1
|
Wang H, Tian Q, Zhang Y, Xi Y, Hu L, Yao K, Li J, Chen X. Celastrol regulates the oligomeric state and chaperone activity of αB-crystallin linked with protein homeostasis in the lens. FUNDAMENTAL RESEARCH 2024; 4:394-400. [PMID: 38933503 PMCID: PMC11197752 DOI: 10.1016/j.fmre.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022] Open
Abstract
Protein misfolding and aggregation are crucial pathogenic factors for cataracts, which are the leading cause of visual impairment worldwide. α-crystallin, as a small molecular chaperone, is involved in preventing protein misfolding and maintaining lens transparency. The chaperone activity of α-crystallin depends on its oligomeric state. Our previous work identified a natural compound, celastrol, which could regulate the oligomeric state of αB-crystallin. In this work, based on the UNcle and SEC analysis, we found that celastrol induced αB-crystallin to form large oligomers. Large oligomer formation enhanced the chaperone activity of αB-crystallin and prevented aggregation of the cataract-causing mutant βA3-G91del. The interactions between αB-crystallin and celastrol were detected by the FRET (Fluorescence Resonance Energy Transfer) technique, and verified by molecular docking. At least 9 binding patterns were recognized, and some binding sites covered the groove structure of αB-crystallin. Interestingly, αB-R120G, a cataract-causing mutation located at the groove structure, and celastrol can decrease the aggregates of αB-R120G. Overall, our results suggested celastrol not only promoted the formation of large αB-crystallin oligomers, which enhanced its chaperone activity, but also bound to the groove structure of its α-crystallin domain to maintain its structural stability. Celastrol might serve as a chemical and pharmacological chaperone for cataract treatment.
Collapse
Affiliation(s)
- Huaxia Wang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Qing Tian
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Ying Zhang
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
| | - Yibo Xi
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Jingyuan Li
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Vilaboa N, Voellmy R. Withaferin A and Celastrol Overwhelm Proteostasis. Int J Mol Sci 2023; 25:367. [PMID: 38203539 PMCID: PMC10779417 DOI: 10.3390/ijms25010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Withaferin A (WA) and celastrol (CEL) are major bioactive components of plants that have been widely employed in traditional medicine. The pleiotropic activities of plant preparations and the isolated compounds in vitro and in vivo have been documented in hundreds of studies. Both WA and CEL were shown to have anticancer activity. Although WA and CEL belong to different chemical classes, our synthesis of the available information suggests that the compounds share basic mechanisms of action. Both WA and CEL bind covalently to numerous proteins, causing the partial unfolding of some of these proteins and of many bystander proteins. The resulting proteotoxic stress, when excessive, leads to cell death. Both WA and CEL trigger the activation of the unfolded protein response (UPR) which, if the proteotoxic stress persists, results in apoptosis mediated by the PERK/eIF-2/ATF4/CHOP pathway or another UPR-dependent pathway. Other mechanisms of cell death may play contributory or even dominant roles depending on cell type. As shown in a proteomic study with WA, the compounds appear to function largely as electrophilic reactants, indiscriminately modifying reachable nucleophilic amino acid side chains of proteins. However, a remarkable degree of target specificity is imparted by the cellular context.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain
- CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, 28046 Madrid, Spain
| | | |
Collapse
|
3
|
Ayinde KS, Pinheiro GM, Ramos CH. Binding of SARS-CoV-2 protein ORF9b to mitochondrial translocase TOM70 prevents its interaction with chaperone HSP90. Biochimie 2022; 200:99-106. [PMID: 35643212 PMCID: PMC9132681 DOI: 10.1016/j.biochi.2022.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/17/2023]
Abstract
The emergence of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a great threat to global health. ORF9b, an important accessory protein of SARS-CoV-2, plays a critical role in the viral host interaction, targeting TOM70, a member of the mitochondrial translocase of the outer membrane complex. The assembly between ORF9b and TOM70 is implicated in disrupting mitochondrial antiviral signaling, leading to immune evasion. We describe the expression, purification, and characterization of ORF9b alone or coexpressed with the cytosolic domain of human TOM70 in E. coli. ORF9b has 97 residues and was purified as a homodimer with an molecular mass of 22 kDa as determined by SEC-MALS. Circular dichroism experiments showed that Orf9b alone exhibits a random conformation. The ORF9b-TOM70 complex characterized by CD and differential scanning calorimetry showed that the complex is folded and more thermally stable than free TOM70, indicating strong binding. Importantly, protein-protein interaction assays demonstrated that full-length human Hsp90 is capable of binding to free TOM70 but not to the ORF9b-TOM70 complex. To narrow down the nature of this inhibition, the isolated C-terminal domain of Hsp90 was also tested. These results were used to build a model of the mechanism of inhibition, in which ORF9b efficiently targets two sites of interaction between TOM70 and Hsp90. The findings showed that ORF9b complexed with TOM70 prevents the interaction with Hsp90, and this is one major explanation for SARS-CoV-2 evasion of host innate immunity via the inhibition of the interferon activation pathway.
