoideum (Dd), which has long been employed as a model organism for eukaryotic cells. We developed a microfluidic device capable of time-lapse observation of cultured cells while controlling oxygen concentrations in microchannels. Migratory behaviors of Dd were observed and quantitatively evaluated under an oxygen concentration gradient from 0% to 21% O2, as well as in various uniform oxygen conditions. In a hypoxic region within the oxygen concentration gradient, Dd migrated toward regions of higher oxygen concentration at increased velocity, which was independent of cell density. Observed under uniform oxygen concentrations of 1%, 2%, 3%, and 21%, the migration velocity of Dd increased significantly in hypoxic environments of 2% O2 or less. Thus, Dd shows aerotaxis, directed by the oxygen concentration gradient, and simultaneously shows aerokinesis, changing the migration velocity according to the oxygen concentration itself.
Collapse
|
8
|
Bandini G, Damerow S, Sempaio Guther ML, Guo H, Mehlert A, Paredes Franco JC, Beverley S, Ferguson MAJ. An essential, kinetoplastid-specific GDP-Fuc: β-D-Gal α-1,2-fucosyltransferase is located in the mitochondrion of Trypanosoma brucei. eLife 2021; 10:e70272. [PMID: 34410224 PMCID: PMC8439653 DOI: 10.7554/elife.70272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fucose is a common component of eukaryotic cell-surface glycoconjugates, generally added by Golgi-resident fucosyltransferases. Whereas fucosylated glycoconjugates are rare in kinetoplastids, the biosynthesis of the nucleotide sugar GDP-Fuc has been shown to be essential in Trypanosoma brucei. Here we show that the single identifiable T. brucei fucosyltransferase (TbFUT1) is a GDP-Fuc: β-D-galactose α-1,2-fucosyltransferase with an apparent preference for a Galβ1,3GlcNAcβ1-O-R acceptor motif. Conditional null mutants of TbFUT1 demonstrated that it is essential for both the mammalian-infective bloodstream form and the insect vector-dwelling procyclic form. Unexpectedly, TbFUT1 was localized in the mitochondrion of T. brucei and found to be required for mitochondrial function in bloodstream form trypanosomes. Finally, the TbFUT1 gene was able to complement a Leishmania major mutant lacking the homologous fucosyltransferase gene (Guo et al., 2021). Together these results suggest that kinetoplastids possess an unusual, conserved and essential mitochondrial fucosyltransferase activity that may have therapeutic potential across trypanosomatids.
Collapse
Affiliation(s)
- Giulia Bandini
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Sebastian Damerow
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Maria Lucia Sempaio Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hongjie Guo
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Angela Mehlert
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jose Carlos Paredes Franco
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Stephen Beverley
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Michael AJ Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
9
|
Liu T, Abboud MI, Chowdhury R, Tumber A, Hardy AP, Lippl K, Lohans CT, Pires E, Wickens J, McDonough MA, West CM, Schofield CJ. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. J Biol Chem 2020; 295:16545-16561. [PMID: 32934009 PMCID: PMC7864055 DOI: 10.1074/jbc.ra120.013998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
In animals, the response to chronic hypoxia is mediated by prolyl hydroxylases (PHDs) that regulate the levels of hypoxia-inducible transcription factor α (HIFα). PHD homologues exist in other types of eukaryotes and prokaryotes where they act on non HIF substrates. To gain insight into the factors underlying different PHD substrates and properties, we carried out biochemical and biophysical studies on PHD homologues from the cellular slime mold, Dictyostelium discoideum, and the protozoan parasite, Toxoplasma gondii, both lacking HIF. The respective prolyl-hydroxylases (DdPhyA and TgPhyA) catalyze prolyl-hydroxylation of S-phase kinase-associated protein 1 (Skp1), a reaction enabling adaptation to different dioxygen availability. Assays with full-length Skp1 substrates reveal substantial differences in the kinetic properties of DdPhyA and TgPhyA, both with respect to each other and compared with human PHD2; consistent with cellular studies, TgPhyA is more active at low dioxygen concentrations than DdPhyA. TgSkp1 is a DdPhyA substrate and DdSkp1 is a TgPhyA substrate. No cross-reactivity was detected between DdPhyA/TgPhyA substrates and human PHD2. The human Skp1 E147P variant is a DdPhyA and TgPhyA substrate, suggesting some retention of ancestral interactions. Crystallographic analysis of DdPhyA enables comparisons with homologues from humans, Trichoplax adhaerens, and prokaryotes, informing on differences in mobile elements involved in substrate binding and catalysis. In DdPhyA, two mobile loops that enclose substrates in the PHDs are conserved, but the C-terminal helix of the PHDs is strikingly absent. The combined results support the proposal that PHD homologues have evolved kinetic and structural features suited to their specific sensing roles.
Collapse
Affiliation(s)
- Tongri Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Anthony Tumber
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Adam P Hardy
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Kerstin Lippl
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Elisabete Pires
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - James Wickens
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | | | - Christopher M West
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
10
|
Bandini G, Albuquerque-Wendt A, Hegermann J, Samuelson J, Routier FH. Protein O- and C-Glycosylation pathways in Toxoplasma gondii and Plasmodium falciparum. Parasitology 2019; 146:1755-1766. [PMID: 30773146 PMCID: PMC6939170 DOI: 10.1017/s0031182019000040] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
Apicomplexan parasites are amongst the most prevalent and morbidity-causing pathogens worldwide. They are responsible for severe diseases in humans and livestock and are thus of great public health and economic importance. Until the sequencing of apicomplexan genomes at the beginning of this century, the occurrence of N- and O-glycoproteins in these parasites was much debated. The synthesis of rudimentary and divergent N-glycans due to lineage-specific gene loss is now well established and has been recently reviewed. Here, we will focus on recent studies that clarified classical O-glycosylation pathways and described new nucleocytosolic glycosylations in Toxoplasma gondii, the causative agents of toxoplasmosis. We will also review the glycosylation of proteins containing thrombospondin type 1 repeats by O-fucosylation and C-mannosylation, newly discovered in Toxoplasma and the malaria parasite Plasmodium falciparum. The functional significance of these post-translational modifications has only started to emerge, but the evidence points towards roles for these protein glycosylation pathways in tissue cyst wall rigidity and persistence in the host, oxygen sensing, and stability of proteins involved in host invasion.
