1
|
Khristov V, Weber SR, Caton-Darby M, Campbell G, Sundstrom JM. Diagnostic and Therapeutic Utility of Extracellular Vesicles in Ocular Disease. Int J Mol Sci 2025; 26:836. [PMID: 39859553 PMCID: PMC11765869 DOI: 10.3390/ijms26020836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer particles released by virtually all cells, with prominent roles in both physiological and pathological processes. The size, number, and molecular composition of released EVs correlate to the cells of origin, modulated by the cell's environment and pathologic state. The proteins, DNA, RNA, and protein cargo carried by EVs are protected by degradation, with a prominent role in targeted intercellular signaling. These properties make EVs salient targets as both carriers of biomarkers and potential therapeutic delivery vehicles. The majority of EV research has focused on blood, urine, saliva, and cerebrospinal fluid due to easy accessibility. EVs have also been identified and studied in all ocular biofluids, including the vitreous humor, the aqueous humor, and the tear film, and the study of EVs in ocular disease is a new, promising, and underexplored direction with unique challenges and considerations. This review covers recent advances in the diagnostic and therapeutic use of ocular EVs, with a focus on human applications and key preceding in vitro and in vivo animal studies. We also discuss future directions based on the study of EVs in other organ systems and disease sates.
Collapse
Affiliation(s)
- Vladimir Khristov
- Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.K.); (G.C.)
| | - Sarah R. Weber
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| | - Mireille Caton-Darby
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| | - Gregory Campbell
- Penn State Hershey College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (V.K.); (G.C.)
| | - Jeffrey M. Sundstrom
- Department of Ophthalmology, Penn State University, Hershey, PA 17033, USA; (S.R.W.); (M.C.-D.)
| |
Collapse
|
2
|
Otte EA, Smith TN, Glass N, Wolvetang EJ, Cooper-White JJ. Exploring the cell interactome: deciphering relative impacts of cell-cell communication in cell co-culture using a novel microfluidic device. LAB ON A CHIP 2024; 24:537-548. [PMID: 38168806 DOI: 10.1039/d3lc00670k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The human body is made up of approximately 40 trillion cells in close contact, with the cellular density of individual tissues varying from 1 million to 1 billion cells per cubic centimetre. Interactions between different cell types (termed heterotypic) are thus common in vivo. Communication between cells can take the form of direct cell-cell contact mediated by plasma membrane proteins or through paracrine signalling mediated through the release, diffusion, and receipt of soluble factors. There is currently no systematic method to investigate the relative contributions of these mechanisms to cell behaviour. In this paper, we detail the conception, development and validation of a microfluidic device that allows cell-cell contact and paracrine signalling in defined areas and over a variety of biologically relevant length scales, referred to as the interactome-device or 'I-device'. Importantly, by intrinsic device design features, cells in different regions in the device are exposed to four different interaction types, including a) no heterotypic cell interaction, b) only paracrine signalling, c) only cell-cell direct contact, or d) both forms of interaction (paracrine and cell-cell direct contact) together. The device design was validated by both mathematical modelling and experiments. Perfused stem cell culture over the medium term and the formation of direct contact between cells in the culture chambers was confirmed. The I-device offers significant flexibility, being able to be applied to any combination of adherent cells to determine the relative contributions of different communication mechanisms to cellular outcomes.
Collapse
Affiliation(s)
- Ellen A Otte
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing, Clayton, VIC, Australia
| | - Taryn N Smith
- School of Chemical Engineering, University of Queensland, St Lucia, QLD, Australia
| | - Nick Glass
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Ernst J Wolvetang
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Justin J Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TE&M), Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St Lucia, QLD, Australia.
- The UQ Centre in Stem Cell Ageing and Regenerative Engineering (StemCARE), Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
- School of Chemical Engineering, University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Manufacturing, Clayton, VIC, Australia
| |
Collapse
|
3
|
Lu Y, Li G, Li Y, Yao Y. Cellulose nanofibril matrix drives the dynamic formation of spheroids. J Zhejiang Univ Sci B 2023; 24:922-934. [PMID: 37752093 PMCID: PMC10522563 DOI: 10.1631/jzus.b23d0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 09/28/2023]
Abstract
Multicellular spheroids, which mimic the natural organ counterparts, allow the prospect of drug screening and regenerative medicine. However, their application is hampered by low processing efficiency or limited scale. This study introduces an efficient method to drive rapid multicellular spheroid formation by a cellulose nanofibril matrix. This matrix enables the facilitated growth of spheroids (within 48 h) through multiple cell assembly into size-controllable aggregates with well-organized physiological microstructure. The efficiency, dimension, and conformation of the as-formed spheroids depend on the concentration of extracellular nanofibrils, the number of assembled cells, and the heterogeneity of cell types. The above strategy allows the robust formation mechanism of compacted tumoroids and hepatocyte spheroids.
Collapse
Affiliation(s)
- Yi Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guo Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yeqiu Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yuan Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
4
|
Man K, Eisenstein NM, Hoey DA, Cox SC. Bioengineering extracellular vesicles: smart nanomaterials for bone regeneration. J Nanobiotechnology 2023; 21:137. [PMID: 37106449 PMCID: PMC10134574 DOI: 10.1186/s12951-023-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
In the past decade, extracellular vesicles (EVs) have emerged as key regulators of bone development, homeostasis and repair. EV-based therapies have the potential to circumnavigate key issues hindering the translation of cell-based therapies including functional tissue engraftment, uncontrolled differentiation and immunogenicity issues. Due to EVs' innate biocompatibility, low immunogenicity, and high physiochemical stability, these naturally-derived nanoparticles have garnered growing interest as potential acellular nanoscale therapeutics for a variety of diseases. Our increasing knowledge of the roles these cell-derived nanoparticles play, has made them an exciting focus in the development of novel pro-regenerative therapies for bone repair. Although these nano-sized vesicles have shown promise, their clinical translation is hindered due to several challenges in the EV supply chain, ultimately impacting therapeutic efficacy and yield. From the biochemical and biophysical stimulation of parental cells to the transition to scalable manufacture or maximising vesicles therapeutic response in vivo, a multitude of techniques have been employed to improve the clinical efficacy of EVs. This review explores state of the art bioengineering strategies to promote the therapeutic utility of vesicles beyond their native capacity, thus maximising the clinical potential of these pro-regenerative nanoscale therapeutics for bone repair.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Neil M Eisenstein
- Research and Clinical Innovation, Royal Centre for Defence Medicine, ICT Centre, Vincent Drive, Birmingham, B15 2SQ, UK
- Institute of Translational Medicine, University of Birmingham, Heritage Building, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - David A Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, D02 R590, Ireland
- Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College, Dublin 2, D02 DK07, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin 2, D02 VN51, Dublin, Ireland
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
5
|
The differentiation of human induced pluripotent stem cells into hematopoietic stem cells on 3D bone scaffold in a dynamic culture system. Tissue Cell 2023; 82:102044. [PMID: 36905860 DOI: 10.1016/j.tice.2023.102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Hematopoietic stem cell transplantation is used for cell-based therapy for many hematological disorders. However, difficulty in finding proper donors has limited this source of stem cells. For clinical application, the generation of these cells from induced pluripotent stem cells (iPSs) is a fascinating and endless source. One of the experimental methods to generate HSCs from iPSs is the mimicking of the hematopoietic niche. In the current study, as the first phase of differentiation, embryoid bodies were formed from iPSs. They were then cultured in different dynamic conditions in order to determine the appropriate settings for their differentiation into HSCs. The dynamic culture was composed of DBM Scaffold with or without growth factor. After ten days, the specific HSC markers (CD34, CD133, CD31 and CD45) were assessed using flow-cytometry. Our findings demonstrated that the dynamic conditions were significantly suitable than static ones. In addition, in 3D scaffold and dynamic system the expression of CXCR4, as a homing marker, was increased. These results suggest that the 3D culture bioreactor with DBM scaffold could provide a new approach for differentiation of iPSs into HSCs. Moreover, this system could provide maximum mimicry of bone marrow niche.
Collapse
|
6
|
Castillo-Romero KF, Santacruz A, González-Valdez J. Production and purification of bacterial membrane vesicles for biotechnology applications: Challenges and opportunities. Electrophoresis 2023; 44:107-124. [PMID: 36398478 DOI: 10.1002/elps.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
Bacterial membrane vesicles (BMVs) are bi-layered nanostructures derived from Gram-negative and Gram-positive bacteria. Among other pathophysiological roles, BMVs are critical messengers in intercellular communication. As a result, BMVs are emerging as a promising technology for the development of numerous therapeutic applications. Despite the remarkable progress in unveiling BMV biology and functions in recent years, their successful isolation and purification have been limited. Several challenges related to vesicle purity, yield, and scalability severely hamper the further development of BMVs for biotechnology and clinical applications. This review focuses on the current technologies and methodologies used in BMV production and purification, such as ultracentrifugation, density-gradient centrifugation, size-exclusion chromatography, ultrafiltration, and precipitation. We also discuss the current challenges related to BMV isolation, large-scale production, storage, and stability that limit their application. More importantly, the present work explains the most recent strategies proposed for overcoming those challenges. Finally, we summarize the ongoing applications of BMVs in the biotechnological field.