Collapse
Affiliation(s)
- Kehinde S. Ayinde
- Institute of Chemistry, University of Campinas UNICAMP, 13083-970, Campinas, SP, Brazil,Institute of Biology, University of Campinas (UNICAMP), SP, Brazil
| | - Glaucia M.S. Pinheiro
- Institute of Chemistry, University of Campinas UNICAMP, 13083-970, Campinas, SP, Brazil
| | - Carlos H.I. Ramos
- Institute of Chemistry, University of Campinas UNICAMP, 13083-970, Campinas, SP, Brazil,Corresponding author
| |
Collapse
|
4
|
Zhang X, Chen Y, Feng X, Li L, Song K, Sun Y, Zhang G, Zhang L. A comprehensive study of celastrol metabolism in vivo and in vitro using ultra‐high‐performance liquid chromatography coupled with hybrid triple quadrupole time‐of‐flight mass spectrometry. J Sep Sci 2022; 45:1222-1239. [PMID: 35080126 DOI: 10.1002/jssc.202100807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Xiao‐wei Zhang
- Department of Neurosurgery The Second Hospital of Hebei Medical University Shijiazhuang 050000 China
| | - Yu‐ting Chen
- Department of Pharmaceutical Analysis School of Pharmacy Hebei Medical University Shijiazhuang 050017 China
| | - Xue Feng
- Department of Pharmaceutical Analysis School of Pharmacy Hebei Medical University Shijiazhuang 050017 China
| | - Lu‐ya Li
- Department of Pharmaceutical Analysis School of Pharmacy Hebei Medical University Shijiazhuang 050017 China
| | - Ke‐wei Song
- The Fourth Hospital of Shijiazhuang Shijiazhuang 050017 China
| | - Yu‐peng Sun
- Department of Pharmaceutical Analysis School of Pharmacy Hebei Medical University Shijiazhuang 050017 China
| | - Guo‐hua Zhang
- Department of Neurosurgery The Second Hospital of Hebei Medical University Shijiazhuang 050000 China
| | - Lan‐tong Zhang
- Department of Pharmaceutical Analysis School of Pharmacy Hebei Medical University Shijiazhuang 050017 China
| |
Collapse
|
5
|
Targeting Chaperone/Co-Chaperone Interactions with Small Molecules: A Novel Approach to Tackle Neurodegenerative Diseases. Cells 2021; 10:cells10102596. [PMID: 34685574 PMCID: PMC8534281 DOI: 10.3390/cells10102596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/07/2023] Open
Abstract
The dysfunction of the proteostasis network is a molecular hallmark of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. Molecular chaperones are a major component of the proteostasis network and maintain cellular homeostasis by folding client proteins, assisting with intracellular transport, and interfering with protein aggregation or degradation. Heat shock protein 70 kDa (Hsp70) and 90 kDa (Hsp90) are two of the most important chaperones whose functions are dependent on ATP hydrolysis and collaboration with their co-chaperones. Numerous studies implicate Hsp70, Hsp90, and their co-chaperones in neurodegenerative diseases. Targeting the specific protein–protein interactions between chaperones and their particular partner co-chaperones with small molecules provides an opportunity to specifically modulate Hsp70 or Hsp90 function for neurodegenerative diseases. Here, we review the roles of co-chaperones in Hsp70 or Hsp90 chaperone cycles, the impacts of co-chaperones in neurodegenerative diseases, and the development of small molecules modulating chaperone/co-chaperone interactions. We also provide a future perspective of drug development targeting chaperone/co-chaperone interactions for neurodegenerative diseases.