Collapse
Affiliation(s)
- Giulia Bandini
- Department of Molecular and Cell Biology, Boston University, Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Andreia Albuquerque-Wendt
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Jan Hegermann
- Hannover Medical School, Electron Microscopy Facility OE8840, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University, Goldman School of Dental Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Françoise H. Routier
- Department of Clinical Biochemistry OE4340, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
11
|
Smart TJ, Hamed RB, Claridge TDW, Schofield CJ. Studies on the selectivity of proline hydroxylases reveal new substrates including bicycles. Bioorg Chem 2019; 94:103386. [PMID: 31706681 PMCID: PMC6958525 DOI: 10.1016/j.bioorg.2019.103386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022]
Abstract
Studies on proline hydroxylase selectivity reveals new products. Proline hydroxylases can produce dihydroxylated 5-, 6-, and 7-membered ring products. Proline hydroxylases can accept bicyclic substrates. Bicyclic products arise via bifurcation: two C-H bonds are accessible to the reactive oxidising species. The results have implications for other oxygenases, including those catalysing protein modifications. The results highlight the potential for amino acid hydroxylases in biocatalysis.
Studies on the substrate selectivity of recombinant ferrous-iron- and 2-oxoglutarate-dependent proline hydroxylases (PHs) reveal that they can catalyse the production of dihydroxylated 5-, 6-, and 7-membered ring products, and can accept bicyclic substrates. Ring-substituted substrate analogues (such hydroxylated and fluorinated prolines) are accepted in some cases. The results highlight the considerable, as yet largely untapped, potential for amino acid hydroxylases and other 2OG oxygenases in biocatalysis.
Collapse
Affiliation(s)
- Tristan J Smart
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Refaat B Hamed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom; School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Timothy D W Claridge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom.
| |
Collapse
|
12
|
Florimond C, Cordonnier C, Taujale R, van der Wel H, Kannan N, West CM, Blader IJ. A Toxoplasma Prolyl Hydroxylase Mediates Oxygen Stress Responses by Regulating Translation Elongation. mBio 2019; 10:e00234-19. [PMID: 30914506 PMCID: PMC6437050 DOI: 10.1128/mbio.00234-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/08/2019] [Indexed: 02/08/2023] Open
Abstract
As the protozoan parasite Toxoplasma gondii disseminates through its host, it responds to environmental changes by altering its gene expression, metabolism, and other processes. Oxygen is one variable environmental factor, and properly adapting to changes in oxygen levels is critical to prevent the accumulation of reactive oxygen species and other cytotoxic factors. Thus, oxygen-sensing proteins are important, and among these, 2-oxoglutarate-dependent prolyl hydroxylases are highly conserved throughout evolution. Toxoplasma expresses two such enzymes, TgPHYa, which regulates the SCF-ubiquitin ligase complex, and TgPHYb. To characterize TgPHYb, we created a Toxoplasma strain that conditionally expresses TgPHYb and report that TgPHYb is required for optimal parasite growth under normal growth conditions. However, exposing TgPHYb-depleted parasites to extracellular stress leads to severe decreases in parasite invasion, which is likely due to decreased abundance of parasite adhesins. Adhesin protein abundance is reduced in TgPHYb-depleted parasites as a result of inactivation of the protein synthesis elongation factor eEF2 that is accompanied by decreased rates of translational elongation. In contrast to most other oxygen-sensing proteins that mediate cellular responses to low O2, TgPHYb is specifically required for parasite growth and protein synthesis at high, but not low, O2 tensions as well as resistance to reactive oxygen species. In vivo, reduced TgPHYb expression leads to lower parasite burdens in oxygen-rich tissues. Taken together, these data identify TgPHYb as a sensor of high O2 levels, in contrast to TgPHYa, which supports the parasite at low O2IMPORTANCE Because oxygen plays a key role in the growth of many organisms, cells must know how much oxygen is available. O2-sensing proteins are therefore critical cellular factors, and prolyl hydroxylases are the best-studied type of O2-sensing proteins. In general, prolyl hydroxylases trigger cellular responses to decreased oxygen availability. But, how does a cell react to high levels of oxygen? Using the protozoan parasite Toxoplasma gondii, we discovered a prolyl hydroxylase that allows the parasite to grow at elevated oxygen levels and does so by regulating protein synthesis. Loss of this enzyme also reduces parasite burden in oxygen-rich tissues, indicating that sensing both high and low levels of oxygen impacts the growth and physiology of Toxoplasma.
Collapse
Affiliation(s)
- Celia Florimond
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Charlotte Cordonnier
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Rahil Taujale
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
13
|
Lippl K, Boleininger A, McDonough MA, Abboud MI, Tarhonskaya H, Chowdhury R, Loenarz C, Schofield CJ. Born to sense: biophysical analyses of the oxygen sensing prolyl hydroxylase from the simplest animal Trichoplax adhaerens. HYPOXIA 2018; 6:57-71. [PMID: 30519597 PMCID: PMC6235002 DOI: 10.2147/hp.s174655] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background In humans and other animals, the chronic hypoxic response is mediated by hypoxia inducible transcription factors (HIFs) which regulate the expression of genes that counteract the effects of limiting oxygen. Prolyl hydroxylases (PHDs) act as hypoxia sensors for the HIF system in organisms ranging from humans to the simplest animal Trichoplax adhaerens. Methods We report structural and biochemical studies on the T. adhaerens HIF prolyl hydroxylase (TaPHD) that inform about the evolution of hypoxia sensing in animals. Results High resolution crystal structures (≤1.3 Å) of TaPHD, with and without its HIFα substrate, reveal remarkable conservation of key active site elements between T. adhaerens and human PHDs, which also manifest in kinetic comparisons. Conclusion Conserved structural features of TaPHD and human PHDs include those apparently enabling the slow binding/reaction of oxygen with the active site Fe(II), the formation of a stable 2-oxoglutarate complex, and a stereoelectronically promoted change in conformation of the hydroxylated proline-residue. Comparison of substrate selectivity between the human PHDs and TaPHD provides insights into the selectivity determinants of HIF binding by the PHDs, and into the evolution of the multiple HIFs and PHDs present in higher animals.
Collapse
Affiliation(s)
- Kerstin Lippl
- Chemistry Research Laboratory, University of Oxford, Oxford, UK,
| | - Anna Boleininger
- Chemistry Research Laboratory, University of Oxford, Oxford, UK,
| | | | - Martine I Abboud
- Chemistry Research Laboratory, University of Oxford, Oxford, UK,
| | | | | | | | | |
Collapse
|
14
|
Sheikh MO, Thieker D, Chalmers G, Schafer CM, Ishihara M, Azadi P, Woods RJ, Glushka JN, Bendiak B, Prestegard JH, West CM. O 2 sensing-associated glycosylation exposes the F-box-combining site of the Dictyostelium Skp1 subunit in E3 ubiquitin ligases. J Biol Chem 2017; 292:18897-18915. [PMID: 28928219 PMCID: PMC5704474 DOI: 10.1074/jbc.m117.809160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/12/2017] [Indexed: 11/06/2022] Open
Abstract
Skp1 is a conserved protein linking cullin-1 to F-box proteins in SCF (Skp1/Cullin-1/F-box protein) E3 ubiquitin ligases, which modify protein substrates with polyubiquitin chains that typically target them for 26S proteasome-mediated degradation. In Dictyostelium (a social amoeba), Toxoplasma gondii (the agent for human toxoplasmosis), and other protists, Skp1 is regulated by a unique pentasaccharide attached to hydroxylated Pro-143 within its C-terminal F-box-binding domain. Prolyl hydroxylation of Skp1 contributes to O2-dependent Dictyostelium development, but full glycosylation at that position is required for optimal O2 sensing. Previous studies have shown that the glycan promotes organization of the F-box-binding region in Skp1 and aids in Skp1's association with F-box proteins. Here, NMR and MS approaches were used to determine the glycan structure, and then a combination of NMR and molecular dynamics simulations were employed to characterize the impact of the glycan on the conformation and motions of the intrinsically flexible F-box-binding domain of Skp1. Molecular dynamics trajectories of glycosylated Skp1 whose calculated monosaccharide relaxation kinetics and rotational correlation times agreed with the NMR data indicated that the glycan interacts with the loop connecting two α-helices of the F-box-combining site. In these trajectories, the helices separated from one another to create a more accessible and dynamic F-box interface. These results offer an unprecedented view of how a glycan modification influences a disordered region of a full-length protein. The increased sampling of an open Skp1 conformation can explain how glycosylation enhances interactions with F-box proteins in cells.
