1
|
Du M, Gong M, Wu G, Jin J, Wang X, Jin Q. Conjugated Linolenic Acid (CLnA) vs Conjugated Linoleic Acid (CLA): A Comprehensive Review of Potential Advantages in Molecular Characteristics, Health Benefits, and Production Techniques. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5503-5525. [PMID: 38442367 DOI: 10.1021/acs.jafc.3c08771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Conjugated linoleic acid (CLA) has been extensively characterized due to its many biological activities and health benefits, but conjugated linolenic acid (CLnA) is still not well understood. However, CLnA has shown to be more effective than CLA as a potential functional food ingredient. Current research has not thoroughly investigated the differences and advantages between CLnA and CLA. This article compares CLnA and CLA based on molecular characteristics, including structural, chemical, and metabolic characteristics. Then, the in vivo research evidence of CLnA on various health benefits is comprehensively reviewed and compared with CLA in terms of effectiveness and mechanism. Furthermore, the potential of CLnA in production technology and product protection is analyzed. In general, CLnA and CLA have similar physicochemical properties of conjugated molecules and share many similarities in regulation effects and pathways of various health benefits as well as in the production methods. However, their specific properties, regulatory capabilities, and unique mechanisms are different. The superior potential of CLnA must be specified according to the practical application patterns of isomers. Future research should focus more on the advantageous characteristics of different isomers, especially the effectiveness and safety in clinical applications in order to truly exert the potential value of CLnA.
Collapse
Affiliation(s)
- Meijun Du
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengyue Gong
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Resources, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
2
|
Georgiou M, Prokopiou E. Diabetic retinopathy and the role of Omega-3 PUFAs: A narrative review. Exp Eye Res 2023; 231:109494. [PMID: 37149278 DOI: 10.1016/j.exer.2023.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/07/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Diabetes mellitus has been a major cause of concern for the past few decades. As the number of diabetic patients increases, so too does the occurrence of its complications. Diabetic retinopathy (DR) is one of these and constitutes the most common cause of blindness amongst working-age individuals. Chronic exposure to a hyperglycaemic environment remains the driving force of a cascade of molecular events that disrupt the microvasculature of the retina and if left untreated can lead to blindness. In this review, we identify oxidative stress as a major implication in the pathway to the development of DR and speculate that it plays a central role especially in the early stages of the disease. Cells lose their antioxidant capacity under a hyperglycaemic state, free radicals are formed and eventually apoptosis ensues. The polyol pathway; advanced glycation end-product formation; the protein kinase C pathway, and the hexosamine pathway are found to contribute to the increase in oxidative stress observed in diabetic patients. We also investigate the use of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in DR. These molecules possess antioxidant and anti-inflammatory properties and have been previously investigated for use in other ocular pathologies with promising results. In this review we present the latest findings in pre-clinical and clinical studies for the use of ω-3 PUFAs in DR. We hypothesise that ω-3 PUFAs could be beneficial for DR in ways of reducing the oxidative stress and limiting the progression of the disease that threatens the eyesight of the patient, in conjunction with conventional therapy.
Collapse
Affiliation(s)
- Maria Georgiou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414, Nicosia, Cyprus
| | - Ekatherine Prokopiou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414, Nicosia, Cyprus; Ophthalmos Research and Educational Institute, 2417, Nicosia, Cyprus.
