1
|
Hamedani SG, Pourmasoumi M, Zarifi SH, Askari G, Jamialahmadi T, Bagherniya M, Sahebkar A. Therapeutic effects of saffron and its components on neurodegenerative diseases. Heliyon 2024; 10:e24334. [PMID: 38298664 PMCID: PMC10827773 DOI: 10.1016/j.heliyon.2024.e24334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/02/2024] Open
Abstract
Due to an increase in the number of older people in recent years, neurodegenerative diseases as the most important age-related neurological disorders are considered as a great threat to human health. The treatment strategies for these disorders are symptomatic and there is no known definitive treatment; however, recently, several studies have investigated the effectiveness of some herbs and their components in limiting the progression and treatment of neurodegenerative disorders. In this study, we searched Medline (via PubMed), Scopus, Science Direct, and Google Scholar databases. The keywords used in the search were: saffron [title/abstract] or (saffron compound [title/abstract]) and (neurological disorders [title/abstract]), publication date range (2010-2023), and language (English). After applying inclusion and exclusion criteria, 30 articles remained. Of the 30 articles included in the study, six studies on the treatment of neurodegenerative disorders by saffron and its components were in the clinical trial phase, and 24 studies were in the preclinical phase. Saffron and its compounds can play an important role in inhibiting neuroinflammation and excitotoxic pathways, modulating autophagy and apoptosis, attenuating oxidative damage, and activating defensive antioxidant enzymes, resulting in neuroprotection against neurodegenerative diseases. Therefore, this study aimed to review the studies on the effects of saffron and its compounds on the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sahar Golpour- Hamedani
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of medical science, Iran
| | - Makan Pourmasoumi
- Gastrointestinal & Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Gholamreza Askari
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Prabhu MPT, Chrungoo S, Sarkar N. Carboxylic Group Functionalized Carbon Quantum Dots inhibit Hen Egg White Lysozyme Amyloidogenesis, leading to the Formation of Spherical Aggregates with Reduced Toxicity and ROS Generation. Curr Protein Pept Sci 2024; 25:626-637. [PMID: 38659260 DOI: 10.2174/0113892037294778240328041907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Proteinopathies are a group of diseases where the protein structure has been altered. These alterations are linked to the production of amyloids, which are persistent, organized clumps of protein molecules through inter-molecular interactions. Several disorders, including Alzheimer's and Parkinson's, have been related to the presence of amyloids. Highly ordered beta sheets or beta folds are characteristic of amyloids; these structures can further self- assemble into stable fibrils. METHODS Protein aggregation is caused by a wide variety of environmental and experimental factors, including mutations, high pH, high temperature, and chemical modification. Despite several efforts, a cure for amyloidosis has yet to be found. Due to its advantageous semi-conducting characteristics, unique optical features, high surface area-to-volume ratio, biocompatibility, etc., carbon quantum dots (CQDs) have lately emerged as key instruments for a wide range of biomedical applications. To this end, we have investigated the effect of CQDs with a carboxyl group on their surface (CQD-CA) on the in vitro amyloidogenesis of hen egg white lysozyme (HEWL). RESULTS By generating a stable compound that is resistant to fibrillation, our findings show that CQD-CA can suppress amyloid and disaggregate HEWL. In addition, CQD-CA caused the creation of non-toxic spherical aggregates, which generated much less reactive oxygen species (ROS). CONCLUSION Overall, our results show that more research into amyloidosis treatments, including surface functionalized CQDs, is warranted.