Collapse
Affiliation(s)
- Keshia F Castillo-Romero
- School of Engineering and Science, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León, Mexico
| | - Arlette Santacruz
- School of Engineering and Science, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León, Mexico
| | - José González-Valdez
- School of Engineering and Science, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León, Mexico
| |
Collapse
|
7
|
Current Advances in 3D Dynamic Cell Culture Systems. Gels 2022; 8:gels8120829. [PMID: 36547353 PMCID: PMC9778081 DOI: 10.3390/gels8120829] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The traditional two-dimensional (2D) cell culture methods have a long history of mimicking in vivo cell growth. However, these methods cannot fully represent physiological conditions, which lack two major indexes of the in vivo environment; one is a three-dimensional 3D cell environment, and the other is mechanical stimulation; therefore, they are incapable of replicating the essential cellular communications between cell to cell, cell to the extracellular matrix, and cellular responses to dynamic mechanical stimulation in a physiological condition of body movement and blood flow. To solve these problems and challenges, 3D cell carriers have been gradually developed to provide a 3D matrix-like structure for cell attachment, proliferation, differentiation, and communication in static and dynamic culture conditions. 3D cell carriers in dynamic culture systems could primarily provide different mechanical stimulations which further mimic the real in vivo microenvironment. In this review, the current advances in 3D dynamic cell culture approaches have been introduced, with their advantages and disadvantages being discussed in comparison to traditional 2D cell culture in static conditions.
Collapse
|
8
|
Fuentes P, Torres MJ, Arancibia R, Aulestia F, Vergara M, Carrión F, Osses N, Altamirano C. Dynamic Culture of Mesenchymal Stromal/Stem Cell Spheroids and Secretion of Paracrine Factors. Front Bioeng Biotechnol 2022; 10:916229. [PMID: 36046670 PMCID: PMC9421039 DOI: 10.3389/fbioe.2022.916229] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, conditioned medium (CM) obtained from the culture of mesenchymal stromal/stem cells (MSCs) has been shown to effectively promote tissue repair and modulate the immune response in vitro and in different animal models, with potential for application in regenerative medicine. Using CM offers multiple advantages over the implantation of MSCs themselves: 1) simpler storage, transport, and preservation requirements, 2) avoidance of the inherent risks of cell transplantation, and 3) potential application as a ready-to-go biologic product. For these reasons, a large amount of MSCs research has focused on the characterization of the obtained CM, including soluble trophic factors and vesicles, preconditioning strategies for enhancing paracrine secretion, such as hypoxia, a three-dimensional (3D) environment, and biochemical stimuli, and potential clinical applications. In vitro preconditioning strategies can increase the viability, proliferation, and paracrine properties of MSCs and therefore improve the therapeutic potential of the cells and their derived products. Specifically, dynamic cultivation conditions, such as fluid flow and 3D aggregate culture, substantially impact cellular behaviour. Increased levels of growth factors and cytokines were observed in 3D cultures of MSC grown on orbital or rotatory shaking platforms, in stirred systems, such as spinner flasks or stirred tank reactors, and in microgravity bioreactors. However, only a few studies have established dynamic culture conditions and protocols for 3D aggregate cultivation of MSCs as a scalable and reproducible strategy for CM production. This review summarizes significant advances into the upstream processing, mainly the dynamic generation and cultivation of MSC aggregates, for de CM manufacture and focuses on the standardization of the soluble factor production.
Collapse
Affiliation(s)
- Paloma Fuentes
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - María José Torres
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Rodrigo Arancibia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Francisco Aulestia
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Cellus Biomédica, Parque Tecnológico de León, León, Spain
| | - Mauricio Vergara
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Flavio Carrión
- Cellus Medicina Regenerativa S.A., Santiago, Chile
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Nelson Osses
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- CREAS, Centro Regional de Estudios en Alimentos Saludables, Valparaíso, Chile
- *Correspondence: Claudia Altamirano,
| |
Collapse
|
9
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
10
|
Yamada S, Yassin MA, Schwarz T, Mustafa K, Hansmann J. Optimization and Validation of a Custom-Designed Perfusion Bioreactor for Bone Tissue Engineering: Flow Assessment and Optimal Culture Environmental Conditions. Front Bioeng Biotechnol 2022; 10:811942. [PMID: 35402393 PMCID: PMC8990132 DOI: 10.3389/fbioe.2022.811942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Various perfusion bioreactor systems have been designed to improve cell culture with three-dimensional porous scaffolds, and there is some evidence that fluid force improves the osteogenic commitment of the progenitors. However, because of the unique design concept and operational configuration of each study, the experimental setups of perfusion bioreactor systems are not always compatible with other systems. To reconcile results from different systems, the thorough optimization and validation of experimental configuration are required in each system. In this study, optimal experimental conditions for a perfusion bioreactor were explored in three steps. First, an in silico modeling was performed using a scaffold geometry obtained by microCT and an expedient geometry parameterized with porosity and permeability to assess the accuracy of calculated fluid shear stress and computational time. Then, environmental factors for cell culture were optimized, including the volume of the medium, bubble suppression, and medium evaporation. Further, by combining the findings, it was possible to determine the optimal flow rate at which cell growth was supported while osteogenic differentiation was triggered. Here, we demonstrated that fluid shear stress up to 15 mPa was sufficient to induce osteogenesis, but cell growth was severely impacted by the volume of perfused medium, the presence of air bubbles, and medium evaporation, all of which are common concerns in perfusion bioreactor systems. This study emphasizes the necessity of optimization of experimental variables, which may often be underreported or overlooked, and indicates steps which can be taken to address issues common to perfusion bioreactors for bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
- *Correspondence: Shuntaro Yamada, ; Jan Hansmann,
| | - Mohammed A. Yassin
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Thomas Schwarz
- Translational Centre Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
| | - Kamal Mustafa
- Centre of Translational Oral Research, Tissue Engineering Group, Department of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Jan Hansmann
- Translational Centre Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Würzburg, Germany
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Department Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Würzburg, Germany
- *Correspondence: Shuntaro Yamada, ; Jan Hansmann,
| |
Collapse
|
11
|
Zhang M, Niibe K, Kondo T, Limraksasin P, Okawa H, Miao X, Kamano Y, Yamada M, Jiang X, Egusa H. Rapid and efficient generation of cartilage pellets from mouse induced pluripotent stem cells by transcriptional activation of BMP-4 with shaking culture. J Tissue Eng 2022; 13:20417314221114616. [PMID: 35923173 PMCID: PMC9340412 DOI: 10.1177/20417314221114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) offer an unlimited source for cartilage
regeneration as they can generate a wide spectrum of cell types. Here, we
established a tetracycline (tet) controlled bone morphogenetic
protein-4 (BMP-4) expressing iPSC
(iPSC-Tet/BMP-4) line in which transcriptional activation
of BMP-4 was associated with enhanced chondrogenesis. Moreover,
we developed an efficient and simple approach for directly guiding
iPSC-Tet/BMP-4 differentiation into chondrocytes in
scaffold-free cartilaginous pellets using a combination of transcriptional
activation of BMP-4 and a 3D shaking suspension culture system.
In chondrogenic induction medium, shaking culture alone significantly
upregulated the chondrogenic markers Sox9, Col2a1, and
Aggrecan in iPSCs-Tet/BMP-4 by day 21. Of
note, transcriptional activation of BMP-4 by addition of tet
(doxycycline) greatly enhanced the expression of these genes. The cartilaginous
pellets derived from iPSCs-Tet/BMP-4 showed an oval morphology
and white smooth appearance by day 21. After day 21, the cells presented a
typical round morphology and the extracellular matrix was stained intensively
with Safranin O, alcian blue, and type II collagen. In addition, the homogenous
cartilaginous pellets derived from iPSCs-Tet/BMP-4 with 28 days
of induction repaired joint osteochondral defects in immunosuppressed rats and
integrated well with the adjacent host cartilage. The regenerated cartilage
expressed the neomycin resistance gene, indicating that the newly formed
cartilage was generated by the transplanted iPSCs-Tet/BMP-4.
Thus, our culture system could be a useful tool for further investigation of the
mechanism of BMP-4 in regulating iPSC differentiation toward the chondrogenic
lineage, and should facilitate research in cartilage development, repair, and
osteoarthritis.
Collapse
Affiliation(s)
- Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Department of Prosthodontics, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Takeru Kondo
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Xinchao Miao
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Yuya Kamano
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Xinquan Jiang
- Department of Prosthodontics, Ninth People’s Hospital affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| |
Collapse
|
12
|
Burk J, Melzer M, Hagen A, Lips KS, Trinkaus K, Nimptsch A, Leopold J. Phospholipid Profiles for Phenotypic Characterization of Adipose-Derived Multipotent Mesenchymal Stromal Cells. Front Cell Dev Biol 2021; 9:784405. [PMID: 34926463 PMCID: PMC8672196 DOI: 10.3389/fcell.2021.784405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/09/2021] [Indexed: 11/14/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) have emerged as therapeutic tools for a wide range of pathological conditions. Yet, the still existing deficits regarding MSC phenotype characterization and the resulting heterogeneity of MSC used in different preclinical and clinical studies hamper the translational success. In search for novel MSC characterization approaches to complement the traditional trilineage differentiation and immunophenotyping assays reliably across species and culture conditions, this study explored the applicability of lipid phenotyping for MSC characterization and discrimination. Human peripheral blood mononuclear cells (PBMC), human fibroblasts, and human and equine adipose-derived MSC were used to compare different mesodermal cell types and MSC from different species. For MSC, cells cultured in different conditions, including medium supplementation with either fetal bovine serum or platelet lysate as well as culture on collagen-coated dishes, were additionally investigated. After cell harvest, lipids were extracted by chloroform/methanol according to Bligh and Dyer. The lipid profiles were analysed by an untargeted approach using liquid chromatography coupled to mass spectrometry (LC-MS) with a reversed phase column and an ion trap mass spectrometer. In all samples, phospholipids and sphingomyelins were found, while other lipids were not detected with the current approach. The phospholipids included different species of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS) in all cell types, whereas phosphatidylglycerol (PG) species were only present in MSC. MSC from both species showed a higher phospholipid species diversity than PBMC and fibroblasts. Few differences were found between MSC from different culture conditions, except that human MSC cultured with platelet lysate exhibited a unique phenotype in that they exclusively featured PE O-40:4, PG 38:6 and PG 40:6. In search for specific and inclusive candidate MSC lipid markers, we identified PE O-36:3 and PG 40:7 as potentially suitable markers across culture conditions, at which PE O-36:3 might even be used across species. On that basis, phospholipid phenotyping is a highly promising approach for MSC characterization, which might condone some heterogeneity within the MSC while still achieving a clear discrimination even from fibroblasts. Particularly the presence or absence of PG might emerge as a decisive criterion for future MSC characterization.
