1
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Sulatskaya AI. Degradation of pathogenic amyloids induced by matrix metalloproteinase-9. Int J Biol Macromol 2024; 281:136362. [PMID: 39395518 DOI: 10.1016/j.ijbiomac.2024.136362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Over the past decade, the greatest promise for treating severe and currently incurable systemic and neurodegenerative diseases has turned to agents capable of effectively degrading pathological amyloid deposits without causing side effects. Specifically, amyloid destruction observed in immunotherapy is hypothesized to occur through activation of proteolytic enzymes. This study examines poorly understood effects of an immune enzyme, extracellular matrix metalloproteinase-9 (MMP9), on amyloids associated with Alzheimer's and Parkinson's diseases, lysozyme, insulin, and dialysis-related amyloidoses. The study establishes the universality of MMP9's effect on various amyloids, with its efficacy largely depending on the fibrillar cluster size. Irreversible amyloid degradation by MMP9 is attributed to the destruction of intramolecular interactions rather than intermolecular hydrogen bonds in the fibril backbone. This process results in the loss of ordered fiber structure without reducing aggregate size or increasing cytotoxicity. Thus, MMP9 can mitigate side effects of anti-amyloid therapy associated with the formation of low-molecular-weight degradation products that may accelerate fibrillogenesis and amyloid propagation between tissues and organs. MMP9 shows promise as a component of safe anti-amyloid drugs by enhancing the accessibility of binding sites through "loosening" amyloid clusters, which facilitates subsequent fragmentation and monomerization by other enzymes.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
2
|
Luo WC, Bao LN, Zhang Y, Zhang ZT, Li X, Pan MM, Zhang JT, Huang K, Xu Y, Xu L. A Ru 3+-functionalized-NMOF nanozyme as an inhibitor and disaggregator of β-amyloid aggregates. J Mater Chem B 2024. [PMID: 39470003 DOI: 10.1039/d4tb01313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Alzheimer's disease (AD) heavily impacts human lives and is becoming serious as societies age. Inhibiting and disaggregating β-amyloid aggregates is a possible solution for AD therapy. In this study, a novel type of nanozyme based on Ru3+-chelated nanoscale metal organic frameworks (Ru3+-NMOFs), displaying strong peroxidase-like activity, was proposed as an inhibitor and disaggregator of β-amyloid aggregates. As a high concentration of hydrogen peroxide is present at the sites of β-amyloid aggregates, Ru3+-NMOFs could catalyze the conversion of hydrogen peroxide to hydroxyl radicals. Thus, these hydroxyl radicals would attack the β-amyloid chain, oxidizing it to enhance its hydrophilicity, which results in a decreased hydrophobic interaction and reduced degree of aggregation. Ru3+-NMOFs could effectively inhibit as well as disaggregate β-amyloid fibrils both in vitro and in vivo. Additionally, the reduction of the β-amyloid aggregates and the attenuation of reactive oxygen species transfer led to lower levels of inflammatory factors, which could be beneficial in alleviating AD symptoms. In a typical treatment, Ru3+-NMOFs could mitigate the paralysis of C. elegans CL2120 and elevate survival rates. This study opens a new avenue for MOF-based nanozymes as potential treatment agents for AD therapy.
Collapse
Affiliation(s)
- Wan-Chun Luo
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Li-Na Bao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yu Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zi-Tong Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xi Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Meng-Meng Pan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jin-Tao Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yu Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Loukou S, Papantoniou G, Pantazaki A, Tsolaki M. The Role of Greek Olive Leaf Extract in Patients with Mild Alzheimer's Disease (the GOLDEN Study): A Randomized Controlled Clinical Trial. Neurol Int 2024; 16:1247-1265. [PMID: 39585054 PMCID: PMC11587000 DOI: 10.3390/neurolint16060095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Background: Olive leaves are a significant source of biophenols, which have a beneficial impact on cognitive performance. Objective: To examine, for the first time, in humans the effect of the daily consumption of a beverage containing olive leaf extract (OLE) versus a Mediterranean diet (MeDi) on patients diagnosed with mild Alzheimer's Disease (AD), in addition to their regular treatment. Methods: A randomized clinical trial compared OLE's effects on cognitive and functional performance in 55 mild AD patients. Each participant was randomly assigned to two groups: (1) Group 1 was given olive leaves for making a daily beverage and MeDi instructions through monthly diet programs; (2) Group 2 received only the MeDi instructions. After six months, all participants underwent a second neuropsychological evaluation. Results: Group 1 participants had statistically significantly higher MMSE scores compared to Group 2 with a p-value of 0.0135. Specifically, the mean MMSE difference in patients receiving OLE was close to 0, indicating no memory deterioration, whereas in controls it was -4.1, indicative of cognitive decline. The remaining neuropsychological assessments (FRSSD, FUCAS, ADAS-Cog, CDR, GDS, and NPI) revealed better results in the OLE group, except for GDS, which showed no change, but without statistically significant differences between the two groups.
Collapse
Affiliation(s)
- Sofia Loukou
- 1st Department of Neurology, Medical School, “AHEPA” General Hospital Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, 54124 Thessaloniki, Greece;
- Greek Association of Alzheimer’s Disease and Related Disorders—GAADRD, 54124 Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
| | - Georgia Papantoniou
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
- Laboratory of Psychology, Department of Early Childhood Education, School of Education, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasia Pantazaki
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Magdalini Tsolaki
- 1st Department of Neurology, Medical School, “AHEPA” General Hospital Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, 54124 Thessaloniki, Greece;
- Greek Association of Alzheimer’s Disease and Related Disorders—GAADRD, 54124 Thessaloniki, Greece
- Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.P.); (A.P.)
| |
Collapse
|
4
|
Wang J, Chen Y, Xiao Z, Liu X, Liu C, Huang K, Chen H. Phase Separation of Chromatin Structure-related Biomolecules: A Driving Force for Epigenetic Regulations. Curr Protein Pept Sci 2024; 25:553-566. [PMID: 38551058 DOI: 10.2174/0113892037296216240301074253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 07/25/2024]
Abstract
Intracellularly, membrane-less organelles are formed by spontaneous fusion and fission of macro-molecules in a process called phase separation, which plays an essential role in cellular activities. In certain disease states, such as cancers and neurodegenerative diseases, aberrant phase separations take place and participate in disease progression. Chromatin structure-related proteins, based on their characteristics and upon external stimuli, phase separate to exert functions like genome assembly, transcription regulation, and signal transduction. Moreover, many chromatin structure-related proteins, such as histones, histone-modifying enzymes, DNA-modifying enzymes, and DNA methylation binding proteins, are involved in epigenetic regulations through phase separation. This review introduces phase separation and how phase separation affects epigenetics with a focus on chromatin structure-related molecules.
Collapse
Affiliation(s)
- Jiao Wang
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zixuan Xiao
- ISA Wenhua Wuhan High School, Fenglin Road, Junshan New Town, Wuhan Economics & Technological Development Zone, Wuhan, Hubei 430119, China
| | - Xikai Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chengyu Liu
- Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Sulatsky MI, Stepanenko OV, Stepanenko OV, Mikhailova EV, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Amyloid fibrils degradation: the pathway to recovery or aggravation of the disease? Front Mol Biosci 2023; 10:1208059. [PMID: 37377863 PMCID: PMC10291066 DOI: 10.3389/fmolb.2023.1208059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Background: The most obvious manifestation of amyloidoses is the accumulation of amyloid fibrils as plaques in tissues and organs, which always leads to a noticeable deterioration in the patients' condition and is the main marker of the disease. For this reason, early diagnosis of amyloidosis is difficult, and inhibition of fibrillogenesis, when mature amyloids are already accumulated in large quantities, is ineffective. A new direction for amyloidosis treatment is the development of approaches aimed at the degradation of mature amyloid fibrils. In the present work, we investigated possible consequences of amyloid's degradation. Methods: We analyzed the size and morphology of amyloid degradation products by transmission and confocal laser scanning microscopy, their secondary structure and spectral properties of aromatic amino acids, intrinsic chromophore sfGFP, and fibril-bound amyloid-specific probe thioflavin T (ThT) by the absorption, fluorescence and circular dichroism spectroscopy, as well as the cytotoxicity of the formed protein aggregates by MTT-test and their resistance to ionic detergents and boiling by SDS-PAGE. Results: On the example of sfGFP fibrils (model fibrils, structural rearrangements of which can be detected by a specific change in the spectral properties of their chromophore), and pathological Aβ-peptide (Aβ42) fibrils, leading to neuronal death in Alzheimer's disease, the possible mechanisms of amyloids degradation after exposure to factors of different nature (proteins with chaperone and protease activity, denaturant, and ultrasound) was demonstrated. Our study shows that, regardless of the method of fibril degradation, the resulting species retain some amyloid's properties, including cytotoxicity, which may even be higher than that of intact amyloids. Conclusion: The results of our work indicate that the degradation of amyloid fibrils in vivo should be treated with caution since such an approach can lead not to recovery, but to aggravation of the disease.
