1
|
Suyanto E, Gorantla JN, Santi M, Fatchiyah F, Ketudat-Cairns M, Talabnin C, Ketudat Cairns JR. Enzymatic synthesis of phenolic acid glucosyl esters to test activities on cholangiocarcinoma cells. Appl Microbiol Biotechnol 2024; 108:69. [PMID: 38183488 DOI: 10.1007/s00253-023-12895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 01/08/2024]
Abstract
While glycoside hydrolase family 1 (GH1) enzymes mostly catalyze hydrolysis reactions, rice Os9BGlu31 preferentially catalyzes transglycosylation to transfer a glucosyl moiety to another aglycone moiety to form a new glycosylated compound through a retaining mechanism. In this study, Os9BGlu31 was used to synthesize eight phenolic acid glucosyl esters, which were evaluated for activities in cholangiocarcinoma cells. The transglycosylation products of Os9BGlu31 wild type and its mutant variants were detected, produced on a milligram scale, and purified, and their structures were characterized by NMR spectroscopy. The transglycosylation products were evaluated by antioxidant and anti-proliferative assays, followed by an anti-migration assay for the selected phenolic acid glucosyl ester. Os9BGlu31 mutants produced higher yield and activity than wild-type enzymes on phenolic acids to produce phenolic acid glucosyl esters. Among these, gallic acid glucosyl ester (β-glucogallin) had the highest antioxidant activity and anti-proliferative activity in cholangiocarcinoma cells. It also inhibited the migration of cholangiocarcinoma cells. Our study demonstrated that rice Os9BGlu31 transglucosidase is a promising enzyme for glycosylation of bioactive compounds in one-step reactions and provides evidence that β-glucogallin inhibits cell proliferation and migration of cholangiocarcinoma cells. KEY POINTS: • Os9BGlu31 transglucosidases produced phenolic acid glucosyl esters for bioactivity testing. • Phenolic acid glucosyl esters were tested for cytotoxicity in cholangiocarcinoma cells. • β-Glucogallin displayed the highest inhibition of cholangiocarcinoma cell growth.
Collapse
Affiliation(s)
- Eko Suyanto
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Jaggaiah N Gorantla
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Maniganda Santi
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Fatchiyah Fatchiyah
- Biology Department, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia
| | - Mariena Ketudat-Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chutima Talabnin
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Sciences, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand.
| |
Collapse
|
2
|
Kotik M, Kulik N, Valentová K. Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14890-14910. [PMID: 37800688 PMCID: PMC10591481 DOI: 10.1021/acs.jafc.3c04389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/30/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
Flavonoids and their glycosides are abundant in many plant-based foods. The (de)glycosylation of flavonoids by retaining glycoside hydrolases has recently attracted much interest in basic and applied research, including the possibility of altering the glycosylation pattern of flavonoids. Research in this area is driven by significant differences in physicochemical, organoleptic, and bioactive properties between flavonoid aglycones and their glycosylated counterparts. While many flavonoid glycosides are present in nature at low levels, some occur in substantial quantities, making them readily available low-cost glycosyl donors for transglycosylations. Retaining glycosidases can be used to synthesize natural and novel glycosides, which serve as standards for bioactivity experiments and analyses, using flavonoid glycosides as glycosyl donors. Engineered glycosidases also prove valuable for the synthesis of flavonoid glycosides using chemically synthesized activated glycosyl donors. This review outlines the bioactivities of flavonoids and their glycosides and highlights the applications of retaining glycosidases in the context of flavonoid glycosides, acting as substrates, products, or glycosyl donors in deglycosylation or transglycosylation reactions.
