1
|
Al-Ali H, Baig A, Alkhanjari RR, Murtaza ZF, Alhajeri MM, Elbahrawi R, Abdukadir A, Bhamidimarri PM, Kashir J, Hamdan H. Septins as key players in spermatogenesis, fertilisation and pre-implantation embryogenic cytoplasmic dynamics. Cell Commun Signal 2024; 22:523. [PMID: 39468561 PMCID: PMC11514797 DOI: 10.1186/s12964-024-01889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Septins are a family of cytokinesis-related proteins involved in regulating cytoskeletal design, cell morphology, and tissue morphogenesis. Apart from cytokinesis, as a fourth component of cytoskeleton, septins aid in forming scaffolds, vesicle sorting and membrane stability. They are also known to be involved in the regulation of intracellular calcium (Ca2+) via the STIM/Orai complex. Infertility affects ~ 15% of couples globally, while male infertility affects ~ 7% of men. Global pregnancy and live birth rates following fertility treatment remain relatively low, while there has been an observable decline in male fertility parameters over the past 60 years. Low fertility treatment success can be attributed to poor embryonic development, poor sperm parameters and fertilisation defects. While studies from the past few years have provided evidence for the role of septins in fertility related processes, the functional role of septins and its related complexes in cellular processes such as oocyte activation, fertilization, and sperm maturation are not completely understood. This review summarizes the available knowledge on the role of septins in spermatogenesis and oocyte activation via Ca2+ regulation, and cytoskeletal dynamics throughout pre-implantation embryonic development. We aim to identify the currently less known mechanisms by which septins regulate these immensely important mechanisms with a view of identifying areas of investigation that would benefit our understanding of cell and reproductive biology, but also provide potential avenues to improve current methods of fertility treatment.
Collapse
Affiliation(s)
- Hana Al-Ali
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Amna Baig
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Rayyah R Alkhanjari
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Zoha F Murtaza
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Maitha M Alhajeri
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Rawdah Elbahrawi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Azhar Abdukadir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Junaid Kashir
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
- Center for Biotechnology, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| |
Collapse
|
2
|
Da'as SI, Thanassoulas A, Calver BL, Saleh A, Abdelrahman D, Hasan W, Safieh-Garabedian B, Kontogianni I, Nasrallah GK, Nounesis G, Lai FA, Nomikos M. Divergent Biochemical Properties and Disparate Impact of Arrhythmogenic Calmodulin Mutations on Zebrafish Cardiac Function. J Cell Biochem 2024; 125:e30619. [PMID: 38946237 DOI: 10.1002/jcb.30619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Calmodulin (CaM) is a ubiquitous, small cytosolic calcium (Ca2+)-binding sensor that plays a vital role in many cellular processes by binding and regulating the activity of over 300 protein targets. In cardiac muscle, CaM modulates directly or indirectly the activity of several proteins that play a key role in excitation-contraction coupling (ECC), such as ryanodine receptor type 2 (RyR2), l-type Ca2+ (Cav1.2), sodium (NaV1.5) and potassium (KV7.1) channels. Many recent clinical and genetic studies have reported a series of CaM mutations in patients with life-threatening arrhythmogenic syndromes, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently showed that four arrhythmogenic CaM mutations (N98I, D132E, D134H, and Q136P) significantly reduce the binding of CaM to RyR2. Herein, we investigate in vivo functional effects of these CaM mutations on the normal zebrafish embryonic heart function by microinjecting complementary RNA corresponding to CaMN98I, CaMD132E, CaMD134H, and CaMQ136P mutants. Expression of CaMD132E and CaMD134H mutants results in significant reduction of the zebrafish heart rate, mimicking a severe form of human bradycardia, whereas expression of CaMQ136P results in an increased heart rate mimicking human ventricular tachycardia. Moreover, analysis of cardiac ventricular rhythm revealed that the CaMD132E and CaMN98I zebrafish groups display an irregular pattern of heart beating and increased amplitude in comparison to the control groups. Furthermore, circular dichroism spectroscopy experiments using recombinant CaM proteins reveals a decreased structural stability of the four mutants compared to the wild-type CaM protein in the presence of Ca2+. Finally, Ca2+-binding studies indicates that all CaM mutations display reduced CaM Ca2+-binding affinities, with CaMD132E exhibiting the most prominent change. Our data suggest that CaM mutations can trigger different arrhythmogenic phenotypes through multiple and complex molecular mechanisms.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Brian L Calver
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Alaaeldin Saleh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Waseem Hasan
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Iris Kontogianni
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
- National Technical University of Athens, Athens, Greece
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biological Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - George Nounesis
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - F Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Greene D, Shiferaw Y. Identifying Key Binding Interactions Between the Cardiac L-Type Calcium Channel and Calmodulin Using Molecular Dynamics Simulations. J Phys Chem B 2024; 128:6097-6111. [PMID: 38870543 PMCID: PMC11215769 DOI: 10.1021/acs.jpcb.4c02251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Defects in the binding of the calcium sensing protein calmodulin (CaM) to the L-type calcium channel (CaV1.2) or to the ryanodine receptor type 2 (RyR2) can lead to dangerous cardiac arrhythmias with distinct phenotypes, such as long-QT syndrome (LQTS) and catecholaminergic ventricular tachycardia (CPVT). Certain CaM mutations lead to LQTS while other mutations lead to CPVT, but the mechanisms by which a specific mutation can lead to each disease phenotype are not well-understood. In this study, we use long, 2 μs molecular dynamics simulations and a multitrajectory approach to identify the key binding interactions between the IQ domain of CaV1.2 and CaM. Five key interactions are found between CaV1.2 and CaM in the C-lobe, 1 in the central linker, and 2 in the N-lobe. In addition, while 5 key interactions appear between residues 120-149 in the C-lobe of CaM when it interacts with CaV1.2, only 1 key interaction is found within this region of CaM when it interacts with the RyR2. We show that this difference in the distribution of key interactions correlates with the known distribution of CaM mutations that lead to LQTS or CPVT. This correlation suggests that a disruption of key binding interactions is a plausible mechanism that can lead to these two different disease phenotypes.