| |
Collapse
|
3
|
Du M, Jin J, Wu G, Jin Q, Wang X. Metabolic, structure-activity characteristics of conjugated linolenic acids and their mediated health benefits. Crit Rev Food Sci Nutr 2023; 64:8203-8217. [PMID: 37021469 DOI: 10.1080/10408398.2023.2198006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Conjugated linolenic acid (CLnA) is a mixture of octadecenoic acid with multiple positional and geometric isomers (including four 9, 11, 13-C18:3 isomers and three 8, 10, 12-C18:3 isomers) that is mainly present in plant seeds. In recent years, CLnA has shown many promising health benefits with the deepening of research, but the metabolic characteristics, physiological function differences and mechanisms of different isomers are relatively complex. In this article, the metabolic characteristics of CLnA were firstly reviewed, with focus on its conversion, catabolism and anabolism. Then the possible mechanisms of CLnA exerting biological effects were summarized and analyzed from its own chemical and physical characteristics, as well as biological receptor targeting characteristics. In addition, the differences and mechanisms of different isomers of CLnA in anticancer, lipid-lowering, anti-diabetic and anti-inflammatory physiological functions were compared and summarized. The current results show that the position and cis-trans conformation of conjugated structure endow CLnA with unique physical and chemical properties, which also makes different isomers have commonalities and particularities in the regulation of metabolism and physiological functions. Corresponding the metabolic characteristics of different isomers with precise nutrition strategy will help them to play a better role in disease prevention and treatment. CLnA has the potential to be developed into food functional components and dietary nutritional supplements. The advantages and mechanisms of different CLnA isomers in the clinical management of specific diseases need further study.
Collapse
Affiliation(s)
- Meijun Du
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Research Laboratory for Lipid Nutrition and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Akaras N, Gur C, Kucukler S, Kandemir FM. Zingerone reduces sodium arsenite-induced nephrotoxicity by regulating oxidative stress, inflammation, apoptosis and histopathological changes. Chem Biol Interact 2023; 374:110410. [PMID: 36822304 DOI: 10.1016/j.cbi.2023.110410] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Arsenic is widely available in the environment and arsenic toxicity is a public health problem of serious concern worldwide. Zingerone is a promising phytochemical with various pharmacological effects. In this study, the potential protective effect of zingerone against sodium arsenite (NaAsO2, SA) induced nephrotoxicity was investigated. Thirty-five male Sprague-Dawley rats were divided into five different groups as control, zingerone, SA, SA + zingerone 25, SA + zingerone 50. SA was administered alone at a dose of 10 mg/kg for 14 days or given 30 min before zingerone (25 mg/kg or 50 mg/kg) treatment. At the end of the experiment, the kidney tissues was examined biochemically, molecularly and microscopically. SA toxicity was associated with increased malondialdehyde level, whereas glutathione, superoxide dismutase, catalase, and glutathione peroxidase were decreased. Administration of SA caused inflammation in the kidney tissue by upregulation of NF-κB and IL-1β, TNF-α, IL-6, iNOS, COX-2, MAPK14, MAPK15, JNK. SA administration caused apoptosis in the kidney by upregulating caspase-3 and Bax levels and downregulating Bcl-2, and autophagy by activating beclin-1. Also, SA administration showed a suppressive effect on AKT2 and FOXO1 mRNA transcript levels. All these factors impair kidney function and increase creatinine and urea levels, resulting in pathological changes and a decrease in nephrin. Treatment with zingerone at doses of 25 and 50 mg/kg significantly reduced oxidative stress, inflammation, apoptosis and autophagy in kidney tissue. In addition, it was confirmed by histological evaluation as well as serum urea and creatinine levels that kidney damage due to SA toxicity can be modulated by zingerone administration.
Collapse
Affiliation(s)
- Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey.
| | - Cihan Gur
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
5
|
Pomegranate Seed Oil as a Source of Conjugated Linolenic Acid (CLnA) Has No Effect on Atherosclerosis Development but Improves Lipid Profile and Affects the Expression of Lipid Metabolism Genes in apoE/LDLR -/- Mice. Int J Mol Sci 2023; 24:ijms24021737. [PMID: 36675252 PMCID: PMC9863817 DOI: 10.3390/ijms24021737] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The aim of this study was to evaluate the anti-atherosclerotic effect of pomegranate seed oil as a source of conjugated linolenic acid (CLnA) (cis-9,trans-11,cis-13; punicic acid) compared to linolenic acid (LnA) and conjugated linoleic acid (CLA) (cis-9,trans-11) in apoE/LDLR-/- mice. In the LONG experiment, 10-week old mice were fed for the 18 weeks. In the SHORT experiment, 18-week old mice were fed for the 10 weeks. Diets were supplied with seed oils equivalent to an amount of 0.5% of studied fatty acids. In the SHORT experiment, plasma TCh and LDL+VLDL cholesterol levels were significantly decreased in animals fed CLnA and CLA compared to the Control. The expression of PPARα in liver was four-fold increased in CLnA group in the SHORT experiment, and as a consequence the expression of its target gene ACO was three-fold increased, whereas the liver's expression of SREBP-1 and FAS were decreased in CLnA mice only in the LONG experiment. Punicic acid and CLA isomers were determined in the adipose tissue and liver in animals receiving pomegranate seed oil. In both experiments, there were no effects on the area of atherosclerotic plaque in aortic roots. However, in the SHORT experiment, the area of atherosclerosis in the entire aorta in the CLA group compared to CLnA and LnA was significantly decreased. In conclusion, CLnA improved the lipid profile and affected the lipid metabolism gene expression, but did not have the impact on the development of atherosclerotic plaque in apoE/LDLR-/- mice.