Collapse
Affiliation(s)
- Janina Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Michaela Melzer
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Alina Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University of Giessen, Giessen, Germany
| | - Katrin Susanne Lips
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Katja Trinkaus
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ariane Nimptsch
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Jenny Leopold
- Institute for Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Mavris SM, Hansen LM. Optimization of Oxygen Delivery Within Hydrogels. J Biomech Eng 2021; 143:101004. [PMID: 33973004 PMCID: PMC8299803 DOI: 10.1115/1.4051119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/05/2021] [Indexed: 12/19/2022]
Abstract
The field of tissue engineering has been continuously evolving since its inception over three decades ago with numerous new advancements in biomaterials and cell sources and widening applications to most tissues in the body. Despite the substantial promise and great opportunities for the advancement of current medical therapies and procedures, the field has yet to capture wide clinical translation due to some remaining challenges, including oxygen availability within constructs, both in vitro and in vivo. While this insufficiency of nutrients, specifically oxygen, is a limitation within the current frameworks of this field, the literature shows promise in new technological advances to efficiently provide adequate delivery of nutrients to cells. This review attempts to capture the most recent advances in the field of oxygen transport in hydrogel-based tissue engineering, including a comparison of current research as it pertains to the modeling, sensing, and optimization of oxygen within hydrogel constructs as well as new technological innovations to overcome traditional diffusion-based limitations. The application of these findings can further the advancement and development of better hydrogel-based tissue engineered constructs for future clinical translation and adoption.
Collapse
Affiliation(s)
- Sophia M. Mavris
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Atlanta, GA 30332
| | - Laura M. Hansen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322
| |
Collapse
|
14
|
Shi F, Xiao D, Zhang C, Zhi W, Liu Y, Weng J. The effect of macropore size of hydroxyapatite scaffold on the osteogenic differentiation of bone mesenchymal stem cells under perfusion culture. Regen Biomater 2021; 8:rbab050. [PMID: 34567788 PMCID: PMC8457200 DOI: 10.1093/rb/rbab050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022] Open
Abstract
Previous studies have proved that dynamic culture could facilitate nutrients transport and apply mechanical stimulation to the cells within three-dimensional scaffolds, thus enhancing the differentiation of stem cells towards the osteogenic phenotype. However, the effects of macropore size on osteogenic differentiation of stem cells under dynamic condition are still unclear. Therefore, the objective of this study was to investigate the effects of macropore size of hydroxyapatite (HAp) scaffolds on osteogenic differentiation of bone mesenchymal stem cells under static and perfusion culture conditions. In vitro cell culture results showed that cell proliferation, alkaline phosphate (ALP) activity, mRNA expression of ALP, collagen-I (Col-I), osteocalcin (OCN) and osteopontin (OPN) were enhanced when cultured under perfusion condition in comparison to static culture. Under perfusion culture condition, the ALP activity and the gene expression of ALP, Col-I, OCN and OPN were enhanced with the macropore size decreasing from 1300 to 800 µm. However, with the further decrease in macropore size from 800 to 500 µm, the osteogenic related gene expression and protein secretion were reduced. Computational fluid dynamics analysis showed that the distribution areas of medium- and high-speed flow increased with the decrease in macropore size, accompanied by the increase of the fluid shear stress within the scaffolds. These results confirm the effects of macropore size on fluid flow stimuli and cell differentiation, and also help optimize the macropore size of HAp scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Feng Shi
- Collaboration Innovation Center for Tissue Repair Material Engineering Technology, College of Life Science, China West Normal University, No.1 Shida Road, Nanchong, Sichuan 637002, China.,Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, No.97 Renmin South Road, Nanchong, Sichuan 637000, China.,College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, No.97 Renmin South Road, Nanchong, Sichuan 637000, China
| | - Chengdong Zhang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, No.97 Renmin South Road, Nanchong, Sichuan 637000, China.,College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| | - Wei Zhi
- College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| | - Yumei Liu
- Collaboration Innovation Center for Tissue Repair Material Engineering Technology, College of Life Science, China West Normal University, No.1 Shida Road, Nanchong, Sichuan 637002, China.,College of Environmental Science and Engineering, China West Normal University, No.1 Shida Road, Nanchong, Sichuan 637002, China
| | - Jie Weng
- College of Medicine, Southwest Jiaotong University, No.111 North 1st Section of Second Ring Road, Chengdu, Sichuan 610031, China
| |
Collapse
|
15
|
Song G, Zhao M, Chen H, Zhou X, Lenahan C, Ou Y, He Y. The Application of Brain Organoid Technology in Stroke Research: Challenges and Prospects. Front Cell Neurosci 2021; 15:646921. [PMID: 34234646 PMCID: PMC8257041 DOI: 10.3389/fncel.2021.646921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a neurological disease responsible for significant morbidity and disability worldwide. However, there remains a dearth of effective therapies. The failure of many therapies for stroke in clinical trials has promoted the development of human cell-based models, such as brain organoids. Brain organoids differ from pluripotent stem cells in that they recapitulate various key features of the human central nervous system (CNS) in three-dimensional (3D) space. Recent studies have demonstrated that brain organoids could serve as a new platform to study various neurological diseases. However, there are several limitations, such as the scarcity of glia and vasculature in organoids, which are important for studying stroke. Herein, we have summarized the application of brain organoid technology in stroke research, such as for modeling and transplantation purposes. We also discuss methods to overcome the limitations of brain organoid technology, as well as future prospects for its application in stroke research. Although there are many difficulties and challenges associated with brain organoid technology, it is clear that this approach will play a critical role in the future exploration of stroke treatment.
Collapse
Affiliation(s)
- Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Maheden K, Bashth OS, Shakiba N. Evening the playing field: microenvironmental control over stem cell competition during fate programming. Curr Opin Genet Dev 2021; 70:66-75. [PMID: 34153929 DOI: 10.1016/j.gde.2021.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/26/2022]
Abstract
Recent advancements in cellular engineering, including reprogramming of somatic cells into pluripotent stem cells, have opened the door to a new era of regenerative medicine. Given that cellular decisions are guided by microenvironmental cues, such as secreted factors and interactions with neighbouring cells, reproducible cell manufacturing requires robust control over cell-cell interactions. Cell competition has recently emerged as a previously unknown interaction that plays a significant role in shaping the growth and death dynamics of multicellular stem cell populations, both in vivo and in vitro. Although recent studies have largely focused on exploring how the differential expression of key genes mediate the competitive elimination of some cells, little is known about the impact of the microenvironment on cell competition, despite its critical role in shaping cell fate outcomes. Here, we explore recent findings that have brought cell competition into the spotlight, while dissecting the role of microenvironmental factors for controlling competition in cell fate programming applications.
Collapse
Affiliation(s)
- Kieran Maheden
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, University of British Columbia, Biomedical Research Centre, 2222 Health Sciences Mall, V6T 1Z3, Vancouver, Canada
| | - Omar S Bashth
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, University of British Columbia, Biomedical Research Centre, 2222 Health Sciences Mall, V6T 1Z3, Vancouver, Canada
| | - Nika Shakiba
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, University of British Columbia, Biomedical Research Centre, 2222 Health Sciences Mall, V6T 1Z3, Vancouver, Canada.