Collapse
Affiliation(s)
- M P Taraka Prabhu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Shreya Chrungoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| |
Collapse
|
3
|
Prabhu MPT, Chrungoo S, Sarkar N. Amine Group Surface-Functionalized Carbon Quantum Dots Exhibit Anti-amyloidogenic Effects Towards Hen Egg White Lysozyme by Inducing Formation of Nontoxic Spherical Aggregates. Protein J 2023; 42:728-740. [PMID: 37803220 DOI: 10.1007/s10930-023-10157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/08/2023]
Abstract
The tendency of polypeptide chains to deviate from their conventional protein folding pathway and instead get trapped as off-pathway intermediates, has been a matter of great concern. These off-pathway intermediates eventually lead to the formation of insoluble, ordered fibrillar aggregates called amyloids, which are responsible for a host of neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Type II diabetes. In spite of extensive research, development of an effective therapeutic strategy against amyloidosis still remains elusive. In recent times, carbon quantum dots (CQD) have grabbed the attention of researchers against amyloidogenesis due to their ease of preparation, aqueous soluble nature, unique optical properties, high surface to volume ratio, physio-chemical properties, semi-conducting nature and mainly biocompatible. In the current study, we have reported an easy-to-prepare procedure for synthesis of amine group surface functionalized CQDs from commonly available kitchen spices with anti-oxidant properties. The as-synthesized CQDs were evaluated for their anti-amyloidogenic properties towards Hen Egg White Lysozyme (HEWL). Our results clearly show that the surfaced functionalized CQDs were able to interact with HEWL, thereby forming a stable complex, which was resistant towards amyloid formation and instead lead to the formation of non-toxic globular aggregates.
Collapse
Affiliation(s)
- M P Taraka Prabhu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Shreya Chrungoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
4
|
Siposova K, Huntosova V, Sedlakova D, Macajova M, Bilcik B, Nair AV, Nair S, Hovhannisyan V, Chen SJ, Musatov A. Biocompatible zeolite-dye composites with anti-amyloidogenic properties. Int J Biol Macromol 2023; 251:126331. [PMID: 37579899 DOI: 10.1016/j.ijbiomac.2023.126331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
One of the most attractive approaches in biomedicine and pharmacy is the application of multifunctional materials. The mesoporous structure of clinoptilolite (CZ) absorbs various types of substances and can be used as a model for studying the carriers for targeted drug delivery with controlled release. CZ-dye composites are fabricated by incorporation into clinoptilolite pores commonly used dyes, aluminum phthalocyanine, zinc porphine, and hypericin. We examined and compared the effect of pure dyes and CZ-dye composites on insulin amyloidogenesis. The formation of insulin amyloid fibrils and the disassembly of preformed fibrils is significantly affected by any of the three compounds, however, the strongest effect is observed for aluminum phthalocyanine indicating a structurally-dependent anti-amyloidogenic activity of the dyes. The incorporation of dyes into CZ particles resulted in enhanced anti-amyloidogenic activity in comparison to pure CZ particles. The cell metabolic activity, biocompatibility and fluorescence biodistribution of the dyes entrapped in the composites were tested in vitro (U87 MG cells) and in vivo in the quail chorioallantoic membrane model. Considering the photoactive properties of the dyes used, we assume their applicability in photodiagnostics and photodynamic therapy. It can also be expected that their anti-amyloidogenic potential can be enhanced by photodynamic effect.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia; College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan.
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Technology, and Innovation Park, P.J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia.
| | - Dagmar Sedlakova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia.
| | - Mariana Macajova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
| | - Boris Bilcik
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
| | | | - Sumesh Nair
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan
| | | | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan.
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia.
| |
Collapse
|
5
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Timokhina EN, Serebryakova OG, Shchepochkin AV, Averkov MA, Utepova IA, Demina NS, Radchenko EV, Palyulin VA, Fisenko VP, Bachurin SO, Chupakhin ON, Charushin VN, Richardson RJ. Derivatives of 9-phosphorylated acridine as butyrylcholinesterase inhibitors with antioxidant activity and the ability to inhibit β-amyloid self-aggregation: potential therapeutic agents for Alzheimer's disease. Front Pharmacol 2023; 14:1219980. [PMID: 37654616 PMCID: PMC10466253 DOI: 10.3389/fphar.2023.1219980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of β-amyloid (Aβ42) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC50 = 2.90 ± 0.23 µM and 3.22 ± 0.25 µM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC50 = 6.90 ± 0.55 μM), consistent with docking results. Dihydroacridines inhibited Aβ42 self-aggregation; 1d and 1e were the most active (58.9% ± 4.7% and 46.9% ± 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS•+-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood-brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Aβ42 self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Yu Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Timokhina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Olga G. Serebryakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Alexander V. Shchepochkin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Maxim A. Averkov
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Irina A. Utepova
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Nadezhda S. Demina
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Fisenko
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Oleg N. Chupakhin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Valery N. Charushin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Rudy J. Richardson
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
DMSO and TMAO-Differences in Interactions in Aqueous Solutions of the K-Peptide. Int J Mol Sci 2022; 23:ijms23031872. [PMID: 35163792 PMCID: PMC8836737 DOI: 10.3390/ijms23031872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023] Open
Abstract
Interactions between a solvent and their co-solute molecules in solutions of peptides are crucial for their stability and structure. The K-peptide is a synthetic fragment of a larger hen egg white lysozyme protein that is believed to be able to aggregate into amyloid structures. In this study, a complex experimental and theoretical approach is applied to study systems comprising the peptide, water, and two co-solutes: trimethylamide N-oxide (TMAO) or dimethyl sulfoxide (DMSO). Information about their interactions in solutions and on the stability of the K-peptide was obtained by FTIR spectroscopy and differential scanning microcalorimetry. The IR spectra of various osmolyte-water-model-peptide complexes were simulated with the DFT method (B3LYP/6-311++G(d,p)). The FTIR results indicate that both solutes are neutral for the K-peptide in solution. Both co-solutes affect the peptide to different degrees, as seen in the shape of its amide I band, and have different influences on its thermal stability. DFT calculations helped simplify the experimental data for easier interpretation.