Collapse
|
6
|
Quality characteristics and volatile compounds of oil extracted from njangsa seed. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Aydın B, Güler Şahin C, Şekeroğlu V, Atlı Şekeroğlu Z. Conjugated linoleic acid protects brain mitochondrial function in acrolein induced male rats. Toxicol Mech Methods 2021; 31:674-679. [PMID: 34238125 DOI: 10.1080/15376516.2021.1952673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Acrolein (AC) is a toxic substance that can have a neurotoxic effect. It can cause oxidative stress and mitochondrial dysfunction. Conjugated linoleic acid (CLA), a dietary supplement, has many biological functions. Limited information is available about the effect of CLA on AC-induced brain toxicity. Therefore, the present study aims to investigate the effect of CLA on mitochondrial oxidative stress, respiratory enzymes, krebs cycle enzymes and ATP levels in AC treated rat brain. Sprague Dawley male rats were given AC (5 mg/kg i.p.), CLA (200 mg/kg orally) and CLA with AC for six days per week for 30 days. Some oxidative stress parameters and mitochondrial enzymes such as manganese super oxide dismutase, glutathione peroxidase, NADP+-dependent isocitrate dehydrogenase (ICDH), alpha-ketoglutarate dehydrogenase (α-KGDH), malate dehydrogenase, reduced glutathione (GSH), lipid peroxidation (LP), protein carbonyl (PC), oxidative phosphorylation (OXPHOS) and tricarboxylic acid cycle (TCA) enzymes, and ATP levels were determined. AC significantly decreased the activities of GSH, antioxidant enzymes, OXPHOS enzymes (complex I and IV), TCA enzymes (ICDH and α-KGDH) and ATP levels. Significant increases were also observed in mitochondrial LP and PC levels in AC group. Co-treatment with AC + CLA improved oxidative stress and mitochondrial dysfunction caused by AC. As a result of our findings, it was observed that CLA was effective in improving oxidative stress and impaired mitochondrial functions in brain tissue by the effect of AC. Considering the association between neurodegenerative diseases and mitochondrial dysfunction, CLA can play a role in the prevention and therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Birsen Aydın
- Department of Biology, Faculty of Science, Amasya University, Amasya, Turkey
| | - Cansu Güler Şahin
- Department of Biology, Faculty of Science, Amasya University, Amasya, Turkey
| | - Vedat Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Ordu University, Ordu, Turkey
| | - Zülal Atlı Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Ordu University, Ordu, Turkey
| |
Collapse
|
8
|
Białek A, Białek M, Lepionka T, Pachniewicz P, Czauderna M. Oxysterols and lipidomic profile of myocardium of rats supplemented with pomegranate seed oil and/or bitter melon aqueous extract - Cardio-oncological animal model research. Chem Phys Lipids 2021; 235:105057. [PMID: 33515592 DOI: 10.1016/j.chemphyslip.2021.105057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022]
Abstract
A close link between cardiovascular diseases and cancer results from sharing the same modifiable risk factors (e.g. nutritional) and cardiotoxicity of anti-cancerous therapies. It justifies cardio-oncological preliminary studies on dietary factors, especially on those of possible anti-carcinogenic or cardioprotective properties. The main purpose was to evaluate the effect of pomegranate seed oil (PSO) and/or bitter melon extract (BME) supplementation of the diet of female rats suffering from mammary tumors on lipidomic profile (expressed as fatty acids, conjugated fatty acids (CFA), malondialdehyde (MDA), cholesterol and oxysterols content) of cardiac tissue. Total lipidomic profile and intensity of lipid peroxidation in hearts of DMBA-treated Sprague-Dawley rats and their healthy equivalents, both obtaining diet supplementation, were evaluated with different chromatographic techniques coupled with appropriate detection systems (GC-MS, GC-TOFMS, Ag+-HPLC-DAD, UF-HPLC-DAD). Dietary modifications neither diminished breast cancer incidence nor exerted explicit cardio-protective influence, however, they diminished cholesterol content, i.a. because of inhibition of the endogenous conversion of squalene to cholesterol in cardiac tissue. CFA were incorporated into cardiac tissue to a lesser extent in the cancerous process. PSO and BME anti-oxidant properties in pathological condition were only slightly reflected in MDA levels but not in oxysterols formation. Obtained results indicate considerable changes in dietary supplements' biological activity in pathological conditions and the need for clear distinction of drugs and dietary supplements, which is of utmost importance, especially for cancer survivors.