| |
Collapse
|
17
|
Liao Q, Li BJ, Li Y, Xiao Y, Zeng H, Liu JM, Yuan LX, Liu G. Low-intensity pulsed ultrasound promotes osteoarthritic cartilage regeneration by BMSC-derived exosomes via modulating the NF-κB signaling pathway. Int Immunopharmacol 2021; 97:107824. [PMID: 34102487 DOI: 10.1016/j.intimp.2021.107824] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Osteoarthritis is the most common disabling joint disease throughout the world, and the effect of therapy on its course is still unsatisfactory in clinical practice. Recent studies have shown that mesenchymal stem cell (MSC)-derived exosomes can promote cartilage repair and regeneration in osteoarthritis, indicating that these exosomes could be a novel and promising strategy for treating osteoarthritis. This study investigated whether low-intensity pulsed ultrasound (LIPUS) enhances the effects of bone marrow MSC (BMSC)-derived exosomes on cartilage regeneration in osteoarthritis and examined the underlying mechanism. Our results revealed that BMSC-derived exosomes display the typical morphological features of exosomes. LIPUS-mediated BMSC-derived exosomes promoted cartilage regeneration, increased chondrocyte proliferation and extracellular matrix synthesis, suppressed inflammation, and inhibited the interleukin (IL)-1β-induced activation of the nuclear factor kappa B (NF-κB) pathway. In brief, LIPUS enhances the promoting effects of BMSC-derived exosomes on osteoarthritic cartilage regeneration, mainly by strengthening the inhibition of inflammation and further enhancing chondrocyte proliferation and cartilage matrix synthesis. The underlying mechanism could be related to the inhibition of the IL-1β-induced activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Qing Liao
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China; Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Foshan 528000, China
| | - Bao Jian Li
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Yang Li
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Yu Xiao
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Hui Zeng
- Department of Rehabilitation Medicine, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510000, China
| | - Jie Mei Liu
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Foshan 528000, China
| | - Li Xia Yuan
- Southern Medical University, Guangzhou 510000, China.
| | - Gang Liu
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Foshan 528000, China; Department of Rehabilitation Medicine, Nanfang Hospital of Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
18
|
Perottoni S, Neto NGB, Di Nitto C, Dmitriev RI, Raimondi MT, Monaghan MG. Intracellular label-free detection of mesenchymal stem cell metabolism within a perivascular niche-on-a-chip. LAB ON A CHIP 2021; 21:1395-1408. [PMID: 33605282 DOI: 10.1039/d0lc01034k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The stem cell niche at the perivascular space in human tissue plays a pivotal role in dictating the overall fate of stem cells within it. Mesenchymal stem cells (MSCs) in particular, experience influential microenvironmental conditions, which induce specific metabolic profiles that affect processes of cell differentiation and dysregulation of the immunomodulatory function. Reports focusing specifically on the metabolic status of MSCs under the effect of pathophysiological stimuli - in terms of flow velocities, shear stresses or oxygen tension - do not model heterogeneous gradients, highlighting the need for more advanced models reproducing the metabolic niche. Organ-on-a-chip technology offers the most advanced tools for stem cell niche modelling thus allowing for controlled dynamic culture conditions while profiling tuneable oxygen tension gradients. However, current systems for live cell detection of metabolic activity inside microfluidic devices require the integration of microsensors. The presence of such microsensors poses the potential to alter microfluidics and their resolution does not enable intracellular measurements but rather a global representation concerning cellular metabolism. Here, we present a metabolic toolbox coupling a miniaturised in vitro system for human-MSCs dynamic culture, which mimics microenvironmental conditions of the perivascular niche, with high-resolution imaging of cell metabolism. Using fluorescence lifetime imaging microscopy (FLIM) we monitor the spatial metabolic machinery and correlate it with experimentally validated intracellular oxygen concentration after designing the oxygen tension decay along the fluidic chamber by in silico models prediction. Our platform allows the metabolic regulation of MSCs, mimicking the physiological niche in space and time, and its real-time monitoring representing a functional tool for modelling perivascular niches, relevant diseases and metabolic-related uptake of pharmaceuticals.
Collapse
Affiliation(s)
- Simone Perottoni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Lu Y, Dai W, Huang J, Chen X, Yao Y. A Biomimetic Glue Protein Modulates Hepatic Gene Expression. Macromol Biosci 2021; 21:e2000303. [PMID: 33393184 DOI: 10.1002/mabi.202000303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/22/2020] [Indexed: 01/08/2023]
Abstract
Glue protein as secretion from fruit fly larva plays a significant role in metamorphosis as cementing material for pupation sites. However, the biochemical composition of this macromolecule remains obscure. This study takes the advantage of high-resolution proteomic analysis to unveil the protein compositions. A glue protein group is identified as chitin-binding motifs by bioinformatic analysis. Computational modeling analysis of representative proteins illustrates the binding site between protein and chitin. A biosynthetic approach is used to fabricate a glue protein by a modified Escherichia coli recombinant system. The as-biosynthesized biomimetic glue protein is applied as an extracellular matrix to investigate its biocompatibility and functionality. It is found that the purified recombinant protein shows enhanced performance to cellular viability. This finding provides a potential biomacromolecule candidate as an extracellular matrix for cell culture.
Collapse
Affiliation(s)
- Yi Lu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Wentao Dai
- Shanghai Industrial Technology Institute, 1278 Keyuan Road, Shanghai, 201203, China
| | - Jianhua Huang
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Xuexin Chen
- Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.,Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| |
Collapse
|
20
|
Numerical Methods for the Design and Description of In Vitro Expansion Processes of Human Mesenchymal Stem Cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 177:185-228. [PMID: 33090237 DOI: 10.1007/10_2020_147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Human mesenchymal stem cells (hMSCs) are a valuable source of cells for clinical applications (e.g., treatment of acute myocardial infarction or inflammatory diseases), especially in the field of regenerative medicine. However, for autologous (patient-specific) and allogeneic (off-the-shelf) hMSC-based therapies, in vitro expansion is necessary prior to the clinical application in order to achieve the required cell numbers. Safe, reproducible, and economic in vitro expansion of hMSCs for autologous and allogeneic therapies can be problematic because the cell material is restricted and the cells are sensitive to environmental changes. It is beneficial to collect detailed information on the hydrodynamic conditions and cell growth behavior in a bioreactor system, in order to develop a so called "Digital Twin" of the cultivation system and expansion process. Numerical methods, such as Computational Fluid Dynamics (CFD) which has become widely used in the biotech industry for studying local characteristics within bioreactors or kinetic growth modelling, provide possible solutions for such tasks.In this review, we will present the current state-of-the-art for the in vitro expansion of hMSCs. Different numerical tools, including numerical fluid flow simulations and cell growth modelling approaches for hMSCs, will be presented. In addition, a case study demonstrating the applicability of CFD and kinetic growth modelling for the development of an microcarrier-based hMSC process will be shown.
Collapse
|
21
|
Adlerz K, Patel D, Rowley J, Ng K, Ahsan T. Strategies for scalable manufacturing and translation of MSC-derived extracellular vesicles. Stem Cell Res 2020; 48:101978. [PMID: 32947235 DOI: 10.1016/j.scr.2020.101978] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal Stem/Stromal Cells (MSCs) are a well-studied cellular therapy with many clinical trials over the last few decades to treat a range of therapeutic indications. Recently, extracellular vesicles secreted by MSCs (MSC-EVs) have been shown to recapitulate many of the therapeutic effects of the MSCs themselves. While research in MSC-EVs has exploded, it is still early in their development towards a clinical therapy. One of the main challenges in cellular therapy, which will clearly also be a challenge in MSC-EV manufacturing, is developing a scalable, cGMP-compatible manufacturing paradigm. Therefore, the focus of this review is to identify some key MSC-EV manufacturing considerations such as the selection of critical raw materials, manufacturing platforms, and critical quality attribute assays. Addressing these issues early in research and development will accelerate clinical product development, clinical trials, and commercial therapies of MSC-EVs.
Collapse
Affiliation(s)
- Katrina Adlerz
- RoosterBio, Inc. 5295 Westview Drive, Suite 275, Frederick, MD 21703, USA
| | - Divya Patel
- RoosterBio, Inc. 5295 Westview Drive, Suite 275, Frederick, MD 21703, USA
| | - Jon Rowley
- RoosterBio, Inc. 5295 Westview Drive, Suite 275, Frederick, MD 21703, USA
| | - Kelvin Ng
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01 138668, Singapore.
| | - Tabassum Ahsan
- RoosterBio, Inc. 5295 Westview Drive, Suite 275, Frederick, MD 21703, USA.
| |
Collapse
|
22
|
Lerman MJ, Smith BT, Gerald AG, Santoro M, Fookes JA, Mikos AG, Fisher JP. Aminated 3D Printed Polystyrene Maintains Stem Cell Proliferation and Osteogenic Differentiation. Tissue Eng Part C Methods 2020; 26:118-131. [PMID: 31971874 PMCID: PMC7041340 DOI: 10.1089/ten.tec.2019.0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
As 3D printing becomes more common and the technique is used to build culture platforms, it is imperative to develop surface treatments for specific responses. The advantages of aminating and oxidizing polystyrene (PS) for human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation are investigated. We find that ammonia (NH3) plasma incorporates amines while oxygen plasma adds carbonyl and carboxylate groups. Across 2D, 3D, and 3D dynamic culture, we find that the NH3- treated surfaces encouraged cell proliferation. Our results show that the NH3-treated scaffold was the only treatment allowing dynamic proliferation of hMSCs with little evidence of osteogenic differentiation. With osteogenic media, particularly in 3D culture, we find the NH3 treatment encouraged greater and earlier expression of RUNX2 and ALP. The NH3-treated PS scaffolds support hMSC proliferation without spontaneous osteogenic differentiation in static and dynamic culture. This work provides an opportunity for further investigations into shear profiling and coculture within the developed culture system toward developing a bone marrow niche model.