Collapse
Affiliation(s)
- Maksim I. Sulatsky
- Laboratory of cell morphology, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga V. Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olesya V. Stepanenko
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina V. Mikhailova
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Irina M. Kuznetsova
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Konstantin K. Turoverov
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Laboratory of structural dynamics, stability and folding of proteins, Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
6
|
Butterfield DA, Boyd-Kimball D, Reed TT. Cellular Stress Response (Hormesis) in Response to Bioactive Nutraceuticals with Relevance to Alzheimer Disease. Antioxid Redox Signal 2023; 38:643-669. [PMID: 36656673 PMCID: PMC10025851 DOI: 10.1089/ars.2022.0214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Significance: Alzheimer's disease (AD) is the most common form of dementia associated with aging. As the large Baby Boomer population ages, risk of developing AD increases significantly, and this portion of the population will increase significantly over the next several decades. Recent Advances: Research suggests that a delay in the age of onset by 5 years can dramatically decrease both the incidence and cost of AD. In this review, the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in AD is examined in the context of heme oxygenase-1 (HO-1) and biliverdin reductase-A (BVR-A) and the beneficial potential of selected bioactive nutraceuticals. Critical Issues: Nrf2, a transcription factor that binds to enhancer sequences in antioxidant response elements (ARE) of DNA, is significantly decreased in AD brain. Downstream targets of Nrf2 include, among other proteins, HO-1. BVR-A is activated when biliverdin is produced. Both HO-1 and BVR-A also are oxidatively or nitrosatively modified in AD brain and in its earlier stage, amnestic mild cognitive impairment (MCI), contributing to the oxidative stress, altered insulin signaling, and cellular damage observed in the pathogenesis and progression of AD. Bioactive nutraceuticals exhibit anti-inflammatory, antioxidant, and neuroprotective properties and are potential topics of future clinical research. Specifically, ferulic acid ethyl ester, sulforaphane, epigallocatechin-3-gallate, and resveratrol target Nrf2 and have shown potential to delay the progression of AD in animal models and in some studies involving MCI patients. Future Directions: Understanding the regulation of Nrf2 and its downstream targets can potentially elucidate therapeutic options for delaying the progression of AD. Antioxid. Redox Signal. 38, 643-669.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Debra Boyd-Kimball
- Department of Biochemistry, Chemistry, and Physics, University of Mount Union, Alliance, Ohio, USA
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, Kentucky, USA
| |
Collapse
|
7
|
Khan S, Hassan MI, Shahid M, Islam A. Nature's Toolbox Against Tau Aggregation: An Updated Review of Current Research. Ageing Res Rev 2023; 87:101924. [PMID: 37004844 DOI: 10.1016/j.arr.2023.101924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Tau aggregation is a hallmark of several neurodegenerative disorders, such as Alzheimer's disease (AD), frontotemporal dementia, and progressive supranuclear palsy. Hyperphosphorylated tau is believed to contribute to the degeneration of neurons and the development of these complex diseases. Therefore, one potential treatment for these illnesses is to prevent or counteract tau aggregation. In recent years, interest has been increasing in developing nature-derived tau aggregation inhibitors as a potential treatment for neurodegenerative disorders. Researchers have become increasingly interested in natural compounds with multifunctional features, such as flavonoids, alkaloids, resveratrol, and curcumin, since these molecules can interact simultaneously with the various targets of AD. Recent studies have demonstrated that several natural compounds can inhibit tau aggregation and promote the disassembly of pre-formed tau aggregates. Nature-derived tau aggregation inhibitors hold promise as a potential treatment for neurodegenerative disorders. However, it is important to note that more research is needed to fully understand the mechanisms by which these compounds exert their effects and their safety and efficacy in preclinical and clinical studies. Nature-derived inhibitors of tau aggregation are a promising new direction in the research of neurodegenerative complexities. This review focuses on the natural products that have proven to be a rich supply for inhibitors in tau aggregation and their uses in neurodegenerative complexities, including AD.
Collapse
|
8
|
The effect of PC20:0 and di-C7-PC amphiphilic surfactants on the aggregation of Aβ1–40 and Aβ1–42 using molecular dynamics simulation. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-023-02761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
9
|
Natural Medicine a Promising Candidate in Combating Microbial Biofilm. Antibiotics (Basel) 2023; 12:antibiotics12020299. [PMID: 36830210 PMCID: PMC9952808 DOI: 10.3390/antibiotics12020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Studies on biofilm-related infections are gaining prominence owing to their involvement in most clinical infections and seriously threatening global public health. A biofilm is a natural form of bacterial growth ubiquitous in ecological niches, considered to be a generic survival mechanism adopted by both pathogenic and non-pathogenic microorganisms and entailing heterogeneous cell development within the matrix. In the ecological niche, quorum sensing is a communication channel that is crucial to developing biofilms. Biofilm formation leads to increased resistance to unfavourable ecological effects, comprising resistance to antibiotics and antimicrobial agents. Biofilms are frequently combated with modern conventional medicines such as antibiotics, but at present, they are considered inadequate for the treatment of multi-drug resistance; therefore, it is vital to discover some new antimicrobial agents that can prevent the production and growth of biofilm, in addition to minimizing the side effects of such therapies. In the search for some alternative and safe therapies, natural plant-derived phytomedicines are gaining popularity among the research community. Phytomedicines are natural agents derived from natural plants. These plant-derived agents may include flavonoids, terpenoids, lectins, alkaloids, polypeptides, polyacetylenes, phenolics, and essential oils. Since they are natural agents, they cause minimal side effects, so could be administered with dose flexibility. It is vital to discover some new antimicrobial agents that can control the production and growth of biofilms. This review summarizes and analyzes the efficacy characteristics and corresponding mechanisms of natural-product-based antibiofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and their sources, along with their mechanism, quorum sensing signalling pathways, disrupting extracellular matrix adhesion. The review also provides some other strategies to inhibit biofilm-related illness. The prepared list of newly discovered natural antibiofilm agents could help in devising novel strategies for biofilm-associated infections.
Collapse
|
10
|
Liu Y, Wang Y, Zhang Y, Zou Y, Wei G, Ding F, Sun Y. Structural Perturbation of Monomers Determines the Amyloid Aggregation Propensity of Calcitonin Variants. J Chem Inf Model 2023; 63:308-320. [PMID: 36456917 PMCID: PMC9839651 DOI: 10.1021/acs.jcim.2c01202] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Human calcitonin (hCT) is a polypeptide hormone that participates in calcium-phosphorus metabolism. Irreversible aggregation of 32-amino acid hCT into β-sheet-rich amyloid fibrils impairs physiological activity and increases the risk of medullary carcinoma of the thyroid. Amyloid-resistant hCT derivatives substituting critical amyloidogenic residues are of particular interest for clinical applications as therapeutic drugs against bone-related diseases. Uncovering the aggregation mechanism of hCT at the molecular level, therefore, is important for the design of amyloid-resistant hCT analogues. Here, we investigated the aggregation dynamics of hCT, non-amyloidogenic salmon calcitonin (sCT), and two hCT analogues with reduced aggregation tendency─TL-hCT and phCT─using long timescale discrete molecular dynamics simulations. Our results showed that hCT monomers mainly adopted unstructured conformations with dynamically formed helices around the central region. hCT self-assembled into helix-rich oligomers first, followed by a conformational conversion into β-sheet-rich oligomers with β-sheets formed by residues 10-30 and stabilized by aromatic and hydrophobic interactions. Our simulations confirmed that TL-hCT and phCT oligomers featured more helices and fewer β-sheets than hCT. Substitution of central aromatic residues with leucine in TL-hCT and replacing C-terminal hydrophobic residue with hydrophilic amino acid in phCT only locally suppressed β-sheet propensities in the central region and C-terminus, respectively. Having mutations in both central and C-terminal regions, sCT monomers and dynamically formed oligomers predominantly adopted helices, confirming that both central aromatic and C-terminal hydrophobic residues played important roles in the fibrillization of hCT. We also observed the formation of β-barrel intermediates, postulated as the toxic oligomers in amyloidosis, for hCT but not for sCT. Our computational study depicts a complete picture of the aggregation dynamics of hCT and the effects of mutations. The design of next-generation amyloid-resistant hCT analogues should consider the impact on both amyloidogenic regions and also take into account the amplification of transient β-sheet population in monomers upon aggregation.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Physics, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, P. R. China
| | - Ying Wang
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Yu Zhang
- Department of Physics, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, P. R. China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, P. R. China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
11
|
Amyloid β, Lipid Metabolism, Basal Cholinergic System, and Therapeutics in Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms232012092. [PMID: 36292947 PMCID: PMC9603563 DOI: 10.3390/ijms232012092] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer’s disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death. The monomeric forms of these membrane-bound peptides undergo several conformational changes, ranging from oligomeric forms to beta-sheet structures, each presenting different levels of toxicity. Aβ peptides can be internalized by particular receptors and trigger changes from Tau phosphorylation to alterations in cognitive function, through dysfunction of the cholinergic system. The goal of this review is to summarize the current knowledge on the role of lipids in Alzheimer’s disease and their relationship with the basal cholinergic system, as well as potential disease-modifying therapies.
Collapse
|
12
|
Smith AA, Moore KBE, Ambs PM, Saraswati AP, Fortin JS. Recent Advances in the Discovery of Therapeutics to Curtail Islet Amyloid Polypeptide Aggregation for Type 2 Diabetes Treatment. Adv Biol (Weinh) 2022; 6:e2101301. [PMID: 35931462 DOI: 10.1002/adbi.202101301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 07/04/2022] [Indexed: 01/28/2023]
Abstract
In humans with type 2 diabetes, at least 70% of patients exhibit islet amyloid plaques formed by misfolding islet amyloid polypeptides (IAPP). The oligomeric conformation and accumulation of the IAPP plaques lead to a panoply of cytotoxic effects on the islet β-cells. Currently, no marketed therapies for the prevention or elimination of these amyloid deposits exist, and therefore significant efforts are required to address this gap. To date, most of the experimental treatments are limited to only in vitro stages of testing. In general, the proposed therapeutics use various targeting strategies, such as binding to the N-terminal region of islet amyloid polypeptide on residues 1-19 or the hydrophobic region of IAPP. Other strategies include targeting the peptide self-assembly through π-stacking. These methods are realized by using several different families of compounds, four of which are highlighted in this review: naturally occurring products, small molecules, organometallic compounds, and nanoparticles. Each of these categories holds immense potential to optimize and develop inhibitor(s) of pancreatic amyloidosis in the near future.