Collapse
Affiliation(s)
- M Osman Sheikh
- From the Department of Biochemistry and Molecular Biology
- the Complex Carbohydrate Research Center, and
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| | | | - Gordon Chalmers
- the Complex Carbohydrate Research Center, and
- the Department of Computer Science, University of Georgia, Athens, Georgia 30602
| | - Christopher M Schafer
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| | | | | | - Robert J Woods
- From the Department of Biochemistry and Molecular Biology
- the Complex Carbohydrate Research Center, and
| | | | - Brad Bendiak
- the Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - James H Prestegard
- From the Department of Biochemistry and Molecular Biology
- the Complex Carbohydrate Research Center, and
| | - Christopher M West
- From the Department of Biochemistry and Molecular Biology,
- the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| |
Collapse
|
15
|
Rahman K, Mandalasi M, Zhao P, Sheikh MO, Taujale R, Kim HW, van der Wel H, Matta K, Kannan N, Glushka JN, Wells L, West CM. Characterization of a cytoplasmic glucosyltransferase that extends the core trisaccharide of the Toxoplasma Skp1 E3 ubiquitin ligase subunit. J Biol Chem 2017; 292:18644-18659. [PMID: 28928220 DOI: 10.1074/jbc.m117.809301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Indexed: 01/06/2023] Open
Abstract
Skp1 is a subunit of the SCF (Skp1/Cullin 1/F-box protein) class of E3 ubiquitin ligases that are important for eukaryotic protein degradation. Unlike its animal counterparts, Skp1 from Toxoplasma gondii is hydroxylated by an O2-dependent prolyl-4-hydroxylase (PhyA), and the resulting hydroxyproline can subsequently be modified by a five-sugar chain. A similar modification is found in the social amoeba Dictyostelium, where it regulates SCF assembly and O2-dependent development. Homologous glycosyltransferases assemble a similar core trisaccharide in both organisms, and a bifunctional α-galactosyltransferase from CAZy family GT77 mediates the addition of the final two sugars in Dictyostelium, generating Galα1, 3Galα1,3Fucα1,2Galβ1,3GlcNAcα1-. Here, we found that Toxoplasma utilizes a cytoplasmic glycosyltransferase from an ancient clade of CAZy family GT32 to catalyze transfer of the fourth sugar. Catalytically active Glt1 was required for the addition of the terminal disaccharide in cells, and cytosolic extracts catalyzed transfer of [3H]glucose from UDP-[3H]glucose to the trisaccharide form of Skp1 in a glt1-dependent fashion. Recombinant Glt1 catalyzed the same reaction, confirming that it directly mediates Skp1 glucosylation, and NMR demonstrated formation of a Glcα1,3Fuc linkage. Recombinant Glt1 strongly preferred the full core trisaccharide attached to Skp1 and labeled only Skp1 in glt1Δ extracts, suggesting specificity for Skp1. glt1-knock-out parasites exhibited a growth defect not rescued by catalytically inactive Glt1, indicating that the glycan acts in concert with the first enzyme in the pathway, PhyA, in cells. A genomic bioinformatics survey suggested that Glt1 belongs to the ancestral Skp1 glycosylation pathway in protists and evolved separately from related Golgi-resident GT32 glycosyltransferases.
Collapse
Affiliation(s)
- Kazi Rahman
- From the Department of Biochemistry and Molecular Biology.,the Departments of Microbiology and Immunology and
| | - Msano Mandalasi
- From the Department of Biochemistry and Molecular Biology.,Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| | - Peng Zhao
- the Complex Carbohydrate Research Center, and
| | | | - Rahil Taujale
- the Complex Carbohydrate Research Center, and.,the Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | - Hyun W Kim
- From the Department of Biochemistry and Molecular Biology
| | | | - Khushi Matta
- the Department of Chemical and Biological Engineering, State University of New York, Buffalo, New York 14260
| | - Natarajan Kannan
- From the Department of Biochemistry and Molecular Biology.,the Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | | | - Lance Wells
- From the Department of Biochemistry and Molecular Biology.,the Complex Carbohydrate Research Center, and
| | - Christopher M West
- From the Department of Biochemistry and Molecular Biology, .,Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, and
| |
Collapse
|
16
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
17
|
Rahman K, Zhao P, Mandalasi M, van der Wel H, Wells L, Blader IJ, West CM. The E3 Ubiquitin Ligase Adaptor Protein Skp1 Is Glycosylated by an Evolutionarily Conserved Pathway That Regulates Protist Growth and Development. J Biol Chem 2016; 291:4268-80. [PMID: 26719340 PMCID: PMC4813455 DOI: 10.1074/jbc.m115.703751] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/19/2015] [Indexed: 01/12/2023] Open
Abstract
Toxoplasma gondii is a protist parasite of warm-blooded animals that causes disease by proliferating intracellularly in muscle and the central nervous system. Previous studies showed that a prolyl 4-hydroxylase related to animal HIFα prolyl hydroxylases is required for optimal parasite proliferation, especially at low O2. We also observed that Pro-154 of Skp1, a subunit of the Skp1/Cullin-1/F-box protein (SCF)-class of E3-ubiquitin ligases, is a natural substrate of this enzyme. In an unrelated protist, Dictyostelium discoideum, Skp1 hydroxyproline is modified by five sugars via the action of three glycosyltransferases, Gnt1, PgtA, and AgtA, which are required for optimal O2-dependent development. We show here that TgSkp1 hydroxyproline is modified by a similar pentasaccharide, based on mass spectrometry, and that assembly of the first three sugars is dependent on Toxoplasma homologs of Gnt1 and PgtA. Reconstitution of the glycosyltransferase reactions in extracts with radioactive sugar nucleotide substrates and appropriate Skp1 glycoforms, followed by chromatographic analysis of acid hydrolysates of the reaction products, confirmed the predicted sugar identities as GlcNAc, Gal, and Fuc. Disruptions of gnt1 or pgtA resulted in decreased parasite growth. Off target effects were excluded based on restoration of the normal glycan chain and growth upon genetic complementation. By analogy to Dictyostelium Skp1, the mechanism may involve regulation of assembly of the SCF complex. Understanding the mechanism of Toxoplasma Skp1 glycosylation is expected to help develop it as a drug target for control of the pathogen, as the glycosyltransferases are absent from mammalian hosts.