Collapse
Affiliation(s)
- Max J. Lerman
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
| | - Brandon T. Smith
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Department of Bioengineering, MS-142 BioScience Research Collaborative, Rice University, Houston, Texas
| | - Anushka G. Gerald
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Marco Santoro
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - James A. Fookes
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Antonios G. Mikos
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Department of Bioengineering, MS-142 BioScience Research Collaborative, Rice University, Houston, Texas
| | - John P. Fisher
- Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
23
|
Nasb M, Liangjiang H, Gong C, Hong C. Human adipose-derived Mesenchymal stem cells, low-intensity pulsed ultrasound, or their combination for the treatment of knee osteoarthritis: study protocol for a first-in-man randomized controlled trial. BMC Musculoskelet Disord 2020; 21:33. [PMID: 31941483 PMCID: PMC6964002 DOI: 10.1186/s12891-020-3056-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023] Open
Abstract
Background Human adipose-derived Mesenchymal stem cells (HADMSCs) have proven their efficacy in treating osteoarthritis (OA), in earlier preclinical and clinical studies. As the tissue repairers are under the control of mechanical and biochemical signals, improving regeneration outcomes using such signals has of late been the focus of attention. Among mechanical stimuli, low-intensity pulsed ultrasound (LIPUS) has recently shown promise both in vitro and in vivo. This study will investigate the potential of LIPUS in enhancing the regeneration process of an osteoarthritic knee joint. Methods This study involves a prospective, randomized, placebo-controlled, and single-blind trial based on the SPIRIT guidelines, and aims to recruit 96 patients initially diagnosed with knee osteoarthritis, following American College of Rheumatology criteria. Patients will be randomized in a 1:1:1 ratio to receive Intraarticular HADMSCs injection with LIPUS, Intraarticular HADMSCs injection with shame LIPUS, or Normal saline with LIPUS. The primary outcome is Western Ontario and McMaster Universities Index of OA (WOMAC) score, while the secondary outcomes will be other knee structural changes, and lower limb muscle strength such as the knee cartilage thickness measured by MRI. Blinded assessments will be performed at baseline (1 month prior to treatment), 1 month, 3 months, and 6 months following the interventions. Discussion This trial will be the first clinical study to comprehensively investigate the safety and efficacy of LIPUS on stem cell therapy in OA patients. The results may provide evidence of the effectiveness of LIPUS in improving stem cell therapy and deliver valuable information for the design of subsequent trials. Trial registration This study had been prospectively registered with the Chinese Clinical Trials Registry. registration number: ChiCTR1900025907 at September 14, 2019.
Collapse
Affiliation(s)
- Mohammad Nasb
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Physical Therapy, Health science faculty, Albaath University, Homs, Syria
| | - Huang Liangjiang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chenzi Gong
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chen Hong
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
24
|
Liu A, Zhang X, He H, Zhou L, Naito Y, Sugita S, Lee JW. Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opin Biol Ther 2019; 20:125-140. [PMID: 31701782 DOI: 10.1080/14712598.2020.1689954] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The acute respiratory distress syndrome (ARDS) is a devastating clinical condition common in patients with respiratory failure. Based largely on numerous preclinical studies and recent Phase I/II clinical trials, administration of stem cells, specifically mesenchymal stem or stromal cells (MSC), as a therapeutic for acute lung injury (ALI) holds great promise. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that stem cell-derived conditioned medium (CM) and/or extracellular vesicles (EV) might constitute compelling alternatives.Areas covered: The current review focuses on the preclinical studies testing MSC CM and/or EV as treatment for ALI and other inflammatory lung diseases.Expert opinion: Clinical application of MSC or their secreted CM may be limited by the cost of growing enough cells, the logistic of MSC storage, and the lack of standardization of what constitutes MSC CM. However, the clinical application of MSC EV remains promising, primarily due to the ability of EV to maintain the functional phenotype of the parent cell as a therapeutic. However, utilization of MSC EV will also require large-scale production, the cost of which may be prohibitive unless the potency of the EV can be increased.
Collapse
Affiliation(s)
- Airan Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiwen Zhang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongli He
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Li Zhou
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Yoshifumi Naito
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Shinji Sugita
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Jae-Woo Lee
- Departments of Anesthesiology and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
25
|
Salazar-Noratto GE, Luo G, Denoeud C, Padrona M, Moya A, Bensidhoum M, Bizios R, Potier E, Logeart-Avramoglou D, Petite H. Understanding and leveraging cell metabolism to enhance mesenchymal stem cell transplantation survival in tissue engineering and regenerative medicine applications. Stem Cells 2019; 38:22-33. [PMID: 31408238 DOI: 10.1002/stem.3079] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/06/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022]
Abstract
In tissue engineering and regenerative medicine, stem cell-specifically, mesenchymal stromal/stem cells (MSCs)-therapies have fallen short of their initial promise and hype. The observed marginal, to no benefit, success in several applications has been attributed primarily to poor cell survival and engraftment at transplantation sites. MSCs have a metabolism that is flexible enough to enable them to fulfill their various cellular functions and remarkably sensitive to different cellular and environmental cues. At the transplantation sites, MSCs experience hostile environments devoid or, at the very least, severely depleted of oxygen and nutrients. The impact of this particular setting on MSC metabolism ultimately affects their survival and function. In order to develop the next generation of cell-delivery materials and methods, scientists must have a better understanding of the metabolic switches MSCs experience upon transplantation. By designing treatment strategies with cell metabolism in mind, scientists may improve survival and the overall therapeutic potential of MSCs. Here, we provide a comprehensive review of plausible metabolic switches in response to implantation and of the various strategies currently used to leverage MSC metabolism to improve stem cell-based therapeutics.
Collapse
Affiliation(s)
- Giuliana E Salazar-Noratto
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Guotian Luo
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Cyprien Denoeud
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Mathilde Padrona
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Adrien Moya
- South Florida Veterans Affairs Foundation for Research and Education, Inc., Miami, Florida.,Geriatric Research, Education and Clinical Center and Research Service, Bruce W. Carter VAMC, Miami, Florida
| | - Morad Bensidhoum
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Rena Bizios
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas
| | - Esther Potier
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Delphine Logeart-Avramoglou
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| | - Hervé Petite
- Université de Paris, B3OA CNRS INSERM, Paris, France.,Ecole Nationale Vétérinaire d'Alfort, B3OA, Maisons-Alfort, France
| |
Collapse
|
26
|
Silva JC, Moura CS, Borrecho G, de Matos APA, da Silva CL, Cabral JMS, Bártolo PJ, Linhardt RJ, Ferreira FC. Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(ɛ-Caprolactone) Scaffolds. Biotechnol J 2019; 15:e1900078. [PMID: 31560160 DOI: 10.1002/biot.201900078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/09/2019] [Indexed: 01/12/2023]
Abstract
Novel bioengineering strategies for the ex vivo fabrication of native-like tissue-engineered cartilage are crucial for the translation of these approaches to clinically manage highly prevalent and debilitating joint diseases. Bioreactors that provide different biophysical stimuli have been used in tissue engineering approaches aimed at enhancing the quality of the cartilage tissue generated. However, such systems are often highly complex, expensive, and not very versatile. In the current study, a novel, cost-effective, and customizable perfusion bioreactor totally fabricated by additive manufacturing (AM) is proposed for the study of the effect of fluid flow on the chondrogenic differentiation of human bone-marrow mesenchymal stem/stromal cells (hBMSCs) in 3D porous poly(ɛ-caprolactone) (PCL) scaffolds. hBMSCs are first seeded and grown on PCL scaffolds and hBMSC-PCL constructs are then transferred to 3D-extruded bioreactors for continuous perfusion culture under chondrogenic inductive conditions. Perfused constructs show similar cell metabolic activity and significantly higher sulfated glycosaminoglycan production (≈1.8-fold) in comparison to their non-perfused counterparts. Importantly, perfusion bioreactor culture significantly promoted the expression of chondrogenic marker genes while downregulating hypertrophy. This work highlights the potential of customizable AM platforms for the development of novel personalized repair strategies and more reliable in vitro models with a wide range of applications.
Collapse
Affiliation(s)
- João C Silva
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal.,Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Carla S Moura
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, 2430-028, Portugal
| | - Gonçalo Borrecho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - António P Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Paulo J Bártolo
- School of Mechanical and Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| |
Collapse
|
27
|
De Luca A, Vitrano I, Costa V, Raimondi L, Carina V, Bellavia D, Conoscenti G, Di Falco R, Pavia FC, La Carrubba V, Brucato V, Giavaresi G. Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defect repair. J Biosci Bioeng 2019; 129:250-257. [PMID: 31506241 DOI: 10.1016/j.jbiosc.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly-l-lactic-acid (PLLA)/nano-hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differentiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic (d3D) 3D culture conditions at 7 and 21 days. The colonization rate of hMSCs and osteogenic differentiation were amplified by d3D when physical stimulation was provided by a perfusion bioreactor. Increase in dsDNA content (p < 0.0005), up-regulation of RUNX2, ALPL, SPP1 (p < 0.0005) and SOX9 (p < 0.005) gene expression, and more calcium nodule formation (p < 0.0005) were observed in d3D cultures in comparison to s3D ones over time. Dynamic 3D culture, mimicking the mechanical signals of bone environment, improved significantly osteogenic differentiation of hMSCs on PLLA/nHA scaffold, without the addition of growth factors, confirming this composite scaffold suitable for bone regeneration.