Collapse
Affiliation(s)
- Alyssa A Smith
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Kendall B E Moore
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Akella Prasanth Saraswati
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Jessica S Fortin
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
13
|
Ma L, Li X, Liu C, Yan W, Ma J, Petersen RB, Peng A, Huang K. Modelling Parkinson's Disease in C. elegans: Strengths and Limitations. Curr Pharm Des 2022; 28:3033-3048. [PMID: 36111767 DOI: 10.2174/1381612828666220915103502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that affects the motor system and progressively worsens with age. Current treatment options for PD mainly target symptoms, due to our limited understanding of the etiology and pathophysiology of PD. A variety of preclinical models have been developed to study different aspects of the disease. The models have been used to elucidate the pathogenesis and for testing new treatments. These models include cell models, non-mammalian models, rodent models, and non-human primate models. Over the past few decades, Caenorhabditis elegans (C. elegans) has been widely adopted as a model system due to its small size, transparent body, short generation time and life cycle, fully sequenced genome, the tractability of genetic manipulation and suitability for large scale screening for disease modifiers. Here, we review studies using C. elegans as a model for PD and highlight the strengths and limitations of the C. elegans model. Various C. elegans PD models, including neurotoxin-induced models and genetic models, are described in detail. Moreover, met.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China.,Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyao Yan
- Department of Pharmacy, Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlu Ma
- Human Resources Department, Wuhan Mental Health Center, Wuhan, China.,Human Resources Department, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Polyphenols and Small Phenolic Acids as Cellular Metabolic Regulators. Curr Issues Mol Biol 2022; 44:4152-4166. [PMID: 36135197 PMCID: PMC9498149 DOI: 10.3390/cimb44090285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Polyphenols and representative small phenolic acids and molecules derived from larger constituents are dietary antioxidants from fruits, vegetables and largely other plant-based sources that have ability to scavenge free radicals. What is often neglected in polyphenol metabolism is bioavailability and the role of the gut microbiota (GMB), which has an essential role in health and disease and participates in co-metabolism with the host. The composition of the gut microbiota is in constant flux and is modified by multiple intrinsic and extrinsic factors, including antibiotics. Dietary or other factors are key modulators of the host gut milieu. In this review, we explore the role of polyphenols and select phenolic compounds as metabolic or intrinsic biochemistry regulators and explore this relationship in the context of the microbiota–gut–target organ axis in health and disease.
Collapse
|
15
|
Shouhani P, Bahramikia S, Hejazi SH. Experimental and theoretical studies on the anti-amyloidogenic and destabilizing effects of pyrogallol against human insulin protein. J Food Biochem 2022; 46:e14293. [PMID: 35762412 DOI: 10.1111/jfbc.14293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
One of the major problems caused by repeated subcutaneous insulin injections in patients with diabetes is insulin amyloidosis. Understanding the molecular mechanism of amyloid fibril formation of insulin and finding effective compounds to inhibit or eliminate them is very important, and extensive research has been done on it. In this study, the anti-amyloidogenic and destabilizing effects of the pyrogallol, as a phenolic compound, on human insulin protein were investigated by CR absorbance, ThT and ANS fluorescence, FTIR spectroscopy, and atomic force microscopy. According to the obtained results, the formation of amyloid fibrils at pH 2.0 and 50°C was confirmed by CR, ThT, ANS, and FTIR assays. Microscopic images also showed the twisted and long structures of amyloid fibrils. Simultaneous incubation of the protein with pyrogallol at different concentrations reduced the intensities of CR, ThT, and ANS in a dose-dependent manner, and no trace of fibrillar structures was observed in the microscopic images. FTIR spectroscopy also showed that the position of the amide I band in the spectrum of samples containing pyrogallol was shifted. Based on the findings of this study, it can be concluded that pyrogallol can be effective in preventing and suppressing human insulin amyloid fibrils. PRACTICAL APPLICATIONS: In recent years, finding a strategy for the treatment of amyloid diseases has been considered by many researchers. Targeting protein aggregates by small organic molecules such as polyphenols is one of the most desirable and effective strategies to prevent and improve amyloid disease, which has received much attention in recent years. 1,2,3-Trihydroxybenzene, commonly known as pyrogallol (Py), is a phenolic compound like other natural polyphenols that are present in human food sources, including fruits and vegetables, and a variety of edible and medicinal plants. So far, many beneficial activities for pyrogallol such as anti-cancer, antioxidant, antibacterial, antiviral, and antifungal have been reported in various studies. Since various studies have shown that natural polyphenols have special properties to prevent amyloid disease, the present study could be useful in advancing the design purposes of new anti-amyloid drugs in the future.
Collapse
Affiliation(s)
- Parastoo Shouhani
- Department of Biology, MSc of Biology, Lorestan University, Khorramabad, Iran
| | - Seifollah Bahramikia
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad, Iran
| | | |
Collapse
|
16
|
Wang S, Zheng J, Ma L, Petersen RB, Xu L, Huang K. Inhibiting protein aggregation with nanomaterials: The underlying mechanisms and impact factors. Biochim Biophys Acta Gen Subj 2022; 1866:130061. [PMID: 34822925 DOI: 10.1016/j.bbagen.2021.130061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Protein aggregation is correlated with the onset and progression of protein misfolding diseases (PMDs). Inhibiting the generation of toxic aggregates of misfolded proteins has been proposed as a therapeutic approach for PMDs. Due to their unique properties, nanomaterials have been extensively investigated for their ability to inhibit protein aggregation and have shown great potential in the diagnosis and treatment of PMDs. However, the precise mechanisms by which nanomaterials interact with amyloidogenic proteins and the factors influencing these interactions remain poorly understood. Consequently, developing a rational design strategy for nanomaterials that target specific proteins in PMDs has been challenging. In this review, we elucidate the effects of nanomaterials on protein aggregation and describe the mechanisms through which nanomaterials interfere with protein aggregation. The major factors impacting protein-nanomaterial interaction such as size, charge, concentration, surface modification and morphology that can be rationally addressed to achieve the desired effects of nanomaterials on protein aggregation are summarized. The prospects and challenges to the clinical application of nanomaterials for the treatment of PMDs are also discussed.
Collapse
Affiliation(s)
- Shilin Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Li Xu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
17
|
Chandrasekhar G, Srinivasan E, Sekar PC, Venkataramanan S, Rajasekaran R. Molecular simulation probes the potency of resveratrol in regulating the toxic aggregation of mutant V30M TTR fibrils in Transthyretin mediated amyloidosis. J Mol Graph Model 2021; 110:108055. [PMID: 34688163 DOI: 10.1016/j.jmgm.2021.108055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/28/2022]
Abstract
Transthyretin (TTR) mediated amyloidosis is a highly ruinous illness that affects various organs by aggravating the deposition of misfolded or mutated TTR protein aggregates in tissues. Hence, hindering the formation of TTR amyloid aggregates could be a key strategy in finding an effective cure towards the aggravating disorder. In this analysis, we examined the subversive nature of point mutation, V30M, in TTR that promotes amyloidogenicity using discrete molecular dynamics (DMD) simulations. Besides, we probed the association of naturally occurring polyphenols: EGCG (a proven anti TTR aggregation agent as positive control), resveratrol and curcumin in mitigating the pathogenic repercussions of mutant TTR. Results from the computational studies endorsed that the resveratrol constitutes a restorative potential to subjugate TTR mediated amyloidosis, besides EGCG. Hence, this study could be a reminiscent aspect in understanding the inhibitory role of key polyphenols against the mutant TTR aggregates, which could be an aid towards structure-based drug design in the upcoming research era on familial amyloid disorders.
Collapse
Affiliation(s)
- G Chandrasekhar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, 632014, Tamil Nadu, India
| | - E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, 632014, Tamil Nadu, India; Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - P Chandra Sekar
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, 632014, Tamil Nadu, India
| | - S Venkataramanan
- Department of Diagnostic and Allied Health Science, Faculty of Health and Life Sciences, Management and Science University, Shah Alam, Malaysia
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (Deemed to be University), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
18
|
Rezaei Kamelabad M, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A, Ajamgard M. Influence of curcumin and rosmarinic acid on disrupting the general properties of Alpha-Synuclein oligomer: Molecular dynamics simulation. J Mol Graph Model 2021; 107:107963. [PMID: 34147836 DOI: 10.1016/j.jmgm.2021.107963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/25/2023]
Abstract
Alpha-Synuclein (αS) is a protein involved in Parkinson's disease (PD) and is probably the main cause of the pathology of the disease. During pathogenesis, αS monomers aggregate, leading to the formation of a variety of oligomeric species. Recent research studies suggest that the oligomeric toxic species may be one of the main processes for pathology and disease. Here, we studied influence of two natural polyphenolic compounds, Curcumin (CUR) and Rosmarinic acid (RA), on disrupting the general properties of αS oligomer by molecular dynamics (MD) simulation method. The hydrophobic central domain of αS (NAC), is the most essential district responsible for protein self-aggregation; so, in this study, our systems have been developed to form a quintuplet NAC region of αS called 5mer; they have 10 and 20 CUR and RA molecules and a 5mer with no ligand. The several important and efficient analyzes were performed to investigate the effect of ligands on the structural properties of αS oligomers. The results indicated that both ligands can be successful in disrupting the original structure of αS oligomers; therefore, they can be considered suitable candidates for designing Parkinson's drugs.