Collapse
Affiliation(s)
- Kazi Rahman
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Peng Zhao
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, the Complex Carbohydrate Research Center, Athens, Georgia 30602, and
| | - Msano Mandalasi
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Hanke van der Wel
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Lance Wells
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, the Complex Carbohydrate Research Center, Athens, Georgia 30602, and
| | - Ira J Blader
- the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14214
| | - Christopher M West
- From the Departments of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602,
| |
Collapse
|
18
|
Abstract
The post-translational hydroxylation of prolyl and lysyl residues, as catalyzed by 2-oxoglutarate (2OG)-dependent oxygenases, was first identified in collagen biosynthesis. 2OG oxygenases also catalyze prolyl and asparaginyl hydroxylation of the hypoxia-inducible factors that play important roles in the adaptive response to hypoxia. Subsequently, they have been shown to catalyze N-demethylation (via hydroxylation) of N(ϵ)-methylated histone lysyl residues, as well as hydroxylation of multiple other residues. Recent work has identified roles for 2OG oxygenases in the modification of translation-associated proteins, which in some cases appears to be conserved from microorganisms through to humans. Here we give an overview of protein hydroxylation catalyzed by 2OG oxygenases, focusing on recent discoveries.
Collapse
Affiliation(s)
- Suzana Markolovic
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sarah E Wilkins
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, United Kingdom.
| |
Collapse
|
19
|
Chinoy ZS, Schafer CM, West CM, Boons GJ. Chemical Synthesis of a Glycopeptide Derived from Skp1 for Probing Protein Specific Glycosylation. Chemistry 2015; 21:11779-87. [PMID: 26179871 DOI: 10.1002/chem.201501598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Indexed: 01/13/2023]
Abstract
Skp1 is a cytoplasmic and nuclear protein, best known as an adaptor of the SCF family of E3-ubiquitin ligases that label proteins for their degradation. Skp1 in Dictyostelium is posttranslationally modified on a specific hydroxyproline (Hyp) residue by a pentasaccharide, which consists of a Fucα1,2-Galβ-1,3-GlcNAcα core, decorated with two α-linked Gal residues. A glycopeptide derived form Skp1 was prepared to characterize the α-galactosyltransferase (AgtA) that mediates the addition of the α-Gal moieties, and to develop antibodies suitable for tracking the trisaccharide isoform of Skp1 in cells. A strategy was developed for the synthesis of the core trisaccharide-Hyp based on the use of 2-naphthylmethyl (Nap) ethers as permanent protecting groups to allow late stage installation of the Hyp moiety. Tuning of glycosyl donor and acceptor reactivities was critical for achieving high yields and anomeric selectivities of glycosylations. The trisaccharide-Hyp moiety was employed for the preparation of the glycopeptide using microwave-assisted solid phase peptide synthesis. Enzyme kinetic studies revealed that trisaccharide-Hyp and trisaccharide-peptide are poorly recognized by AgtA, indicating the importance of context provided by the native Skp1 protein for engagement with the active site. The trisaccharide-peptide was a potent immunogen capable of generating a rabbit antiserum that was highly selective toward the trisaccharide isoform of full-length Skp1.
Collapse
Affiliation(s)
- Zoeisha S Chinoy
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA)
| | - Christopher M Schafer
- Department of Biochemistry and Molecular Biology and Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 (USA).,Current address: Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104 (USA)
| | - Christopher M West
- Department of Biochemistry and Molecular Biology and Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 (USA).,Current address: Dept. of Biochemistry and Molecular Biology, University of Georgia, 120 Green Street, Athens, GA 30602 (USA)
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA 30602 (USA).
| |
Collapse
|
20
|
Feasley CL, van der Wel H, West CM. Evolutionary diversity of social amoebae N-glycomes may support interspecific autonomy. Glycoconj J 2015; 32:345-59. [PMID: 25987342 DOI: 10.1007/s10719-015-9592-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
Abstract
Multiple species of cellular slime mold (CSM) amoebae share overlapping subterranean environments near the soil surface. Despite similar life-styles, individual species form independent starvation-induced fruiting bodies whose spores can renew the life cycle. N-glycans associated with the cell surface glycocalyx have been predicted to contribute to interspecific avoidance, resistance to pathogens, and prey preference. N-glycans from five CSM species that diverged 300-600 million years ago and whose genomes have been sequenced were fractionated into neutral and acidic pools and profiled by MALDI-TOF-MS. Glycan structure models were refined using linkage specific antibodies, exoglycosidase digestions, MALDI-MS/MS, and chromatographic studies. Amoebae of the type species Dictyostelium discoideum express modestly trimmed high mannose N-glycans variably modified with core α3-linked Fuc and peripherally decorated with 0-2 residues each of β-GlcNAc, Fuc, methylphosphate and/or sulfate, as reported previously. Comparative analyses of D. purpureum, D. fasciculatum, Polysphondylium pallidum, and Actyostelium subglobosum revealed that each displays a distinctive spectrum of high-mannose species with quantitative variations in the extent of these modifications, and qualitative differences including retention of Glc, mannose methylation, and absence of a peripheral GlcNAc, fucosylation, or sulfation. Starvation-induced development modifies the pattern in all species but, except for universally observed increased mannose-trimming, the N-glycans do not converge to a common profile. Correlations with glycogene repertoires will enable future reverse genetic studies to eliminate N-glycomic differences to test their functions in interspecific relations and pathogen evasion.
