1
|
Kwak H, Kim N, Jeon S, Kim S, Woo J. Electrochemical random-access memory: recent advances in materials, devices, and systems towards neuromorphic computing. NANO CONVERGENCE 2024; 11:9. [PMID: 38416323 PMCID: PMC10902254 DOI: 10.1186/s40580-024-00415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
Artificial neural networks (ANNs), inspired by the human brain's network of neurons and synapses, enable computing machines and systems to execute cognitive tasks, thus embodying artificial intelligence (AI). Since the performance of ANNs generally improves with the expansion of the network size, and also most of the computation time is spent for matrix operations, AI computation have been performed not only using the general-purpose central processing unit (CPU) but also architectures that facilitate parallel computation, such as graphic processing units (GPUs) and custom-designed application-specific integrated circuits (ASICs). Nevertheless, the substantial energy consumption stemming from frequent data transfers between processing units and memory has remained a persistent challenge. In response, a novel approach has emerged: an in-memory computing architecture harnessing analog memory elements. This innovation promises a notable advancement in energy efficiency. The core of this analog AI hardware accelerator lies in expansive arrays of non-volatile memory devices, known as resistive processing units (RPUs). These RPUs facilitate massively parallel matrix operations, leading to significant enhancements in both performance and energy efficiency. Electrochemical random-access memory (ECRAM), leveraging ion dynamics in secondary-ion battery materials, has emerged as a promising candidate for RPUs. ECRAM achieves over 1000 memory states through precise ion movement control, prompting early-stage research into material stacks such as mobile ion species and electrolyte materials. Crucially, the analog states in ECRAMs update symmetrically with pulse number (or voltage polarity), contributing to high network performance. Recent strides in device engineering in planar and three-dimensional structures and the understanding of ECRAM operation physics have marked significant progress in a short research period. This paper aims to review ECRAM material advancements through literature surveys, offering a systematic discussion on engineering assessments for ion control and a physical understanding of array-level demonstrations. Finally, the review outlines future directions for improvements, co-optimization, and multidisciplinary collaboration in circuits, algorithms, and applications to develop energy-efficient, next-generation AI hardware systems.
Collapse
Affiliation(s)
- Hyunjeong Kwak
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Nayeon Kim
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Seonuk Jeon
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Seyoung Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| | - Jiyong Woo
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
2
|
Abstract
Ion pumps are important membrane-spanning transporters that pump ions against the electrochemical gradient across the cell membrane. In biological systems, ion pumping is essential to maintain intracellular osmotic pressure, to respond to external stimuli, and to regulate physiological activities by consuming adenosine triphosphate. In recent decades, artificial ion pumping systems with diverse geometric structures and functions have been developing rapidly with the progress of advanced materials and nanotechnology. In this Review, bioinspired artificial ion pumps, including four categories: asymmetric structure-driven ion pumps, pH gradient-driven ion pumps, light-driven ion pumps, and electron-driven ion pumps, are summarized. The working mechanisms, functions, and applications of those artificial ion pumping systems are discussed. Finally, a brief conclusion of underpinning challenges and outlook for future research are tentatively discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Hongjie Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P.R. China
| |
Collapse
|
3
|
Liang Y, Offenhäusser A, Ingebrandt S, Mayer D. PEDOT:PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Adv Healthc Mater 2021; 10:e2100061. [PMID: 33970552 PMCID: PMC11468774 DOI: 10.1002/adhm.202100061] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Indexed: 12/16/2022]
Abstract
To understand the physiology and pathology of electrogenic cells and the corresponding tissue in their full complexity, the quantitative investigation of the transmission of ions as well as the release of chemical signals is important. Organic (semi-) conducting materials and in particular organic electrochemical transistor are gaining in importance for the investigation of electrophysiological and recently biochemical signals due to their synthetic nature and thus chemical diversity and modifiability, their biocompatible and compliant properties, as well as their mixed electronic and ionic conductivity featuring ion-to-electron conversion. Here, the aim is to summarize recent progress on the development of bioelectronic devices utilizing polymer polyethylenedioxythiophene: poly(styrene sulfonate) (PEDOT:PSS) to interface electronics and biological matter including microelectrode arrays, neural cuff electrodes, organic electrochemical transistors, PEDOT:PSS-based biosensors, and organic electronic ion pumps. Finally, progress in the material development is summarized for the improvement of polymer conductivity, stretchability, higher transistor transconductance, or to extend their field of application such as cation sensing or metabolite recognition. This survey of recent trends in PEDOT:PSS electrophysiological sensors highlights the potential of this multifunctional material to revolve current technology and to enable long-lasting, multichannel polymer probes for simultaneous recordings of electrophysiological and biochemical signals from electrogenic cells.