Collapse
Affiliation(s)
- Mahrokh Rezaei Kamelabad
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran.
| | - Alireza Rastkar Ebrahimzadeh
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Physics, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| | - Marzieh Ajamgard
- Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran; Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran; Molecular Sciences and Engineering Research Group (MSERG), Iran
| |
Collapse
|
19
|
Szunerits S, Melinte S, Barras A, Pagneux Q, Voronova A, Abderrahmani A, Boukherroub R. The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chem Soc Rev 2021; 50:2102-2146. [PMID: 33325917 DOI: 10.1039/c9cs00886a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional β-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic β-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Anna Voronova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
20
|
4-Phenylbutyrate (PBA) treatment reduces hyperglycemia and islet amyloid in a mouse model of type 2 diabetes and obesity. Sci Rep 2021; 11:11878. [PMID: 34088954 PMCID: PMC8178353 DOI: 10.1038/s41598-021-91311-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Amyloid deposits in pancreatic islets, mainly formed by human islet amyloid polypeptide (hIAPP) aggregation, have been associated with loss of β-cell mass and function, and are a pathological hallmark of type 2 diabetes (T2D). Treatment with chaperones has been associated with a decrease in endoplasmic reticulum stress leading to improved glucose metabolism. The aim of this work was to investigate whether the chemical chaperone 4-phenylbutyrate (PBA) prevents glucose metabolism abnormalities and amyloid deposition in obese agouti viable yellow (Avy) mice that overexpress hIAPP in β cells (Avy hIAPP mice), which exhibit overt diabetes. Oral PBA treatment started at 8 weeks of age, when Avy hIAPP mice already presented fasting hyperglycemia, glucose intolerance, and impaired insulin secretion. PBA treatment strongly reduced the severe hyperglycemia observed in obese Avy hIAPP mice in fasting and fed conditions throughout the study. This effect was paralleled by a decrease in hyperinsulinemia. Importantly, PBA treatment reduced the prevalence and the severity of islet amyloid deposition in Avy hIAPP mice. Collectively, these results show that PBA treatment elicits a marked reduction of hyperglycemia and reduces amyloid deposits in obese and diabetic mice, highlighting the potential of chaperones for T2D treatment.
Collapse
|
21
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
22
|
Diteepeng T, Del Monte F, Luciani M. The long and winding road to target protein misfolding in cardiovascular diseases. Eur J Clin Invest 2021; 51:e13504. [PMID: 33527342 DOI: 10.1111/eci.13504] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the last decades, cardiovascular diseases (CVD) have remained the first leading cause of mortality and morbidity in the world. Although several therapeutic approaches have been introduced in the past, the development of novel treatments remains an important research goal, which is hampered by the lack of understanding of key mechanisms and targets. Emerging evidences in recent years indicate the involvement of misfolded proteins aggregation and the derailment of protein quality control in the pathogenesis of cardiovascular diseases. Several potential interventions targeting protein quality control have been translated from the bench to the bedside to effectively employ the misfolded proteins as promising therapeutic targets for cardiac diseases, but with trivial results. DESIGN In this review, we describe the recent progresses in preclinical and clinical studies of protein misfolding and compromised protein quality control by selecting and reporting studies focusing on cardiovascular diseases including cardiomyopathies, cardiac amyloidosis, atherosclerosis, atrial fibrillation and thrombosis. RESULTS In preclinical models, modulators of several molecular targets (eg heat shock proteins, unfolded protein response, ubiquitin protein system, autophagy and histone deacetylases) have been tested in various conditions with promising results although lacking an adequate transition towards clinical setting. CONCLUSIONS At present, no therapeutic strategies have been reported to attenuate proteotoxicity in patients with CVD due to a lack of specific biomarkers for pinpointing upstream events in protein folding defects at a subclinical stage of the diseases requiring an intensive collaboration between basic scientists and clinicians.
Collapse
Affiliation(s)
- Thamonwan Diteepeng
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Federica Del Monte
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, USA.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna Alma Mater, Bologna, Italy
| | - Marco Luciani
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.,Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| |
Collapse
|
23
|
Ma L, Zheng J, Chen H, Zeng X, Wang S, Yang C, Li X, Xiao Y, Zheng L, Chen H, Huang K. A Systematic Screening of Traditional Chinese Medicine Identifies Two Novel Inhibitors Against the Cytotoxic Aggregation of Amyloid Beta. Front Pharmacol 2021; 12:637766. [PMID: 33897425 PMCID: PMC8062920 DOI: 10.3389/fphar.2021.637766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/26/2021] [Indexed: 12/02/2022] Open
Abstract
The toxic aggregates of amyloid beta (Aβ) disrupt the cell membrane, induce oxidative stress and mitochondrial dysfunction, and eventually lead to Alzheimer’s disease (AD). Intervening with this cytotoxic aggregation process has been suggested as a potential therapeutic approach for AD and other protein misfolding diseases. Traditional Chinese Medicine (TCM) has been used to treat AD and related cognitive impairment for centuries with obvious efficacy. Extracts or active ingredients of TCMs have been reported to inhibit the aggregation and cytotoxicity of Aβ. However, there is a lack of systematic research on the anti-Aβ aggregation effects of TCM components. In this study, we performed a systematic screening to identify the active ingredients of TCM against the cytotoxic aggregation of Aβ42. Through a literature and database survey, we selected 19 TCM herbals frequently used in the treatment of AD, from which 76 major active chemicals without known anti-amyloid effects were further screened. This took place through two rounds of MTT-based screening detection of the cytotoxicity of these chemicals and their effects on Aβ42-induced cytotoxicity, respectively. Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) and sinapic acid (SA) were found to be less toxic, and they inhibited the cytotoxicity of Aβ42. Further studies demonstrated that TSG and SA concentration-dependently attenuated the amyloidosis and membrane disruption ability of Aβ42. Thus, we identified two novel chemicals (TSG and SA) against the cytotoxic aggregation of Aβ42. Nonetheless, further exploration of their therapeutic potential is warranted.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huijing Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Zeng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shilin Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yushuo Xiao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Abstract
Protein aggregation and amyloid formation are pathogenic events underlying the development of an increasingly large number of human diseases named “proteinopathies”. Abnormal accumulation in affected tissues of amyloid β (Aβ) peptide, islet amyloid polypeptide (IAPP), and the prion protein, to mention a few, are involved in the occurrence of Alzheimer’s (AD), type 2 diabetes mellitus (T2DM) and prion diseases, respectively. Many reports suggest that the toxic properties of amyloid aggregates are correlated with their ability to damage cell membranes. However, the molecular mechanisms causing toxic amyloid/membrane interactions are still far to be completely elucidated. This review aims at describing the mutual relationships linking abnormal protein conformational transition and self-assembly into amyloid aggregates with membrane damage. A cross-correlated analysis of all these closely intertwined factors is thought to provide valuable insights for a comprehensive molecular description of amyloid diseases and, in turn, the design of effective therapies.
Collapse
|
25
|
Liu W, Dong X, Liu Y, Sun Y. Photoresponsive materials for intensified modulation of Alzheimer's amyloid-β protein aggregation: A review. Acta Biomater 2021; 123:93-109. [PMID: 33465508 DOI: 10.1016/j.actbio.2021.01.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
The abnormal self-assembly of amyloid-β protein (Aβ) into toxic aggregates is a major pathological hallmark of Alzheimer's disease (AD). Modulation of Aβ fibrillization with pharmacological modalities has become an active field of research, which aims to mitigate Aβ-induced neurotoxicity and ameliorate impaired recognition. Among the various strategies for AD treatment, phototherapy, including photothermal therapy (PTT), photodynamic therapy (PDT), and photoresponsive release systems have attracted increased attention because of the spatiotemporal controllability. Under the irradiation of light, the heat or reactive oxygen species generated by photothermal or photodynamic processes significantly enhances the efficacy of the inhibitor or modulator, and the "caged" drug can be accurately released at the intended site, thus avoiding adverse effects. This review, from a viewpoint of materials, focuses on the recent advances in modulating Aβ aggregation by light that irradiates on the materials that function on modulating Aβ aggregation. Representative examples of PTT, PDT, and photoresponsive drug release systems are discussed in terms of inhibitory mechanism, the unique properties of materials, and the design of modulators. The major challenges of phototherapy against AD are addressed and the promising prospects are proposed. It is concluded that the noninvasive light-assisted approaches will become a promising strategy for intensifying the modulation of Aβ aggregation and thus facilitating AD treatment. STATEMENT OF SIGNIFICANCE: Alzheimer's disease (AD) with the hallmark of amyloid-β protein (Aβ) deposition is affecting more than 50 million people globally. It is urgent to explore intelligent materials to modulate Aβ aggregation. This review summarizes the intensified modulation of Aβ aggregation by a variety of photoresponsive materials including photothermal, photosensitizing and photoresponsive release materials, focusing on their characteristics and functionalities. We believe this review would arouse more interest in the research field of stimuli-responsive materials and promote their clinical applications in AD therapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yang Liu
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
26
|
Single Molecule Characterization of Amyloid Oligomers. Molecules 2021; 26:molecules26040948. [PMID: 33670093 PMCID: PMC7916856 DOI: 10.3390/molecules26040948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The misfolding and aggregation of polypeptide chains into β-sheet-rich amyloid fibrils is associated with a wide range of neurodegenerative diseases. Growing evidence indicates that the oligomeric intermediates populated in the early stages of amyloid formation rather than the mature fibrils are responsible for the cytotoxicity and pathology and are potentially therapeutic targets. However, due to the low-populated, transient, and heterogeneous nature of amyloid oligomers, they are hard to characterize by conventional bulk methods. The development of single molecule approaches provides a powerful toolkit for investigating these oligomeric intermediates as well as the complex process of amyloid aggregation at molecular resolution. In this review, we present an overview of recent progress in characterizing the oligomerization of amyloid proteins by single molecule fluorescence techniques, including single-molecule Förster resonance energy transfer (smFRET), fluorescence correlation spectroscopy (FCS), single-molecule photobleaching and super-resolution optical imaging. We discuss how these techniques have been applied to investigate the different aspects of amyloid oligomers and facilitate understanding of the mechanism of amyloid aggregation.