Collapse
Affiliation(s)
- Christa L Feasley
- Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC-415, OUHSC, Oklahoma City, OK, 73104, USA,
| | | | | |
Collapse
|
21
|
West CM, Blader IJ. Oxygen sensing by protozoans: how they catch their breath. Curr Opin Microbiol 2015; 26:41-7. [PMID: 25988702 DOI: 10.1016/j.mib.2015.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 04/24/2015] [Indexed: 01/09/2023]
Abstract
Cells must know the local levels of available oxygen and either adapt accordingly or relocate to more favorable environments. Prolyl 4-hydroxylases (P4Hs) are emerging as universal cellular oxygen sensors. In animals, these oxygen sensors respond to decreased oxygen availability by up-regulating hypoxia-inducible transcription factors. In protozoa, the P4Hs appear to activate E3-SCF ubiquitin ligase complexes via a glycosylation-dependent mechanism, potentially to turn over their proteomes. Intracellular parasites are impacted by both types of oxygen-sensing pathways. Since parasites are exposed to diverse oxygen tensions during their life cycles, this review identifies emerging oxygen-sensing mechanisms and discusses how these mechanisms probably contribute to the regulation of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 975 NE 10th St., BRC 417, Oklahoma City, OK 73104, USA.
| | - Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, 347 Biomedical Research Building, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
22
|
Karunaratne C, Weldeghiorghis TK, West CM, Taylor CM. Conformational changes associated with post-translational modifications of Pro(143) in Skp1 of Dictyostelium--a dipeptide model system. J Am Chem Soc 2014; 136:15170-5. [PMID: 25250945 PMCID: PMC4227711 DOI: 10.1021/ja5033277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Indexed: 01/16/2023]
Abstract
Prolyl hydroxylation and subsequent glycosylation of the E3(SCF) ubiquitin ligase subunit Skp1 affects its conformation and its interaction with F-box proteins and, ultimately, O2-sensing in the organism. Taking a reductionist approach to understand the molecular basis for these effects, a series of end-capped Thr-Pro dipeptides was synthesized, tracking the sequential post-translational modifications that occur in the protein. The conformation of the pyrrolidine ring in each compound was gauged via coupling constants ((3)JHα,Hβ) and the electronegativity of the Cγ-substituents by chemical shifts ((13)C). The equilibrium between the cis-trans conformations about the central prolyl peptide bond was investigated by integration of signals corresponding to the two species in the (1)H NMR spectra over a range of temperatures. These studies revealed an increasing preference for the trans-conformation in the order Pro < Hyp < [α-(1,4)GlcNAc]Hyp. Rates for the forward and reverse reactions, determined by magnetization transfer experiments, demonstrated a reduced rate for the trans-to-cis conversion and a significant increase in the cis-to-trans conversion upon hydroxylation of the proline residue in the dipeptide. NOE experiments suggest that the Thr side chain pushes the sugar away from the pyrrolidine ring. These effects, which depended on the presence of the N-terminal Thr residue, offer a mechanism to explain altered properties of the corresponding full-length proteins.
Collapse
Affiliation(s)
- Chamini
V. Karunaratne
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Thomas K. Weldeghiorghis
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Christopher M. West
- Department
of Biochemistry & Molecular Biology, Oklahoma Center for Medical
Glycobiology, University of Oklahoma Health
Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Carol M. Taylor
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
23
|
Sheikh MO, Xu Y, van der Wel H, Walden P, Hartson SD, West CM. Glycosylation of Skp1 promotes formation of Skp1-cullin-1-F-box protein complexes in dictyostelium. Mol Cell Proteomics 2014; 14:66-80. [PMID: 25341530 DOI: 10.1074/mcp.m114.044560] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O(2) sensing in diverse protozoa depends on the prolyl 4 hydroxylation of Skp1 and modification of the resulting hydroxyproline with a series of five sugars. In yeast, plants, and animals, Skp1 is associated with F-box proteins. The Skp1-F-box protein heterodimer can, for many F-box proteins, dock onto cullin-1 en route to assembly of the Skp1-cullin-1-F-box protein-Rbx1 subcomplex of E3(SCF)Ub ligases. E3(SCF)Ub ligases conjugate Lys48-polyubiquitin chains onto targets bound to the substrate receptor domains of F-box proteins, preparing them for recognition by the 26S proteasome. In the social amoeba Dictyostelium, we found that O(2) availability was rate-limiting for the hydroxylation of newly synthesized Skp1. To investigate the effect of reduced hydroxylation, we analyzed knockout mutants of the Skp1 prolyl hydroxylase and each of the Skp1 glycosyltransferases. Proteomic analysis of co-immunoprecipitates showed that wild-type cells able to fully glycosylate Skp1 had a greater abundance of an SCF complex containing the cullin-1 homolog CulE and FbxD, a newly described WD40-type F-box protein, than the complexes that predominate in cells defective in Skp1 hydroxylation or glycosylation. Similarly, the previously described FbxA-Skp1CulA complex was also more abundant in glycosylation-competent cells. The CulE interactome also included higher levels of proteasomal regulatory particles when Skp1 was glycosylated, suggesting increased activity consistent with greater association with F-box proteins. Finally, the interactome of FLAG-FbxD was modified when it harbored an F-box mutation that compromised Skp1 binding, consistent with an effect on the abundance of potential substrate proteins. We propose that O(2)-dependent posttranslational glycosylation of Skp1 promotes association with F-box proteins and their engagement in functional E3(SCF)Ub ligases that regulate O(2)-dependent developmental progression.
Collapse
Affiliation(s)
- M Osman Sheikh
- From the ‡Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Yuechi Xu
- From the ‡Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Hanke van der Wel
- From the ‡Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Paul Walden
- From the ‡Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Steven D Hartson
- §Department of Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Christopher M West
- From the ‡Department of Biochemistry & Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
24
|
Chlorovirus Skp1-binding ankyrin repeat protein interplay and mimicry of cellular ubiquitin ligase machinery. J Virol 2014; 88:13798-810. [PMID: 25253343 DOI: 10.1128/jvi.02109-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ubiquitin-proteasome system is targeted by many viruses that have evolved strategies to redirect host ubiquitination machinery. Members of the genus Chlorovirus are proposed to share an ancestral lineage with a broader group of related viruses, nucleo-cytoplasmic large DNA viruses (NCLDV). Chloroviruses encode an Skp1 homolog and ankyrin repeat (ANK) proteins. Several chlorovirus-encoded ANK repeats contain C-terminal domains characteristic of cellular F-boxes or related NCLDV chordopox PRANC (pox protein repeats of ankyrin at C-terminal) domains. These observations suggested that this unique combination of Skp1 and ANK repeat proteins might form complexes analogous to the cellular Skp1-Cul1-F-box (SCF) ubiquitin ligase complex. We identified two ANK proteins from the prototypic chlorovirus Paramecium bursaria chlorella virus-1 (PBCV-1) that functioned as binding partners for the virus-encoded Skp1, proteins A682L and A607R. These ANK proteins had a C-terminal Skp1 interactional motif that functioned similarly to cellular F-box domains. A C-terminal motif of ANK protein A682L binds Skp1 proteins from widely divergent species. Yeast two-hybrid analyses using serial domain deletion constructs confirmed the C-terminal localization of the Skp1 interactional motif in PBCV-1 A682L. ANK protein A607R represents an ANK family with one member present in all 41 sequenced chloroviruses. A comprehensive phylogenetic analysis of these related ANK and viral Skp1 proteins suggested partnered function tailored to the host alga or common ancestral heritage. Here, we show protein-protein interaction between corresponding family clusters of virus-encoded ANK and Skp1 proteins from three chlorovirus types. Collectively, our results indicate that chloroviruses have evolved complementing Skp1 and ANK proteins that mimic cellular SCF-associated proteins. IMPORTANCE Viruses have evolved ways to direct ubiquitination events in order to create environments conducive to their replication. As reported in the manuscript, the large chloroviruses encode several components involved in the SCF ubiquitin ligase complex including a viral Skp1 homolog. Studies on how chloroviruses manipulate their host algal ubiquitination system will provide insights toward viral protein mimicry, substrate recognition, and key interactive domains controlling selective protein degradation. These findings may also further understanding of the evolution of other large DNA viruses, like poxviruses, that are reported to share the same monophyly lineage as chloroviruses.