Collapse
Affiliation(s)
- Yuanying Liang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouGuangdong510640China
| | - Andreas Offenhäusser
- Institute of Biological Information ProcessingBioelectronics IBI‐3Forschungszentrum JülichJülich52425Germany
| | - Sven Ingebrandt
- Faculty of Electrical Engineering and Information TechnologyInstitute of Materials in Electrical Engineering 1RWTH Aachen UniversityAachen52074Germany
| | - Dirk Mayer
- Institute of Biological Information ProcessingBioelectronics IBI‐3Forschungszentrum JülichJülich52425Germany
| |
Collapse
|
4
|
Mimicking associative learning using an ion-trapping non-volatile synaptic organic electrochemical transistor. Nat Commun 2021; 12:2480. [PMID: 33931638 PMCID: PMC8087835 DOI: 10.1038/s41467-021-22680-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Associative learning, a critical learning principle to improve an individual's adaptability, has been emulated by few organic electrochemical devices. However, complicated bias schemes, high write voltages, as well as process irreversibility hinder the further development of associative learning circuits. Here, by adopting a poly(3,4-ethylenedioxythiophene):tosylate/Polytetrahydrofuran composite as the active channel, we present a non-volatile organic electrochemical transistor that shows a write bias less than 0.8 V and retention time longer than 200 min without decoupling the write and read operations. By incorporating a pressure sensor and a photoresistor, a neuromorphic circuit is demonstrated with the ability to associate two physical inputs (light and pressure) instead of normally demonstrated electrical inputs in other associative learning circuits. To unravel the non-volatility of this material, ultraviolet-visible-near-infrared spectroscopy, X-ray photoelectron spectroscopy and grazing-incidence wide-angle X-ray scattering are used to characterize the oxidation level variation, compositional change, and the structural modulation of the poly(3,4-ethylenedioxythiophene):tosylate/Polytetrahydrofuran films in various conductance states. The implementation of the associative learning circuit as well as the understanding of the non-volatile material represent critical advances for organic electrochemical devices in neuromorphic applications.
Collapse
|
5
|
Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials. Biosens Bioelectron 2020; 170:112620. [DOI: 10.1016/j.bios.2020.112620] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023]
|
6
|
Walker BW, Lara RP, Mogadam E, Yu CH, Kimball W, Annabi N. Rational Design of Microfabricated Electroconductive Hydrogels for Biomedical Applications. Prog Polym Sci 2019; 92:135-157. [PMID: 32831422 PMCID: PMC7441850 DOI: 10.1016/j.progpolymsci.2019.02.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electroconductive hydrogels (ECHs) are highly hydrated 3D networks generated through the incorporation of conductive polymers, nanoparticles, and other conductive materials into polymeric hydrogels. ECHs combine several advantageous properties of inherently conductive materials with the highly tunable physical and biochemical properties of hydrogels. Recently, the development of biocompatible ECHs has been investigated for various biomedical applications, such as tissue engineering, drug delivery, biosensors, flexible electronics, and other implantable medical devices. Several methods for the synthesis of ECHs have been reported, which include the incorporation of electrically conductive materials such as gold and silver nanoparticles, graphene, and carbon nanotubes, as well as various conductive polymers (CPs), such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxyythiophene) into hydrogel networks. Theses electroconductive composite hydrogels can be used as scaffolds with high swellability, tunable mechanical properties, and the capability to support cell growth both in vitro and in vivo. Furthermore, recent advancements in microfabrication techniques such as three dimensional (3D) bioprinting, micropatterning, and electrospinning have led to the development of ECHs with biomimetic microarchitectures that reproduce the characteristics of the native extracellular matrix (ECM). In addition, smart ECHs with controlled structures and healing properties have also been engineered into devices with prolonged half-lives and increased durability. The combination of sophisticated synthesis chemistries and modern microfabrication techniques have led to engineer smart ECHs with advanced architectures, geometries, and functionalities that are being increasingly used in drug delivery systems, biosensors, tissue engineering, and soft electronics. In this review, we will summarize different strategies to synthesize conductive biomaterials. We will also discuss the advanced microfabrication techniques used to fabricate ECHs with complex 3D architectures, as well as various biomedical applications of microfabricated ECHs.