Collapse
|
27
|
Romanucci V, Giordano M, De Tommaso G, Iuliano M, Bernini R, Clemente M, Garcia-Viñuales S, Milardi D, Zarrelli A, Di Fabio G. Synthesis of New Tyrosol-Based Phosphodiester Derivatives: Effect on Amyloid β Aggregation and Metal Chelation Ability. ChemMedChem 2021; 16:1172-1183. [PMID: 33326184 DOI: 10.1002/cmdc.202000807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/11/2020] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is a multifactorial pathology that requires multifaceted agents able to address its peculiar nature. Increasing evidence has shown that aggregation of amyloid β (Aβ) and oxidative stress are strictly interconnected, and their modulation might have a positive and synergic effect in contrasting AD-related impairments. Herein, a new and efficient fragment-based approach towards tyrosol phosphodiester derivatives (TPDs) has been developed starting from suitable tyrosol building blocks and exploiting the well-established phosphoramidite chemistry. The antioxidant activity of new TPDs has been tested as well as their ability to inhibit Aβ protein aggregation. In addition, their metal chelating ability has been evaluated as a possible strategy to develop new natural-based entities for the prevention or therapy of AD. Interestingly, TPDs containing a catechol moiety have demonstrated highly promising activity in inhibiting the aggregation of Aβ40 and a strong ability to chelate biometals such as CuII and ZnII .
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Maddalena Giordano
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Gaetano De Tommaso
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Mauro Iuliano
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100, Viterbo, Italy
| | - Mariangela Clemente
- Department of Agriculture and Forest Science (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100, Viterbo, Italy
| | - Sara Garcia-Viñuales
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| |
Collapse
|
28
|
Minakawa EN, Popiel HA, Tada M, Takahashi T, Yamane H, Saitoh Y, Takahashi Y, Ozawa D, Takeda A, Takeuchi T, Okamoto Y, Yamamoto K, Suzuki M, Fujita H, Ito C, Yagihara H, Saito Y, Watase K, Adachi H, Katsuno M, Mochizuki H, Shiraki K, Sobue G, Toda T, Wada K, Onodera O, Nagai Y. Arginine is a disease modifier for polyQ disease models that stabilizes polyQ protein conformation. Brain 2021; 143:1811-1825. [PMID: 32436573 DOI: 10.1093/brain/awaa115] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 01/12/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022] Open
Abstract
The polyglutamine (polyQ) diseases are a group of inherited neurodegenerative diseases that include Huntington's disease, various spinocerebellar ataxias, spinal and bulbar muscular atrophy, and dentatorubral pallidoluysian atrophy. They are caused by the abnormal expansion of a CAG repeat coding for the polyQ stretch in the causative gene of each disease. The expanded polyQ stretches trigger abnormal β-sheet conformational transition and oligomerization followed by aggregation of the polyQ proteins in the affected neurons, leading to neuronal toxicity and neurodegeneration. Disease-modifying therapies that attenuate both symptoms and molecular pathogenesis of polyQ diseases remain an unmet clinical need. Here we identified arginine, a chemical chaperone that facilitates proper protein folding, as a novel compound that targets the upstream processes of polyQ protein aggregation by stabilizing the polyQ protein conformation. We first screened representative chemical chaperones using an in vitro polyQ aggregation assay, and identified arginine as a potent polyQ aggregation inhibitor. Our in vitro and cellular assays revealed that arginine exerts its anti-aggregation property by inhibiting the toxic β-sheet conformational transition and oligomerization of polyQ proteins before the formation of insoluble aggregates. Arginine exhibited therapeutic effects on neurological symptoms and protein aggregation pathology in Caenorhabditis elegans, Drosophila, and two different mouse models of polyQ diseases. Arginine was also effective in a polyQ mouse model when administered after symptom onset. As arginine has been safely used for urea cycle defects and for mitochondrial myopathy, encephalopathy, lactic acid and stroke syndrome patients, and efficiently crosses the blood-brain barrier, a drug-repositioning approach for arginine would enable prompt clinical application as a promising disease-modifier drug for the polyQ diseases.
Collapse
Affiliation(s)
- Eiko N Minakawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Helena Akiko Popiel
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Division of Clinical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayoshi Tada
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Toshiaki Takahashi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Hiroshi Yamane
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuji Saitoh
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | - Daisaku Ozawa
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Akiko Takeda
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshihide Takeuchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuma Okamoto
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Division of Clinical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazuhiro Yamamoto
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Mari Suzuki
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiromi Fujita
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Chiyomi Ito
- Division of Clinical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroko Yagihara
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuko Saito
- Department of Pathology and Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Kei Watase
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroaki Adachi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tatsushi Toda
- Division of Clinical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.,Division of Clinical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
29
|
Alausa A, Ogundepo S, Olaleke B, Adeyemi R, Olatinwo M, Ismail A. Chinese nutraceuticals and physical activity; their role in neurodegenerative tauopathies. Chin Med 2021; 16:1. [PMID: 33407732 PMCID: PMC7789572 DOI: 10.1186/s13020-020-00418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The onset of neurodegenerative disease has not only been a major cause of scientific worry, but of economic burden to the health system. This condition has been further attributed to mis-stability, deletion or mutation of tau protein, causing the onset of Corticobasal degeneration, Pick's diseases, Progressive supranuclear palsy, Argyrophilic grains disease, Alzheimer's diseases etc. as scientifically renowned. This is mainly related to dysregulation of translational machinery, upregulation of proinflammatory cytokines and inhibition of several essential cascades such as ERK signaling cascade, GSK3β, CREB, and PKA/PKB (Akt) signaling cascades that enhances protein processing, normal protein folding, cognitive function, and microtubule associated tau stability. Administration of some nutrients and/or bioactive compounds has a high tendency to impede tau mediated inflammation at neuronal level. Furthermore, prevention and neutralization of protein misfolding through modulation of microtubule tau stability and prevention of protein misfolding is by virtue few of the numerous beneficial effects of physical activity. Of utmost important in this study is the exploration of promising bioactivities of nutraceuticals found in china and the ameliorating potential of physical activity on tauopathies, while highlighting animal and in vitro studies that have been investigated for comprehensive understanding of its potential and an insight into the effects on human highly probable to tau mediated neurodegeneration.
Collapse
Affiliation(s)
- Abdullahi Alausa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Sunday Ogundepo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Barakat Olaleke
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Rofiat Adeyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.
| | - Mercy Olatinwo
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - Aminat Ismail
- Department of Science Laboratory Technology, Faculty of Pure & Applied Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
30
|
Prasanna G, Jing P. Polyphenols redirects the self-assembly of serum albumin into hybrid nanostructures. Int J Biol Macromol 2020; 164:3932-3942. [PMID: 32898539 DOI: 10.1016/j.ijbiomac.2020.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Chronic hyperglycemia results in the formation of advanced glycation end-products (AGEs) and triggers amyloid fibril formation. Molecules designed to inhibit amyloid fibrils function by eliminating toxic oligomers or reducing fibril formation. Here, the bioactivity of polyphenols in redirecting the self-assembly of amyloid fibrils was reported through microscopic, spectroscopic and molecular docking studies. Our findings illustrate that glycation causes BSA to self-assemble into amyloid fibrils. 17 Lys residues had modified to carboxy methyl lysine (CML) but only Lys523 was probable of modifying into carboxy ethyl lysine (CEL). In contrast, only 6 Arg residues are identified to be modified to Argpyrimidine (Arg-p). A simple polyphenol baicalein (BLN) redirect the self-assembly of amyloid fibrils into off-pathway hybrid nanostructures. Circular dichroism spectroscopic studies suggested that in the presence of BLN helical conformation was favored. Molecular modeling studies suggested that hydrogen bonding and hydrophobic interaction of polyphenols preferentially at crucial amyloidogenic regions can hinder amyloid fibrillation (Phe133, Lys136, Tyr137, Ile141, Tyr160 and Arg185). Mass spectrometric results illustrated that the presence of a simple polyphenol BLN several residues are unmodified to CML, CEL or Arg-p. Together, our findings suggest that polyphenols could have a protective effect and the redirection can help alleviate the amyloid fibril formation.
Collapse
Affiliation(s)
- Govindarajan Prasanna
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
31
|
Ogawa K, Ishii A, Shindo A, Hongo K, Mizobata T, Sogon T, Kawata Y. Spearmint Extract Containing Rosmarinic Acid Suppresses Amyloid Fibril Formation of Proteins Associated with Dementia. Nutrients 2020; 12:E3480. [PMID: 33202830 PMCID: PMC7696425 DOI: 10.3390/nu12113480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Neurological dementias such as Alzheimer's disease and Lewy body dementia are thought to be caused in part by the formation and deposition of characteristic insoluble fibrils of polypeptides such as amyloid beta (Aβ), Tau, and/or α-synuclein (αSyn). In this context, it is critical to suppress and remove such aggregates in order to prevent and/or delay the progression of dementia in these ailments. In this report, we investigated the effects of spearmint extract (SME) and rosmarinic acid (RA; the major component of SME) on the amyloid fibril formation reactions of αSyn, Aβ, and Tau proteins in vitro. SME or RA was added to soluble samples of each protein and the formation of fibrils was monitored by thioflavin T (ThioT) binding assays and transmission electron microscopy (TEM). We also evaluated whether preformed amyloid fibrils could be dissolved by the addition of RA. Our results reveal for the first time that SME and RA both suppress amyloid fibril formation, and that RA could disassemble preformed fibrils of αSyn, Aβ, and Tau into non-toxic species. Our results suggest that SME and RA may potentially suppress amyloid fibrils implicated in the progression of Alzheimer's disease and Lewy body dementia in vivo, as well.
Collapse
Affiliation(s)
- Kenjirou Ogawa
- Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Ayumi Ishii
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (A.I.); (K.H.); (T.M.)
| | - Aimi Shindo
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori 680-8552, Japan;
| | - Kunihiro Hongo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (A.I.); (K.H.); (T.M.)
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori 680-8552, Japan;
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| | - Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (A.I.); (K.H.); (T.M.)