Collapse
Affiliation(s)
- Agnieszka Białek
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland; Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology of Polish Academy of Sciences, Postępu 36A Jastrzębiec, 05-552, Magdalenka, Poland.
| | - Małgorzata Białek
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Tomasz Lepionka
- The Biological Threats Identification and Countermeasure Center of the General Karol Kaczkowski Military Institute of Hygiene and Epidemiology, Lubelska 4 St, 24-100, Puławy, Poland
| | - Paulina Pachniewicz
- Department of Bromatology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
| | - Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
9
|
Paul D, Manna K, Sengupta A, Mukherjee S, Dey S, Bag PK, Dhar P. A novel nanoformulation of α-eleostearic acid restores molecular pathogenesis of hypersensitivity. Nanomedicine (Lond) 2019; 14:529-552. [PMID: 30753111 DOI: 10.2217/nnm-2018-0450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM The present work provides first-time empirical and molecular interaction evidence to establish the higher biofunctionality of a therapeutic lipid, α-eleostearic acid (ESA), encapsulated in a novel and thoroughly characterized biocompatible nanoemulsion (NE) system (particle size <200 nm). MATERIALS & METHODS A novel methodology was employed to fabricate novel formulations of ESA. Molecular biological tools and assays were used to arrive at definite conclusions. RESULTS The proinflammatory profile was found to be significantly mitigated in the hypersensitized rats administered with the ESA-NE formulation more emphatically as compared with ESA-conventional emulsion in both in vivo and ex vivo models. CONCLUSION The novel ESA-NE formulation shows a lot of palpable promise for clinical applications.
Collapse
Affiliation(s)
- Debjyoti Paul
- Laboratory of Food Science & Technology, Food & Nutrition Division, University of Calcutta, 20 B Judges Court Road, Kolkata 700 027, West Bengal, India.,Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.,Department of Biotechnology, Techno India University, EM-4, EM Block, Salt Lake City, Sector V, Kolkata 700091, West Bengal, India
| | - Krishnendu Manna
- Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal, India
| | - Aaveri Sengupta
- Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal, India
| | - Sayani Mukherjee
- Laboratory of Food Science & Technology, Food & Nutrition Division, University of Calcutta, 20 B Judges Court Road, Kolkata 700 027, West Bengal, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal, India
| | - Prasanta K Bag
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science & Technology, Food & Nutrition Division, University of Calcutta, 20 B Judges Court Road, Kolkata 700 027, West Bengal, India.,Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| |
Collapse
|
10
|
Aydın B, Atlı Şekeroğlu Z, Şekeroğlu V. Effects of whey protein and conjugated linoleic acid on acrolein-induced cardiac oxidative stress, mitochondrial dysfunction and dyslipidemia in rats. Biomed Pharmacother 2018; 107:901-907. [DOI: 10.1016/j.biopha.2018.08.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022] Open
|
11
|
Aydın B, Atlı Şekeroğlu Z, Şekeroğlu V. Acrolein-induced oxidative stress and genotoxicity in rats: protective effects of whey protein and conjugated linoleic acid. Drug Chem Toxicol 2017; 41:225-231. [DOI: 10.1080/01480545.2017.1354872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Birsen Aydın
- Department of Biology, Faculty of Science, Amasya University, Amasya, Turkey
| | - Zülal Atlı Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Ordu University, Ordu, Turkey
| | - Vedat Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Ordu University, Ordu, Turkey
| |
Collapse
|
12
|
Abaidoo‐Ayin HK, Boakye PG, Jones KC, Wyatt VT, Besong SA, Lumor SE. Compositional Analyses and Shelf‐Life Modeling of
Njangsa
(
Ricinodendron heudelotii
) Seed Oil Using the Weibull Hazard Analysis. J Food Sci 2017. [DOI: 10.1111/1750-3841.13767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Prince G. Boakye
- Dept. of Human Ecology Delaware State Univ. 1200 N Dupont Hwy Dover Del. 19901 U.S.A
| | - Kerby C. Jones
- Eastern Regional Research Center US Dept. of Agriculture 600 E Mermaid Ln Wyndmoor Pa. 19038 U.S.A
| | - Victor T. Wyatt
- Eastern Regional Research Center US Dept. of Agriculture 600 E Mermaid Ln Wyndmoor Pa. 19038 U.S.A
| | - Samuel A. Besong
- Dept. of Human Ecology Delaware State Univ. 1200 N Dupont Hwy Dover Del. 19901 U.S.A
| | - Stephen E. Lumor