Collapse
|
6
|
Chen YJ, You GR, Lai MY, Lu LS, Chen CY, Ting LL, Lee HL, Kanno Y, Chiou JF, Cheng AJ. A Combined Systemic Strategy for Overcoming Cisplatin Resistance in Head and Neck Cancer: From Target Identification to Drug Discovery. Cancers (Basel) 2020; 12:cancers12113482. [PMID: 33238517 PMCID: PMC7700594 DOI: 10.3390/cancers12113482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/21/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The efficiency of cisplatin is limited by drug resistance in head–neck cancer (HNC) patients. In this study, we established a cisplatin resistance (CR) cell model, generated CR related transcriptome profiling, and combined application of bioinformatics methodology to discover a possible way to overcome CR. Analysis of the functional pathway revealed that mitotic division is a novel mechanism significantly contributing to CR. Spindle pole body component 25 (SPC25), a kinetochore protein, was overexpressed in CR cells and significantly correlated with worse HNC patient survival. The silencing of SPC25 increased cisplatin sensitivity and reduced cancer stemness property. Integration of CR transcriptome profiling and drug database discovered a natural extract compound, celastrol, possessing a potent cytotoxic effect in CR cells to reverse CR. Thus, we combined systemic strategies to demonstrated that a novel biological process (mitotic cell division), a hub gene (SPC25), and a natural compound (celastrol) as novel strategies for the treatment of refractory HNC. Abstract Cisplatin is the first-line chemotherapy agent for head and neck cancer (HNC), but its therapeutic effects are hampered by its resistance. In this study, we employed systemic strategies to overcome cisplatin resistance (CR) in HNC. CR cells derived from isogenic HNC cell lines were generated. The CR related hub genes, functional mechanisms, and the sensitizing candidates were globally investigated by transcriptomic and bioinformatic analyses. Clinically, the prognostic significance was assessed by the Kaplan–Meier method. Cellular and molecular techniques, including cell viability assay, tumorsphere formation assay, RT-qPCR, and immunoblot, were used. Results showed that these CR cells possessed highly invasive and stem-like properties. A total of 647 molecules was identified, and the mitotic division exhibited a novel functional mechanism significantly related to CR. A panel of signature molecules, MSRB3, RHEB, ULBP1, and spindle pole body component 25 (SPC25), was found to correlate with poor prognosis in HNC patients. SPC25 was further shown as a prominent molecule, which markedly suppressed cancer stemness and attenuated CR after silencing. Celastrol, a nature extract compound, was demonstrated to effectively inhibit SPC25 expression and reverse CR phenotype. In conclusion, the development of SPC25 inhibitors, such as the application of celastrol, maybe a novel strategy to sensitize cisplatin for the treatment of refractory HNC.
Collapse
Affiliation(s)
- Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Y.-J.C.); (L.-S.L.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology, Medical College, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (M.-Y.L.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Meng-Yu Lai
- Department of Medical Biotechnology, Medical College, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (M.-Y.L.)
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Y.-J.C.); (L.-S.L.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Yu Chen
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; (C.-Y.C.); (Y.K.)
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Lai-Lei Ting
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuzuka Kanno
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; (C.-Y.C.); (Y.K.)
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology, Medical College, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (M.-Y.L.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800
| |
Collapse
|
7
|
Vilas A, Yuste-Checa P, Gallego D, Desviat LR, Ugarte M, Pérez-Cerda C, Gámez A, Pérez B. Proteostasis regulators as potential rescuers of PMM2 activity. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165777. [PMID: 32222543 DOI: 10.1016/j.bbadis.2020.165777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
Abstract
Phosphomannomutase 2 deficiency (PMM2-CDG) is the most common N-glycosylation disorder. To date there is no treatment. Following the identification of a number of destabilizing pathogenic variants, our group suggested PMM2-CDG to be a conformational disease. The aim of the present study was to evaluate the possible use of proteostasis network regulators to increase the stability, and subsequently the enzymatic activity, of misfolded PMM2 mutant proteins. Patient-derived fibroblasts transduced with their own PMM2 folding or oligomerization variants were treated with different concentrations of the proteostasis regulators celastrol or MG132. Celastrol treatment led to a significant increase in mutant PMM2 protein concentration and activity, while MG132 had a small effect on protein concentration only. The increase in enzymatic activity with celastrol correlated with an increase in the transcriptional and proteome levels of the heat shock proteins Hsp90 and Hsp70. The use of specific Hsp70 or Hsp90 inhibitors showed the positive effect of celastrol on PMM2 stability and activity to occur through Hsp90-driven modulation of the proteostasis network. The synergistic effect of celastrol and a previously described pharmacological chaperone was also examined, and a mutation-dependent synergistic effect on PMM2 activity was noted. These results provide proof-of-concept regarding the potential treatment of PMM2-CDG by proteostasis regulators, either alone or in combination with pharmacological chaperones.
Collapse
Affiliation(s)
- A Vilas
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - P Yuste-Checa
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - D Gallego
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - L R Desviat
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - M Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - C Pérez-Cerda
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - A Gámez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain
| | - B Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular-CSIC-UAM, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, Spain.