Collapse
Affiliation(s)
- Brian W Walker
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Roberto Portillo Lara
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico
| | - Emad Mogadam
- Department of Internal Medicine, Huntington Hospital, Pasadena, CA, 91105, USA
- Department of Internal Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Chu Hsiang Yu
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - William Kimball
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Biomaterials Innovation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
7
|
Löffler S, Antypas H, Choong FX, Nilsson KPR, Richter-Dahlfors A. Conjugated Oligo- and Polymers for Bacterial Sensing. Front Chem 2019; 7:265. [PMID: 31058140 PMCID: PMC6482434 DOI: 10.3389/fchem.2019.00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/01/2019] [Indexed: 11/29/2022] Open
Abstract
Fast and accurate detection of bacteria and differentiation between pathogenic and commensal colonization are important keys in preventing the emergence and spread of bacterial resistance toward antibiotics. As bacteria undergo major lifestyle changes during colonization, bacterial sensing needs to be achieved on different levels. In this review, we describe how conjugated oligo- and polymers are used to detect bacterial colonization. We summarize how oligothiophene derivatives have been tailor-made for detection of biopolymers produced by a wide range of bacteria upon entering the biofilm lifestyle. We further describe how these findings are translated into diagnostic approaches for biofilm-related infections. Collectively, this provides an overview on how synthetic biorecognition elements can be used to produce fast and easy diagnostic tools and new methods for infection control.
Collapse
Affiliation(s)
- Susanne Löffler
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Haris Antypas
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Ferdinand X. Choong
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | | | - Agneta Richter-Dahlfors
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Aplin FP, Fridman GY. Implantable Direct Current Neural Modulation: Theory, Feasibility, and Efficacy. Front Neurosci 2019; 13:379. [PMID: 31057361 PMCID: PMC6482222 DOI: 10.3389/fnins.2019.00379] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
Implantable neuroprostheses such as cochlear implants, deep brain stimulators, spinal cord stimulators, and retinal implants use charge-balanced alternating current (AC) pulses to recover delivered charge and thus mitigate toxicity from electrochemical reactions occurring at the metal-tissue interface. At low pulse rates, these short duration pulses have the effect of evoking spikes in neural tissue in a phase-locked fashion. When the therapeutic goal is to suppress neural activity, implants typically work indirectly by delivering excitation to populations of neurons that then inhibit the target neurons, or by delivering very high pulse rates that suffer from a number of undesirable side effects. Direct current (DC) neural modulation is an alternative methodology that can directly modulate extracellular membrane potential. This neuromodulation paradigm can excite or inhibit neurons in a graded fashion while maintaining their stochastic firing patterns. DC can also sensitize or desensitize neurons to input. When applied to a population of neurons, DC can modulate synaptic connectivity. Because DC delivered to metal electrodes inherently violates safe charge injection criteria, its use has not been explored for practical applicability of DC-based neural implants. Recently, several new technologies and strategies have been proposed that address this safety criteria and deliver ionic-based direct current (iDC). This, along with the increased understanding of the mechanisms behind the transcutaneous DC-based modulation of neural targets, has caused a resurgence of interest in the interaction between iDC and neural tissue both in the central and the peripheral nervous system. In this review we assess the feasibility of in-vivo iDC delivery as a form of neural modulation. We present the current understanding of DC/neural interaction. We explore the different design methodologies and technologies that attempt to safely deliver iDC to neural tissue and assess the scope of application for direct current modulation as a form of neuroprosthetic treatment in disease. Finally, we examine the safety implications of long duration iDC delivery. We conclude that DC-based neural implants are a promising new modulation technology that could benefit from further chronic safety assessments and a better understanding of the basic biological and biophysical mechanisms that underpin DC-mediated neural modulation.