- Dept. of Human Ecology Delaware State Univ. 1200 N Dupont Hwy Dover Del. 19901 U.S.A
| |
Collapse
|
13
|
Shabbir MA, Khan MR, Saeed M, Pasha I, Khalil AA, Siraj N. Punicic acid: A striking health substance to combat metabolic syndromes in humans. Lipids Health Dis 2017; 16:99. [PMID: 28558700 PMCID: PMC5450373 DOI: 10.1186/s12944-017-0489-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Punicic acid, a bioactive compound of pomegranate seed oil has gained wide attention for their therapeutic potential. Different studies conducted on animal and human models have revealed that punicic acid is very effective against various chronic diseases. Substantial laboratory works has been carried out to elaborate punicic acid effectiveness and mechanism of action in animals. The intention of this review article is to explore the facts about the clinical trials of punicic acid and to discuss different future strategies that can be employed to use it in human clinical trials. Although punicic acid may represent a novel therapeutic unconventional approach for some disorders, still further experimental studies are required to demonstrate its effects in human beings.
Collapse
Affiliation(s)
- Muhmmad Asim Shabbir
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Muhammad Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Imran Pasha
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Anees Ahmed Khalil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Naila Siraj
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000 Pakistan
| |
Collapse
|
14
|
Behl T, Kotwani A. Omega-3 fatty acids in prevention of diabetic retinopathy. ACTA ACUST UNITED AC 2017; 69:946-954. [PMID: 28481011 DOI: 10.1111/jphp.12744] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To review the competence of Omega-3 fatty acids in restricting the progression, thereby leading to prevention of diabetic retinopathy. KEY FINDINGS Owing to their anti-inflammatory and anti-angiogenic properties, Omega-3 fatty acids alleviate major aetiological agents. These fatty acids are renowned for their beneficial effects in various cardiovascular and other disorders; however, their potential to prevent the progression of diabetic retinopathy remains least explored. SUMMARY Utilizing this potential, we may develop effective prophylactic agents which markedly inhibit the advent of retinal angiogenesis and prevent the apoptosis of retinal endothelial and neuronal cells, thereby averting retinal degeneration, hence safeguarding diabetic patients from this sight-threatening complication.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Anita Kotwani
- Department of Pharmacology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
15
|
Fontes AL, Pimentel LL, Simões CD, Gomes AMP, Rodríguez-Alcalá LM. Evidences and perspectives in the utilization of CLNA isomers as bioactive compounds in foods. Crit Rev Food Sci Nutr 2017; 57:2611-2622. [DOI: 10.1080/10408398.2015.1063478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ana L. Fontes
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Lígia L. Pimentel
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Catarina D. Simões
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Ana M. P. Gomes
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
| | - Luís M. Rodríguez-Alcalá
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Porto, Portugal
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Santiago de Chile, Chile
| |
Collapse
|
16
|
Aruna P, Venkataramanamma D, Singh AK, Singh RP. Health Benefits of Punicic Acid: A Review. Compr Rev Food Sci Food Saf 2015; 15:16-27. [PMID: 33371578 DOI: 10.1111/1541-4337.12171] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 12/13/2022]
Abstract
Punicic acid (PA) is a polyunsaturated fatty acid (18:3 n-5), which is classified as a conjugated linolenic acid. PA is also referred as a "super CLnA" whose effect is even more potent than that of an ordinary CLnA. It is found mainly in the seeds of pomegranate fruit (Punica granatum) and Trichoxanthes kirilowii and some other minor sources. It possesses a wide array of biological properties including antidiabetic, antiobesity, antiproliferative, and anticarcinogenic activity against various forms of cancer. In spite of this, PA has not been explored as a nutraceutical or as an ingredient of food products which can be aimed at specific consumer target groups. This review details the various health-beneficial properties of PA and explores the possibilities of its utilization as an active ingredient in various food products.