| |
Collapse
|
8
|
Gracia L, Lora G, Blair LJ, Jinwal UK. Therapeutic Potential of the Hsp90/Cdc37 Interaction in Neurodegenerative Diseases. Front Neurosci 2019; 13:1263. [PMID: 31824256 PMCID: PMC6882380 DOI: 10.3389/fnins.2019.01263] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's, Huntington's, and Parkinson's are devastating neurodegenerative diseases that are prevalent in the aging population. Patient care costs continue to rise each year, because there is currently no cure or disease modifying treatments for these diseases. Numerous efforts have been made to understand the molecular interactions governing the disease development. These efforts have revealed that the phosphorylation of proteins by kinases may play a critical role in the aggregation of disease-associated proteins, which is thought to contribute to neurodegeneration. Interestingly, a molecular chaperone complex consisting of the 90 kDa heat shock protein (Hsp90) and Cell Division Cycle 37 (Cdc37) has been shown to regulate the maturation of many of these kinases as well as regulate some disease-associated proteins directly. Thus, the Hsp90/Cdc37 complex may represent a potential drug target for regulating proteins linked to neurodegenerative diseases, through both direct and indirect interactions. Herein, we discuss the broad understanding of many Hsp90/Cdc37 pathways and how this protein complex may be a useful target to regulate the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Liam Gracia
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida-Health, Tampa, FL, United States
| | - Gabriella Lora
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida-Health, Tampa, FL, United States
| | - Laura J. Blair
- Department of Molecular Medicine, Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Umesh K. Jinwal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida-Health, Tampa, FL, United States
| |
Collapse
|
9
|
Targeting hsp90 family members: A strategy to improve cancer cell death. Biochem Pharmacol 2019; 164:177-187. [PMID: 30981878 DOI: 10.1016/j.bcp.2019.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
Abstract
A crucial process in biology is the conversion of the genetic information into functional proteins that carry out the genetic program. However, a supplementary step is required to obtain functional proteins: the folding of the newly translated polypeptides into well-defined, three-dimensional conformations. Proteins chaperones are crucial for this final step in the readout of genetic information, which results in the formation of functional proteins. In this review, a special attention will be given to the strategies targeting hsp90 family members in order to increase cancer cell death. We argue that disruption of hsp90 machinery and the further client protein degradation is the main consequence of hsp90 oxidative cleavage taking place at the N-terminal nucleotide-binding site. Moreover, modulation of Grp94 expression will be discussed as a potential therapeutic goal looking for a decrease in cancer relapses.
Collapse
|
10
|
Pang C, Luo J, Liu C, Wu X, Wang D. Synthesis and Biological Evaluation of a Series of Novel Celastrol Derivatives with Amino Acid Chain. Chem Biodivers 2018; 15:e1800059. [DOI: 10.1002/cbdv.201800059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Chaohai Pang
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Jinhui Luo
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Chunhua Liu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Xuejin Wu
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Science; Haikou 571101 P. R. China
| | - Dingyong Wang
- College of Pharmacy; Guangdong Pharmaceutical University; Guangzhou Guangdong 510006 P. R. China
| |
Collapse
|
11
|
Adão R, Zanphorlin LM, Lima TB, Sriranganadane D, Dahlström KM, Pinheiro GMS, Gozzo FC, Barbosa LRS, Ramos CHI. Revealing the interaction mode of the highly flexible Sorghum bicolor Hsp70/Hsp90 organizing protein (Hop): A conserved carboxylate clamp confers high affinity binding to Hsp90. J Proteomics 2018; 191:191-201. [PMID: 29425735 DOI: 10.1016/j.jprot.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/27/2022]
Abstract
Proteostasis is dependent on the Hsp70/Hsp90 system (the two chaperones and their co-chaperones). Of these, Hop (Hsp70/Hsp90 organizing protein), also known as Sti1, forms an important scaffold to simultaneously binding to both Hsp70 and Hsp90. Hop/Sti1 has been implicated in several disease states, for instance cancer and transmissible spongiform encephalopathies. Therefore, human and yeast homologous have been better studied and information on plant homologous is still limited, even though plants are continuously exposed to environmental stress. Particularly important is the study of crops that are relevant for agriculture, such as Sorghum bicolor, a C4 grass that is among the five most important cereals and is considered as a bioenergy feedstock. To increase the knowledge on plant chaperones, the hop putative gene for Sorghum bicolor was cloned and the biophysical and structural characterization of the protein was done by cross-linking coupled to mass spectroscopy, small angle X-ray scattering and structural modeling. Additionally, the binding to a peptide EEVD motif, which is present in both Hsp70 and Hsp90, was studied by isothermal titration calorimetry and hydrogen/deuterium exchange and the interaction pattern structurally modeled. The results indicate SbHop as a highly flexible, mainly alpha-helical monomer consisting of nine tetratricopeptide repeat domains, of which one confers high affinity binding to Hsp90 through a conserved carboxylate clamp. Moreover, the present insights into the conserved interactions formed between Hop and Hsp90 can help to design strategies for potential therapeutic approaches for the diseases in which Hop has been implicated.