Collapse
|
7
|
Inhibitory effects of carbon quantum dots towards hen egg white lysozyme amyloidogenesis through formation of a stable protein complex. Biophys Chem 2021; 280:106714. [PMID: 34749221 DOI: 10.1016/j.bpc.2021.106714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/15/2023]
Abstract
Proteins, under certain circumstances such as defective quality control mechanism, mutations and altered environmental conditions, undergo misfolding and assemble into highly ordered beta-sheet structured fibrillar aggregates called amyloid fibrils. Formation of amyloid is seen in most of the protein linked degenerative diseases like Alzheimer's disease, Parkinson's disease, Huntington's disease, Type II diabetes mellitus and many more. Amyloid fibril forms via intermediate state(s), and is known to follow a nucleated condensation polymerization mechanism. Though extensive research is being carried out towards finding a therapeutic solution to the amyloidosis, an effective treatment to these diseases still remains elusive and also the mechanism of amyloidogenesis largely remains unclear. In recent times, carbon quantum dots (CQDs) are gaining the attention of researchers due to their semi-conductive nature, excellent physio-chemical properties, high surface to volume ratio, optical properties and mainly bio-compatibility. In the current study, we have synthesized CQDs from commonly available kitchen spice mix and explored their role in amyloidogenesis using hen egg white lysozyme (HEWL) as a model protein. The results clearly demonstrate the amyloid inhibitory as well as disaggregation potential of CQD by forming a stable complex with HEWL and thereby increasing the energy barrier for the aggregation process.
Collapse
|
8
|
Gao W, Jin L, Liu C, Zhang N, Zhang R, Bednarikova Z, Gazova Z, Bhunia A, Siebert HC, Dong H. Inhibition behavior of Sennoside A and Sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. Int J Biol Macromol 2021; 178:424-433. [PMID: 33662415 DOI: 10.1016/j.ijbiomac.2021.02.213] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
Amyloid proteins were recognized as the crucial cause of many senile diseases. In this study, the inhibitory effects of Sennoside A (SA) and Sennoside C (SC) on amyloid fibrillation were evaluated by the combination of biophysical approaches and molecular docking tool using human lysozyme (HL) as amyloid-forming model. The results of thioflavin-T (ThT), 8-anilino-1-naphthalenesulfonic acid (ANS) and congo red (CR) assays indicated that both SA and SC could inhibit the amyloid fibrillation of HL in a dose-dependent manner. The IC50 value of SA and SC on HL fibrillation was 200.09 μM and 186.20 μM, respectively. These findings were further verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM), which showed that the addition of SA or SC could sharply reduce the amyloid fibrillation of HL. Additionally, the interactions of HL with SA and SC were investigated by steady-state fluorescence spectra and molecular docking studies. The results suggested that both SA and SC could bind to the binding pocket of HL and form a stable complex mainly via hydrogen bonds, van-der-Waals forces and hydrophobic interactions. In conclusion, our experiments revealed that both SA and SC can significantly inhibit amyloid fibrillation of HL.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Huijun Dong
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
9
|
Jin L, Gao W, Liu C, Zhang N, Mukherjee S, Zhang R, Dong H, Bhunia A, Bednarikova Z, Gazova Z, Liu M, Han J, Siebert HC. Investigating the inhibitory effects of entacapone on amyloid fibril formation of human lysozyme. Int J Biol Macromol 2020; 161:1393-1404. [DOI: 10.1016/j.ijbiomac.2020.07.296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
|
10
|