Collapse
Affiliation(s)
- Michael Kotik
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| | - Natalia Kulik
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14200 Prague 4, Czech Republic
| |
Collapse
|
3
|
Llopiz A, Ramírez-Martínez MA, Olvera L, Xolalpa-Villanueva W, Pastor N, Saab-Rincon G. The Role of a Loop in the Non-catalytic Domain B on the Hydrolysis/Transglycosylation Specificity of the 4-α-Glucanotransferase from Thermotoga maritima. Protein J 2023; 42:502-518. [PMID: 37464145 PMCID: PMC10480278 DOI: 10.1007/s10930-023-10136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/20/2023]
Abstract
The mechanism by which glycoside hydrolases control the reaction specificity through hydrolysis or transglycosylation is a key element embedded in their chemical structures. The determinants of reaction specificity seem to be complex. We looked for structural differences in domain B between the 4-α-glucanotransferase from Thermotoga maritima (TmGTase) and the α-amylase from Thermotoga petrophila (TpAmylase) and found a longer loop in the former that extends towards the active site carrying a W residue at its tip. Based on these differences we constructed the variants W131G and the partial deletion of the loop at residues 120-124/128-131, which showed a 11.6 and 11.4-fold increased hydrolysis/transglycosylation (H/T) ratio relative to WT protein, respectively. These variants had a reduction in the maximum velocity of the transglycosylation reaction, while their affinity for maltose as the acceptor was not substantially affected. Molecular dynamics simulations allow us to rationalize the increase in H/T ratio in terms of the flexibility near the active site and the conformations of the catalytic acid residues and their associated pKas.
Collapse
Affiliation(s)
- Alexey Llopiz
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62209, Cuernavaca, Morelos, Mexico
| | - Marco A Ramírez-Martínez
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, 62209, Cuernavaca, Morelos, Mexico
| | - Leticia Olvera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62209, Cuernavaca, Morelos, Mexico
| | - Wendy Xolalpa-Villanueva
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62209, Cuernavaca, Morelos, Mexico
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular, IICBA, Universidad Autónoma del Estado de Morelos, 62209, Cuernavaca, Morelos, Mexico
| | - Gloria Saab-Rincon
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62209, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
4
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Reprint of: Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 51:107820. [PMID: 34462167 DOI: 10.1016/j.biotechadv.2021.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/27/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
5
|
Gorantla JN, Maniganda S, Pengthaisong S, Ngiwsara L, Sawangareetrakul P, Chokchaisiri S, Kittakoop P, Svasti J, Ketudat Cairns JR. Chemoenzymatic and Protecting-Group-Free Synthesis of 1,4-Substituted 1,2,3-Triazole-α-d-glucosides with Potent Inhibitory Activity toward Lysosomal α-Glucosidase. ACS OMEGA 2021; 6:25710-25719. [PMID: 34632227 PMCID: PMC8495876 DOI: 10.1021/acsomega.1c03928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
α-Glucosyl triazoles have rarely been tested as α-glucosidase inhibitors, partly due to inefficient synthesis of their precursor α-d-glucosylazide (αGA1). Glycosynthase enzymes, made by nucleophile mutations of retaining β-glucosidases, produce αGA1 in chemical rescue experiments. Thermoanaerobacterium xylanolyticus glucosyl hydrolase 116 β-glucosidase (TxGH116) E441G nucleophile mutant catalyzed synthesis of αGA1 from sodium azide and pNP-β-d-glucoside (pNPGlc) or cellobiose in aqueous medium at 45 °C. The pNPGlc and azide reaction product was purified by Sephadex LH-20 column chromatography to yield 280 mg of pure αGA1 (68% yield). αGA1 was successfully conjugated with alkynes attached to different functional groups, including aryl, ether, amine, amide, ester, alcohol, and flavone via copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry reactions. These reactions afforded the 1,4-substituted 1,2,3-triazole-α-d-glucoside derivatives AGT2-14 without protection and deprotection. Several of these glucosyl triazoles exhibited strong inhibition of human lysosomal α-glucosidase, with IC50 values for AGT4 and AGT14 more than 60-fold lower than that of the commercial α-glucosidase inhibitor acarbose.