Collapse
Affiliation(s)
- Regina Adão
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Letícia M Zanphorlin
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Tatiani B Lima
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Dev Sriranganadane
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Käthe M Dahlström
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Glaucia M S Pinheiro
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | | | - Carlos H I Ramos
- Institute of Chemistry, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
12
|
Maysinger D, Moquin A, Choi J, Kodiha M, Stochaj U. Gold nanourchins and celastrol reorganize the nucleo- and cytoskeleton of glioblastoma cells. NANOSCALE 2018; 10:1716-1726. [PMID: 29308473 DOI: 10.1039/c7nr07833a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The physicochemical properties and cytotoxicity of diverse gold nanoparticle (AuNP) morphologies with smooth surfaces have been examined extensively. Much less is known about AuNPs with irregular surfaces. This study focuses on the effects of gold nanourchins in glioblastoma cells. With limited success of monotherapies for glioblastoma, multimodal treatment has become the preferred regimen. One possible example for such future therapeutic applications is the combination of AuNPs with the natural cytotoxic agent celastrol. Here, we used complementary physical, chemical and biological methods to characterize AuNPs and investigate their impact on glioblastoma cells. Our results show that gold nanourchins altered glioblastoma cell morphology and reorganized the nucleo- and cytoskeleton. These changes were dependent on gold nanourchin surface modification. PEGylated nanourchins had no significant effect on glioblastoma cell morphology or viability, unless they were combined with celastrol. By contrast, CTAB-nanourchins adversely affected the nuclear lamina, microtubules and filamentous actin. These alterations correlated with significant glioblastoma cell death. We identified several mechanisms that contributed to the impact of AuNPs on the cytoskeleton and cell survival. Specifically, CTAB-nanourchins caused a significant increase in the abundance of Rock1. This protein kinase is a key regulator of the cytoskeleton. In addition, CTAB-nanourchins led to a marked decline in pro-survival signaling via the PI3 kinase-Akt pathway. Taken together, our study provides new insights into the molecular pathways and structural components altered by gold nanourchins and their implications for multimodal glioblastoma therapy.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
13
|
Togashi S, Takahashi K, Tamura A, Toyota I, Hatakeyama S, Komatsuda A, Kudo I, Sasaki Kudoh E, Okamoto T, Haga A, Miyamoto A, Grave E, Sugawara T, Shimizu H, Itoh H. High dose of antibiotic colistin induces oligomerization of molecular chaperone HSP90. J Biochem 2017; 162:27-36. [PMID: 28201527 DOI: 10.1093/jb/mvw104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 11/12/2022] Open
Abstract
Colistin is an antimicrobial cationic peptide that belongs to the polymyxin family. Colistin was clinically used for the treatment of gram-negative infections but fell out of favour because of its significant side effects including neurotoxicity and nephrotoxicity. More recently, colistin has been regarded as one of the important options for nosocomial infections caused by multidrug resistant bacteria. Mechanisms of both the side effect onset of the drug and the side effect reduction are yet to be elucidated. In this study, we identified the specific binding protein of colistin using an affinity column chromatography. Colistin binds to the molecular chaperone HSP90. Although colistin slightly suppressed the chaperone activity of HSP90, there are no effects on the ATPase activity for a low concentration of colistin. Interestingly, colistin-induced aggregation of HSP90 via the N-domain. As for the cell viability of the SHSY5Y cell, the cell viability decreased to approximately 80% by the colistin 300 μM. However, the cell viability recovered to approximately 100% by adding ATP dosage. The same result was obtained by dot blot assay using anti-HSP90 antibody. Our results may help to understand the side effect mechanism of colistin.
Collapse
Affiliation(s)
- Shuntaro Togashi
- Department of Neurosurgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Kyosuke Takahashi
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita 010-8502, Japan
| | - Arisa Tamura
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita 010-8502, Japan
| | - Ikumi Toyota
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita 010-8502, Japan
| | - Shiori Hatakeyama
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita 010-8502, Japan
| | - Atsushi Komatsuda
- Department of Hematology, Nephrology, Rheumatology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Ikuru Kudo
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita 010-8502, Japan
| | - Erina Sasaki Kudoh
- Department of Neurosurgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Tomoya Okamoto
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita 010-8502, Japan
| | - Asami Haga
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita 010-8502, Japan
| | - Asuka Miyamoto
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita 010-8502, Japan
| | - Ewa Grave
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita 010-8502, Japan
| | - Taku Sugawara
- Department of Spinal cord and Spine Surgery, Research Institute for Brain and Blood Vessels-Akita, 010-0874 Akita, Japan
| | - Hiroaki Shimizu
- Department of Neurosurgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Hideaki Itoh
- Department of Life Science, Akita University Graduate School of Engineering Science, Akita 010-8502, Japan
| |
Collapse
|
14
|
Cascão R, Fonseca JE, Moita LF. Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases. Front Med (Lausanne) 2017; 4:69. [PMID: 28664158 PMCID: PMC5471334 DOI: 10.3389/fmed.2017.00069] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
The identification of new bioactive compounds derived from medicinal plants with significant therapeutic properties has attracted considerable interest in recent years. Such is the case of the Tripterygium wilfordii (TW), an herb used in Chinese medicine. Clinical trials performed so far using its root extracts have shown impressive therapeutic properties but also revealed substantial gastrointestinal side effects. The most promising bioactive compound obtained from TW is celastrol. During the last decade, an increasing number of studies were published highlighting the medicinal usefulness of celastrol in diverse clinical areas. Here we systematically review the mechanism of action and the therapeutic properties of celastrol in inflammatory diseases, namely, rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel diseases, osteoarthritis and allergy, as well as in cancer, neurodegenerative disorders and other diseases, such as diabetes, obesity, atherosclerosis, and hearing loss. We will also focus in the toxicological profile and limitations of celastrol formulation, namely, solubility, bioavailability, and dosage issues that still limit its further clinical application and usefulness.