Islam Z, Ali MH, Popelka A, Mall R, Ullah E, Ponraj J, Kolatkar PR. Probing the fibrillation of lysozyme by nanoscale-infrared spectroscopy. J Biomol Struct Dyn 2020; 39:1481-1490. [PMID: 32131712 DOI: 10.1080/07391102.2020.1734091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid fibrillation is the root cause of several neuro as well as non-neurological disorders. Understanding the molecular basis of amyloid aggregate formation is crucial for deciphering various neurodegenerative diseases. In our study, we have examined the lysozyme fibrillation process using nano-infrared spectroscopy (nanoIR). NanoIR enabled us to investigate both structural and chemical characteristics of lysozyme fibrillar species concurrently. The spectroscopic results indicate that lysozyme transformed into a fibrillar structure having mainly parallel β-sheets, with almost no antiparallel β-sheets. Features such as protein stiffness have a good correlation with obtained secondary structural information showing the state of the protein within the fibrillation state. The structural and chemical details were compared with transmission electron microscopy (TEM) and circular dichroism (CD). We have utilized nanoIR and measured infrared spectra to characterize lysozyme amyloid fibril structures in terms of morphology, molecular structure, secondary structure content, stability, and size of the cross-β core. We have shown that the use of nanoIR can complement other biophysical studies to analyze the aggregation process and is particularly useful for studying proteins involved in aggregation to help in designing molecules against amyloid aggregation. Specifically, the nanoIR spectra afford higher resolution information and a characteristic fingerprint for determining states of aggregation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zeyaul Islam
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Mohamed H Ali
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Anton Popelka
- Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
| | - Raghvendra Mall
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Ehsan Ullah
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Janarthanan Ponraj
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Doha, Qatar
| | - Prasanna R Kolatkar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
11
|
Tseng HJ, Lin MH, Shiao YJ, Yang YC, Chu JC, Chen CY, Chen YY, Lin TE, Su CJ, Pan SL, Chen LC, Wang CY, Hsu KC, Huang WJ. Synthesis and biological evaluation of acridine-based histone deacetylase inhibitors as multitarget agents against Alzheimer's disease. Eur J Med Chem 2020; 192:112193. [PMID: 32151835 DOI: 10.1016/j.ejmech.2020.112193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/16/2023]
Abstract
Multitarget agents simultaneously trigger molecules in functionally complementary pathways, and are therefore considered to have potential in effectively treating Alzheimer's disease (AD), which has a complex pathogenetic mechanism. In this study, the HDAC inhibitor core is incorporated into the acetylcholine esterase (ACE) inhibitor acridine-derived moiety and resulted in compounds that exhibited higher class IIa HDAC (4, 5, 7, and 9)- and class IIb HDAC6-inhibiting activity when compared to the pan-HDAC inhibitor SAHA in clinical practice. One of these compounds, 11b, displayed greater selectivity toward HDAC6 than other isoform enzymes. In contrast, the activity of compound 6a was selective toward class IIa HDAC and HDAC6. These two compounds exhibited strong activity against Aβ-aggregation as well as significantly disrupted Aβ-oligomer. Additionally, 11b and 6a strongly inhibited AChE. These experimental findings demonstrate that compounds 11b and 6a are HDAC-Aβ-aggregation-AChE inhibitors. Notably, they can enhance neurite outgrowth, but with no significant neurotoxicity. Further biological evaluation revealed the various cellular effects of multitarget compounds 11b and 6a, which have the potential to treat AD.
