1
|
Wang JL, Jan CR, Chen MH. Action of econazole on Ca2+ levels and cytotoxicity in OC2 human oral cancer cells. J Dent Sci 2023. [DOI: 10.1016/j.jds.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
2
|
Ramlow L, Falcke M, Lindner B. An integrate-and-fire approach to Ca 2+ signaling. Part I: Renewal model. Biophys J 2023; 122:713-736. [PMID: 36635961 PMCID: PMC9989887 DOI: 10.1016/j.bpj.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
In computational neuroscience integrate-and-fire models capture the spike generation by a subthreshold dynamics supplemented by a simple fire-and-reset rule; they allow for a numerically efficient and analytically tractable description of stochastic single cell as well as network dynamics. Stochastic spiking is also a prominent feature of Ca2+ signaling which suggests to adopt the integrate-and-fire approach for this fundamental biophysical process. The model introduced here consists of two components describing 1) activity of clusters of inositol-trisphosphate receptor channels and 2) dynamics of the global Ca2+ concentrations in the cytosol. The cluster dynamics is given in terms of a cyclic Markov chain, capturing the puff, i.e., the punctuated release of Ca2+ from intracellular stores. The cytosolic Ca2+ concentration is described by an integrate-and-fire dynamics driven by the puff current. For the cyclic Markov chain we derive expressions for the statistics of the interpuff interval, the single-puff strength and the puff current assuming constant cytosolic Ca2+. The latter condition is often well approximated because cytosolic Ca2+ varies much slower than the cluster activity does. Furthermore, because the detailed two-component model is numerically expensive to simulate and difficult to treat analytically, we develop an analytical framework to approximate the driving puff current of the stochastic cytosolic Ca2+ dynamics by a temporally uncorrelated Gaussian noise. This approximation reduces our two-component system to an integrate-and-fire model with a nonlinear drift function and a multiplicative Gaussian white noise, a model that is known to generate a renewal spike train, i.e., a point process with statistically independent interspike intervals. The model allows for fast numerical simulations, permits to derive analytical expressions for the rate of Ca2+ spiking and the coefficient of variation of the interspike interval, and to approximate the interspike interval density and the spike train power spectrum. Comparison of these statistics to experimental data is discussed.
Collapse
Affiliation(s)
- Lukas Ramlow
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Physics Department of Humboldt University Berlin, Berlin, Germany.
| | - Martin Falcke
- Physics Department of Humboldt University Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany; Physics Department of Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
3
|
Potapenko E, Negrão NW, Huang G, Docampo R. The acidocalcisome inositol-1,4,5-trisphosphate receptor of Trypanosoma brucei is stimulated by luminal polyphosphate hydrolysis products. J Biol Chem 2019; 294:10628-10637. [PMID: 31138655 DOI: 10.1074/jbc.ra119.007906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
Acidocalcisomes are acidic calcium stores rich in polyphosphate (polyP) and are present in trypanosomes and also in a diverse range of other organisms. Ca2+ is released from these organelles through a channel, inositol 1,4,5-trisphosphate receptor (TbIP3R), which is essential for growth and infectivity of the parasite Trypanosoma brucei However, the mechanism by which TbIP3R controls Ca2+ release is unclear. In this work, we expressed TbIP3R in a chicken B lymphocyte cell line in which the genes for all three vertebrate IP3Rs were stably ablated (DT40-3KO). We show that IP3-mediated Ca2+ release depends on Ca2+ but not on ATP concentration and is inhibited by heparin, caffeine, and 2-aminomethoxydiphenyl borate (2-APB). Excised patch clamp recordings from nuclear membranes of DT40 cells expressing only TbIP3R disclosed that luminal inorganic orthophosphate (Pi) or pyrophosphate (PPi), and neutral or alkaline pH can stimulate IP3-generated currents. In contrast, polyP or acidic pH did not induce these currents, and nuclear membranes obtained from cells expressing rat IP3R were unresponsive to polyP or its hydrolysis products. Our results are consistent with the notion that polyP hydrolysis products within acidocalcisomes or alkalinization of their luminal pH activate TbIP3R and Ca2+ release. We conclude that TbIP3R is well-adapted to its role as the major Ca2+ release channel of acidocalcisomes in T. brucei.