Collapse
Affiliation(s)
- Rita Cascão
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João E Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Rheumatology Department, Centro Hospitalar de Lisboa Norte, EPE, Hospital de Santa Maria, Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Luis F Moita
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
15
|
Celastrol and Its Role in Controlling Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 928:267-289. [PMID: 27671821 DOI: 10.1007/978-3-319-41334-1_12] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Celastrol, a triterpenoid derived from traditional Chinese medicinal plants, has anti-inflammatory, antioxidant, and anticancer activities. Celastrol has shown preventive/therapeutic effects in experimental models of several chronic diseases. These include, chronic inflammatory and autoimmune diseases (e.g., rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, inflammatory bowel disease, and psoriasis), neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis), atherosclerosis, obesity, Type 2 diabetes, and cancer. Celastrol modulates intricate cellular pathways and networks associated with disease pathology, and it interrupts or redirects the aberrant cellular and molecular events so as to limit disease progression and facilitate recovery, where feasible. The major cell signaling pathways modulated by celastrol include the NF-kB pathway, MAPK pathway, JAK/STAT pathway, PI3K/Akt/mTOR pathway, and antioxidant defense mechanisms. Furthermore, celastrol modulates cell proliferation, apoptosis, proteasome activity, heat-shock protein response, innate and adaptive immune responses, angiogenesis, and bone remodeling. Current understanding of the mechanisms of action of celastrol and information about its disease-modulating activities in experimental models have set the stage for testing celastrol in clinical studies as a therapeutic agent for several chronic human diseases.
Collapse
|
16
|
Zanphorlin LM, Lima TB, Wong MJ, Balbuena TS, Minetti CASA, Remeta DP, Young JC, Barbosa LRS, Gozzo FC, Ramos CHI. Heat Shock Protein 90 kDa (Hsp90) Has a Second Functional Interaction Site with the Mitochondrial Import Receptor Tom70. J Biol Chem 2016; 291:18620-31. [PMID: 27402847 PMCID: PMC5009240 DOI: 10.1074/jbc.m115.710137] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 07/07/2016] [Indexed: 12/19/2022] Open
Abstract
To accomplish its crucial role, mitochondria require proteins that are produced in the cytosol, delivered by cytosolic Hsp90, and translocated to its interior by the translocase outer membrane (TOM) complex. Hsp90 is a dimeric molecular chaperone and its function is modulated by its interaction with a large variety of co-chaperones expressed within the cell. An important family of co-chaperones is characterized by the presence of one TPR (tetratricopeptide repeat) domain, which binds to the C-terminal MEEVD motif of Hsp90. These include Tom70, an important component of the TOM complex. Despite a wealth of studies conducted on the relevance of Tom70·Hsp90 complex formation, there is a dearth of information regarding the exact molecular mode of interaction. To help fill this void, we have employed a combined experimental strategy consisting of cross-linking/mass spectrometry to investigate binding of the C-terminal Hsp90 domain to the cytosolic domain of Tom70. This approach has identified a novel region of contact between C-Hsp90 and Tom70, a finding that is confirmed by probing the corresponding peptides derived from cross-linking experiments via isothermal titration calorimetry and mitochondrial import assays. The data generated in this study are combined to input constraints for a molecular model of the Hsp90/Tom70 interaction, which has been validated by small angle x-ray scattering, hydrogen/deuterium exchange, and mass spectrometry. The resultant model suggests that only one of the MEEVD motifs within dimeric Hsp90 contacts Tom70. Collectively, our findings provide significant insight on the mechanisms by which preproteins interact with Hsp90 and are translocated via Tom70 to the mitochondria.