Collapse
Affiliation(s)
- Felix P Aplin
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Gene Y Fridman
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
9
|
Sezen-Edmonds M, Loo YL. Beyond Doping and Charge Balancing: How Polymer Acid Templates Impact the Properties of Conducting Polymer Complexes. J Phys Chem Lett 2017; 8:4530-4539. [PMID: 28853890 DOI: 10.1021/acs.jpclett.7b01785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polymer acids are increasingly used as dopants/counterions to access and stabilize the electrically conducting states of conducting polymers. Beyond doping and/or charge balancing, these polymer acids also serve as active components that impact the macroscopic properties of the conducting polymer complexes. Judicious selection of the polymer acid at the onset of synthesis or manipulation of the interactions between the polymer acid and the conducting polymer through processing significantly impacts the electrical conductivity, piezoresistivity, electrochromism, mechanical properties, and thermoelectric efficiency of conducting polymers. As polyelectrolytes, these polymer acids enable conducting polymer complexes to transport ions in addition to electrons/holes. Understanding the role of the polymer acid and its interactions with the conducting polymer generates processing-structure-function relationships for conducting polymer/polymer acid complexes, which can help overcome challenges that were associated with these materials, such as low electrical conductivity and sensitivity to humidity, and enable the design of conducting polymer complexes with desired functionalities.
Collapse
Affiliation(s)
- Melda Sezen-Edmonds
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering, Princeton University , Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Liu S, Fu Y, Li G, Li L, Law HKW, Chen X, Yan F. Conjugated Polymer for Voltage-Controlled Release of Molecules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28707332 DOI: 10.1002/adma.201701733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/20/2017] [Indexed: 05/16/2023]
Abstract
Conjugated polymers are attractive in numerous biological applications because they are flexible, biocompatible, cost-effective, solution-processable, and electronic/ionic conductive. One interesting application is for controllable drug release, and this has been realized previously using organic electronic ion pumps. However, organic electronic ion pumps show high operating voltages and limited transportation efficiency. Here, the first report of low-voltage-controlled molecular release with a novel organic device based on a conjugated polymer poly(3-hexylthiophene) is presented. The releasing rate of molecules can be accurately controlled by the duration of the voltage applied on the device. The use of a handy mobile phone to remotely control the releasing process and its application in delivering an anticancer drug to treat cancer cells are also successfully demonstrated. The working mechanism of the device is attributed to the unique switchable permeability of poly(3-hexylthiophene) in aqueous solutions under a bias voltage that can tune the wettability of poly(3-hexylthiophene) via oxidation or reduction processes. The organic devices are expected to find many promising applications for controllable drug delivery in biological systems.
Collapse
Affiliation(s)
- Shenghua Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ying Fu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Guijun Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Li Li
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Helen Ka-Wai Law
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xianfeng Chen
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JL, UK
| | - Feng Yan
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
11
|
Abstract
A major challenge in the growing field of bioelectronic medicine is the development of tissue interface technologies promoting device integration with biological tissues. Materials based on organic bioelectronics show great promise due to a unique combination of electronic and ionic conductivity properties. In this review, we outline exciting developments in the field of organic bioelectronics and demonstrate the medical importance of these active, electronically controllable materials. Importantly, organic bioelectronics offer a means to control cell-surface attachment as required for many device-tissue applications. Experiments have shown that cells readily attach and proliferate on reduced but not oxidized organic bioelectronic materials. In another application, the active properties of organic bioelectronics were used to develop electronically triggered systems for drug release. After incorporating drugs by advanced loading strategies, small compound drugs were released upon electrochemical trigger, independent of charge. Another type of delivery device was used to achieve well-controlled, spatiotemporal delivery of cationic drugs. Via electrophoretic transport within a polymer, cations were delivered with single-cell precision. Finally, organic bioelectronic materials are commonly used as electrode coatings improving the electrical properties of recording and stimulation electrodes. Because such coatings drastically reduce the electrode impedance, smaller electrodes with improved signal-to-noise ratio can be fabricated. Thus, rapid technological advancement combined with the creation of tiny electronic devices reacting to changes in the tissue environment helps to promote the transition from standard pharmaceutical therapy to treatment based on 'electroceuticals'. Moreover, the widening repertoire of organic bioelectronics will expand the options for true biological interfaces, providing the basis for personalized bioelectronic medicine.