Collapse
Affiliation(s)
- D’Artagnan Greene
- Department of Physics and
Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330-8268, United States of
America
| | - Yohannes Shiferaw
- Department of Physics and
Astronomy, California State University Northridge, 18111 Nordhoff Street, Northridge, California 91330-8268, United States of
America
| |
Collapse
|
4
|
Kashir J, Mistry BV, Rajab MA, BuSaleh L, Abu-Dawud R, Ahmed HA, Alharbi S, Nomikos M, AlHassan S, Coskun S, Assiri AM. The mammalian sperm factor phospholipase C zeta is critical for early embryo division and pregnancy in humans and mice. Hum Reprod 2024; 39:1256-1274. [PMID: 38670547 PMCID: PMC11145019 DOI: 10.1093/humrep/deae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
STUDY QUESTION Are sperm phospholipase C zeta (PLCζ) profiles linked to the quality of embryogenesis and pregnancy? SUMMARY ANSWER Sperm PLCζ levels in both mouse and humans correlate with measures of ideal embryogenesis whereby minimal levels seem to be required to result in successful pregnancy. WHAT IS KNOWN ALREADY While causative factors underlying male infertility are multivariable, cases are increasingly associated with the efficacy of oocyte activation, which in mammals occurs in response to specific profiles of calcium (Ca2+) oscillations driven by sperm-specific PLCζ. Although sperm PLCζ abrogation is extensively linked with human male infertility where oocyte activation is deficient, less is clear as to whether sperm PLCζ levels or localization underlies cases of defective embryogenesis and failed pregnancy following fertility treatment. STUDY DESIGN, SIZE, DURATION A cohort of 54 couples undergoing fertility treatment were recruited at the assisted reproductive technology laboratory at the King Faisal Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia. The recruitment criteria for males was a minimum sperm concentration of 5×106 sperm/ml, while all female patients had to have at least five oocytes. Sperm PLCζ analysis was performed in research laboratories, while semen assessments were performed, and time-lapse morphokinetic data were obtained, in the fertility clinic as part of routine treatment. The CRISPR/Cas9 system was concurrently used to induce indels and single-nucleotide mutations within the Plcζ gene to generate strains of Plcζ mutant mice. Sperm PLCζ was evaluated using immunofluorescence and immunoblotting with an antibody of confirmed consistent specificity against PLCζ. PARTICIPANTS/MATERIALS, SETTING, METHODS We evaluated PLCζ profiles in sperm samples from 54 human couples undergoing fertility treatment in the context of time-lapse morphokinetic analysis of resultant embryos, correlating such profiles to pregnancy status. Concurrently, we generated two strains of mutant Plcζ mice using CRISPR/Cas9, and performed IVF with wild type (WT) oocytes and using WT or mutant Plcζ sperm to generate embryos. We also assessed PLCζ status in WT and mutant mice sperm in the context of time-lapse morphokinetic analysis and breeding outcomes. MAIN RESULTS AND THE ROLE OF CHANCE A significant (P ≤ 0.05) positive relationship was observed between both PLCζ relative fluorescence and relative density with the times taken for both the second cell division (CC2) (r = 0.26 and r = 0.43, respectively) and the third cell division (S2) (r = 0.26). Examination of localization patterns also indicated significant correlations between the presence or absence of sperm PLCζ and CC2 (r = 0.27 and r = -0.27, respectively; P ≤ 0.025). Human sperm PLCζ levels were at their highest in the ideal times of CC2 (8-12 h) compared to time ranges outside the ideal timeframe (<8 and >12 h) where levels of human sperm PLCζ were lower. Following assignment of PLCζ level thresholds, quantification revealed a significantly higher (P ≤ 0.05) rate of successful pregnancy in values larger than the assigned cut-off for both relative fluorescence (19% vs 40%, respectively) and relative density (8% vs 54%, respectively). Immunoblotting indicated a single band for PLCζ at 74 kDa in sperm from WT mice, while a single band was also observed in sperm from heterozygous of Plcζ mutant mouse sperm, but at a diminished intensity. Immunofluorescent analysis indicated the previously reported (Kashir et al., 2021) fluorescence patterns in WT sperm, while sperm from Plcζ mutant mice exhibited a significantly diminished and dispersed pattern at the acrosomal region of the sperm head. Breeding experiments indicated a significantly reduced litter size of mutant Plcζ male mice compared to WT mice, while IVF-generated embryos using sperm from mutant Plcζ mice exhibited high rates of polyspermy, and resulted in significantly reduced numbers of these embryos reaching developmental milestones. LIMITATIONS, REASONS FOR CAUTION The human population examined was relatively small, and should be expanded to examine a larger multi-centre cohort. Infertility conditions are often multivariable, and it was not possible to evaluate all these in human patients. However, our mutant Plcζ mouse experiments do suggest that PLCζ plays a significant role in early embryo development. WIDER IMPLICATIONS OF THE FINDINGS We found that minimal levels of PLCζ within a specific range were required for optimal early embryogenesis, correlating with increased pregnancy. Levels of sperm PLCζ below specific thresholds were associated with ineffective embryogenesis and lower pregnancy rates, despite eliciting successful fertilization in both mice and humans. To our knowledge, this represents the first time that PLCζ levels in sperm have been correlated to prognostic measures of embryogenic efficacy and pregnancy rates in humans. Our data suggest for the first time that the clinical utilization of PLCζ may stand to benefit not just a specific population of male infertility where oocyte activation is completely deficient (wherein PLCζ is completely defective/abrogated), but also perhaps the larger population of couples seeking fertility treatment. STUDY FUNDING/COMPETING INTEREST(S) J.K. is supported by a faculty start up grant awarded by Khalifa University (FSU-2023-015). This study was also supported by a Healthcare Research Fellowship Award (HF-14-16) from Health and Care Research Wales (HCRW) to J.K., alongside a National Science, Technology, and Innovation plan (NSTIP) project grant (15-MED4186-20) awarded by the King Abdulaziz City for Science and Technology (KACST) for J.K. and A.M.A. The authors declare no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Junaid Kashir
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Bhavesh V Mistry
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohamed A Rajab
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Lujain BuSaleh
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Raed Abu-Dawud
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Institute for Molecular Medicine, MSH Medical School, Hamburg, Germany
| | - Hala A Ahmed
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sarah Alharbi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Saad AlHassan
- Department of Obstetrics and Gynaecology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Serdar Coskun