Collapse
Affiliation(s)
- P Aruna
- Academy of Scientific and Innovative Research (AcSIR), Taramani, Chennai, Tamil Nadu, India.,the Dept. of Biochemistry and Nutrition, CSIR-Central Food Technological Research Inst, Mysore 570020, Karnataka, India
| | - D Venkataramanamma
- Academy of Scientific and Innovative Research (AcSIR), Taramani, Chennai, Tamil Nadu, India.,the Dept. of Biochemistry and Nutrition, CSIR-Central Food Technological Research Inst, Mysore 570020, Karnataka, India
| | - Alok Kumar Singh
- the Dept. of Biochemistry and Nutrition, CSIR-Central Food Technological Research Inst, Mysore 570020, Karnataka, India
| | - R P Singh
- Academy of Scientific and Innovative Research (AcSIR), Taramani, Chennai, Tamil Nadu, India.,the Dept. of Biochemistry and Nutrition, CSIR-Central Food Technological Research Inst, Mysore 570020, Karnataka, India
| |
Collapse
|
17
|
Yuan GF, Chen XE, Li D. Conjugated linolenic acids and their bioactivities: a review. Food Funct 2015; 5:1360-8. [PMID: 24760201 DOI: 10.1039/c4fo00037d] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Conjugated linolenic acid (CLNA) is a mixture of positional and geometric isomers of octadecatrienoic acid (α-linolenic acid, cis9,cis12,cis15-18:3 n-3) found in plant seeds. Three 8,10,12-18:3 isomers and four 9,11,13-18:3 isomers have been reported to occur naturally. CLNA isomers such as punicic acid, α-eleostearic acid and jacaric acid have been attributed to exhibit several health benefits that are largely based on animal and in vitro studies. This review has summarized and updated the evidence regarding the metabolism and bioactivities of CLNA isomers, and comprehensively discussed the recent studies on the effects of anti-carcinogenic, lipid metabolism regulation, anti-inflammatory, anti-obese and antioxidant activities of CLNA isomers. The available results may provide a potential application for CLNA isomers from natural sources, especially edible plant seeds, as effective functional food ingredients and dietary supplements for the above mentioned disease management. Further research, especially human randomized clinical trials, is warranted to investigate the detailed physiological effects, bioactivity and molecular mechanism of CLNA.