Collapse
Affiliation(s)
- Leticia M Zanphorlin
- From the Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970, Brazil
| | - Tatiani B Lima
- From the Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970, Brazil
| | - Michael J Wong
- the Department of Biochemistry, McGill University, Groupe de Recherche Axé sur la Structure des Protéines, Montreal, QC H3G 0B1, Canada
| | - Tiago S Balbuena
- the College of Agricultural and Veterinary Sciences, State University of Sao Paulo, Jaboticabal, Sao Paulo, 14884-900 Brazil
| | - Conceição A S A Minetti
- the Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, and
| | - David P Remeta
- the Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, and
| | - Jason C Young
- the Department of Biochemistry, McGill University, Groupe de Recherche Axé sur la Structure des Protéines, Montreal, QC H3G 0B1, Canada
| | - Leandro R S Barbosa
- the Instituto de Fisica, Universidade de Sao Paulo USP, Sao Paulo SP, 05508-090 Brazil
| | - Fabio C Gozzo
- From the Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970, Brazil
| | - Carlos H I Ramos
- From the Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970, Brazil,
| |
Collapse
|
17
|
Peng B, Gu YJ, Wang Y, Cao FF, Zhang X, Zhang DH, Hou J. Mutations Y493G and K546D in human HSP90 disrupt binding of celastrol and reduce interaction with Cdc37. FEBS Open Bio 2016; 6:729-34. [PMID: 27398312 PMCID: PMC4932452 DOI: 10.1002/2211-5463.12081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 11/07/2022] Open
Abstract
Celastrol, a natural compound derived from the Chinese herb Tripterygium wilfordii Hook F, has been proven to inhibit heat shock protein 90 (HSP90) activity and has attracted much attention because of its promising effects in cancer treatment and in ameliorating degenerative neuron diseases. However, the HSP90 structure involved in celastrol interaction is not known. Here, we report a novel celastrol-binding pocket in the HSP90 dimer, predicted by molecular docking. Mutation of the two key binding pocket amino acids (Lys546 and Tyr493) disrupted the binding of celastrol to HSP90 dimers, as detected by isothermal titration calorimetry (ITC). Interestingly, such mutations also reduced binding between HSP90 and the cochaperone Cdc37, thus providing a new explanation for reported findings that celastrol shows more obvious effects in disrupting binding between HSP90 and Cdc37 than between HSP90 and other cochaperones. In short, our work discloses a novel binding pocket in HSP90 dimer for celastrol and provides an explanation as to why celastrol has a strong effect on HSP90 and Cdc37 binding.
Collapse
Affiliation(s)
- Bin Peng
- Department of Hematology Changzheng Hospital The Second Military Medical University Shanghai China; Sino-French Cooperative Central Lab Shanghai Gongli Hospital The Second Military Medical University Shanghai China
| | - Yi-Jun Gu
- National Center for Protein Science Shanghai China
| | - Ying Wang
- Sino-French Cooperative Central Lab Shanghai Gongli Hospital The Second Military Medical University Shanghai China
| | - Fan-Fan Cao
- Sino-French Cooperative Central Lab Shanghai Gongli Hospital The Second Military Medical University Shanghai China
| | - Xue Zhang
- Sino-French Cooperative Central Lab Shanghai Gongli Hospital The Second Military Medical University Shanghai China
| | - Deng-Hai Zhang
- Sino-French Cooperative Central Lab Shanghai Gongli Hospital The Second Military Medical University Shanghai China
| | - Jian Hou
- Department of Hematology Changzheng Hospital The Second Military Medical University Shanghai China
| |
Collapse
|
18
|
Abstract
The 90-kDa heat-shock protein (Hsp90) is a molecular chaperone responsible for the stability and function of a wide variety of client proteins that are critical for cell growth and survival. Many of these client proteins are frequently mutated and/or overexpressed in cancer cells and are therefore being actively pursued as individual therapeutic targets. Consequently, Hsp90 inhibition offers a promising strategy for simultaneous degradation of several anticancer targets. Currently, most Hsp90 inhibitors under clinical evaluation act by blocking the binding of ATP to the Hsp90 N-terminal domain and thereby, induce the degradation of many Hsp90-dependent oncoproteins. Although, they have shown some promising initial results, clinical challenges such as induction of the heat-shock response, retinopathy, and gastrointestinal tract toxicity are emerging from human trials, which constantly raise concerns about the future development of these inhibitors. Novobiocin derivatives, which do not bind the chaperone's N-terminal ATPase pocket, have emerged over the past decade as an alternative strategy to inhibit Hsp90, but to date, no derivative has been investigated in the clinical setting. In recent years, a number of natural or synthetic compounds have been identified that modulate Hsp90 function via various mechanisms. These compounds not only offer new chemotypes for the development of future Hsp90 inhibitors but can also serve as chemical probes to unravel the biology of Hsp90. This chapter presents a synopsis of inhibitors that directly, allosterically, or even indirectly alters Hsp90 function, and highlights their proposed mechanisms of action.
Collapse
|
19
|
Pellati F, Rastelli G. Novel and less explored chemotypes of natural origin for the inhibition of Hsp90. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00340k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on novel classes of natural products whose structures have not yet been thoroughly explored for medicinal chemistry purposes. These novel chemotypes may be useful starting points to develop compounds that alter Hsp90 functionvianovel mechanisms.