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori 680-8552, Japan;
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| | - Tetsuya Sogon
- R&D Department, Wakasa Seikatsu Co. Ltd., 22 Naginataboko-cho, Shijo-Karasuma, Shimogyo-ku, Kyoto 600-8008, Japan;
| | - Yasushi Kawata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan; (A.I.); (K.H.); (T.M.)
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori 680-8552, Japan;
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
32
|
Prasanna G, Jing P. Self-assembly of N-terminal Alzheimer's β-amyloid and its inhibition. Biochem Biophys Res Commun 2020; 534:950-956. [PMID: 33143872 DOI: 10.1016/j.bbrc.2020.10.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Peptide sequence modulates amyloid fibril formation and triggers Alzheimer's disease. The N-terminal region of amyloid peptide is disordered and lack any specific secondary structure. An ionic interaction of Aβ1-11 with factor XII is critical for the activation of the contact system in Alzheimer's disease. In this study, we report the self-assembly of fluctuating N-terminal Aβ1-11 into nanotubes using atomic force micrography, transmission electron microscopy, circular dichroism studies and molecular modeling studies. The effect of four polyphenols: baicalein, rutin, vanillin and cyanidin-3-O-glucoside (C3G) was also explored on the amyloid fibril inhibitor perspective using amyloid specific dye Thioflavin T (ThT). AFM micrographs suggested the self-assembly of Aβ1-11 into nanotubes after three weeks of incubation. Microwave treatment results in the conformational variation of disordered structure to β-sheet rich amyloid fibrils. The presence of salts (sodium and potassium chloride) induces the structural transformation of Aβ1-11 to super-helix. Fluorescence spectroscopy studies using ThT suggested differential inhibition of amyloid fibrils formation in the presence of polyphenols. Molecular modeling studies suggested that binding of polyphenols to Aβ1-11 through hydrophobic interaction (Phe4 and Tyr 10) and hydrogen bonding (Glu3 and Arg5) play a substantial role in stabilizing Aβ1-11-polyphenols complex. In the presence of polyphenols, Aβ1-11 transforms to hybrid nanostructures thus hindering amyloid fibril formation. These results provide structural insights and importance of the N-terminal residues in the Aβ1-42 self-assembly mechanism.
Collapse
Affiliation(s)
- Govindarajan Prasanna
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
33
|
Abe Y, Shibata H, Oyama K, Ueda T. Effect of O-glycosylation on amyloid fibril formation of the variable domain in the Vλ6 light chain mutant Wil. Int J Biol Macromol 2020; 166:342-351. [PMID: 33127550 DOI: 10.1016/j.ijbiomac.2020.10.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/08/2020] [Accepted: 10/24/2020] [Indexed: 11/30/2022]
Abstract
Glycosylation is one of the major post-translational modifications in eukaryotic cells and has been reported to affect the amyloid fibril formation in several amyloidogenic proteins and peptides. In this study, we expressed a Vλ6 light chain mutant, Wil, which is an amyloidogenic mutant in AL amyloidosis, by the yeast Pichia pastoris. After separation by cation exchange chromatography, we obtained the O-glycosylated and non-glycosylated Wil mutants in high yield. The structures of these Wil mutants were identical except with respect to glycosylation, and the stabilities were also identical. On the other hand, the O-glycosylation retarded the amyloid fibril formation in a sugar size-dependent manner. From these results, we discussed the role of covalently attached glycan in the retardation of amyloid fibril formation.
Collapse
Affiliation(s)
- Yoshito Abe
- Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Pharmaceutical Sciences in Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Hinako Shibata
- Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kousuke Oyama
- Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Tadashi Ueda
- Laboratory of Protein Structure, Function and Design, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
34
|
Transient transfection of WT-αS and A53T-αS brought about a mild apoptosis due to degradation of released cytochrome c through PARC. Int J Biol Macromol 2020; 166:374-384. [PMID: 33122072 DOI: 10.1016/j.ijbiomac.2020.10.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/07/2020] [Accepted: 10/24/2020] [Indexed: 11/22/2022]
Abstract
α-Synuclein (αS) aggregates plays a pivotal role in the pathogenesis of synucleinopathies including Parkinson's Disease. The toxicity of αS aggregates has been broadly studied and variant defects have been reported through which these aggregates lead in cell death. Although cell death through apoptosis pathway has been proposed in many studies, the molecular details underlying in this pathway have not been uncovered. To shed a light on the relationships between αS aggregates and apoptotic cell death, changes in levels and behavior of molecular indicators of the intrinsic apoptotic pathway was investigated in HEK-293T cells overexpressing wild-type α-synuclein and A53T-α-synuclein. Overexpression of both WT-αS and A53T-αS resulted in the increase of caspase-9 activity, and rise in Cytochrome c (Cyt c) and PARC content, concurrently. We assume that rising in PARC level may result in Cyt c degradation, and consequently suppressing/attenuating intrinsic apoptosis pathway. Besides, increasing of Casp-9 activity can be related to αS aggregates and subsequent degradation of Cyt c. To understand the mechanisms behind this using theoretical model, molecular dynamic simulation was also applied to investigate the possible interaction of Casp-9 with α-synuclein aggregates. The results showed that the interaction between Casp-9 with αS aggregates could activate Casp-9 by changing the conformation of some crucial residues.
Collapse
|
35
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Povarova OI, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Alpha-B-Crystallin Effect on Mature Amyloid Fibrils: Different Degradation Mechanisms and Changes in Cytotoxicity. Int J Mol Sci 2020; 21:ijms21207659. [PMID: 33081200 PMCID: PMC7589196 DOI: 10.3390/ijms21207659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Given the ability of molecular chaperones and chaperone-like proteins to inhibit the formation of pathological amyloid fibrils, the chaperone-based therapy of amyloidosis has recently been proposed. However, since these diseases are often diagnosed at the stages when a large amount of amyloids is already accumulated in the patient’s body, in this work we pay attention to the undeservedly poorly studied problem of chaperone and chaperone-like proteins’ effect on mature amyloid fibrils. We showed that a heat shock protein alpha-B-crystallin, which is capable of inhibiting fibrillogenesis and is found in large quantities as a part of amyloid plaques, can induce degradation of mature amyloids by two different mechanisms. Under physiological conditions, alpha-B-crystallin induces fluffing and unweaving of amyloid fibrils, which leads to a partial decrease in their structural ordering without lowering their stability and can increase their cytotoxicity. We found a higher correlation between the rate and effectiveness of amyloids degradation with the size of fibrils clusters rather than with amino acid sequence of amyloidogenic protein. Some external effects (such as an increase in medium acidity) can lead to a change in the mechanism of fibrils degradation induced by alpha-B-crystallin: amyloid fibers are fragmented without changing their secondary structure and properties. According to recent data, fibrils cutting can lead to the generation of seeds for new bona fide amyloid fibrils and accelerate the accumulation of amyloids, as well as enhance the ability of fibrils to disrupt membranes and to reduce cell viability. Our results emphasize the need to test the chaperone effect not only on fibrillogenesis, but also on the mature amyloid fibrils, including stress conditions, in order to avoid undesirable disease progression during chaperone-based therapy.
Collapse
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - M. I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia;
| | - E. V. Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - O. I. Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - I. M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - K. K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
- Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-812-297-19-57
| | - A. I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| |
Collapse
|
36
|
Henríquez G, Gomez A, Guerrero E, Narayan M. Potential Role of Natural Polyphenols against Protein Aggregation Toxicity: In Vitro, In Vivo, and Clinical Studies. ACS Chem Neurosci 2020; 11:2915-2934. [PMID: 32822152 DOI: 10.1021/acschemneuro.0c00381] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the main features of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease is the amyloidogenic behavior of disease-specific proteins including amyloid β, tau, α-synuclein, and mutant Huntingtin which participate in the formation, accumulation, and deposition of toxic misfolded aggregates. Consequently, these proteins not only associated with the progress of their respective neurodegenerative pathologies but also qualify as disease-specific biomarkers. The aim of using natural polyphenols is to target amyloid-dependent proteopathies by decreasing free radical damage and inhibiting and dissolving amyloid fibrils. We explore the effectiveness of the polyphenols epigallocatechin-3-gallate, oleuropein aglycone, and quercetin on their ability to inhibit aggregation of amyloid β, tau, and α-synuclein and mitigate other pathological features for Alzheimer's disease and Parkinson's disease. The analysis was carried from in vitro and cell line studies to animal models and clinical trials. This Review describes the use of phytochemical compounds as prophylactic agents for Alzheimer's disease, Parkinson's disease, and other proteopathies.
Collapse
Affiliation(s)
- Gabriela Henríquez
- Department of Environmental Science and Engineering, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Alejandra Gomez
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Erick Guerrero
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, the University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
37
|
Nie J, Yang J, Wei Y, Wei X. The role of oxidized phospholipids in the development of disease. Mol Aspects Med 2020; 76:100909. [PMID: 33023753 DOI: 10.1016/j.mam.2020.100909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/29/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Oxidized phospholipids (OxPLs), complex mixtures of phospholipid oxidation products generated during normal or pathological processes, are increasingly recognized to show bioactive effects on many cellular signalling pathways. There is a growing body of evidence showing that OxPLs play an important role in many diseases, so it is essential to define the specific role of OxPLs in different diseases for the design of disease therapies. In vastly diverse pathological processes, OxPLs act as pro-inflammatory agents and contribute to the progression of many diseases; in addition, they play a role in anti-inflammatory processes, promoting the dissipation of inflammation and inhibiting the progression of some diseases. In addition to participating in the regulation of inflammatory responses, OxPLs affect the occurrence and development of diseases through other pathways, such as apoptosis promotion. In this review, the different and even opposite effects of different OxPL molecular species are discussed. Furthermore, the specific effects of OxPLs in various diseases, as well as the receptor and cellular mechanisms involved, are summarized.