Collapse
|
25
|
Sheikh MO, Schafer C, Powell JT, Rodgers KK, Mooers BHM, West CM. Glycosylation of Skp1 affects its conformation and promotes binding to a model f-box protein. Biochemistry 2014; 53:1657-69. [PMID: 24506136 PMCID: PMC3985704 DOI: 10.1021/bi401707y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/09/2014] [Indexed: 01/08/2023]
Abstract
In the social amoeba Dictyostelium, Skp1 is hydroxylated on proline 143 and further modified by three cytosolic glycosyltransferases to yield an O-linked pentasaccharide that contributes to O2 regulation of development. Skp1 is an adapter in the Skp1/cullin1/F-box protein family of E3 ubiquitin ligases that targets specific proteins for polyubiquitination and subsequent proteasomal degradation. To investigate the biochemical consequences of glycosylation, untagged full-length Skp1 and several of its posttranslationally modified isoforms were expressed and purified to near homogeneity using recombinant and in vitro strategies. Interaction studies with the soluble mammalian F-box protein Fbs1/Fbg1/OCP1 revealed preferential binding to the glycosylated isoforms of Skp1. This difference correlated with the increased α-helical and decreased β-sheet content of glycosylated Skp1s based on circular dichroism and increased folding order based on small-angle X-ray scattering. A comparison of the molecular envelopes of fully glycosylated Skp1 and the apoprotein indicated that both isoforms exist as an antiparallel dimer that is more compact and extended in the glycosylated state. Analytical gel filtration and chemical cross-linking studies showed a growing tendency of less modified isoforms to dimerize. Considering that regions of free Skp1 are intrinsically disordered and Skp1 can adopt distinct folds when bound to F-box proteins, we propose that glycosylation, which occurs adjacent to the F-box binding site, influences the spectrum of energetically similar conformations that vary inversely in their propensity to dock with Fbs1 or another Skp1. Glycosylation may thus influence Skp1 function by modulating F-box protein binding in cells.
Collapse
Affiliation(s)
- M. Osman Sheikh
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Christopher
M. Schafer
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - John T. Powell
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Karla K. Rodgers
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Blaine H. M. Mooers
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Christopher M. West
- Department of Biochemistry and Molecular Biology and Oklahoma Center
for Medical Glycobiology, University of
Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
26
|
Schafer CM, Sheikh MO, Zhang D, West CM. Novel regulation of Skp1 by the Dictyostelium AgtA α-galactosyltransferase involves the Skp1-binding activity of its WD40 repeat domain. J Biol Chem 2014; 289:9076-88. [PMID: 24550398 DOI: 10.1074/jbc.m113.528679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The role of Skp1 as an adaptor protein that links Cullin-1 to F-box proteins in E3 Skp1/Cullin-1/F-box protein (SCF) ubiquitin ligases is well characterized. In the social amoeba Dictyostelium and probably many other unicellular eukaryotes, Skp1 is modified by a pentasaccharide attached to a hydroxyproline near its C terminus. This modification is important for oxygen-sensing during Dictyostelium development and is mediated by a HIF-α type prolyl 4-hydroxylase and five sequentially acting cytoplasmic glycosyltransferase activities. Gene disruption studies show that AgtA, the enzyme responsible for addition of the final two galactose residues, in α-linkages to the Skp1 core trisaccharide, is unexpectedly critical for oxygen-dependent terminal development. AgtA possesses a WD40 repeat domain C-terminal to its single catalytic domain and, by use of domain deletions, binding studies, and enzyme assays, we find that the WD40 repeats confer a salt-sensitive second-site binding interaction with Skp1 that mediates novel catalytic activation in addition to simple substrate recognition. In addition, AgtA binds similarly well to precursor isoforms of Skp1 by a salt-sensitive mechanism that competes with binding to an F-box protein and recognition by early modification enzymes, and the effect of binding is diminished when AgtA modifies Skp1. Genetic studies show that loss of AgtA is more severe when an earlier glycosylation step is blocked, and overexpressed AgtA is deleterious if catalytically inactivated. Together, the findings suggest that AgtA mediates non-enzymatic control of unmodified and substrate precursor forms of Skp1 by a binding mechanism that is normally relieved by switch-like activation of its glycosylation function.
Collapse
Affiliation(s)
- Christopher M Schafer
- From the Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | | | | | | |
Collapse
|
27
|
Bozzaro S, Buracco S, Peracino B. Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Front Cell Infect Microbiol 2013; 3:50. [PMID: 24066281 PMCID: PMC3777012 DOI: 10.3389/fcimb.2013.00050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/22/2013] [Indexed: 12/20/2022] Open
Abstract
Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Italy.
| | | | | |
Collapse
|
28
|
Xu Y, Wang ZA, Green RS, West CM. Role of the Skp1 prolyl-hydroxylation/glycosylation pathway in oxygen dependent submerged development of Dictyostelium. BMC DEVELOPMENTAL BIOLOGY 2012; 12:31. [PMID: 23098648 PMCID: PMC3515798 DOI: 10.1186/1471-213x-12-31] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/11/2012] [Indexed: 01/27/2023]
Abstract
Background Oxygen sensing is a near universal signaling modality that, in eukaryotes ranging from protists such as Dictyostelium and Toxoplasma to humans, involves a cytoplasmic prolyl 4-hydroxylase that utilizes oxygen and α-ketoglutarate as potentially rate-limiting substrates. A divergence between the animal and protist mechanisms is the enzymatic target: the animal transcriptional factor subunit hypoxia inducible factor-α whose hydroxylation results in its poly-ubiquitination and proteasomal degradation, and the protist E3SCFubiquitin ligase subunit Skp1 whose hydroxylation might control the stability of other proteins. In Dictyostelium, genetic studies show that hydroxylation of Skp1 by PhyA, and subsequent glycosylation of the hydroxyproline, is required for normal oxygen sensing during multicellular development at an air/water interface. Because it has been difficult to detect an effect of hypoxia on Skp1 hydroxylation itself, the role of Skp1 modification was investigated in a submerged model of Dictyostelium development dependent on atmospheric hyperoxia. Results In static isotropic conditions beneath 70-100% atmospheric oxygen, amoebae formed radially symmetrical cyst-like aggregates consisting of a core of spores and undifferentiated cells surrounded by a cortex of stalk cells. Analysis of mutants showed that cyst formation was inhibited by high Skp1 levels via a hydroxylation-dependent mechanism, and spore differentiation required core glycosylation of Skp1 by a mechanism that could be bypassed by excess Skp1. Failure of spores to differentiate at lower oxygen correlated qualitatively with reduced Skp1 hydroxylation. Conclusion We propose that, in the physiological range, oxygen or downstream metabolic effectors control the timing of developmental progression via activation of newly synthesized Skp1.