Collapse
Affiliation(s)
- Federica Pellati
- Department of Life Sciences
- University of Modena and Reggio Emilia
- Modena
- Italy
| | - Giulio Rastelli
- Department of Life Sciences
- University of Modena and Reggio Emilia
- Modena
- Italy
| |
Collapse
|
20
|
Zhao J, Sun Y, Shi P, Dong JN, Zuo LG, Wang HG, Gong JF, Li Y, Gu LL, Li N, Li JS, Zhu WM. Celastrol ameliorates experimental colitis in IL-10 deficient mice via the up-regulation of autophagy. Int Immunopharmacol 2015; 26:221-8. [PMID: 25858875 DOI: 10.1016/j.intimp.2015.03.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/12/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Celastrol had been proved effective in the treatment for IBD, probably with the modulation of oxidative stress, inflammatory cytokines and intestinal homeostasis. This study was aimed to investigate whether celastrol could ameliorate the inflammation of IL-10 deficient mice, a murine model of Crohn's disease (CD) with the induction of autophagy. MATERIAL AND METHODS The mice included were divided into four groups, ##WT group, IL-10(-/-) group, Cel group and Control group (celastrol+3-Methyladenine). Celastrol (2 mg/kg) treatment by gavage was administered to mice daily over one week. 3-Methyladenine (autophagy inhibitors) was administered at a dose of 30 mg/kg by intraperitoneal injection. The histological evaluation of the colon, tissue myeloperoxidase (MPO), and colon inflammation of mice in the four groups was evaluated and compared. Furthermore, the PI3K/Akt/mTOR pathway and the status of autophagy in intestine affected by celastrol were also assessed. RESULTS The one-week administration of celastrol ameliorated established colitis in IL-10 deficient mice, associated with a reduction of marked histological inflammation, a decreased colon MPO concentration and suppression of colonic proinflammatory cytokine. Furthermore, the decreased neutrophil infiltration in proximal colon and improvement of inflammation in the Cel group was much more obvious than that in the Control group. The Western blotting analysis of the PI3K/Akt/mTOR pathway and autophagy showed that celastrol treatment up-regulated the autophagy of colon tissue by suppressing the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS Celastrol ameliorates experimental colitis in IL-10 deficient mice via the up-regulation of autophagy by suppressing the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jie Zhao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Ye Sun
- The Center of Diagnosis and Treatment for Joint Disease, Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, China.
| | - Peiliang Shi
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, China.
| | - Jian-Ning Dong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Lu-Gen Zuo
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Hong-Gang Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Jian-Feng Gong
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Li-Li Gu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Ning Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Jie-Shou Li
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| | - Wei-Ming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002 Jiangsu, China.
| |
Collapse
|
21
|
Lu C, Zhang X, Zhang D, Pei E, Xu J, Tang T, Ye M, Uzan G, Zhi K, Li M, Zuo K. Short Time Tripterine Treatment Enhances Endothelial Progenitor Cell Function via Heat Shock Protein 32. J Cell Physiol 2015; 230:1139-47. [PMID: 25336054 DOI: 10.1002/jcp.24849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/14/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Chenhui Lu
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
- Shanghai Gong Li Hospital; Shanghai China
| | - Xiaoping Zhang
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
- Institute of Medical Intervention Engineering; Tongji University; Shanghai China
| | | | - Erli Pei
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| | - Jichong Xu
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| | - Tao Tang
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| | - Meng Ye
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
| | - Georges Uzan
- Unite de Recherche INSERM 972; Villejuif Cedex France
| | - Kangkang Zhi
- Department of Vascular and Endovascular Surgery; Changzheng Hospital; Shanghai China
| | - Maoquan Li
- Department of Interventional Radiology; Shanghai Tenth People's Hospital; Tongji University; Shanghai China
- Institute of Medical Intervention Engineering; Tongji University; Shanghai China
| | - Keqiang Zuo
- Shanghai Tenth People's Hospital; Tongji University School of Medicine; Shanghai China
| |
Collapse
|
22
|
Tang K, Huang J, Pan J, Zhang X, Lu W. Design, synthesis and biological evaluation of C(6)-indole celastrol derivatives as potential antitumor agents. RSC Adv 2015. [DOI: 10.1039/c4ra15414b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new class of C(6)-indole substituted celastrol derivatives were designed and synthesized. Among all these synthesized molecules, compound 4f and 4h displayed excellent in vitro antiproliferative activities against Bel7402 cancer cells.
Collapse
Affiliation(s)
- Kaiyong Tang
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- PR China
| | - Jinwen Huang
- Shanghai Hotmed Sciences Co., Ltd
- Shanghai 201201
- PR China
| | - Junfang Pan
- Shanghai Hotmed Sciences Co., Ltd
- Shanghai 201201
- PR China
| | - Xuan Zhang
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- PR China
| | - Wei Lu
- Institute of Drug Discovery and Development
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- East China Normal University
- Shanghai 200062
- PR China
| |
Collapse
|