Collapse
Affiliation(s)
- Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy.
| | - Ilenia Vitrano
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| | - Gioacchino Conoscenti
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy
| | - Rossella Di Falco
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy
| | - Francesco Carfì Pavia
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; INSTM Consortium Palermo Research Unit, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze bldg 18A, Palermo 90128, Italy
| | - Vincenzo La Carrubba
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; INSTM Consortium Palermo Research Unit, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze bldg 18A, Palermo 90128, Italy
| | - Valerio Brucato
- Department of Civil, Environmental, Aerospace, Materials Engineering (DICAM), Bio and Tissue Engineering Lab, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; INSTM Consortium Palermo Research Unit, University of Palermo, Viale delle Scienze bldg 8, Palermo 90128, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze bldg 18A, Palermo 90128, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, Bologna 40136, Italy
| |
Collapse
|
28
|
Baek G, Choi H, Kim Y, Lee HC, Choi C. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Therapeutics and as a Drug Delivery Platform. Stem Cells Transl Med 2019; 8:880-886. [PMID: 31045328 PMCID: PMC6708072 DOI: 10.1002/sctm.18-0226] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/01/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are one of the most easily accessible stem cells that can be obtained from various human tissues. They have raised considerable interests for their potential applications in tissue repair, anti‐cancer therapy, and inflammation suppression. Stem cell‐based therapy was first used to treat muscular dystrophies and has been studied intensively for its efficacy in various disease models, including myocardial infarction, kidney injuries, liver injuries, and cancers. In this review, we summarized the potential mechanisms underlying MSC‐derived EVs therapy as a drug delivery platform. Additionally, based on currently published data, we predicted a potential therapeutic role of cargo proteins shuttled by EVs from MSCs. These data may support the therapeutic strategy of using the MSC‐derived EVs to accelerate this strategy from bench to bedside. stem cells translational medicine2019;8:880&886
Collapse
Affiliation(s)
- Gyuhyeon Baek
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - Hojun Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | | | | | - Chulhee Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea.,ILIAS Biologics Inc., Daejeon, Korea
| |
Collapse
|
29
|
Perfusion Bioreactor Culture of Bone Marrow Stromal Cells Enhances Cranial Defect Regeneration. Plast Reconstr Surg 2019; 143:993e-1002e. [DOI: 10.1097/prs.0000000000005529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Birru B, Mekala NK, Parcha SR. Mechanistic role of perfusion culture on bone regeneration. J Biosci 2019; 44:23. [PMID: 30837374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bone tissue engineering (BTE) aims to develop engineered bone tissue to substitute conventional bone grafts. To achieve this, culturing the cells on the biocompatible three-dimensional (3D) scaffold is one alternative approach. The new functional bone tissue regeneration could be feasible by the synergetic combinations of cells, biomaterials and bioreactors. Although the field of biomaterial design/development for BTE applications attained reasonable success, development of suitable bioreactor remains still a major challenge. Tissue engineering bioreactors provide the microenvironment required for neo-tissue regeneration, and also can be used to study the physio-chemical cues effect on cell proliferation and differentiation in order to produce functional tissue. In this direction, various bioreactors have been developed and evaluated for the successful development of engineered bone tissue. Continues assessment of tissue development and limitations of the bioreactors lead to the progression of perfusion flow bioreactor system. Improvements in perfusion reactor system were able to yield multiple tissue engineered constructs with uniform cell distribution, easy to operate protocols and also effectively handled for the functional tissue development to meet the adequate supply of engineered graft for clinical application.
Collapse
Affiliation(s)
- Bhaskar Birru
- Department of Biotechnology, National Institute of Technology, Warangal 506 004, TS, India
| | | | | |
Collapse
|
31
|
|
32
|
Encapsulated explant in novel low shear perfusion bioreactor improve cell isolation, expansion and colony forming unit. Cell Tissue Bank 2019; 20:25-34. [PMID: 30673903 DOI: 10.1007/s10561-019-09749-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/17/2019] [Indexed: 01/13/2023]
Abstract
One of most important issue in the field of regenerative medicine is selection of appropriate cells, scaffolds and bioreactors. The present study aimed to investigate the appropriate method for the isolation of human UC-MSCs cells from explant cultured in alginate scaffold within novel perfusion bioreactor. MSCs were isolated with explant method and CD markers such CD73, CD31, CD90 and CD105 as were analyzed by flow cytometry. The culture chamber of the novel perfusion bioreactor was made from Plexiglas and housed the cell/scaffold constructs in the central part and the medium for the whole culture period. The flow behavior within the bioreactor chamber were performed for closed and open bypass systems. The shear stress profiles simulated using CFD modeling. The fluid flow distribution within the bioreactor chamber was performed in PBS solution containing a blue colorant. UC explants were resuspended in sodium alginate and were allowed to polymerize and placed in the perfusion bioreactor and cultured. MSCs were positive for mesenchymal markers such as CD73 and CD31. All 3D Perfusion bioreactor parts, except peristaltic pump was sterilizable by autoclaving. Results of CFD indicated very low wall shear stress on surface of culture chamber at flow rate 2 ml/min. The maximum wall shear stress was 1.10 × 10-3 m/s = 0.0110 dyne/cm2 (1 Pa = 10 dyne/cm2). The fluid flow distribution within the alginate gel initially exhibited oscillation. In comparison, when encapsulated explants were placed in the perfusion bioreactor, cell proliferation appeared faster (4.6 × 1011 ± 9.2 × 1011) than explants cultures in 2D conventional culture method (3.2 × 1011 ± 1 × 1011). Proliferated cell formed several colonies. Migration of chondrocytes to the periphery of the alginate bead was visible after 1 week of culture. Perfusion bioreactor with low shear stress and alginate hydrogel improve cell isolation and expansion and eliminate cell passaging and enhance colony forming unit of UC-MSCs.
Collapse
|
33
|
Kuo CY, Shevchuk M, Opfermann J, Guo T, Santoro M, Fisher JP, Kim PCW. Trophoblast-endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model. Biotechnol Bioeng 2019; 116:181-192. [PMID: 30298908 PMCID: PMC6289739 DOI: 10.1002/bit.26850] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023]
Abstract
Trophoblast invasion and remodeling of the maternal spiral arteries are required for pregnancy success. Aberrant endothelium-trophoblast crosstalk may lead to preeclampsia, a pregnancy complication that has serious effects on both the mother and the baby. However, our understanding of the mechanisms involved in this pathology remains elementary because the current in vitro models cannot describe trophoblast-endothelium interactions under dynamic culture. In this study, we developed a dynamic three-dimensional (3D) placenta model by bioprinting trophoblasts and an endothelialized lumen in a perfusion bioreactor. We found the 3D printed perfusion bioreactor system significantly augmented responses of endothelial cells by encouraging network formations and expressions of angiogenic markers, cluster of differentiation 31 (CD31), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), and vascular endothelial growth factor A (VEGFA). Bioprinting favored colocalization of trophoblasts with endothelial cells, similar to in vivo observations. Additional analysis revealed that trophoblasts reduced the angiogenic responses by reducing network formation and motility rates while inducing apoptosis of endothelial cells. Moreover, the presence of endothelial cells appeared to inhibit trophoblast invasion rates. These results clearly demonstrated the utility and potential of bioprinting and perfusion bioreactor system to model trophoblast-endothelium interactions in vitro. Our bioprinted placenta model represents a crucial step to develop advanced research approach that will expand our understanding and treatment options of preeclampsia and other pregnancy-related pathologies.
Collapse
Affiliation(s)
- Che-Ying Kuo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD
| | - Mariya Shevchuk
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD
| | - Justin Opfermann
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC
| | - Ting Guo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD
| | - Marco Santoro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC
- Center for Engineering Complex Tissues, University of Maryland, College Park, MD
| | - Peter CW Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC
- School of Medicine and Health Sciences, The George Washington University, Washington, DC
| |
Collapse
|
34
|
Growth Behavior of Human Adipose Tissue-Derived Stromal/Stem Cells at Small Scale: Numerical and Experimental Investigations. Bioengineering (Basel) 2018; 5:bioengineering5040106. [PMID: 30518117 PMCID: PMC6315405 DOI: 10.3390/bioengineering5040106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023] Open
Abstract
Human adipose tissue-derived stromal/stem cells (hASCs) are a valuable source of cells for clinical applications, especially in the field of regenerative medicine. Therefore, it comes as no surprise that the interest in hASCs has greatly increased over the last decade. However, in order to use hASCs in clinically relevant numbers, in vitro expansion is required. Single-use stirred bioreactors in combination with microcarriers (MCs) have shown themselves to be suitable systems for this task. However, hASCs tend to be less robust, and thus, more shear sensitive than conventional production cell lines for therapeutic antibodies and vaccines (e.g., Chinese Hamster Ovary cells CHO, Baby Hamster Kidney cells BHK), for which these bioreactors were originally designed. Hence, the goal of this study was to investigate the influence of different shear stress levels on the growth of humane telomerase reversed transcriptase immortalized hASCs (hTERT-ASC) and aggregate formation in stirred single-use systems at the mL scale: the 125 mL (= SP100) and the 500 mL (= SP300) disposable Corning® spinner flask. Computational fluid dynamics (CFD) simulations based on an Euler⁻Euler and Euler⁻Lagrange approach were performed to predict the hydrodynamic stresses (0.06⁻0.87 Pa), the residence times (0.4⁻7.3 s), and the circulation times (1.6⁻16.6 s) of the MCs in different shear zones for different impeller speeds and the suspension criteria (Ns1u, Ns1). The numerical findings were linked to experimental data from cultivations studies to develop, for the first time, an unstructured, segregated mathematical growth model for hTERT-ASCs. While the 125 mL spinner flask with 100 mL working volume (SP100) provided up to 1.68.10⁵ hTERT-ASC/cm² (= 0.63 × 10⁶ living hTERT-ASCs/mL, EF 56) within eight days, the peak living cell density of the 500 mL spinner flask with 300 mL working volume (SP300) was 2.46 × 10⁵ hTERT-ASC/cm² (= 0.88 × 10⁶ hTERT-ASCs/mL, EF 81) and was achieved on day eight. Optimal cultivation conditions were found for Ns1u < N < Ns1, which corresponded to specific power inputs of 0.3⁻1.1 W/m³. The established growth model delivered reliable predictions for cell growth on the MCs with an accuracy of 76⁻96% for both investigated spinner flask types.