Collapse
Affiliation(s)
- Yuechi Xu
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 975 NE 10th St, BRC 413, OUHSC, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
29
|
Xu Y, Brown KM, Wang ZA, van der Wel H, Teygong C, Zhang D, Blader IJ, West CM. The Skp1 protein from Toxoplasma is modified by a cytoplasmic prolyl 4-hydroxylase associated with oxygen sensing in the social amoeba Dictyostelium. J Biol Chem 2012; 287:25098-110. [PMID: 22648409 DOI: 10.1074/jbc.m112.355446] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In diverse types of organisms, cellular hypoxic responses are mediated by prolyl 4-hydroxylases that use O(2) and α-ketoglutarate as substrates to hydroxylate conserved proline residues in target proteins. Whereas in metazoans these enzymes control the stability of the HIFα family of transcription factor subunits, the Dictyostelium enzyme (DdPhyA) contributes to O(2) regulation of development by a divergent mechanism involving hydroxylation and subsequent glycosylation of DdSkp1, an adaptor subunit in E3(SCF) ubiquitin ligases. Sequences related to DdPhyA, DdSkp1, and the glycosyltransferases that cap Skp1 hydroxyproline occur also in the genomes of Toxoplasma and other protists, suggesting that this O(2) sensing mechanism may be widespread. Here we show by disruption of the TgphyA locus that this enzyme is required for Skp1 glycosylation in Toxoplasma and that disrupted parasites grow slowly at physiological O(2) levels. Conservation of cellular function was tested by expression of TgPhyA in DdphyA-null cells. Simple gene replacement did not rescue Skp1 glycosylation, whereas overexpression not only corrected Skp1 modification but also restored the O(2) requirement to a level comparable to that of overexpressed DdPhyA. Bacterially expressed TgPhyA protein can prolyl hydroxylate both Toxoplasma and Dictyostelium Skp1s. Kinetic analyses showed that TgPhyA has similar properties to DdPhyA, including a superimposable dependence on the concentration of its co-substrate α-ketoglutarate. Remarkably, however, TgPhyA had a significantly higher apparent affinity for O(2). The findings suggest that Skp1 hydroxylation by PhyA is a conserved process among protists and that this biochemical pathway may indirectly sense O(2) by detecting the levels of O(2)-regulated metabolites such as α-ketoglutarate.
Collapse
Affiliation(s)
- Yuechi Xu
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Taylor CM, Karunaratne CV, Xie N. Glycosides of hydroxyproline: some recent, unusual discoveries. Glycobiology 2011; 22:757-67. [PMID: 22190471 DOI: 10.1093/glycob/cwr188] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glycosides of hydroxyproline (Hyp) in the plant cell wall matrix were discovered by Lamport and co-workers in the 1960s. Since then, much has been learned about these Hyp-rich glycoproteins. The intent of this review was to compare and contrast some less common structural motifs, in nontraditional roles, to uncover themes. Arabinosylation of short-peptide plant hormones is essential for growth, cell differentiation and defense. In a very recent development, prolyl hydroxylase and arabinosyltransferase activity has been shown to have a direct impact on the growth of root hairs in Arabidopsis thaliana. Pollen allergens of mugwort and ragweed contain proline-rich domains that are hydroxylated and glycosylated and play a structural role. In the case of mugwort, this domain also presents a significant immunogenic epitope. Major crops, including tobacco and maize, have been used to express and produce recombinant proteins of mammalian origin. The risks of plant-imposed glycosylation are discussed. In unicellular eukaryotes, Skp1 (a subunit of the E3(SCF) ubiquitin ligase complex) harbors a key Hyp residue that is modified by a linear pentasaccharide. These modifications may be involved in sensing oxygen levels. A few studies have probed the impact of glycosylation on the structure of Hyp-containing peptides. These have necessarily looked at small, synthetic molecules, since natural peptides and proteins are often isolable in only minuscule amounts and/or are heterogeneous in nature. The characterization of native structural motifs, together with the determination of glycopeptide conformation and properties, holds the key to rationalizing nature's architectural design.
Collapse
Affiliation(s)
- Carol M Taylor
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
31
|
Zhang D, van der Wel H, Johnson JM, West CM. Skp1 prolyl 4-hydroxylase of dictyostelium mediates glycosylation-independent and -dependent responses to O2 without affecting Skp1 stability. J Biol Chem 2011; 287:2006-16. [PMID: 22128189 DOI: 10.1074/jbc.m111.314021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic prolyl 4-hydroxylases (PHDs) have a primary role in O(2) sensing in animals via modification of the transcriptional factor subunit HIFα, resulting in its polyubiquitination by the E3(VHL)ubiquitin (Ub) ligase and degradation in the 26 S proteasome. Previously thought to be restricted to animals, a homolog (P4H1) of HIFα-type PHDs is expressed in the social amoeba Dictyostelium where it also exhibits characteristics of an O(2) sensor for development. Dictyostelium lacks HIFα, and P4H1 modifies a different protein, Skp1, an adaptor of the SCF class of E3-Ub ligases related to the E3(VHL)Ub ligase that targets animal HIFα. Normally, the HO-Skp1 product of the P4H1 reaction is capped by a GlcNAc sugar that can be subsequently extended to a pentasaccharide by novel glycosyltransferases. To analyze the role of glycosylation, the Skp1 GlcNAc-transferase locus gnt1 was modified with a missense mutation to block catalysis or a stop codon to truncate the protein. Despite the accumulation of the hydroxylated form of Skp1, Skp1 was not destabilized based on metabolic labeling. However, hydroxylation alone allowed for partial correction of the high O(2) requirement of P4H1-null cells, therefore revealing both glycosylation-independent and glycosylation-dependent roles for hydroxylation. Genetic complementation of the latter function required an enzymatically active form of Gnt1. Because the effect of the gnt1 deficiency depended on P4H1, and Skp1 was the only protein labeled when the GlcNAc-transferase was restored to mutant extracts, Skp1 apparently mediates the cellular functions of both P4H1 and Gnt1. Although Skp1 stability itself is not affected by hydroxylation, its modification may affect the stability of targets of Skp1-dependent Ub ligases.