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Thanassoulas A, Theodoridou M, Barrak L, Riguene E, Alyaarabi T, Elrayess MA, Lai FA, Nomikos M. Arrhythmia-Associated Calmodulin E105A Mutation Alters the Binding Affinity of CaM to a Ryanodine Receptor 2 CaM-Binding Pocket. Int J Mol Sci 2023; 24:15630. [PMID: 37958614 PMCID: PMC10649572 DOI: 10.3390/ijms242115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Calmodulin (CaM) is a small, multifunctional calcium (Ca2+)-binding sensor that binds and regulates the open probability of cardiac ryanodine receptor 2 (RyR2) at both low and high cytosolic Ca2+ concentrations. Recent isothermal titration calorimetry (ITC) studies of a number of peptides that correspond to different regions of human RyR2 showed that two regions of human RyR2 (3584-3602aa and 4255-4271aa) bind with high affinity to CaM, suggesting that these two regions might contribute to a putative RyR2 intra-subunit CaM-binding pocket. Moreover, a previously characterized de novo long QT syndrome (LQTS)-associated missense CaM mutation (E105A) which was identified in a 6-year-old boy, who experienced an aborted first episode of cardiac arrest revealed that this mutation dysregulates normal cardiac function in zebrafish by a complex mechanism that involves alterations in both CaM-Ca2+ and CaM-RyR2 interactions. Herein, to gain further insight into how the CaM E105A mutation leads to severe cardiac arrhythmia, we generated large quantities of recombinant CaMWT and CaME105A proteins. We then performed ITC experiments to investigate and compare the interactions of CaMWT and CaME105A mutant protein with two synthetic peptides that correspond to the two aforementioned human RyR2 regions, which we have proposed to contribute to the RyR2 CaM-binding pocket. Our data reveal that the E105A mutation has a significant negative effect on the interaction of CaM with both RyR2 regions in the presence and absence of Ca2+, highlighting the potential contribution of these two human RyR2 regions to an RyR2 CaM-binding pocket, which may be essential for physiological CaM/RyR2 association and thus channel regulation.
Collapse
Affiliation(s)
- Angelos Thanassoulas
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Maria Theodoridou
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Laila Barrak
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Emna Riguene
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Tamader Alyaarabi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Mohamed A. Elrayess
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - F. Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| |
Collapse
|
6
|
McCormick L, Wadmore K, Milburn A, Gupta N, Morris R, Held M, Prakash O, Carr J, Barrett‐Jolley R, Dart C, Helassa N. Long QT syndrome-associated calmodulin variants disrupt the activity of the slowly activating delayed rectifier potassium channel. J Physiol 2023; 601:3739-3764. [PMID: 37428651 PMCID: PMC10952621 DOI: 10.1113/jp284994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
Calmodulin (CaM) is a highly conserved mediator of calcium (Ca2+ )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events. Loss-of-function mutations to Kv7.1 (which drives the slow delayed rectifier potassium current, IKs, a key ventricular repolarising current) are the largest contributor to congenital LQTS (>50% of cases). CaM modulates Kv7.1 to produce a Ca2+ -sensitive IKs, but little is known about the consequences of LQTS-associated CaM mutations on Kv7.1 function. Here, we present novel data characterising the biophysical and modulatory properties of three LQTS-associated CaM variants (D95V, N97I and D131H). We showed that mutations induced structural alterations in CaM and reduced affinity for Kv7.1, when compared with wild-type (WT). Using HEK293T cells expressing Kv7.1 channel subunits (KCNQ1/KCNE1) and patch-clamp electrophysiology, we demonstrated that LQTS-associated CaM variants reduced current density at systolic Ca2+ concentrations (1 μm), revealing a direct QT-prolonging modulatory effect. Our data highlight for the first time that LQTS-associated perturbations to CaM's structure impede complex formation with Kv7.1 and subsequently result in reduced IKs. This provides a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype. KEY POINTS: Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+ ) sensor playing a key role in cardiac muscle contraction. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS), a life-threatening cardiac arrhythmia syndrome. LQTS-associated CaM variants (D95V, N97I and D131H) induced structural alterations, altered binding to Kv7.1 and reduced IKs. Our data provide a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype.
Collapse
Affiliation(s)
- Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory HubSaint Mary's HospitalManchesterUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Amy Milburn
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Joseph Carr
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Richard Barrett‐Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
7
|
Williams RB, Alam Afsar MN, Tikunova S, Kou Y, Fang X, Somarathne RP, Gyawu RF, Knotts GM, Agee TA, Garcia SA, Losordo LD, Fitzkee NC, Kekenes-Huskey PM, Davis JP, Johnson CN. Human disease-associated calmodulin mutations alter calcineurin function through multiple mechanisms. Cell Calcium 2023; 113:102752. [PMID: 37245392 PMCID: PMC10330910 DOI: 10.1016/j.ceca.2023.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Calmodulin (CaM) is a ubiquitous, calcium-sensing protein that regulates a multitude of processes throughout the body. In response to changes in [Ca2+], CaM modifies, activates, and deactivates enzymes and ion channels, as well as many other cellular processes. The importance of CaM is highlighted by the conservation of an identical amino acid sequence in all mammals. Alterations to CaM amino acid sequence were once thought to be incompatible with life. During the last decade modifications to the CaM protein sequence have been observed in patients suffering from life-threatening heart disease (calmodulinopathy). Thus far, inadequate or untimely interaction between mutant CaM and several proteins (LTCC, RyR2, and CaMKII) have been identified as mechanisms underlying calmodulinopathy. Given the extensive number of CaM interactions in the body, there are likely many consequences for altering CaM protein sequence. Here, we demonstrate that disease-associated CaM mutations alter the sensitivity and activity of the Ca2+-CaM-enhanced serine/threonine phosphatase calcineurin (CaN). Biophysical characterization by circular dichroism, solution NMR spectroscopy, stopped-flow kinetic measurements, and MD simulations provide mechanistic insight into mutation dysfunction as well as highlight important aspects of CaM Ca2+ signal transduction. We find that individual CaM point mutations (N53I, F89L, D129G, and F141L) impair CaN function, however, the mechanisms are not the same. Specifically, individual point mutations can influence or modify the following properties: CaM binding, Ca2+ binding, and/or Ca2+kinetics. Moreover, structural aspects of the CaNCaM complex can be altered in manners that indicate changes to allosteric transmission of CaM binding to the enzyme active site. Given that loss of CaN function can be fatal, as well as evidence that CaN modifies ion channels already associated with calmodulinopathy, our results raise the possibility that altered CaN function contributes to calmodulinopathy.