Collapse
Affiliation(s)
| | - Núria W Negrão
- From the Center for Tropical and Emerging Global Diseases and.,Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Guozhong Huang
- From the Center for Tropical and Emerging Global Diseases and
| | - Roberto Docampo
- From the Center for Tropical and Emerging Global Diseases and .,Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
4
|
Calcium Oscillatory Behavior and Its Possible Role during Wound Healing in Bovine Corneal Endothelial Cells in Culture. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8647121. [PMID: 30915363 PMCID: PMC6409003 DOI: 10.1155/2019/8647121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 12/29/2022]
Abstract
In epithelial layers in culture, immediately after an injury a fast calcium wave (FCW) propagates from the wound borders toward the rest of the monolayer. We show here that similarly to other tissues, during the FCW in bovine corneal endothelial (BCE) cells in culture many cells exhibit calcium oscillations mediated by IP3 signaling. In this study we perform a detailed characterization of this oscillatory behavior and explore its possible role in the process of wound healing. In previous work we showed that, in BCE cells in culture, the healing cells undergo two stages of caspase-dependent apoptosis, at approximately two and eight hours after wounding. We determined that inhibition of the FCW greatly increases the apoptotic rate of the two stages, suggesting that the wave prevents excessive apoptosis of the healing cells. Taking this into account, we investigated the possible participation of the calcium oscillations during the FCW in apoptosis of the healing cells. For this, we employed ARL-67156 (ARL), a weak competitive inhibitor of ecto-ATPases, and the calcium chelator EGTA. We show here that, in healing BCE cells, ARL enhances cellular calcium oscillations during the FCW, while EGTA decreases oscillations. We found that ARL produces a significant decrease (to about half the control value) in the apoptotic index of the first stage of apoptosis, while EGTA increases it. Neither drug noticeably affects the second stage. We have interpreted the effect of ARL on apoptosis as due to the maintenance of moderately risen ATP levels during the FCW, which is in turn the cause for the enhancement of ATP-dependent calcium oscillations. Correspondingly, EGTA would increase the apoptotic index of the first stage by promoting a decrease in the calcium oscillatory rate. The fact that the second stage of apoptosis is not affected by the drugs suggests that the two stages are at least partially subject to different signaling pathways.
Collapse
|
5
|
Rossi AM, Taylor CW. IP3 receptors – lessons from analyses ex cellula. J Cell Sci 2018; 132:132/4/jcs222463. [DOI: 10.1242/jcs.222463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
ABSTRACT
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are widely expressed intracellular channels that release Ca2+ from the endoplasmic reticulum (ER). We review how studies of IP3Rs removed from their intracellular environment (‘ex cellula’), alongside similar analyses of ryanodine receptors, have contributed to understanding IP3R behaviour. Analyses of permeabilized cells have demonstrated that the ER is the major intracellular Ca2+ store, and that IP3 stimulates Ca2+ release from this store. Radioligand binding confirmed that the 4,5-phosphates of IP3 are essential for activating IP3Rs, and facilitated IP3R purification and cloning, which paved the way for structural analyses. Reconstitution of IP3Rs into lipid bilayers and patch-clamp recording from the nuclear envelope have established that IP3Rs have a large conductance and select weakly between Ca2+ and other cations. Structural analyses are now revealing how IP3 binding to the N-terminus of the tetrameric IP3R opens the pore ∼7 nm away from the IP3-binding core (IBC). Communication between the IBC and pore passes through a nexus of interleaved domains contributed by structures associated with the pore and cytosolic domains, which together contribute to a Ca2+-binding site. These structural analyses provide evidence to support the suggestion that IP3 gates IP3Rs by first stimulating Ca2+ binding, which leads to pore opening and Ca2+ release.