Collapse
Affiliation(s)
- Dongmei Zhang
- Department of Biochemistry and Molecular Biology, 975 NE 10th St., BRC 417, OUHSC, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
32
|
van der Wel H, Johnson JM, Xu Y, Karunaratne CV, Wilson KD, Vohra Y, Boons GJ, Taylor CM, Bendiak B, West CM. Requirements for Skp1 processing by cytosolic prolyl 4(trans)-hydroxylase and α-N-acetylglucosaminyltransferase enzymes involved in O₂ signaling in dictyostelium. Biochemistry 2011; 50:1700-13. [PMID: 21247092 PMCID: PMC3192012 DOI: 10.1021/bi101977w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The social amoeba Dictyostelium expresses a hypoxia inducible factor-α (HIFα) type prolyl 4-hydroxylase (P4H1) and an α-N-acetylglucosaminyltransferase (Gnt1) that sequentially modify proline-143 of Skp1, a subunit of the SCF (Skp1/Cullin/F-box protein) class of E3 ubiquitin ligases. Prior genetic studies have implicated Skp1 and its modification by these enzymes in O(2) regulation of development, suggesting the existence of an ancient O(2)-sensing mechanism related to modification of the transcription factor HIFα by animal prolyl 4-hydroxylases (PHDs). To better understand the role of Skp1 in P4H1-dependent O(2) signaling, biochemical and biophysical studies were conducted to characterize the reaction product and the basis of Skp1 substrate selection by P4H1 and Gnt1. (1)H NMR demonstrated formation of 4(trans)-hydroxyproline as previously found for HIFα, and highly purified P4H1 was inhibited by Krebs cycle intermediates and other compounds that affect animal P4Hs. However, in contrast to hydroxylation of HIFα by PHDs, P4H1 depended on features of full-length Skp1, based on truncation, mutagenesis, and competitive inhibition studies. These features are conserved during animal evolution, as even mammalian Skp1, which lacks the target proline, became a good substrate upon its restoration. P4H1 recognition may depend on features conserved for SCF complex formation as heterodimerization with an F-box protein blocked Skp1 hydroxylation. The hydroxyproline-capping enzyme Gnt1 exhibited similar requirements for Skp1 as a substrate. These and other findings support a model in which the protist P4H1 conditionally hydroxylates Skp1 of E3(SCF)ubiquitin ligases to control half-lives of multiple targets, rather than the mechanism of animal PHDs where individual proteins are hydroxylated leading to ubiquitination by the evolutionarily related E3(VBC)ubiquitin ligases.
Collapse
Affiliation(s)
- Hanke van der Wel
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Jennifer M. Johnson
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Yuechi Xu
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Chamini V. Karunaratne
- Department of Chemistry, 742 Choppin Hall, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Kyle D. Wilson
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Yusuf Vohra
- Dept. of Chemistry and Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602 USA
| | - Geert-Jan Boons
- Dept. of Chemistry and Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602 USA
| | - Carol M. Taylor
- Department of Chemistry, 742 Choppin Hall, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Brad Bendiak
- Department of Cell and Developmental Biology and Structural Biology and Biophysics Program, University of Colorado Denver, Anschutz Medical Campus, Mail Stop 8108, RC-1 South Bldg., L18-12120, 12801 East 17th Avenue, Aurora, CO 80045 USA
| | - Christopher M. West
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| |
Collapse
|
33
|
Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV. Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 2011; 12:R20. [PMID: 21356102 PMCID: PMC3188802 DOI: 10.1186/gb-2011-12-2-r20] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/09/2010] [Accepted: 02/28/2011] [Indexed: 12/28/2022] Open
Abstract
Background The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. Results We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict. Conclusions The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.
Collapse
Affiliation(s)
- Richard Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang ZA, Singh D, van der Wel H, West CM. Prolyl hydroxylation- and glycosylation-dependent functions of Skp1 in O2-regulated development of Dictyostelium. Dev Biol 2010; 349:283-95. [PMID: 20969846 DOI: 10.1016/j.ydbio.2010.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/15/2010] [Accepted: 10/11/2010] [Indexed: 11/28/2022]
Abstract
O(2) regulates multicellular development of the social amoeba Dictyostelium, suggesting it may serve as an important cue in its native soil environment. Dictyostelium expresses an HIFα-type prolyl 4-hydroxylase (P4H1) whose levels affect the O(2)-threshold for culmination implicating it as a direct O(2)-sensor, as in animals. But Dictyostelium lacks HIFα, a mediator of animal prolyl 4-hydroxylase signaling, and P4H1 can hydroxylate Pro143 of Skp1, a subunit of E3(SCF)ubiquitin-ligases. Skp1 hydroxyproline then becomes the target of five sequential glycosyltransferase reactions that modulate the O(2)-signal. Here we show that genetically induced changes in Skp1 levels also affect the O(2)-threshold, in opposite direction to that of the modification enzymes suggesting that the latter reduce Skp1 activity. Consistent with this, overexpressed Skp1 is poorly hydroxylated and Skp1 is the only P4H1 substrate detectable in extracts. Effects of Pro143 mutations, and of combinations of Skp1 and enzyme level perturbations, are consistent with pathway modulation of Skp1 activity. However, some effects were not mirrored by changes in modification of the bulk Skp1 pool, implicating a Skp1 subpopulation and possibly additional unknown factors. Altered Skp1 levels also affected other developmental transitions in a modification-dependent fashion. Whereas hydroxylation of animal HIFα results in its polyubiquitination and proteasomal degradation, Dictyostelium Skp1 levels were little affected by its modification status. These data indicate that Skp1 and possibly E3(SCF)ubiquitin-ligase activity modulate O(2)-dependent culmination and other developmental processes, and at least partially mediate the action of the hydroxylation/glycosylation pathway in O(2)-sensing.
Collapse
Affiliation(s)
- Zhuo A Wang
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
35
|
Lannoo N, Van Damme EJM. Nucleocytoplasmic plant lectins. Biochim Biophys Acta Gen Subj 2009; 1800:190-201. [PMID: 19647040 DOI: 10.1016/j.bbagen.2009.07.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 11/28/2022]
Abstract
During the last decade it was unambiguously shown that plants synthesize minute amounts of carbohydrate-binding proteins upon exposure to stress situations like drought, high salt, hormone treatment, pathogen attack or insect herbivory. In contrast to the 'classical' plant lectins, which are typically found in storage vacuoles or in the extracellular compartment this new class of lectins is located in the cytoplasm and the nucleus. Based on these observations the concept was developed that lectin-mediated protein-carbohydrate interactions in the cytoplasm and the nucleus play an important role in the stress physiology of the plant cell. Hitherto, six families of nucleocytoplasmic lectins have been identified. This review gives an overview of our current knowledge on the occurrence of nucleocytoplasmic plant lectins. The carbohydrate-binding properties of these lectins and potential ligands in the nucleocytoplasmic compartment are discussed in view of the physiological role of the lectins in the plant cell.
Collapse
Affiliation(s)
- Nausicaä Lannoo
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | | |
Collapse
|