Collapse
Affiliation(s)
- Ryan B Williams
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Md Nure Alam Afsar
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Svetlana Tikunova
- Department of Physiology and Cell Biology, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus OH 43210, U.S.A
| | - Yongjun Kou
- Department of Physiology and Cell Biology, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus OH 43210, U.S.A
| | - Xuan Fang
- Department of Cell and Molecular Physiology, Loyola University of Chicago, Maywood Illinois 60153, U.S.A
| | - Radha P Somarathne
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Rita F Gyawu
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Garrett M Knotts
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Taylor A Agee
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Sara A Garcia
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Luke D Losordo
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University of Chicago, Maywood Illinois 60153, U.S.A
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus OH 43210, U.S.A.
| | - Christopher N Johnson
- Department of Chemistry, Mississippi State University, Starkville MS 39759, U.S.A; Vanderbilt Center for Arrhythmia Research and Therapeutics, Nashville TN 37232, U.S.A.
| |
Collapse
|
8
|
Basit A, Yadav AK, Bandyopadhyay P. Calcium Ion Binding to the Mutants of Calmodulin: A Structure-Based Computational Predictive Model of Binding Affinity Using a Charge Scaling Approach in Molecular Dynamics Simulation. J Chem Inf Model 2022; 62:2821-2834. [PMID: 35608259 DOI: 10.1021/acs.jcim.2c00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The binding of calcium ions (Ca2+) to the calcium-binding proteins (CBPs) controls a plethora of regulatory processes. Among the roles played by CBPs in several diseases, the onset and progress of some cardiovascular diseases are caused by mutations in calmodulin (CaM), an important member of CBPs. Rationalization and prediction of the binding affinity of Ca2+ ions to the CaM can play important roles in understanding the origin of cardiovascular diseases. However, there is no robust structure-based computational method for predicting the binding affinity of Ca2+ ions to the different forms of CBPs in general and CaM in particular. In the current work, we have devised a fast yet accurate computational technique to accurately calculate the binding affinity of Ca2+ to the different forms of CaM. This method combines the well-known molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method and a charge scaling approach developed by previous authors that takes care of the polarization of CaM and Ca2+ ions. Our detailed analysis of the different components of binding free energy shows that subtle changes in electrostatics and van der Waals contribute to the difference in the binding affinity of mutants from that of the wild type (WT), and the charge scaling approach is superior in calculating these subtle changes in electrostatics as compared to the nonpolarizable force field used in this work. A statistically significant regression model made from our binding free energy calculations gives a correlation coefficient close to 0.8 to the experimental results. This structure-based predictive model can open up a new strategy to understand and predict the binding of Ca2+ to the mutants of CBPs, in general.
Collapse
Affiliation(s)
- Abdul Basit
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajeet Kumar Yadav
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pradipta Bandyopadhyay
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
9
|
Prakash O, Held M, McCormick LF, Gupta N, Lian LY, Antonyuk S, Haynes LP, Thomas NL, Helassa N. CPVT-associated calmodulin variants N53I and A102V dysregulate Ca2+ signalling via different mechanisms. J Cell Sci 2022; 135:274029. [PMID: 34888671 PMCID: PMC8917356 DOI: 10.1242/jcs.258796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear. Focusing on the interaction with the cardiac ryanodine receptor (RyR2), we determined the effect of CPVT-associated variants N53I and A102V on the structural characteristics of CaM and on Ca2+ fluxes in live cells. We provide novel data showing that interaction of both Ca2+/CaM-N53I and Ca2+/CaM-A102V with the RyR2 binding domain is decreased. Ca2+/CaM-RyR23583-3603 high-resolution crystal structures highlight subtle conformational changes for the N53I variant, with A102V being similar to wild type (WT). We show that co-expression of CaM-N53I or CaM-A102V with RyR2 in HEK293 cells significantly increased the duration of Ca2+ events; CaM-A102V exhibited a lower frequency of Ca2+ oscillations. In addition, we show that CaMKIIδ (also known as CAMK2D) phosphorylation activity is increased for A102V, compared to CaM-WT. This paper provides novel insight into the molecular mechanisms of CPVT-associated CaM variants and will facilitate the development of strategies for future therapies.