Collapse
Affiliation(s)
- Hui-Ju Tseng
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Mei-Hsiang Lin
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Ying-Chen Yang
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Jung-Chun Chu
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Chun-Yung Chen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ying Chen
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chih-Jou Su
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Liang-Chieh Chen
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; School of Life and Health Sciences and Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, PR China
| | | | - Kai-Cheng Hsu
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
12
|
Zhang R, Zhang N, Mohri M, Wu L, Eckert T, Krylov VB, Antosova A, Ponikova S, Bednarikova Z, Markart P, Günther A, Norden B, Billeter M, Schauer R, Scheidig AJ, Ratha BN, Bhunia A, Hesse K, Enani MA, Steinmeyer J, Petridis AK, Kozar T, Gazova Z, Nifantiev NE, Siebert HC. Nanomedical Relevance of the Intermolecular Interaction Dynamics-Examples from Lysozymes and Insulins. ACS OMEGA 2019; 4:4206-4220. [PMID: 30847433 PMCID: PMC6398350 DOI: 10.1021/acsomega.8b02471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/28/2018] [Indexed: 06/01/2023]
Abstract
Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive. The knowledge of the intra- and intermolecular interaction profiles has cardinal importance for the design of encapsulation protocols. We have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and production with insulin or lysozyme-related protein encapsulation.
Collapse
Affiliation(s)
- Ruiyan Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Ning Zhang
- Institute
of Biopharmaceutical Research, Liaocheng
University, Liaocheng 252059, P. R. China
| | - Marzieh Mohri
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Lisha Wu
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Thomas Eckert
- Department
of Chemistry and Biology, University of
Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- Institut
für Veterinärphysiolgie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Vadim B. Krylov
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Andrea Antosova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Slavomira Ponikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Philipp Markart
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
- Pneumology,
Heart-Thorax-Center Fulda, Pacelliallee 4, 36043 Fulda, Germany
| | - Andreas Günther
- Medical
Clinic II, Justus-Liebig-University, Klinikstraße 33, 35392 Giessen, Germany
| | - Bengt Norden
- Department
of Chemical and Biological Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Martin Billeter
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 40530 Gothenburg, Sweden
| | - Roland Schauer
- Institute
of Biochemistry, Christian-Albrechts-University, Olshausenstrasse 40, 24098 Kiel, Germany
| | - Axel J. Scheidig
- Institute
of Zoology, Department of Structural Biology, Christian-Albrechts-University, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Bhisma N. Ratha
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Anirban Bhunia
- Biomolecular
NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Karsten Hesse
- Tierarztpraxis
Dr. Karsten Hesse, Rathausstraße
16, 35460 Stauffenberg, Germany
| | - Mushira Abdelaziz Enani
- Infectious
Diseases Division, Department of Medicine, King Fahad Medical City, P.O. Box 59046, 11525 Riyadh, Kingdom of Saudi
Arabia
| | - Jürgen Steinmeyer
- Laboratory
for Experimental Orthopaedics, Department of Orthopaedics, Justus-Liebig-University, Paul-Meimberg-Str. 3, D-35392 Giessen, Germany
| | - Athanasios K. Petridis
- Neurochirurgische
Klinik, Universität Düsseldorf, Geb. 11.54, Moorenstraße 5, 40255 Düsseldorf, Germany
| | - Tibor Kozar
- Center
for Interdisciplinary Biosciences, TIP-UPJS, Jesenna 5, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department
of Biophysics Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Nikolay E. Nifantiev
- Laboratory
of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, 119991 Moscow, Russian Federation
| | - Hans-Christian Siebert
- RI-B-NT
Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
13
|
Ulicna K, Bednarikova Z, Hsu WT, Holztragerova M, Wu JW, Hamulakova S, Wang SSS, Gazova Z. Lysozyme amyloid fibrillization in presence of tacrine/acridone-coumarin heterodimers. Colloids Surf B Biointerfaces 2018; 166:108-118. [DOI: 10.1016/j.colsurfb.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
14
|