Collapse
Affiliation(s)
- S Löffler
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - K Melican
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - K P R Nilsson
- Division of Chemistry, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - A Richter-Dahlfors
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
van de Burgt Y, Lubberman E, Fuller EJ, Keene ST, Faria GC, Agarwal S, Marinella MJ, Alec Talin A, Salleo A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. NATURE MATERIALS 2017; 16:414-418. [PMID: 28218920 DOI: 10.1038/nmat4856] [Citation(s) in RCA: 590] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/12/2017] [Indexed: 05/19/2023]
Abstract
The brain is capable of massively parallel information processing while consuming only ∼1-100 fJ per synaptic event. Inspired by the efficiency of the brain, CMOS-based neural architectures and memristors are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach. Here we describe an electrochemical neuromorphic organic device (ENODe) operating with a fundamentally different mechanism from existing memristors. ENODe switches at low voltage and energy (<10 pJ for 103 μm2 devices), displays >500 distinct, non-volatile conductance states within a ∼1 V range, and achieves high classification accuracy when implemented in neural network simulations. Plastic ENODes are also fabricated on flexible substrates enabling the integration of neuromorphic functionality in stretchable electronic systems. Mechanical flexibility makes ENODes compatible with three-dimensional architectures, opening a path towards extreme interconnectivity comparable to the human brain.
Collapse
Affiliation(s)
- Yoeri van de Burgt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Ewout Lubberman
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
- Zernike Institute for Advanced Materials, University of Groningen, 9747AG Gronigen, The Netherlands
| | - Elliot J Fuller
- Sandia National Laboratories, Livermore, California 94551, USA
| | - Scott T Keene
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Grégorio C Faria
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
- Instituto de Física de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brasil
| | - Sapan Agarwal
- Sandia National Laboratories, Livermore, California 94551, USA
| | | | - A Alec Talin
- Sandia National Laboratories, Livermore, California 94551, USA
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
13
|
Sun G, Senapati S, Chang HC. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform. LAB ON A CHIP 2016; 16:1171-7. [PMID: 26960551 PMCID: PMC4828194 DOI: 10.1039/c6lc00026f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems.
Collapse
Affiliation(s)
- Gongchen Sun
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, 46556, IN, USA.
| | - Satyajyoti Senapati
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, 46556, IN, USA.
| | - Hsueh-Chia Chang
- Center for Microfluidics and Medical Diagnostics, Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, 46556, IN, USA.
| |
Collapse
|
14
|
Proton mediated control of biochemical reactions with bioelectronic pH modulation. Sci Rep 2016; 6:24080. [PMID: 27052724 PMCID: PMC4823714 DOI: 10.1038/srep24080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/09/2016] [Indexed: 12/20/2022] Open
Abstract
In Nature, protons (H+) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H+ channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H+ currents and H+ concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H+ between PdHx contacts and solution. The present transducer records bistable pH modulation from an “enzymatic flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. The transducer also controls bioluminescence from firefly luciferase by affecting solution pH.
Collapse
|
15
|
Lyutov V, Gruia V, Efimov I, Bund A, Tsakova V. An acoustic impedance study of PEDOT layers obtained in aqueous solution. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.177] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Miyake T, Rolandi M. Grotthuss mechanisms: from proton transport in proton wires to bioprotonic devices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:023001. [PMID: 26657711 DOI: 10.1088/0953-8984/28/2/023001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In 1804, Theodore von Grotthuss proposed a mechanism for proton (H(+)) transport between water molecules that involves the exchange of a covalent bond between H and O with a hydrogen bond. This mechanism also supports the transport of OH(-) as a proton hole and is essential in explaining proton transport in intramembrane proton channels. Inspired by the Grotthuss mechanism and its similarity to electron and hole transport in semiconductors, we have developed semiconductor type devices that are able to control and monitor a current of H(+) as well as OH(-) in hydrated biopolymers. In this topical review, we revisit these devices that include protonic diodes, complementary, transistors, memories and transducers as well as a phenomenological description of their behavior that is analogous to electronic semiconductor devices.