Collapse
Affiliation(s)
- Ana M. Rossi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Colin W. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
6
|
Fedorenko YA. Conductance of Channels of IP3 Receptors of the Nuclear Envelope in Purkinje Neurons. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Walliser C, Tron K, Clauss K, Gutman O, Kobitski AY, Retlich M, Schade A, Röcker C, Henis YI, Nienhaus GU, Gierschik P. Rac-mediated Stimulation of Phospholipase Cγ2 Amplifies B Cell Receptor-induced Calcium Signaling. J Biol Chem 2015; 290:17056-72. [PMID: 25903139 DOI: 10.1074/jbc.m115.645739] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 12/21/2022] Open
Abstract
The Rho GTPase Rac is crucially involved in controlling multiple B cell functions, including those regulated by the B cell receptor (BCR) through increased cytosolic Ca(2+). The underlying molecular mechanisms and their relevance to the functions of intact B cells have thus far remained unknown. We have previously shown that the activity of phospholipase Cγ2 (PLCγ2), a key constituent of the BCR signalosome, is stimulated by activated Rac through direct protein-protein interaction. Here, we use a Rac-resistant mutant of PLCγ2 to functionally reconstitute cultured PLCγ2-deficient DT40 B cells and to examine the effects of the Rac-PLCγ2 interaction on BCR-mediated changes of intracellular Ca(2+) and regulation of Ca(2+)-regulated and nuclear-factor-of-activated-T-cell-regulated gene transcription at the level of single, intact B cells. The results show that the functional Rac-PLCγ2 interaction causes marked increases in the following: (i) sensitivity of B cells to BCR ligation; (ii) BCR-mediated Ca(2+) release from intracellular stores; (iii) Ca(2+) entry from the extracellular compartment; and (iv) nuclear translocation of the Ca(2+)-regulated nuclear factor of activated T cells. Hence, Rac-mediated stimulation of PLCγ2 activity serves to amplify B cell receptor-induced Ca(2+) signaling.
Collapse
Affiliation(s)
- Claudia Walliser
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Kyrylo Tron
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Karen Clauss
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Orit Gutman
- the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrei Yu Kobitski
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Michael Retlich
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Anja Schade
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany
| | - Carlheinz Röcker
- the Institute of Biophysics, University of Ulm, 89069 Ulm, Germany
| | - Yoav I Henis
- the Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - G Ulrich Nienhaus
- the Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany, the Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany, and the Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Peter Gierschik
- From the Institute of Pharmacology and Toxicology, University of Ulm Medical Center, 89070 Ulm, Germany,
| |
Collapse
|
8
|
Arndt L, Castonguay J, Arlt E, Meyer D, Hassan S, Borth H, Zierler S, Wennemuth G, Breit A, Biel M, Wahl-Schott C, Gudermann T, Klugbauer N, Boekhoff I. NAADP and the two-pore channel protein 1 participate in the acrosome reaction in mammalian spermatozoa. Mol Biol Cell 2014; 25:948-64. [PMID: 24451262 PMCID: PMC3952862 DOI: 10.1091/mbc.e13-09-0523] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A TPCN1 gene–deficient mouse strain is used to show that two convergent working NAADP-dependent pathways with nonoverlapping activation and self-inactivation profiles for distinct NAADP concentrations drive acrosomal exocytosis, by which TPC1 is central for the pathway activated by low-micromolar NAADP concentrations. The functional relationship between the formation of hundreds of fusion pores during the acrosome reaction in spermatozoa and the mobilization of calcium from the acrosome has been determined only partially. Hence, the second messenger NAADP, promoting efflux of calcium from lysosome-like compartments and one of its potential molecular targets, the two-pore channel 1 (TPC1), were analyzed for its involvement in triggering the acrosome reaction using a TPCN1 gene–deficient mouse strain. The present study documents that TPC1 and NAADP-binding sites showed a colocalization at the acrosomal region and that treatment of spermatozoa with NAADP resulted in a loss of the acrosomal vesicle that showed typical properties described for TPCs: Registered responses were not detectable for its chemical analogue NADP and were blocked by the NAADP antagonist trans-Ned-19. In addition, two narrow bell-shaped dose-response curves were identified with maxima in either the nanomolar or low micromolar NAADP concentration range, where TPC1 was found to be responsible for activating the low affinity pathway. Our finding that two convergent NAADP-dependent pathways are operative in driving acrosomal exocytosis supports the concept that both NAADP-gated cascades match local NAADP concentrations with the efflux of acrosomal calcium, thereby ensuring complete fusion of the large acrosomal vesicle.