Nusrat S, Zaman M, Masroor A, Siddqi MK, Zaidi N, Neelofar K, Abdelhameed AS, Khan RH. Deciphering the enhanced inhibitory, disaggregating and cytoprotective potential of promethazine towards amyloid fibrillation. Int J Biol Macromol 2018; 106:851-863. [DOI: 10.1016/j.ijbiomac.2017.08.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/12/2017] [Accepted: 08/13/2017] [Indexed: 11/26/2022]
|
15
|
Makhaeva GF, Lushchekina SV, Boltneva NP, Serebryakova OG, Rudakova EV, Ustyugov AA, Bachurin SO, Shchepochkin AV, Chupakhin ON, Charushin VN, Richardson RJ. 9-Substituted acridine derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors possessing antioxidant activity for Alzheimer's disease treatment. Bioorg Med Chem 2017; 25:5981-5994. [DOI: 10.1016/j.bmc.2017.09.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/15/2023]
|
16
|
Ponikova S, Kubackova J, Bednarikova Z, Marek J, Demjen E, Antosova A, Musatov A, Gazova Z. Inhibition of lysozyme amyloidogenesis by phospholipids. Focus on long-chain dimyristoylphosphocholine. Biochim Biophys Acta Gen Subj 2017; 1861:2934-2943. [DOI: 10.1016/j.bbagen.2017.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/15/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022]
|
17
|
Inhibitory effect of safranal and crocin, two principle compounds of Crocus sativus, on fibrillation of lysozyme. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-017-1175-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Nusrat S, Zaidi N, Siddiqi MK, Zaman M, Siddique IA, Ajmal MR, Abdelhameed AS, Khan RH. Anti-Parkinsonian L-Dopa can also act as anti-systemic amyloidosis—A mechanistic exploration. Int J Biol Macromol 2017; 99:630-640. [DOI: 10.1016/j.ijbiomac.2017.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 01/15/2023]
|
19
|
|
20
|
Kar RK, Gazova Z, Bednarikova Z, Mroue KH, Ghosh A, Zhang R, Ulicna K, Siebert HC, Nifantiev NE, Bhunia A. Evidence for Inhibition of Lysozyme Amyloid Fibrillization by Peptide Fragments from Human Lysozyme: A Combined Spectroscopy, Microscopy, and Docking Study. Biomacromolecules 2016; 17:1998-2009. [DOI: 10.1021/acs.biomac.6b00165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rajiv K. Kar
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Zuzana Gazova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Medical and Clinical Biochemistry Faculty of Medicine, Safarik University, Trieda SNP 1, 040 11 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, Safarik University, Srobarova 2, 041 54 Kosice, Slovakia
| | - Kamal H. Mroue
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anirban Ghosh
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Ruiyan Zhang
- RI-B-NT Research
Institute
of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Katarina Ulicna
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Institute
of Biology and Ecology, Faculty of Science, Safarik University, Srobarova 2, 041 54 Kosice, Slovakia
| | - Hans-Christian Siebert
- RI-B-NT Research
Institute
of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Nikolay E. Nifantiev
- N.
D. Zellinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Anirban Bhunia
- Department
of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| |
Collapse
|
21
|
Viet MH, Siposova K, Bednarikova Z, Antosova A, Nguyen TT, Gazova Z, Li MS. In Silico and in Vitro Study of Binding Affinity of Tripeptides to Amyloid β Fibrils: Implications for Alzheimer’s Disease. J Phys Chem B 2015; 119:5145-55. [DOI: 10.1021/acs.jpcb.5b00006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Man Hoang Viet
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Katarina Siposova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Srobarova 2, 041
54 Kosice, Slovakia
| | - Zuzana Bednarikova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Srobarova 2, 041
54 Kosice, Slovakia
| | - Andrea Antosova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Department
of Biochemistry, Institute of Chemistry, Faculty of Science, P. J. Safarik University, Srobarova 2, 041
54 Kosice, Slovakia
| | - Truc Trang Nguyen
- Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward,
District 12, Ho Chi Minh City, Vietnam
| | - Zuzana Gazova
- Department
of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
| | - Mai Suan Li
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
22
|
Van Vuong Q, Bednarikova Z, Antosova A, Huy PDQ, Siposova K, Tuan NA, Li MS, Gazova Z. Inhibition of insulin amyloid fibrillization by glyco-acridines: an in vitro and in silico study. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00004a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of glyco-acridines determines their impact on insulin amyloid aggregation and newly introduced geometrical descriptors allow us to distinguish different binding affinities.