Collapse
|
35
|
Goetzke R, Sechi A, De Laporte L, Neuss S, Wagner W. Why the impact of mechanical stimuli on stem cells remains a challenge. Cell Mol Life Sci 2018; 75:3297-3312. [PMID: 29728714 PMCID: PMC11105618 DOI: 10.1007/s00018-018-2830-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023]
Abstract
Mechanical stimulation affects growth and differentiation of stem cells. This may be used to guide lineage-specific cell fate decisions and therefore opens fascinating opportunities for stem cell biology and regenerative medicine. Several studies demonstrated functional and molecular effects of mechanical stimulation but on first sight these results often appear to be inconsistent. Comparison of such studies is hampered by a multitude of relevant parameters that act in concert. There are notorious differences between species, cell types, and culture conditions. Furthermore, the utilized culture substrates have complex features, such as surface chemistry, elasticity, and topography. Cell culture substrates can vary from simple, flat materials to complex 3D scaffolds. Last but not least, mechanical forces can be applied with different frequency, amplitude, and strength. It is therefore a prerequisite to take all these parameters into consideration when ascribing their specific functional relevance-and to only modulate one parameter at the time if the relevance of this parameter is addressed. Such research questions can only be investigated by interdisciplinary cooperation. In this review, we focus particularly on mesenchymal stem cells and pluripotent stem cells to discuss relevant parameters that contribute to the kaleidoscope of mechanical stimulation of stem cells.
Collapse
Affiliation(s)
- Roman Goetzke
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Antonio Sechi
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | - Laura De Laporte
- DWI - Leibniz-Institute for Interactive Materials, 52074, Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University Medical School, 52074, Aachen, Germany.
- Institute of Pathology, RWTH Aachen University Medical School, Aachen, Germany.
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany.
- Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
- Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University Medical School, 52074, Aachen, Germany.
| |
Collapse
|
36
|
Osiecki MJ, McElwain SDL, Lott WB. Modelling mesenchymal stromal cell growth in a packed bed bioreactor with a gas permeable wall. PLoS One 2018; 13:e0202079. [PMID: 30148832 PMCID: PMC6110476 DOI: 10.1371/journal.pone.0202079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/29/2018] [Indexed: 12/14/2022] Open
Abstract
A mathematical model was developed for mesenchymal stromal cell (MSC) growth in a packed bed bioreactor that improves oxygen availability by allowing oxygen diffusion through a gas-permeable wall. The governing equations for oxygen, glucose and lactate, the inhibitory waste product, were developed assuming Michaelis-Menten kinetics, together with an equation for the medium flow based on Darcy's Law. The conservation law for the cells includes the effects of inhibition as the cells reach confluence, nutrient and waste product concentrations, and the assumption that the cells can migrate on the scaffold. The equations were solved using the finite element package, COMSOL. Previous experimental results collected using a packed bed bioreactor with gas permeable walls to expand MSCs produced a lower cell yield than was obtained using a traditional cell culture flask. This mathematical model suggests that the main contributors to the observed low cell yield were a non-uniform initial cell seeding profile and a potential lag phase as cells recovered from the initial seeding procedure. Lactate build-up was predicted to have only a small effect at lower flow rates. Thus, the most important parameters to optimise cell expansion in the proliferation of MSCs in a bioreactor with gas permeable wall are the initial cell seeding protocol and the handling of the cells during the seeding process. The mathematical model was then used to identify and characterise potential enhancements to the bioreactor design, including incorporating a central gas permeable capillary to further enhance oxygen availability to the cells. Finally, to evaluate the issues and limitations that might be encountered scale-up of the bioreactor, the mathematical model was used to investigate modifications to the bioreactor design geometry and packing density.
Collapse
Affiliation(s)
- Michael J. Osiecki
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
- * E-mail: ,
| | - Sean D. L. McElwain
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - William B. Lott
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Yuan H, Xing K, Hsu HY. Trinity of Three-Dimensional (3D) Scaffold, Vibration, and 3D Printing on Cell Culture Application: A Systematic Review and Indicating Future Direction. Bioengineering (Basel) 2018; 5:E57. [PMID: 30041431 PMCID: PMC6164136 DOI: 10.3390/bioengineering5030057] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
Cell culture and cell scaffold engineering have previously developed in two directions. First can be 'static into dynamic', with proven effects that dynamic cultures have benefits over static ones. Researches in this direction have used several mechanical means, like external vibrators or shakers, to approximate the dynamic environments in real tissue, though such approaches could only partly address the issue. Second, can be '2D into 3D', that is, artificially created three-dimensional (3D) passive (also called 'static') scaffolds have been utilized for 3D cell culture, helping external culturing conditions mimic real tissue 3D environments in a better way as compared with traditional two-dimensional (2D) culturing. In terms of the fabrication of 3D scaffolds, 3D printing (3DP) has witnessed its high popularity in recent years with ascending applicability, and this tendency might continue to grow along with the rapid development in scaffold engineering. In this review, we first introduce cell culturing, then focus 3D cell culture scaffold, vibration stimulation for dynamic culture, and 3DP technologies fabricating 3D scaffold. Potential interconnection of these realms will be analyzed, as well as the limitations of current 3D scaffold and vibration mechanisms. In the recommendation part, further discussion on future scaffold engineering regarding 3D vibratory scaffold will be addressed, indicating 3DP as a positive bridging technology for future scaffold with integrated and localized vibratory functions.
Collapse
Affiliation(s)
- Haobo Yuan
- School of Engineering, University of South Australia; Mawson Lakes Blvd, Mawson Lakes 5095, Australia.
| | - Ke Xing
- School of Engineering, University of South Australia; Mawson Lakes Blvd, Mawson Lakes 5095, Australia.
| | - Hung-Yao Hsu
- School of Engineering, University of South Australia; Mawson Lakes Blvd, Mawson Lakes 5095, Australia.
| |
Collapse
|
38
|
Stephenson MK, Farris AL, Grayson WL. Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage. Curr Rheumatol Rep 2018; 19:44. [PMID: 28718059 DOI: 10.1007/s11926-017-0671-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW While the clinical potential of tissue engineering for treating joint damage has yet to be realized, research and commercialization efforts in the field are geared towards overcoming major obstacles to clinical translation, as well as towards achieving engineered grafts that recapitulate the unique structures, function, and physiology of the joint. In this review, we describe recent advances in technologies aimed at obtaining biomaterials, stem cells, and bioreactors that will enable the development of effective tissue-engineered treatments for repairing joint damage. RECENT FINDINGS 3D printing of scaffolds is aimed at improving the mechanical structure and microenvironment necessary for bone regeneration within a damaged joint. Advances in our understanding of stem cell biology and cell manufacturing processes are informing translational strategies for the therapeutic use of allogeneic and autologous cells. Finally, bioreactors used in combination with cells and biomaterials are promising strategies for generating large tissue grafts for repairing damaged tissues in pre-clinical models. Together, these advances along with ongoing research directions are making tissue engineering increasingly viable for the treatment of joint damage.
Collapse
Affiliation(s)
- Makeda K Stephenson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley L Farris
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Warren L Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith Building 5023, Baltimore, MD, 21231, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
39
|
A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bprint.2018.02.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Confalonieri D, Schwab A, Walles H, Ehlicke F. Advanced Therapy Medicinal Products: A Guide for Bone Marrow-derived MSC Application in Bone and Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 24:155-169. [PMID: 28990462 DOI: 10.1089/ten.teb.2017.0305] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Millions of people worldwide suffer from trauma- or age-related orthopedic diseases such as osteoarthritis, osteoporosis, or cancer. Tissue Engineering (TE) and Regenerative Medicine are multidisciplinary fields focusing on the development of artificial organs, biomimetic engineered tissues, and cells to restore or maintain tissue and organ function. While allogenic and future autologous transplantations are nowadays the gold standards for both cartilage and bone defect repair, they are both subject to important limitations such as availability of healthy tissue, donor site morbidity, and graft rejection. Tissue engineered bone and cartilage products represent a promising and alternative approach with the potential to overcome these limitations. Since the development of Advanced Therapy Medicinal Products (ATMPs) such as TE products requires the knowledge of diverse regulation and an extensive communication with the national/international authorities, the aim of this review is therefore to summarize the state of the art on the clinical applications of human bone marrow-derived stromal cells for cartilage and bone TE. In addition, this review provides an overview of the European legislation to facilitate the development and commercialization of new ATMPs.