Collapse
Affiliation(s)
- Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiration, First People's Hospital of Yunnan Province, Yunnan, 650032, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
38
|
Pandey G, Ramakrishnan V. Invasive and non-invasive therapies for Alzheimer's disease and other amyloidosis. Biophys Rev 2020; 12:1175-1186. [PMID: 32930962 PMCID: PMC7575678 DOI: 10.1007/s12551-020-00752-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Advancements in medical science have facilitated in extending human lives. The increased life expectancy, though, has come at a cost. The cases of an aging population suffering from degenerative diseases like Alzheimer's disease (AD) are presently at its all-time high. Amyloidosis disorders such as AD are triggered by an abnormal transition of soluble proteins into their highly ordered aggregated forms. The landscape of amyloidosis treatment remains unchanged, and there is no cure for such disorders. However, an increased understanding of the mechanism of amyloid self-assembly has given hope for a possible therapeutic solution. In this review, we will discuss the current state of molecular and non-molecular options for therapeutic intervention of amyloidosis. We highlight the efficacy of non-invasive physical therapies as possible alternatives to their molecular counterparts. Graphical abstract.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
39
|
Yang J, Dear AJ, Yao QQ, Liu Z, Dobson CM, Knowles TPJ, Wu S, Perrett S. Amelioration of aggregate cytotoxicity by catalytic conversion of protein oligomers into amyloid fibrils. NANOSCALE 2020; 12:18663-18672. [PMID: 32794533 DOI: 10.1039/d0nr01481h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aggregation of peptides and proteins into amyloid fibrils is a molecular self-assembly phenomenon associated with both biological function and malfunction, notably in the context of neurodegenerative diseases. Oligomeric species formed early in the aggregation process are generally associated with cytotoxicity. Extrinsic molecules such as peptides have been found to influence amyloid formation kinetics and regulate this cellular process. Here, we use single-molecule FRET and bulk assays combined with global kinetic analysis to study quantitatively the effect of an 8-residue peptide (LQVNIGNR) on fibril formation by the yeast prion protein Ure2. This peptide, which is derived from a segment of the Ure2 prion domain, forms vesicular assemblies that accelerate fibril formation of Ure2 by promoting conformational conversion of oligomeric intermediates into fibrillar species in a catalytic manner. This reduces oligomer longevity and consequently ameliorates cytotoxicity. The LQVNIGNR peptide was found to accelerate fibril formation of unrelated proteins including Tau and α-Synuclein, suggesting a general ability to catalyse fibrillation. This study provides a general strategy for investigating the microscopic mechanism of extrinsic factors on amyloid aggregation. This approach can readily be applied to other amyloid systems and demonstrates that acceleration of oligomer conversion is a promising strategy to reduce amyloid toxicity.
Collapse
Affiliation(s)
- Jie Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Unsaturated mannuronate oligosaccharide ameliorates β-amyloid pathology through autophagy in Alzheimer's disease cell models. Carbohydr Polym 2020; 251:117124. [PMID: 33142656 DOI: 10.1016/j.carbpol.2020.117124] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023]
Abstract
Unsaturated mannuronate oligosaccharide (MOS) is an enzymatic depolymerization product from alginate-derived polymannuronate (PM). In this study, we investigated for the first time the potential therapeutic effect of MOS on Alzheimer's disease (AD) and its molecular mechanism in N2a-sw cells and 3×Tg-AD primary cortex neurons. Our results showed that MOS ranges from mannuronate dimer to mannuronate undecamer (M2-M11) with an unsaturated nonreducing terminal structure and with a double bond and 1,4-glycosidic linkages. It significantly inhibited the aggregation of amyloid-β (Aβ)1-42 oligomer, decreased expression of Aβ1-42 and reduced levels of amyloid precursor protein (APP) and BACE1. It promoted the autophagy, which involves the inactivation of mTOR signaling pathway and the facilitation of the fusion of autophagosomes and lysosomes. Finally, autophagy inhibitors blocked MOS' anti-AD actions, confirming the involvement of autophagy. In conclusion, MOS from seaweed alginate might be a promising nutraceutical or natural medicine for AD therapy.
Collapse
|
41
|
Araújo AR, Reis RL, Pires RA. Natural Polyphenols as Modulators of the Fibrillization of Islet Amyloid Polypeptide. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:159-176. [PMID: 32601944 DOI: 10.1007/978-981-15-3262-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus type 2 (type-2 diabetes) is a metabolic disorder characterized by the increased blood glucose concentration and insulin resistance in peripheral tissues (e.g., muscles and adipose tissue). The initiation of the pathological cascade of events that lead to type-2 diabetes has been subject of debate; however, it has been commonly accepted that the oversecretion of human islet amyloid polypeptide (hIAPP, a hormone co-secreted with insulin) by the pancreatic 𝛽-cells is the main trigger of type-2 diabetes. In fact, 90% of the type-2 diabetes patients present hIAPP deposits in the extracellular space of the 𝛽-cells. These hIAPP supramolecular arrangements (both fibrillar and oligomeric) have been reported to be the origin of cytotoxicity, which leads to 𝛽-cell dysfunction through a series of different mechanisms, including the interaction of hIAPP oligomers with the cell membrane that leads to the influx of Ca2+ and increase in the cellular oxidative stress, among others. This overview shows the importance of developing type-2 diabetes treatment strategies able to (1) remodel of the secondary structure of cytotoxic hIAPP oligomers entrapping them into off-pathway nontoxic species and (2) reestablish physiological levels of oxidative stress. Natural polyphenols are a class of antioxidant compounds that are able to perform both functions. Herein we review the published literature of the most studied polyphenols, in particular for their ability to remodel the hIAPP aggregation pathway, to rescue the in vitro pancreatic 𝛽-cell viability and function, as well as to perform under a complex biological environment, i.e., in vivo animal models and clinical trials. Overall, natural polyphenols are able to control the cytotoxic hIAPP aggregation and minimize hIAPP-mediated cellular dysfunction and can be considered as important lead compounds for the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Ana R Araújo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal.
| |
Collapse
|
42
|
Garcia AM, Giorgiutti C, El Khoury Y, Bauer V, Spiegelhalter C, Leize-Wagner E, Hellwig P, Potier N, Torbeev V. Aggregation and Amyloidogenicity of the Nuclear Coactivator Binding Domain of CREB-Binding Protein. Chemistry 2020; 26:9889-9899. [PMID: 32364648 DOI: 10.1002/chem.202001847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/30/2020] [Indexed: 12/28/2022]
Abstract
The nuclear coactivator binding domain (NCBD) of transcriptional co-regulator CREB-binding protein (CBP) is an example of conformationally malleable proteins that can bind to structurally unrelated protein targets and adopt distinct folds in the respective protein complexes. Here, we show that the folding landscape of NCBD contains an alternative pathway that results in protein aggregation and self-assembly into amyloid fibers. The initial steps of such protein misfolding are driven by intermolecular interactions of its N-terminal α-helix bringing multiple NCBD molecules into contact. These oligomers then undergo slow but progressive interconversion into β-sheet-containing aggregates. To reveal the concealed aggregation potential of NCBD we used a chemically synthesized mirror-image d-NCBD form. The addition of d-NCBD promoted self-assembly into amyloid precipitates presumably due to formation of thermodynamically more stable racemic β-sheet structures. The unexpected aggregation of NCBD needs to be taken into consideration given the multitude of protein-protein interactions and resulting biological functions mediated by CBP.
Collapse
Affiliation(s)
- Ana Maria Garcia
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Christophe Giorgiutti
- Laboratory of Mass-Spectrometry of Interactions and Systems, University of Strasbourg, CNRS-UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Youssef El Khoury
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Valentin Bauer
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| | - Coralie Spiegelhalter
- Imaging Center, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), INSERM-U964, University of Strasbourg, CNRS-UMR 7104, 1 rue Laurent Fries, 67404, Illkirch, France
| | - Emmanuelle Leize-Wagner
- Laboratory of Mass-Spectrometry of Interactions and Systems, University of Strasbourg, CNRS-UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Petra Hellwig
- Laboratory of Bioelectrochemistry and Spectroscopy, University of Strasbourg, CNRS-UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
- Institute for Advanced Study, USIAS University of Strasbourg, 5 allée du Général Rouvillois, 67083, Strasbourg, France
| | - Noelle Potier
- Laboratory of Mass-Spectrometry of Interactions and Systems, University of Strasbourg, CNRS-UMR 7140, 1 rue Blaise Pascal, 67070, Strasbourg, France
| | - Vladimir Torbeev
- ISIS (Institut de Science et d'Ingénierie Supramoléculaires) and, icFRC (International Center for Frontier Research in Chemistry), University of Strasbourg, CNRS-UMR 7006, 8 allée Gaspard Monge, 67083, Strasbourg, France
| |
Collapse
|
43
|
Li Y, Yang C, Wang S, Yang D, Zhang Y, Xu L, Ma L, Zheng J, Petersen RB, Zheng L, Chen H, Huang K. Copper and iron ions accelerate the prion-like propagation of α-synuclein: A vicious cycle in Parkinson's disease. Int J Biol Macromol 2020; 163:562-573. [PMID: 32629061 DOI: 10.1016/j.ijbiomac.2020.06.274] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
Protein fibrils drive the onset and progression of many diseases in a prion-like manner, i.e. they transcellular propagate through the extracellular space to health cells to initiate toxic aggregation as seeds. The conversion of native α-synuclein into filamentous aggregates in Lewy bodies is a hallmark of Parkinson's disease (PD). Copper and iron ions accumulate in PD brains, however, whether they influence the prion-like propagation of α-synuclein remain unclear. Here, we reported that copper/iron ions accelerate prion-like propagation of α-synuclein fibrils by promoting cellular internalization of α-synuclein fibrils, intracellular α-synuclein aggregation and the subsequent release of mature fibrils to the extracellular space to induce further propagation. Mechanistically, copper/iron ions enhanced α-synuclein fibrils internalization was mediated by negatively charged membrane heparan sulfate proteoglycans (HSPGs). α-Synuclein fibrils formed in the presence of copper/iron ions were more cytotoxic, causing increased ROS production, cell apoptosis, and shortened the lifespan of a C. elegans PD model overexpressing human α-synuclein. Notably, these deleterious effects were ameliorated by two clinically used chelators, triethylenetetramine and deferiprone. Together, our results suggest a new role for heavy metal ions, e.g. copper and iron, in the pathogenesis of PD through accelerating prion-like propagation of α-synuclein fibrils.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Chen Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Shilin Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Dong Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Yu Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Li Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430012, China
| | - Jiaojiao Zheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant 48858, MI, USA
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Kun Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China.