Collapse
Affiliation(s)
- Quan Van Vuong
- Institute for Computational Science and Technology
- Ho Chi Minh City
- Vietnam
| | - Zuzana Bednarikova
- Department of Biophysics
- Institute of Experimental Physics
- Slovak Academy of Sciences
- 040 01 Kosice
- Slovakia
| | - Andrea Antosova
- Department of Biophysics
- Institute of Experimental Physics
- Slovak Academy of Sciences
- 040 01 Kosice
- Slovakia
| | - Pham Dinh Quoc Huy
- Institute for Computational Science and Technology
- Ho Chi Minh City
- Vietnam
- Institute of Physics
- Polish Academy of Sciences
| | - Katarina Siposova
- Department of Biophysics
- Institute of Experimental Physics
- Slovak Academy of Sciences
- 040 01 Kosice
- Slovakia
| | | | - Mai Suan Li
- Institute for Computational Science and Technology
- Ho Chi Minh City
- Vietnam
- Institute of Physics
- Polish Academy of Sciences
| | - Zuzana Gazova
- Department of Biophysics
- Institute of Experimental Physics
- Slovak Academy of Sciences
- 040 01 Kosice
- Slovakia
| |
Collapse
|
23
|
He J, Wang Y, Chang AK, Xu L, Wang N, Chong X, Li H, Zhang B, Jones GW, Song Y. Myricetin prevents fibrillogenesis of hen egg white lysozyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9442-9449. [PMID: 25196984 DOI: 10.1021/jf5025449] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Myricetin is a natural flavonol found in many grapes, berries, fruits, vegetables, and herbs as well as other plants. Recent studies have identified potential antiamyloidogenic activity for this compound. In this study, the kinetics of amyloid fibril formation by hen egg white lysozyme (HEWL) and the antifibril-forming activity of myricetin were investigated. We demonstrate that myricetin significantly inhibits the fibrillation of HEWL and the inhibitory effect is dose-dependent. Interestingly, the inhibitory effect toward HEWL fibrillation was stronger than that exerted by the previously characterized fibril-forming inhibitor quercetin, which has high structural similarity with myricetin. Spectrofluorometric and computational studies suggest that the mechanism underlying the inhibitory action of myricetin at a molecular level is to reduce the population of partially unfolded HEWL intermediates. This action is achieved by the tight binding of myricetin to the aggregation-prone region of the β-domain of HEWL and linking to the relatively stable α-domain, thus resulting in the inhibition of amyloid fibril formation.
Collapse
Affiliation(s)
- Jianwei He
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, School of Life Science, Liaoning University , Shenyang 110036, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sheng R, Luo T, Li H, Sun J, Wang Z, Cao A. Cholesterol-based cationic lipids for gene delivery: Contribution of molecular structure factors to physico-chemical and biological properties. Colloids Surf B Biointerfaces 2014; 116:32-40. [DOI: 10.1016/j.colsurfb.2013.12.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 11/08/2022]
|
25
|
Tonazzini I, Meucci S, Faraci P, Beltram F, Cecchini M. Neuronal differentiation on anisotropic substrates and the influence of nanotopographical noise on neurite contact guidance. Biomaterials 2013; 34:6027-36. [DOI: 10.1016/j.biomaterials.2013.04.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
|
26
|
Gavrin LK, Denny RA, Saiah E. Small Molecules That Target Protein Misfolding. J Med Chem 2012; 55:10823-43. [DOI: 10.1021/jm301182j] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lori Krim Gavrin
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge,
Massachusetts 02140, United States
| | - Rajiah Aldrin Denny
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge,
Massachusetts 02140, United States
| | - Eddine Saiah
- BioTherapeutics
Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge,
Massachusetts 02140, United States
| |
Collapse
|
27
|
Bahramikia S, Yazdanparast R, Gheysarzadeh A. Syntheses and structure-activity relationships of seven manganese-salen derivatives as anti-amyloidogenic and fibril-destabilizing agents against hen egg-white lysozyme aggregation. Chem Biol Drug Des 2012; 80:227-36. [PMID: 22530978 DOI: 10.1111/j.1747-0285.2012.01391.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Accumulation of intra- and/or extracellular misfolded proteins as amyloid fibrils is a key hallmark in more than 20 amyloid-related diseases. In that respect, blocking or reversing amyloid aggregation via the use of small compounds is considered as two useful approaches in hampering the development of these diseases. In this research, we have studied the ability of different manganese-salen derivatives to inhibit amyloid self-assembly as well as to dissolve amyloid aggregates of hen egg-white lysozyme, as an in vitro model system, with the aim of investigating their structure-activity relationships. By coupling several techniques such as thioflavin T and anilinonaphthalene-8-sulfonic acid fluorescence, congo red absorbance, far-UV circular dichroism, and transmission electron microscopy, we demonstrated that all compounds possessed anti-amyloidogenic activities and were capable of dispersing the fibrillar aggregates. In addition, MTT assay of the treated SK-N-MC cells with the preformed fibrils formed in the presence of compounds at a drug-to-protein molar ratio of 5:1, indicated a significant increase in the viability of cells, compared to the fibrils formed in the absence of each of the compounds. Our spectroscopy, electron microscopy, and cellular studies indicated that EUK-15, with a methoxy group at the para position (group R(5)), had higher activity to either inhibit or disrupt the β-sheet structures relative to other compounds. On the basis of these results, it can be concluded that in addition to aromatic rings of each of the derivatives, the type and position of the side group(s) contribute to lower lysozyme fibril accumulation.