Collapse
Affiliation(s)
- Takeo Miyake
- Department of Electrical Engineering, University of California, Santa Cruz, CA 95064, USA. Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
17
|
Goda T, Toya M, Matsumoto A, Miyahara Y. Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27440-27448. [PMID: 26588324 DOI: 10.1021/acsami.5b09325] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conducting polymers possessing biorecognition elements are essential for developing electrical biosensors sensitive and specific to clinically relevant biomolecules. We developed a new 3,4-ethylenedioxythiophene (EDOT) derivative bearing a zwitterionic phosphorylcholine group via a facile synthesis through the Michael-type addition thiol-ene "click" reaction for the detection of an acute-phase biomarker human C-reactive protein (CRP). The phosphorylcholine group, a major headgroup in phospholipid, which is the main constituent of plasma membrane, was also expected to resist nonspecific adsorption of other proteins at the electrode/solution interface. The biomimetic EDOT derivative was randomly copolymerized with EDOT, via an electropolymerization technique with a dopant sodium perchlorate, onto a glassy carbon electrode to make the synthesized polymer film both conductive and target-responsive. The conducting copolymer films were characterized by cyclic voltammetry, scanning electron microscopy, attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. The specific interaction of CRP with phosphorylcholine in a calcium-containing buffer solution was determined by differential pulse voltammetry, which measures the altered redox reaction between the indicators ferricyanide/ferrocyanide as a result of the binding event. The conducting polymer-based protein sensor achieved a limit of detection of 37 nM with a dynamic range of 10-160 nM, covering the dynamically changing CRP levels in circulation during the acute phase. The results will enable the development of metal-free, antibody-free, and low-impedance electrochemical biosensors for the screening of nonspecific biomarkers of inflammation and infection.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Masahiro Toya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
18
|
Liao C, Zhang M, Yao MY, Hua T, Li L, Yan F. Flexible Organic Electronics in Biology: Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7493-527. [PMID: 25393596 DOI: 10.1002/adma.201402625] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/25/2014] [Indexed: 05/21/2023]
Abstract
At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area.
Collapse
Affiliation(s)
- Caizhi Liao
- Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Meng Zhang
- Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Mei Yu Yao
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Tao Hua
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Li Li
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Feng Yan
- Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
19
|
|
20
|
Sun G, Slouka Z, Chang HC. Fluidic-Based Ion Memristors and Ionic Latches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5206-13. [PMID: 26248477 DOI: 10.1002/smll.201501229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/07/2015] [Indexed: 05/19/2023]
Abstract
The formation of a nanoscale anodic silicon oxide layer on silicon electrodes in an aqueous environment leads to fluidic-based ionic memristive devices and ionic latches for large integrated fluidic ion logic circuitry, which can enable massively multiplexed smart biosensor arrays and complex active chemical circuits.
Collapse
Affiliation(s)
- Gongchen Sun
- Department of Chemical and Biomolecular Engineering, Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zdenek Slouka
- Department of Chemical Engineering, University of Chemistry and Technology, Technicka 3, 16628, Prague 6, Czech Republic
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, Center for Microfluidics and Medical Diagnostics, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
21
|
Löffler S, Libberton B, Richter-Dahlfors A. Organic bioelectronics in infection. J Mater Chem B 2015; 3:4979-4992. [PMID: 32262450 DOI: 10.1039/c5tb00382b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Organic bioelectronics is a rapidly growing field of both academic and industrial interest. Specific attributes make this class of materials particularly interesting for biomedical and medical applications, and a whole new class of biologically compatible devices is being created owing to structural and functional similarities to biological systems. In parallel, modern advances in biomedical research call for dynamically controllable systems. In infection biology, a progressing bacterial infection can be studied dynamically, at much higher resolution and on a smaller spatial scale than ever before, and it is now understood that minute changes in the tissue microenvironment play pivotal roles in the outcome of infections. This review merges the fields of infection biology and organic bioelectronics, describing the ability of conducting polymer devices to sense, modify, and interact with the infected tissue microenvironment. Though the primary focus is from the perspective of bacterial infections, general examples from cell biology and regenerative medicine are included where relevant. Spatially and temporally controlled biomimetic in vitro systems will greatly aid our molecular understanding of the infection process, thereby providing exciting opportunities for organic bioelectronics in future diagnosis and treatment of infectious diseases.