Collapse
Affiliation(s)
- Ohm Prakash
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Marie Held
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Liam F. McCormick
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Nitika Gupta
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Lu-Yun Lian
- Nuclear Magnetic Resonance Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Svetlana Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - N. Lowri Thomas
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, Redwood Building, CF10 3NB, UK
| | - Nordine Helassa
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK,Author for correspondence ()
| |
Collapse
|
10
|
Greene D, Barton M, Luchko T, Shiferaw Y. Computational Analysis of Binding Interactions between the Ryanodine Receptor Type 2 and Calmodulin. J Phys Chem B 2021; 125:10720-10735. [PMID: 34533024 DOI: 10.1021/acs.jpcb.1c03896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations in the cardiac ryanodine receptor type 2 (RyR2) have been linked to a variety of cardiac arrhythmias, such as catecholaminergic polymorphic ventricular tachycardia (CPVT). RyR2 is regulated by calmodulin (CaM), and mutations that disrupt their interaction can cause aberrant calcium release, leading to an arrhythmia. It was recently shown that increasing the RyR2-CaM binding affinity could rescue a defective CPVT-related RyR2 channel to near wild-type behavior. However, the interactions that determine the binding affinity at the RyR2-CaM binding interface are not well understood. In this study, we identify the key domains and interactions, including several new interactions, involved in the binding of CaM to RyR2. Also, our comparison between the wild-type and V3599K mutant suggests how the RyR2-CaM binding affinity can be increased via a change in the central and N-terminal lobe binding contacts for CaM. This computational approach provides new insights into the effect of a mutation at the RyR2-CaM binding interface, and it may find utility in drug design for the future treatment of cardiac arrhythmias.
Collapse
Affiliation(s)
- D'Artagnan Greene
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Michael Barton
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Tyler Luchko
- Department of Physics, California State University, Northridge, California 91330, United States
| | - Yohannes Shiferaw
- Department of Physics, California State University, Northridge, California 91330, United States
| |
Collapse
|
11
|
Cely-Ortiz A, Felice JI, Díaz-Zegarra LA, Valverde CA, Federico M, Palomeque J, Wehrens XHT, Kranias EG, Aiello EA, Lascano EC, Negroni JA, Mattiazzi A. Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling. J Gen Physiol 2021; 152:152125. [PMID: 32986800 PMCID: PMC7594441 DOI: 10.1085/jgp.201912512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023] Open
Abstract
Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.
Collapse
Affiliation(s)
- Alejandra Cely-Ortiz
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan I Felice
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Leandro A Díaz-Zegarra
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marilén Federico
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Xander H T Wehrens
- Departments of Molecular Physiology and Biophysics, Medicine (in Cardiology), Neuroscience, Pediatrics, Center for Space Medicine, Baylor College of Medicine, Cardiovascular Research Institute, Houston, TX
| | - Evangelia G Kranias
- Department of Pharmacology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Ernesto A Aiello
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Elena C Lascano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Jorge A Negroni
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, Centro Científico Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
12
|
Ledford HA, Park S, Muir D, Woltz RL, Ren L, Nguyen PT, Sirish P, Wang W, Sihn CR, George AL, Knollmann BC, Yamoah EN, Yarov-Yarovoy V, Zhang XD, Chiamvimonvat N. Different arrhythmia-associated calmodulin mutations have distinct effects on cardiac SK channel regulation. J Gen Physiol 2021; 152:211546. [PMID: 33211795 PMCID: PMC7681919 DOI: 10.1085/jgp.202012667] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin (CaM) plays a critical role in intracellular signaling and regulation of Ca2+-dependent proteins and ion channels. Mutations in CaM cause life-threatening cardiac arrhythmias. Among the known CaM targets, small-conductance Ca2+-activated K+ (SK) channels are unique, since they are gated solely by beat-to-beat changes in intracellular Ca2+. However, the molecular mechanisms of how CaM mutations may affect the function of SK channels remain incompletely understood. To address the structural and functional effects of these mutations, we introduced prototypical human CaM mutations in human induced pluripotent stem cell–derived cardiomyocyte-like cells (hiPSC-CMs). Using structural modeling and molecular dynamics simulation, we demonstrate that human calmodulinopathy-associated CaM mutations disrupt cardiac SK channel function via distinct mechanisms. CaMD96V and CaMD130G mutants reduce SK currents through a dominant-negative fashion. By contrast, specific mutations replacing phenylalanine with leucine result in conformational changes that affect helix packing in the C-lobe, which disengage the interactions between apo-CaM and the CaM-binding domain of SK channels. Distinct mutant CaMs may result in a significant reduction in the activation of the SK channels, leading to a decrease in the key Ca2+-dependent repolarization currents these channels mediate. The findings in this study may be generalizable to other interactions of mutant CaMs with Ca2+-dependent proteins within cardiac myocytes.
Collapse
Affiliation(s)
- Hannah A Ledford
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Duncan Muir
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Ryan L Woltz
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Lu Ren
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Phuong T Nguyen
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA
| | - Wenying Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Choong-Ryoul Sihn
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Björn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA
| | - Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA.,Department of Veterans Affairs, Northern California Health Care System, Mather, CA
| |
Collapse
|
13
|
Huang J, Huang S, Li J, Li M, Gong L, Li T, Gu L. CALM1 rs3179089 polymorphism might contribute to coronary artery disease susceptibility in Chinese male: a case-control study. Genes Genomics 2021; 44:415-423. [PMID: 34338988 DOI: 10.1007/s13258-021-01144-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Calmodulin 1 (CALM1) mutations are involved in the development of coronary artery disease (CAD). However, the relationship of CALM1 rs3179089 polymorphism with CAD is unknown. OBJECTIVE This study aimed to identify the relationship of CALM1 rs3179089 polymorphism with CAD susceptibility, CALM1 expression, blood pressure, blood glucose, blood coagulation and serum lipid levels of CAD patients. METHODS 550 CAD patients and 550 control subjects were genotyped for CALM1 using Sequenom MassARRAY technology. CALM1 expression level was measured by quantitative real time polymerase chain reaction (qRT-PCR). RESULTS CALM1 mRNA expression was higher in CAD patients than that in control subjects (P < 0.001). CAD patients with CC genotype had higher CALM1 mRNA expression level than control subjects with CC genotype (P = 0.006). Genotypic frequency of rs3179089 was different between male patients of CAD and control subjects (P = 0.045). Rs3179089 polymorphism was related to CAD risk of males in recessive model (P = 0.039). Moreover, rs3179089 polymorphism was associated with systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), and D-Dimer (D-D) level of patients with CAD in recessive model (P = 0.013 for SBP; P = 0.034 for DBP; P = 0.004 for FPG; P = 0.046 for D-D). In addition, rs3179089 polymorphism was correlated with low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) serum levels of patients with CAD in both addictive (P = 0.025 for LDL-C; P = 0.001 for TC) and recessive models (P = 0.001 for LDL-C; P = 0.001 for TC). CONCLUSION CALM1 expression is associated with development of CAD. CALM1 rs3179089 polymorphism affects CAD susceptibility in males, and blood pressure, blood glucose, blood coagulation and serum lipid of CAD patients.