Collapse
Affiliation(s)
- Seifollah Bahramikia
- Institute of Biochemistry and Biophysics, P. O. Box 13145-1384, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|
28
|
Siposova K, Kubovcikova M, Bednarikova Z, Koneracka M, Zavisova V, Antosova A, Kopcansky P, Daxnerova Z, Gazova Z. Depolymerization of insulin amyloid fibrils by albumin-modified magnetic fluid. NANOTECHNOLOGY 2012; 23:055101. [PMID: 22238252 DOI: 10.1088/0957-4484/23/5/055101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pathogenesis of amyloid-related diseases is associated with the presence of protein amyloid deposits. Insulin amyloids have been reported in a patient with diabetes undergoing treatment by injection of insulin and causes problems in the production and storage of this drug and in pplication of insulin pumps. We have studied the interference of insulin amyloid fibrils with a series of 18 albumin magnetic fluids (MFBSAs) consisting of magnetite nanoparticles modified by different amounts of bovine serum albumin (w/w BSA/Fe₃O₄ from 0.005 up to 15). We have found that MFBSAs are able to destroy amyloid fibrils in vitro. The extent of fibril depolymerization was affected by nanoparticle physical-chemical properties (hydrodynamic diameter, zeta potential and isoelectric point) determined by the BSA amount present in MFBSAs. The most effective were MFBSAs with lower BSA/Fe₃O₄ ratios (from 0.005 to 0.1) characteristic of about 90% depolymerizing activity. For the most active magnetic fluids (ratios 0.01 and 0.02) the DC50 values were determined in the range of low concentrations, indicating their ability to interfere with insulin fibrils at stoichiometric concentrations. We assume that the present findings represent a starting point for the application of the active MFBSAs as therapeutic agents targeting insulin amyloidosis.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Soto-Ortega DD, Murphy BP, Gonzalez-Velasquez FJ, Wilson KA, Xie F, Wang Q, Moss MA. Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center. Bioorg Med Chem 2011; 19:2596-602. [PMID: 21458277 DOI: 10.1016/j.bmc.2011.03.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/26/2011] [Accepted: 03/06/2011] [Indexed: 12/27/2022]
Abstract
Aggregation of the amyloid-β protein (Aβ) plays a pathogenic role in the progression of Alzheimer's disease, and small molecules that attenuate Aβ aggregation have been identified toward a therapeutic strategy that targets the disease's underlying cause. Compounds containing aromatic structures have been repeatedly reported as effective inhibitors of Aβ aggregation, but the functional groups that influence inhibition by these aromatic centers have been less frequently explored. The current study identifies analogs of naturally occurring coumarin as novel inhibitors of Aβ aggregation. Derivatization of the coumarin structure is shown to affect inhibitory capabilities and to influence the point at which an inhibitor intervenes within the nucleation dependent Aβ aggregation pathway. In particular, functional groups found within amyloid binding dyes, such as benzothiazole and triazole, can improve inhibition efficacy. Furthermore, inhibitor intervention at early or late stages within the amyloid aggregation pathway is shown to correlate with the ability of these functional groups to recognize and bind amyloid species that appear either early or late within the aggregation pathway. These results demonstrate that functionalization of small aromatic molecules with recognition elements can be used in the rational design of Aβ aggregation inhibitors to not only enhance inhibition but to also manipulate the inhibition mechanism.
Collapse
Affiliation(s)
- Deborah D Soto-Ortega
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Neuroactive Multifunctional Tacrine Congeners with Cholinesterase, Anti-Amyloid Aggregation and Neuroprotective Properties. Pharmaceuticals (Basel) 2011. [PMCID: PMC4053961 DOI: 10.3390/ph4020382] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|