Collapse
Affiliation(s)
- Jaggaiah N. Gorantla
- Center
for Biomolecular Structure, Function and Application, School of Chemistry,
Institute of Science, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Santhi Maniganda
- Center
for Biomolecular Structure, Function and Application, School of Chemistry,
Institute of Science, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Salila Pengthaisong
- Center
for Biomolecular Structure, Function and Application, School of Chemistry,
Institute of Science, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Lukana Ngiwsara
- Laboratory
of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | - Suwadee Chokchaisiri
- Center
for Biomolecular Structure, Function and Application, School of Chemistry,
Institute of Science, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Prasat Kittakoop
- Chulabhorn
Graduate Institute, Chemical Sciences Program, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Jisnuson Svasti
- Laboratory
of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - James R. Ketudat Cairns
- Center
for Biomolecular Structure, Function and Application, School of Chemistry,
Institute of Science, Suranaree University
of Technology, Nakhon
Ratchasima 30000, Thailand
- Laboratory
of Biochemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
6
|
Yang Z, Li N, Kitano T, Li P, Spindel JE, Wang L, Bai G, Xiao Y, McCouch SR, Ishihara A, Zhang J, Yang X, Chen Z, Wei J, Ge H, Jander G, Yan J. Genetic mapping identifies a rice naringenin O-glucosyltransferase that influences insect resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1401-1413. [PMID: 33745166 DOI: 10.1111/tpj.15244] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/16/2021] [Indexed: 05/20/2023]
Abstract
Naringenin, the biochemical precursor for predominant flavonoids in grasses, provides protection against UV damage, pathogen infection and insect feeding. To identify previously unknown loci influencing naringenin accumulation in rice (Oryza sativa), recombinant inbred lines derived from the Nipponbare and IR64 cultivars were used to map a quantitative trait locus (QTL) for naringenin abundance to a region of 50 genes on rice chromosome 7. Examination of candidate genes in the QTL confidence interval identified four predicted uridine diphosphate-dependent glucosyltransferases (Os07g31960, Os07g32010, Os07g32020 and Os07g32060). In vitro assays demonstrated that one of these genes, Os07g32020 (UGT707A3), encodes a glucosyltransferase that converts naringenin and uridine diphosphate-glucose to naringenin-7-O-β-d-glucoside. The function of Os07g32020 was verified with CRISPR/Cas9 mutant lines, which accumulated more naringenin and less naringenin-7-O-β-d-glucoside and apigenin-7-O-β-d-glucoside than wild-type Nipponbare. Expression of Os12g13800, which encodes a naringenin 7-O-methyltransferase that produces sakuranetin, was elevated in the mutant lines after treatment with methyl jasmonate and insect pests, Spodoptera litura (cotton leafworm), Oxya hyla intricata (rice grasshopper) and Nilaparvata lugens (brown planthopper), leading to a higher accumulation of sakuranetin. Feeding damage from O. hyla intricata and N. lugens was reduced on the Os07g32020 mutant lines relative to Nipponbare. Modification of the Os07g32020 gene could be used to increase the production of naringenin and sakuranetin rice flavonoids in a more targeted manner. These findings may open up new opportunities for selective breeding of this important rice metabolic trait.