Collapse
Affiliation(s)
- Jingyan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China.,Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,University at Buffalo, The State University of New York, Buffalo, NY, 14228, USA.,Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China
| | - Siyun Huang
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Jinhong Li
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Minhua Li
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lin Gong
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Tongshun Li
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China.,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China
| | - Lian Gu
- Guangxi University of Chinese Medicine, Nanning, 530299, Guangxi, China. .,The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning, 530023, Guangxi, China.
| |
Collapse
|
14
|
Saljic A, Muthukumarasamy KM, la Cour JM, Boddum K, Grunnet M, Berchtold MW, Jespersen T. Impact of arrhythmogenic calmodulin variants on small conductance Ca 2+ -activated K + (SK3) channels. Physiol Rep 2020; 7:e14210. [PMID: 31587513 PMCID: PMC6778599 DOI: 10.14814/phy2.14210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous Ca2+‐sensing protein regulating many important cellular processes. Several CaM‐associated variants have been identified in a small group of patients with cardiac arrhythmias. The mechanism remains largely unknown, even though a number of ion channels, including the ryanodine receptors and the L‐type calcium channels have been shown to be functionally affected by the presence of mutant CaM. CaM is constitutively bound to the SK channel, which underlies the calcium‐gated ISK contributing to cardiac repolarization. The CaM binding to SK channels is essential for gating, correct assembly, and membrane expression. To elucidate the effect of nine different arrhythmogenic CaM variants on SK3 channel function, HEK293 cells stably expressing SK3 were transiently co‐transfected with CaMWT or variant and whole‐cell patch‐clamp recordings were performed with a calculated free Ca2+ concentration of 400 nmol/L. MDCK cells were transiently transfected with SK3 and/or CaMWT or variant to address SK3 and CaM localization by immunocytochemistry. The LQTS‐associated variants CaMD96V, CaMD130G, and CaMF142L reduced ISK,Ca compared with CaMWT (P < 0.01, P < 0.001, and P < 0.05, respectively). The CPVT associated variant CaMN54I also reduced the ISK,Ca (P < 0.05), which was linked to an accumulation of SK3/CaMN54I channel complexes in intracellular compartments (P < 0.05). The CPVT associated variants, CaMA103V and CaMD132E only revealed a tendency toward reduced current, while the variants CaMF90L and CaMN98S, causing LQTS syndrome, did not have any impact on ISK,Ca. In conclusion, we found that the arrhythmogenic CaM variants CaMN54I, CaMD96V, CaMD130G, and CaMF142L significantly down‐regulate the SK3 channel current, but with distinct mechanism.
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kalai Mangai Muthukumarasamy
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Marstrand la Cour
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Boddum
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Martin Werner Berchtold
- Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Su J, Gao Q, Yu L, Sun X, Feng R, Shao D, Yuan Y, Zhu Z, Sun X, Kameyama M, Hao L. The LQT-associated calmodulin mutant E141G induces disturbed Ca 2+-dependent binding and a flickering gating mode of the Ca V1.2 channel. Am J Physiol Cell Physiol 2020; 318:C991-C1004. [PMID: 32186935 DOI: 10.1152/ajpcell.00019.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calmodulin (CaM) mutations are associated with congenital long QT (LQT) syndrome (LQTS), which may be related to the dysregulation of the cardiac-predominant Ca2+ channel isoform CaV1.2. Among various mutants, CaM-E141G was identified as a critical missense variant. However, the interaction of this CaM mutant with the CaV1.2 channel has not been determined. In this study, by utilizing a semiquantitative pull-down assay, we explored the interaction of CaM-E141G with CaM-binding peptide fragments of the CaV1.2 channel. Using the patch-clamp technique, we also investigated the electrophysiological effects of the mutant on CaV1.2 channel activity. We found that the maximum binding (Bmax) of CaM-E141G to the proximal COOH-terminal region, PreIQ-IQ, PreIQ, IQ, and NT (an NH2-terminal peptide) was decreased (by 17.71-59.26%) compared with that of wild-type CaM (CaM-WT). In particular, the Ca2+-dependent increase in Bmax became slower with the combination of CaM-E141G + PreIQ and IQ but faster in the case of NT. Functionally, CaM-WT and CaM-E141G at 500 nM Ca2+ decreased CaV1.2 channel activity to 24.88% and 55.99%, respectively, compared with 100 nM Ca2+, showing that the inhibitory effect was attenuated in CaM-E141G. The mean open time of the CaV1.2 channel was increased, and the number of blank traces with no channel opening was significantly decreased. Overall, CaM-E141G exhibits disrupted binding with the CaV1.2 channel and induces a flickering gating mode, which may result in the dysfunction of the CaV1.2 channel and, thus, the development of LQTS. The present study is the first to investigate the detailed binding properties and single-channel gating mode induced by the interaction of CaM-E141G with the CaV1.2 channel.