Collapse
Affiliation(s)
- Davide Confalonieri
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Andrea Schwab
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| | - Heike Walles
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany .,2 Translational Center Wuerzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease," Wuerzburg, Germany
| | - Franziska Ehlicke
- 1 Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg , Wuerzburg, Germany
| |
Collapse
|
41
|
Mitra D, Whitehead J, Yasui OW, Leach JK. Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells. Biomaterials 2017; 146:29-39. [PMID: 28898756 PMCID: PMC5618709 DOI: 10.1016/j.biomaterials.2017.08.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/20/2022]
Abstract
Perfusion culture of mesenchymal stem cells (MSCs) seeded in biomaterial scaffolds provides nutrients for cell survival, enhances extracellular matrix deposition, and increases osteogenic cell differentiation. However, there is no consensus on the appropriate perfusion duration of cellular constructs in vitro to boost their bone forming capacity in vivo. We investigated this phenomenon by culturing human MSCs in macroporous composite scaffolds in a direct perfusion bioreactor and compared their response to scaffolds in continuous dynamic culture conditions on an XYZ shaker. Cell seeding in continuous perfusion bioreactors resulted in more uniform MSC distribution than static seeding. We observed similar calcium deposition in all composite scaffolds over 21 days of bioreactor culture, regardless of pore size. Compared to scaffolds in dynamic culture, perfused scaffolds exhibited increased DNA content and expression of osteogenic markers up to 14 days in culture that plateaued thereafter. We then evaluated the effect of perfusion culture duration on bone formation when MSC-seeded scaffolds were implanted in a murine ectopic site. Human MSCs persisted in all scaffolds at 2 weeks in vivo, and we observed increased neovascularization in constructs cultured under perfusion for 7 days relative to those cultured for 1 day within each gender. At 8 weeks post-implantation, we observed greater bone volume fraction, bone mineral density, tissue ingrowth, collagen density, and osteoblastic markers in bioreactor constructs cultured for 14 days compared to those cultured for 1 or 7 days, and acellular constructs. Taken together, these data demonstrate that culturing MSCs under perfusion culture for at least 14 days in vitro improves the quantity and quality of bone formation in vivo. This study highlights the need for optimizing in vitro bioreactor culture duration of engineered constructs to achieve the desired level of bone formation.
Collapse
Affiliation(s)
- Debika Mitra
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Osamu W Yasui
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA; Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
42
|
Liu X, Wang J, Dong F, Song P, Tian S, Li H, Hou Y. Cytocompatibility and biologic characteristics of synthetic scaffold materials of rabbit acellular vascular matrix combining with human-like collagen I. J Biomater Appl 2017; 32:463-471. [DOI: 10.1177/0885328217728448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuqian Liu
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang City, PR China
| | - Jie Wang
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang City, PR China
| | - Fusheng Dong
- Department of Oral and Maxillofacial Surgery, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang, PR China
| | - Peng Song
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang City, PR China
| | - Songbo Tian
- Department of Oral Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Hexiang Li
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang City, PR China
| | - Yali Hou
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang City, PR China
| |
Collapse
|
43
|
|
44
|
Rafiq QA, Hanga MP, Heathman TRJ, Coopman K, Nienow AW, Williams DJ, Hewitt CJ. Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor. Biotechnol Bioeng 2017. [PMID: 28627713 PMCID: PMC5615370 DOI: 10.1002/bit.26359] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Microbioreactors play a critical role in process development as they reduce reagent requirements and can facilitate high-throughput screening of process parameters and culture conditions. Here, we have demonstrated and explained in detail, for the first time, the amenability of the automated ambr15 cell culture microbioreactor system for the development of scalable adherent human mesenchymal multipotent stromal/stem cell (hMSC) microcarrier culture processes. This was achieved by first improving suspension and mixing of the microcarriers and then improving cell attachment thereby reducing the initial growth lag phase. The latter was achieved by using only 50% of the final working volume of medium for the first 24 h and using an intermittent agitation strategy. These changes resulted in >150% increase in viable cell density after 24 h compared to the original process (no agitation for 24 h and 100% working volume). Using the same methodology as in the ambr15, similar improvements were obtained with larger scale spinner flask studies. Finally, this improved bioprocess methodology based on a serum-based medium was applied to a serum-free process in the ambr15, resulting in >250% increase in yield compared to the serum-based process. At both scales, the agitation used during culture was the minimum required for microcarrier suspension, NJS . The use of the ambr15, with its improved control compared to the spinner flask, reduced the coefficient of variation on viable cell density in the serum containing medium from 7.65% to 4.08%, and the switch to serum free further reduced these to 1.06-0.54%, respectively. The combination of both serum-free and automated processing improved the reproducibility more than 10-fold compared to the serum-based, manual spinner flask process. The findings of this study demonstrate that the ambr15 microbioreactor is an effective tool for bioprocess development of hMSC microcarrier cultures and that a combination of serum-free medium, control, and automation improves both process yield and consistency. Biotechnol. Bioeng. 2017;114: 2253-2266. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Qasim A Rafiq
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, United Kingdom.,Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Mariana P Hanga
- Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Thomas R J Heathman
- Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom.,PCT, A Hitachi Group Company, Allendale, New Jersey
| | - Karen Coopman
- Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Alvin W Nienow
- Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom.,School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David J Williams
- Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| | - Christopher J Hewitt
- Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, United Kingdom.,Centre for Biological Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
45
|
孙 瑞, 龚 建, 邹 海, 张 林, 高 林. miR-17-92基因簇在肿瘤发生发展中作用的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1840-1853. [DOI: 10.11569/wcjd.v25.i20.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
肿瘤是威胁全世界人类健康和影响社会经济的重要因素. 近年来, 随着经济的发展, 肿瘤的发病率呈明显上升趋势, 但是其病因尚未完全阐明. 越来越多的证据显示肿瘤的发生和遗传因素有关, 随着病理生理学和遗传学的发展, 许多学者认为生物标志物可以预测癌症甚至指导临床治疗. 微小RNA(microRNA, miRNA)是非编码小分子RNA, 在发育、生理、病理过程以及肿瘤发生等环节中起着重要的调节作用. miR-17-92基因簇是研究较为深入、最有特点的miRNA, 被认为是原癌基因miRNA的代表, 在多种肿瘤的发生发展中起着至关重要的作用. 本文就miR-17-92基因簇在肿瘤发生发展中的作用及功能进行综述.
Collapse
|
46
|
Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, Chen Z. Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda) 2017; 32:266-277. [PMID: 28615311 PMCID: PMC5545611 DOI: 10.1152/physiol.00036.2016] [Citation(s) in RCA: 982] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/24/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Cell culture has become an indispensable tool to help uncover fundamental biophysical and biomolecular mechanisms by which cells assemble into tissues and organs, how these tissues function, and how that function becomes disrupted in disease. Cell culture is now widely used in biomedical research, tissue engineering, regenerative medicine, and industrial practices. Although flat, two-dimensional (2D) cell culture has predominated, recent research has shifted toward culture using three-dimensional (3D) structures, and more realistic biochemical and biomechanical microenvironments. Nevertheless, in 3D cell culture, many challenges remain, including the tissue-tissue interface, the mechanical microenvironment, and the spatiotemporal distributions of oxygen, nutrients, and metabolic wastes. Here, we review 2D and 3D cell culture methods, discuss advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research.
Collapse
Affiliation(s)
- Kayla Duval
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Hannah Grover
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Li-Hsin Han
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania
| | - Yongchao Mou
- Department of Bioengineering, University of Illinois-Chicago, Rockford, Illinois
| | - Adrian F Pegoraro
- Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts; and
| | - Jeffery Fredberg
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire;
| |
Collapse
|
47
|
Study of composite vascular scaffold combining with differentiated VSMC- and VEC-like cells in vitro and in vivo. J Biomater Appl 2017. [DOI: 10.1177/0885328217715363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors. Cytotherapy 2017; 19:419-432. [DOI: 10.1016/j.jcyt.2016.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/26/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023]
|
49
|
Stem cell, biomaterials and growth factors therapy for hepatocellular carcinoma. Biomed Pharmacother 2017; 88:1046-1053. [PMID: 28192881 DOI: 10.1016/j.biopha.2017.01.154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma is an antecedent of liver illnesses, including viral hepatitis, alcohol abuse, or metabolic disease. Transforming growth factor-Beta (TGF-b) plays an important role in creating a favorable microenvironment for tumor cell growth via two major mechanisms: an intrinsic activity as an autocrine growth factor and an extrinsic activity by inducing microenvironment changes. Recently stem cell therapy as also been a promising and potential treatment for liver cancer and in addition signaling pathways like GF/GFR systems, SDF-1α/CXC4 ligand receptor interaction and PI3K/Akt signaling, and cytokines has been identified to regulate cell fate decisions, and can be utilized to positively influence cell therapy outcomes. Thus stem cell-based therapy, together with signaling pathways can become a practical option in regenerative processes for replacing dead hepatocytes cells. Targeted drug delivery systems (TDDS) via biomaterials are presently been explored for cancer therapeutics especially liver cancer as it allows the enhancement of drug concentration in the liver and decrease the dosage and side effects. This review is intended to give a comprehensive summary of available liver cancer therapy using stem cells, growth factor and biomaterials.
Collapse
|
50
|
Williams DF. Biocompatibility Pathways: Biomaterials-Induced Sterile Inflammation, Mechanotransduction, and Principles of Biocompatibility Control. ACS Biomater Sci Eng 2016; 3:2-35. [DOI: 10.1021/acsbiomaterials.6b00607] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David F. Williams
- Wake Forest Institute of Regenerative Medicine, Richard H. Dean Biomedical Building, 391 Technology Way, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|