Collapse
Affiliation(s)
- Zhongyan Yang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Nana Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Takashige Kitano
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | - Ping Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Jennifer E Spindel
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Lishuo Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Genxiang Bai
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Yiying Xiao
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Susan R McCouch
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, Koyama, Tottori, 680-8553, Japan
| | - Jili Zhang
- China Tobacco Guangxi Industrial Co. Ltd, Nanning, Guangxi, 530001, People's Republic of China
| | - Xin Yang
- China Tobacco Guangdong Industrial Co. Ltd, Guangzhou, 510610, People's Republic of China
| | - Zepeng Chen
- Guangdong Provincial Tobacco Shaoguan Co. Ltd, Shaoguan, Guangdong, 512000, People's Republic of China
| | - Jianyu Wei
- China Tobacco Guangxi Industrial Co. Ltd, Nanning, Guangxi, 530001, People's Republic of China
| | - Honghua Ge
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Jian Yan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| |
Collapse
|
7
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 49:107733. [PMID: 33781890 DOI: 10.1016/j.biotechadv.2021.107733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
8
|
Liang C, Zhang Y, Jia Y, Wenzhao Wang, Li Y, Lu S, Jin JM, Tang SY. Engineering a Carbohydrate-processing Transglycosidase into Glycosyltransferase for Natural Product Glycodiversification. Sci Rep 2016; 6:21051. [PMID: 26869143 PMCID: PMC4751530 DOI: 10.1038/srep21051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/18/2016] [Indexed: 01/12/2023] Open
Abstract
Glycodiversification broadens the scope of natural product-derived drug discovery. The acceptor substrate promiscuity of glucosyltransferase-D (GTF-D), a carbohydrate-processing enzyme from Streptococcus mutans, was expanded by protein engineering. Mutants in a site-saturation mutagenesis library were screened on the fluorescent substrate 4-methylumbelliferone to identify derivatives with improved transglycosylation efficiency. In comparison to the wild-type GTF-D enzyme, mutant M4 exhibited increased transglycosylation capabilities on flavonoid substrates including catechin, genistein, daidzein and silybin, using the glucosyl donor sucrose. This study demonstrated the feasibility of developing natural product glycosyltransferases by engineering transglycosidases that use donor substrates cheaper than NDP-sugars, and gave rise to a series of α-glucosylated natural products that are novel to the natural product reservoir. The solubility of the α-glucoside of genistein and the anti-oxidant capability of the α-glucoside of catechin were also studied.
Collapse
Affiliation(s)
- Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Jia
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Youhai Li
- School of Chemistry and Biotechnology, Yunnan Minzu University, Kunming, China
| | - Shikun Lu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
- School of Chemistry and Biotechnology, Yunnan Minzu University, Kunming, China
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Komvongsa J, Mahong B, Phasai K, Hua Y, Jeon JS, Ketudat Cairns JR. Identification of Fatty Acid Glucose Esters as Os9BGlu31 Transglucosidase Substrates in Rice Flag Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9764-9. [PMID: 26477245 DOI: 10.1021/acs.jafc.5b04105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rice Os9BGlu31 transglucosidase transfers glucosyl moieties between various carboxylic acids and alcohols, including phenolic acids and flavonoids, in vitro. The role of Os9BGlu31 transglucosidase in rice plant metabolism has only been suggested to date. Methanolic extracts of rice bran and leaves were found to contain oleic acid and linoleic acid to which Os9BGlu31 could transfer glucose from the 4-nitrophenyl β-D-glucoside (4NPGlc) donor to form 1-O-acyl glucose esters. Os9BGlu31 showed higher activity with oleic acid (18:1) and linoleic acid (18:2) than with stearic acid (18:0) and had both a higher kcat and a higher Km for linoleic than oleic acid in the presence of 8 mM 4NPGlc donor. Os9BGlu31 knockout mutant rice lines were found to have significantly larger amounts of fatty acid glucose esters than wild-type control lines. Because the transglucosylation reaction is reversible, these data suggest that fatty acid glucose esters act as glucosyl donor substrates for Os9BGlu31 transglucosidase in rice.
Collapse
Affiliation(s)
- Juthamath Komvongsa
- School of Biochemistry, Institute of Science, Suranaree University of Technology , Nakhon Ratchasima 30000, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology , Nakhon Ratchasima 30000, Thailand
| | - Bancha Mahong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University , Yongin 446-701, Korea
| | - Kannika Phasai
- School of Biochemistry, Institute of Science, Suranaree University of Technology , Nakhon Ratchasima 30000, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology , Nakhon Ratchasima 30000, Thailand
| | - Yanling Hua
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology , Nakhon Ratchasima 30000, Thailand
- Center for Scientific and Technological Equipment, Suranaree University of Technology , Nakhon Ratchasima 30000, Thailand
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University , Yongin 446-701, Korea
| | - James R Ketudat Cairns
- School of Biochemistry, Institute of Science, Suranaree University of Technology , Nakhon Ratchasima 30000, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology , Nakhon Ratchasima 30000, Thailand
| |
Collapse
|