Collapse
Affiliation(s)
- Jingyang Su
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Qinghua Gao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China.,Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Lifeng Yu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xuanxuan Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Rui Feng
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Dongxue Shao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Yuan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhengnan Zhu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xuefei Sun
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Masaki Kameyama
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
16
|
Holt C, Hamborg L, Lau K, Brohus M, Sørensen AB, Larsen KT, Sommer C, Van Petegem F, Overgaard MT, Wimmer R. The arrhythmogenic N53I variant subtly changes the structure and dynamics in the calmodulin N-terminal domain, altering its interaction with the cardiac ryanodine receptor. J Biol Chem 2020; 295:7620-7634. [PMID: 32317284 DOI: 10.1074/jbc.ra120.013430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in the genes encoding the highly conserved Ca2+-sensing protein calmodulin (CaM) cause severe cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia or long QT syndrome and sudden cardiac death. Most of the identified arrhythmogenic mutations reside in the C-terminal domain of CaM and mostly affect Ca2+-coordinating residues. One exception is the catecholaminergic polymorphic ventricular tachycardia-causing N53I substitution, which resides in the N-terminal domain (N-domain). It does not affect Ca2+ coordination and has only a minor impact on binding affinity toward Ca2+ and on other biophysical properties. Nevertheless, the N53I substitution dramatically affects CaM's ability to reduce the open probability of the cardiac ryanodine receptor (RyR2) while having no effect on the regulation of the plasmalemmal voltage-gated Ca2+ channel, Cav1.2. To gain more insight into the molecular disease mechanism of this mutant, we used NMR to investigate the structures and dynamics of both apo- and Ca2+-bound CaM-N53I in solution. We also solved the crystal structures of WT and N53I CaM in complex with the primary calmodulin-binding domain (CaMBD2) from RyR2 at 1.84-2.13 Å resolutions. We found that all structures of the arrhythmogenic CaM-N53I variant are highly similar to those of WT CaM. However, we noted that the N53I substitution exposes an additional hydrophobic surface and that the intramolecular dynamics of the protein are significantly altered such that they destabilize the CaM N-domain. We conclude that the N53I-induced changes alter the interaction of the CaM N-domain with RyR2 and thereby likely cause the arrhythmogenic phenotype of this mutation.
Collapse
Affiliation(s)
- Christian Holt
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | - Louise Hamborg
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | - Kelvin Lau
- University of British Columbia, Department of Biochemistry and Molecular Biology, V6T 1Z3 Vancouver, British Columbia, Canada
| | - Malene Brohus
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | | | | | - Cordula Sommer
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | - Filip Van Petegem
- University of British Columbia, Department of Biochemistry and Molecular Biology, V6T 1Z3 Vancouver, British Columbia, Canada
| | | | - Reinhard Wimmer
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| |
Collapse
|
17
|
Calmodulin Mutations Associated with Heart Arrhythmia: A Status Report. Int J Mol Sci 2020; 21:ijms21041418. [PMID: 32093079 PMCID: PMC7073091 DOI: 10.3390/ijms21041418] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023] Open
Abstract
Calmodulin (CaM) is a ubiquitous intracellular Ca2+ sensing protein that modifies gating of numerous ion channels. CaM has an extraordinarily high level of evolutionary conservation, which led to the fundamental assumption that mutation would be lethal. However, in 2012, complete exome sequencing of infants suffering from recurrent cardiac arrest revealed de novo mutations in the three human CALM genes. The correlation between mutations and pathophysiology suggests defects in CaM-dependent ion channel functions. Here, we review the current state of the field for all reported CaM mutations associated with cardiac arrhythmias, including knowledge of their biochemical and structural characteristics, and progress towards understanding how these mutations affect cardiac ion channel function.
Collapse
|
18
|
Søndergaard MT, Liu Y, Guo W, Wei J, Wang R, Brohus M, Overgaard MT, Chen SRW. Role of cardiac ryanodine receptor calmodulin-binding domains in mediating the action of arrhythmogenic calmodulin N-domain mutation N54I. FEBS J 2019; 287:2256-2280. [PMID: 31763755 DOI: 10.1111/febs.15147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/12/2019] [Accepted: 11/19/2019] [Indexed: 11/27/2022]
Abstract
The Ca2+ -sensing protein calmodulin (CaM) inhibits cardiac ryanodine receptor (RyR2)-mediated Ca2+ release. CaM mutations associated with arrhythmias and sudden cardiac death have been shown to diminish CaM-dependent inhibition of RyR2, but the underlying mechanisms are not well understood. Nearly all arrhythmogenic CaM mutations identified are located in the C-domain of CaM and exert marked effects on Ca2+ binding to CaM and on the CaM C-domain interaction with the CaM-binding domain 2 (CaMBD2) in RyR2. Interestingly, the arrhythmogenic N-domain mutation CaM-N54I has little or no effect on Ca2+ binding to CaM or the CaM C-domain-RyR2 CaMBD2 interaction, unlike all CaM C-domain mutations. This suggests that CaM-N54I may diminish CaM-dependent RyR2 inhibition by affecting CaM N-domain interactions with RyR2 CaMBDs other than CaMBD2. To explore this possibility, we assessed the effects of deleting each of the four known CaMBDs in RyR2 (CaMBD1a, -1b, -2, or -3) on the CaM-dependent inhibition of RyR2-mediated Ca2+ release in HEK293 cells. We found that removing CaMBD1a, CaMBD1b, or CaMBD3 did not alter the effects of CaM-N54I or CaM-WT on RyR2 inhibition. On the other hand, deleting RyR2-CaMBD2 abolished the effects of both CaM-N54I and CaM-WT. Our results support that CaM-N54I causes aberrant RyR2 regulation via an uncharacterized CaMBD or less likely CaMBD2, and that RyR2 CaMBD2 is required for the actions of both N- and C-domain CaM mutations. Moreover, our results show that CaMBD1a is central to RyR2 regulation, but CaMBD1a, CaMBD1b, and CaMBD3 are not required for CaM-dependent inhibition of RyR2 in HEK293 cells.