Collapse
Affiliation(s)
- Lilli Arndt
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians University, 81377 München, Germany Department of Pharmacy, Ludwig-Maximilians University, 81377 München, Germany Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-University, 79104 Freiburg, Germany Institute for Anatomy, University of Duisburg-Essen, 45141 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Domijan AM, Kovac S, Abramov AY. Lipid peroxidation is essential for phospholipase C activity and the inositol-trisphosphate-related Ca²⁺ signal. J Cell Sci 2013; 127:21-6. [PMID: 24198393 DOI: 10.1242/jcs.138370] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) are produced in enzymatic and non-enzymatic reactions and have important roles in cell signalling but also detrimental effects. ROS-induced damage has been implicated in a number of neurological diseases; however, antioxidant therapies targeting brain diseases have been unsuccessful. Such failure might be related to inhibition of ROS-induced signalling in the brain. Using direct kinetic measures of lipid peroxidation in astrocytes and measurements of lipid peroxidation products in brain tissue, we here show that phospholipase C (PLC) preferentially cleaves oxidised lipids. Because of this, an increase in the rate of lipid peroxidation leads to increased Ca(2+) release from endoplasmic reticulum (ER) stores in response to physiological activation of purinoreceptors with ATP. Both vitamin E and its water-soluble analogue Trolox, potent ROS scavengers, were able to suppress PLC activity, therefore dampening intracellular Ca(2+) signalling. This implies that antioxidants can compromise intracellular Ca(2+) signalling through inhibition of PLC, and that PLC plays a dual role - signalling and antioxidant defence.
Collapse
|
10
|
Pokotylo I, Kolesnikov Y, Kravets V, Zachowski A, Ruelland E. Plant phosphoinositide-dependent phospholipases C: variations around a canonical theme. Biochimie 2013; 96:144-57. [PMID: 23856562 DOI: 10.1016/j.biochi.2013.07.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/04/2013] [Indexed: 01/01/2023]
Abstract
Phosphoinositide-specific phospholipase C (PI-PLC) cleaves, in a Ca(2+)-dependent manner, phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) into diacylglycerol (DAG) and inositol triphosphate (IP3). PI-PLCs are multidomain proteins that are structurally related to the PI-PLCζs, the simplest animal PI-PLCs. Like these animal counterparts, they are only composed of EF-hand, X/Y and C2 domains. However, plant PI-PLCs do not have a conventional EF-hand domain since they are often truncated, while some PI-PLCs have no EF-hand domain at all. Despite this simple structure, plant PI-PLCs are involved in many essential plant processes, either associated with development or in response to environmental stresses. The action of PI-PLCs relies on the mediators they produce. In plants, IP3 does not seem to be the sole active soluble molecule. Inositol pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) also transmit signals, thus highlighting the importance of coupling PI-PLC action with inositol-phosphate kinases and phosphatases. PI-PLCs also produce a lipid molecule, but plant PI-PLC pathways show a peculiarity in that the active lipid does not appear to be DAG but its phosphorylated form, phosphatidic acid (PA). Besides, PI-PLCs can also act by altering their substrate levels. Taken together, plant PI-PLCs show functional differences when compared to their animal counterparts. However, they act on similar general signalling pathways including calcium homeostasis and cell phosphoproteome. Several important questions remain unanswered. The cross-talk between the soluble and lipid mediators generated by plant PI-PLCs is not understood and how the coupling between PI-PLCs and inositol-kinases or DAG-kinases is carried out remains to be established.
Collapse
Affiliation(s)
- Igor Pokotylo
- Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kiev, Ukraine.
| | | | | | | | | |
Collapse
|
11
|
Robert V, Triffaux E, Savignac M, Pelletier L. [Calcium signaling in T lymphocytes]. Med Sci (Paris) 2012; 28:773-9. [PMID: 22920880 DOI: 10.1051/medsci/2012288020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Calcium signaling is essential for all the functions of T lymphocytes, including those of Th2 cells. Th2 lymphocytes producing interleukins 4, 5 and 13 orchestrate allergic diseases including asthma. T-cell activation induces an influx of Ca(2+) from the external medium through ORAI calcium channels although other calcium channels are likely to be involved. Among them, voltage-gated calcium (Ca(v)1) channels have been reported in some T-cell subsets including Th2 cells. The inhibition of Ca(v)1 channels abrogates T-cell receptor-driven calcium influx and interleukin production by Th2 cells. From a therapeutic point of view, the inhibition of Ca(v)1 channels prevents Th2-dependent experimental allergic asthma. In this review, we will discuss the singularities of calcium responses depending upon the T-cell subset and its state of activation.
Collapse
Affiliation(s)
- Virginie Robert
- Inserm U1043, centre de physiopathologie de Toulouse Purpan, place du Docteur Baylac, BP 3028, 31024 Toulouse Cedex 3, France.
| | | | | | | |
Collapse
|