Collapse
Affiliation(s)
- Susanne Löffler
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
22
|
Simon DT, Larsson KC, Nilsson D, Burström G, Galter D, Berggren M, Richter-Dahlfors A. An organic electronic biomimetic neuron enables auto-regulated neuromodulation. Biosens Bioelectron 2015; 71:359-364. [PMID: 25932795 DOI: 10.1016/j.bios.2015.04.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/13/2015] [Accepted: 04/18/2015] [Indexed: 11/16/2022]
Abstract
Current therapies for neurological disorders are based on traditional medication and electric stimulation. Here, we present an organic electronic biomimetic neuron, with the capacity to precisely intervene with the underlying malfunctioning signalling pathway using endogenous substances. The fundamental function of neurons, defined as chemical-to-electrical-to-chemical signal transduction, is achieved by connecting enzyme-based amperometric biosensors and organic electronic ion pumps. Selective biosensors transduce chemical signals into an electric current, which regulates electrophoretic delivery of chemical substances without necessitating liquid flow. Biosensors detected neurotransmitters in physiologically relevant ranges of 5-80 µM, showing linear response above 20 µm with approx. 0.1 nA/µM slope. When exceeding defined threshold concentrations, biosensor output signals, connected via custom hardware/software, activated local or distant neurotransmitter delivery from the organic electronic ion pump. Changes of 20 µM glutamate or acetylcholine triggered diffusive delivery of acetylcholine, which activated cells via receptor-mediated signalling. This was observed in real-time by single-cell ratiometric Ca(2+) imaging. The results demonstrate the potential of the organic electronic biomimetic neuron in therapies involving long-range neuronal signalling by mimicking the function of projection neurons. Alternatively, conversion of glutamate-induced descending neuromuscular signals into acetylcholine-mediated muscular activation signals may be obtained, applicable for bridging injured sites and active prosthetics.
Collapse
Affiliation(s)
- Daniel T Simon
- Swedish Medical Nanoscience Center, Karolinska Institutet, S-171 77 Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden; Laboratory of Organic Electronics, Department of Science and Technology, ITN, Linköping University, S-601 74 Norrköping, Sweden.
| | - Karin C Larsson
- Swedish Medical Nanoscience Center, Karolinska Institutet, S-171 77 Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | - Gustav Burström
- Swedish Medical Nanoscience Center, Karolinska Institutet, S-171 77 Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Dagmar Galter
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, ITN, Linköping University, S-601 74 Norrköping, Sweden
| | - Agneta Richter-Dahlfors
- Swedish Medical Nanoscience Center, Karolinska Institutet, S-171 77 Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| |
Collapse
|
23
|
Brombosz SM, Seifert S, Firestone MA. Patterning a π-conjugated polyelectrolyte through sequential polymerization of a bifunctional ionic liquid monomer. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.04.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
24
|
Hardy JG, Mouser DJ, Arroyo-Currás N, Geissler S, Chow JK, Nguy L, Kim JM, Schmidt CE. Biodegradable electroactive polymers for electrochemically-triggered drug delivery. J Mater Chem B 2014; 2:6809-6822. [DOI: 10.1039/c4tb00355a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report biodegradable electroactive polymer (EAP)-based materials and their application as drug delivery devices.
Collapse
Affiliation(s)
- John G. Hardy
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
| | - David J. Mouser
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin, USA
| | | | - Sydney Geissler
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
| | - Jacqueline K. Chow
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin, USA
| | - Lindsey Nguy
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin, USA
| | - Jong M. Kim
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin, USA
| | - Christine E. Schmidt
- Department of Biomedical Engineering
- The University of Texas at Austin
- Austin, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
| |
Collapse
|