| |
Collapse
|
44
|
Rana SVS. Endoplasmic Reticulum Stress Induced by Toxic Elements-a Review of Recent Developments. Biol Trace Elem Res 2020; 196:10-19. [PMID: 31686395 DOI: 10.1007/s12011-019-01903-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
Endoplasmic reticulum of all eukaryotic cells is a membrane-bound organelle. Under electron microscope it appears as parallel arrays of "rough membranes" and a maze of "smooth vesicles" respectively. It performs various functions in cell, i.e., synthesis of proteins to degradation of xenobiotics. Bioaccumulation of drugs/chemicals/xenobiotics in the cytosol can trigger ER stress. It is recognized by the accumulation of unfolded or misfolded proteins in the lumen of ER. Present review summarizes the present status of knowledge on ER stress caused by toxic elements, viz arsenic, cadmium, lead, mercury, copper, chromium, and nickel. While inorganic arsenic may induce various glucose-related proteins, i.e., GRP78, GRP94 and CHOP, XBP1, and calpains, cadmium upregulates GRP78. Antioxidants like ascorbic acid, NAC, and Se inhibit the expression of UPR. Exposure to lead also changes ER stress related genes, i.e., GRP 78, GRP 94, ATF4, and ATF6. Mercury too upregulates these genes. Nickel, a carcinogenic element upregulates the expression of Bak, cytochrome C, caspase-3, caspase-9, caspase-12, and GADD 153. Much is not known on ER stress caused by nanoparticles. The review describes inter-organelle association between mitochondria and ER. It also discusses the interdependence between oxidative stress and ER stress. A cross talk amongst different cellular components appears essential to disturb pathways leading to cell death. However, these molecular switches within the signaling network used by toxic elements need to be identified. Nevertheless, ER stress especially caused by toxic elements still remains to be an engaging issue.
Collapse
Affiliation(s)
- S V S Rana
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India.
| |
Collapse
|
45
|
Chaari A. Inhibition of human islet amyloid polypeptide aggregation and cellular toxicity by oleuropein and derivatives from olive oil. Int J Biol Macromol 2020; 162:284-300. [PMID: 32569693 DOI: 10.1016/j.ijbiomac.2020.06.170] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
Abstract
Loss of β-cell function and β-cell death is the key feature of type 2 diabetes mellitus (T2DM). One hypothesis for the mechanism of this feature is amyloid formation by the human islet amyloid polypeptide (hIAPP). Despite the global prevalence of T2DM, there are no therapeutic strategies for the treatment of or prevention of amylin amyloidosis. Clinical trials and population studies indicate the healthy virtues of the Mediterranean diet, especially the extra virgin olive oil (EVOO) found in this diet. This oil is enriched in phenolic compounds shown to be effective against several aging and lifestyle diseases. Oleuropein (Ole), one of the most abundant polyphenols in EVOO, has been reported to be anti-diabetic. Some of Ole's main derivative have attracted our interest due to their multi-targetted effects, including interference with amyloid aggregation path. However, the structure-function relationship of Ole and its metabolites in T2DM are not yet clear. We report here a broad biophysical approach and cell biology techniques that enabled us to characterize the different molecular mechanisms by which tyrosol (TYR), hydroxytyrosol (HT), oleuropein (Ole) and oleuropein aglycone (OleA) modulate the hIAPP fibrillation in vitro and their effects on cell cytotoxicity. The OleA formed by enolic acid and hydroxytyrosol moiety was found to be more active than the Ole and HT at low micromolar concentrations. We further demonstrated that OleA inhibit the cytotoxicity induced by hIAPP aggregates by protecting more the cell membrane from permeabilization and then from death. These findings highlight the benefits of consuming EVOO and the great potential of its polyphenols, mainly OleA. Moreover, they support the possibility to validate and optimize the possible pharmacological use of EVOO polyphenols for T2DM prevention and therapy and also for many other amyloid related diseases.
Collapse
Affiliation(s)
- Ali Chaari
- Premedical Department Weill Cornell Medicine, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
46
|
Coffee extracts effectively inhibit the formation of α-chymotrypsin amyloid-like fibrils in aqueous ethanol in vitro. Biol Futur 2020; 71:147-152. [PMID: 34554524 DOI: 10.1007/s42977-020-00006-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
In this study, an in vitro α-chymotrypsin aggregation model was used to demonstrate that certain extracts of commercial coffees effectively inhibit protein aggregation in 55% ethanol at pH 7.0. To detect the anti-amyloidogenic effect of the various coffee extracts, turbidity measurements and Congo red binding assays were performed as well as the determination of the total polyphenol content of the extracts. The greatest fibril formation inhibitory effect was exerted by the Eduscho coffee extract, which contained also the most of the phenolic compounds. The Eduscho coffee extract inhibited the fibrillation of the α-chymotrypsin dose dependently. Coffee extracts are effective anti-aggregation agents, and their beneficial effects strongly correlate with the total phenolic content.
Collapse
|
47
|
Ma L, Yang C, Zheng J, Chen Y, Xiao Y, Huang K. Non-polyphenolic natural inhibitors of amyloid aggregation. Eur J Med Chem 2020; 192:112197. [PMID: 32172082 DOI: 10.1016/j.ejmech.2020.112197] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/09/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Protein misfolding diseases (PMDs) are chronic and progressive, with no effective therapy so far. Aggregation and misfolding of amyloidogenic proteins are closely associated with the onset and progression of PMDs, such as amyloid-β (Aβ) in Alzheimer's disease, α-Synuclein (α-Syn) in Parkinson's disease and human islet amyloid polypeptide (hIAPP) in type 2 diabetes. Inhibiting toxic aggregation of amyloidogenic proteins is regarded as a promising therapeutic approach in PMDs. The past decade has witnessed the rapid progresses of this field, dozens of inhibitors have been screened and verified in vitro and in vivo, demonstrating inhibitory effects against the aggregation and misfolding of amyloidogenic proteins, together with beneficial effects. Natural products are major sources of small molecule amyloid inhibitors, a number of natural derived compounds have been identified with great bioactivities and translational prospects. Here, we review the non-polyphenolic natural inhibitors that potentially applicable for PMDs treatment, along with their working mechanisms. Future directions are proposed for the development and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yushuo Xiao
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430035, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
48
|
Marcinko TM, Drews T, Liu T, Vachet RW. Epigallocatechin-3-gallate Inhibits Cu(II)-Induced β-2-Microglobulin Amyloid Formation by Binding to the Edge of Its β-Sheets. Biochemistry 2020; 59:1093-1103. [PMID: 32100530 DOI: 10.1021/acs.biochem.0c00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epigallocatechin-3-gallate (EGCG) is a catechin found in green tea that can inhibit the amyloid formation of a wide variety of proteins. EGCG's ability to prevent or redirect the amyloid formation of so many proteins may reflect a common mechanism of action, and thus, greater molecular-level insight into how it exerts its effect could have broad implications. Here, we investigate the molecular details of EGCG's inhibition of the protein β-2-microglobulin (β2m), which forms amyloids in patients undergoing long-term dialysis treatment. Using size-exclusion chromatography and a collection of mass spectrometry-based techniques, we find that EGCG prevents Cu(II)-induced β2m amyloid formation by diverting the normal progression of preamyloid oligomers toward the formation of spherical, redissolvable aggregates. EGCG exerts its effect by binding with a micromolar affinity (Kd ≈ 5 μM) to the β2m monomer on the edge of two β-sheets near the N-terminus. This interaction destabilizes the preamyloid dimer and prevents the formation of a tetramer species previously shown to be essential for Cu(II)-induced β2m amyloid formation. EGCG's binding at the edge of the β-sheets in β2m is consistent with a previous hypothesis that EGCG generally prevents amyloid formation by binding cross-β-sheet aggregation intermediates.
Collapse
Affiliation(s)
- Tyler M Marcinko
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Thomas Drews
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts-Amherst, 374 Lederle Graduate Research Tower A, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
49
|
Alijanvand SH, Christensen MH, Christiansen G, Harikandei KB, Salehi P, Schiøtt B, Moosavi-Movahedi AA, Otzen DE. Novel noscapine derivatives stabilize the native state of insulin against fibrillation. Int J Biol Macromol 2020; 147:98-108. [DOI: 10.1016/j.ijbiomac.2020.01.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
|
50
|
Chen S, Liu Y, Zhou Y, He L, Ouyang J. Mechanism study on the abnormal accumulation and deposition of islet amyloid polypeptide by cold-spray ionization mass spectrometry. Analyst 2020; 145:7289-7296. [DOI: 10.1039/d0an01034k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Native cold-spray ionization mass spectrometry (CSI-MS) technology is employed to characterize the IAPP oligomers and to study the mechanism between IAPP and small-molecule inhibitors.
Collapse
Affiliation(s)
- Su Chen
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| | - Yang Liu
- National Institutes for Food and Drug Control
- Beijing
- China
| | - Yanan Zhou
- National Institutes for Food and Drug Control
- Beijing
- China
| | - Lan He
- National Institutes for Food and Drug Control
- Beijing
- China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry
- Ministry of Education
- College of Chemistry
- Beijing Normal University
- Beijing
| |
Collapse
|