Collapse
Affiliation(s)
- Gao-Feng Yuan
- College of Food and Medicine, Zhejiang Ocean University, Zhoushan 316022, China
| | | | | |
Collapse
|
18
|
Boroushaki MT, Mollazadeh H, Rajabian A, Dolati K, Hoseini A, Paseban M, Farzadnia M. Protective effect of pomegranate seed oil against mercuric chloride-induced nephrotoxicity in rat. Ren Fail 2014; 36:1581-6. [PMID: 25154291 DOI: 10.3109/0886022x.2014.949770] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Heavy metals such as mercury can induce the generation of free radicals and oxidative stress which are associated with tissue injury. The present study was designed to evaluate the protective effect of pomegranate seed oil against HgCl2-induced nephrotoxicity. METHODS Twenty-four W/A adult rats were randomly divided into four groups. Group I received corn oil (1 mL/kg). Group II received HgCl2 (5 mg/kg) for 3 days. Group III and IV received PSO 0.4 mL/kg and 0.8 mL/kg, respectively one hour before HgCl2 administration for 3 days. Blood samples were taken by cardiac puncture and used for the measurement of urea and creatinine concentration. Twenty-hour-hour urine samples were collected to measure protein and glucose. The right kidney was fixed in formalin for histological examination and the left kidney was homogenized for measuring malondialdehyde (MDA) and total sulfhydryl groups. RESULTS Significant elevation of serum creatinine and urea levels as well as urine glucose and protein concentrations, a significant decrease in total thiol content and a significant increase in MDA levels in kidney homogenate samples were observed after administration of HgCl2 as compared with control group. PSO pretreatment resulted in a significant decrease in serum creatinine and urea levels as well as urine glucose and protein concentrations when compared with HgCl2 treated (group II). PSO also significantly reversed the HgCl2-induced depletion in thiol content and elevation in MDA content. Histological studies revealed milder kidney lesions in PSO treated groups (groups III and IV) compared to HgCl2 treated group. CONCLUSION Our results suggest that PSO has a protective effect against HgCl2-induced nephrotoxicity in rats.
Collapse
Affiliation(s)
- Mohammad Taher Boroushaki
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad, I. R. Iran
| | | | | | | | | | | | | |
Collapse
|
19
|
Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention? ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.endoen.2014.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Miranda J, Arias N, Fernández-Quintela A, del Puy Portillo M. ¿Son los isómeros del ácido linolénico conjugado una alternativa a isómeros del ácido linoleico conjugado en la prevención de la obesidad? ACTA ACUST UNITED AC 2014; 61:209-19. [DOI: 10.1016/j.endonu.2013.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/07/2013] [Accepted: 04/14/2013] [Indexed: 12/20/2022]
|
21
|
Miranda J, Aguirre L, Fernández-Quintela A, Macarulla MT, Martínez-Castaño MG, Ayo J, Bilbao E, Portillo MP. Effects of pomegranate seed oil on glucose and lipid metabolism-related organs in rats fed an obesogenic diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5089-5096. [PMID: 23682933 DOI: 10.1021/jf305076v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Studies conducted in mice have revealed positive effects of punicic acid (PUA). The aim of this study was to analyze the effects of PUA on fat accumulation and glycemic control in rats fed an obesogenic diet. Rats were randomly divided into two groups: control group and PUA group (diet supplemented with 0.5% PUA). No changes were observed in adipose tissue weights. The glucose tolerance test showed that the glycemic value in the PUA group had decreased significantly at the final time (120 min) (-19.3%), as had fructosamine levels (-11.1%). However, homeostasis model assessment (HOMA-IR) showed that insulin resistance did not improve. No changes were observed in the liver, skeletal muscle composition, or peroxisome proliferator-activated receptors (PPARs) activation. Low levels (mg/g tissue) of PUA (0.04 ± 0.01 in both tissues) and higher levels of cis-9,trans-11 conjugated linoleic acid (0.31 ± 0.08 in liver, 0.52 ± 0.11 in muscle) were found. PUA supplementation induced hypoplasia (-16.1%) due to the antiproliferative effect on hepatocytes. In conclusion, dietary supplementation of 0.5% PUA did not lead to decreased fat accumulation in adipose tissue, liver, or skeletal muscle, or to improved glycemic control. The hypoplasia induced in liver is a negative effect that should be considered before proposing PUA as a functional ingredient.
Collapse
Affiliation(s)
- Jonatan Miranda
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad , 7. 01006 Vitoria, Spain
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Conjugated linolenic acid nanoparticles inhibit hypercholesterolemia induced by feeding a high-fat diet in male albino rats. Journal of Food Science and Technology 2013. [DOI: 10.1007/s13197-013-0974-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|