Collapse
Affiliation(s)
- Mads T Søndergaard
- Department of Chemistry and Bioscience, Aalborg University, Denmark.,Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Yingjie Liu
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Jinhong Wei
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Ruiwu Wang
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Denmark
| | | | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, AB, Canada
| |
Collapse
|
19
|
Yamaguchi N. Molecular Insights into Calcium Dependent Regulation of Ryanodine Receptor Calcium Release Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1131:321-336. [DOI: 10.1007/978-3-030-12457-1_13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Søndergaard MT, Liu Y, Brohus M, Guo W, Nani A, Carvajal C, Fill M, Overgaard MT, Chen SRW. Diminished inhibition and facilitated activation of RyR2-mediated Ca 2+ release is a common defect of arrhythmogenic calmodulin mutations. FEBS J 2019; 286:4554-4578. [PMID: 31230402 DOI: 10.1111/febs.14969] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
A number of calmodulin (CaM) mutations cause severe cardiac arrhythmias, but their arrhythmogenic mechanisms are unclear. While some of the arrhythmogenic CaM mutations have been shown to impair CaM-dependent inhibition of intracellular Ca2+ release through the ryanodine receptor type 2 (RyR2), the impact of a majority of these mutations on RyR2 function is unknown. Here, we investigated the effect of 14 arrhythmogenic CaM mutations on the CaM-dependent RyR2 inhibition. We found that all the arrhythmogenic CaM mutations tested diminished CaM-dependent inhibition of RyR2-mediated Ca2+ release and increased store-overload induced Ca2+ release (SOICR) in HEK293 cells. Moreover, all the arrhythmogenic CaM mutations tested either failed to inhibit or even promoted RyR2-mediated Ca2+ release in permeabilized HEK293 cells with elevated cytosolic Ca2+ , which was markedly different from the inhibitory action of CaM wild-type. The CaM mutations also altered the Ca2+ -dependency of CaM binding to the RyR2 CaM-binding domain. These results demonstrate that diminished inhibition, and even facilitated activation, of RyR2-mediated Ca2+ release is a common defect of arrhythmogenic CaM mutations.
Collapse
Affiliation(s)
- Mads T Søndergaard
- Department of Chemistry and Bioscience, Aalborg University, Denmark.,Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Yingjie Liu
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Denmark
| | - Wenting Guo
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | - Alma Nani
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Catherine Carvajal
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Michael Fill
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | | | - S R Wayne Chen
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada.,Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
21
|
Da'as SI, Thanassoulas A, Calver BL, Beck K, Salem R, Saleh A, Kontogianni I, Al-Maraghi A, Nasrallah GK, Safieh-Garabedian B, Toft E, Nounesis G, Lai FA, Nomikos M. Arrhythmogenic calmodulin E105A mutation alters cardiac RyR2 regulation leading to cardiac dysfunction in zebrafish. Ann N Y Acad Sci 2019; 1448:19-29. [PMID: 30937913 DOI: 10.1111/nyas.14033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/03/2023]
Abstract
Calmodulin (CaM) is a universal calcium (Ca2+ )-binding messenger that regulates many vital cellular events. In cardiac muscle, CaM associates with ryanodine receptor 2 (RyR2) and regulates excitation-contraction coupling. Mutations in human genes CALM1, CALM2, and CALM3 have been associated with life-threatening heart disorders, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia. A novel de novo LQTS-associated missense CaM mutation (E105A) was recently identified in a 6-year-old boy, who experienced an aborted first episode of cardiac arrest. Herein, we report the first molecular characterization of the CaM E105A mutation. Expression of the CaM E105A mutant in zebrafish embryos resulted in cardiac arrhythmia and increased heart rate, suggestive of ventricular tachycardia. In vitro biophysical and biochemical analysis revealed that E105A confers a deleterious effect on protein stability and a reduced Ca2+ -binding affinity due to loss of cooperativity. Finally, the CaM E105A mutation resulted in reduced CaM-RyR2 interaction and defective modulation of ryanodine binding. Our findings suggest that the CaM E105A mutation dysregulates normal cardiac function by a complex mechanism involving alterations in both CaM-Ca2+ and CaM-RyR2 interactions.
Collapse
Affiliation(s)
- Sahar I Da'as
- Translational Medicine, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Brian L Calver
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Konrad Beck
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Rola Salem
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Alaaeldin Saleh
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Iris Kontogianni
- National Center for Scientific Research "Demokritos,", Aghia Paraskevi, Greece
| | - Ali Al-Maraghi
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar.,Department of Biomedical Sciences, College of Health Science, Qatar University, Doha, Qatar
| | | | - Egon Toft
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - George Nounesis
- National Center for Scientific Research "Demokritos,", Aghia Paraskevi, Greece
| | - F Anthony Lai
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK.,College of Medicine, Member of QU Health, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Michail Nomikos
- College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
22
|
Fraschini R. Divide Precisely and Proliferate Safely: Lessons From Budding Yeast. Front Genet 2019; 9:738. [PMID: 30687396 PMCID: PMC6335322 DOI: 10.3389/fgene.2018.00738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022] Open
Abstract
A faithful cell division is essential for proper cellular proliferation of all eukaryotic cells; indeed the correct segregation of the genetic material allows daughter cells to proceed into the cell cycle safely. Conversely, errors during chromosome partition generate aneuploid cells that have been associated to several human pathological conditions, including cancer. Given the importance of this issue, all the steps that lead to cell separation are finely regulated. The budding yeast Saccharomyces cerevisiae is a unicellular eukaryotic organism that divides asymmetrically and it is a suitable model system to study the regulation of cell division. Humans and budding yeast are distant 1 billion years of evolution, nonetheless several essential pathways, proteins, and cellular structures are conserved. Among these, the mitotic spindle is a key player in chromosome segregation and its correct morphogenesis and functioning is essential for genomic stability. In this review we will focus on molecular pathways and proteins involved in the control mitotic spindle morphogenesis and function that are conserved from yeast to humans and whose impairment is connected with the development of human diseases.
Collapse
Affiliation(s)
- Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
23
|
Hypertrophic cardiomyopathy-linked variants of cardiac myosin-binding protein C3 display altered molecular properties and actin interaction. Biochem J 2018; 475:3933-3948. [PMID: 30446606 DOI: 10.1042/bcj20180685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022]
Abstract
The most common inherited cardiac disorder, hypertrophic cardiomyopathy (HCM), is characterized by thickening of heart muscle, for which genetic mutations in cardiac myosin-binding protein C3 (c-MYBPC3) gene, is the leading cause. Notably, patients with HCM display a heterogeneous clinical presentation, onset and prognosis. Thus, delineating the molecular mechanisms that explain how disparate c-MYBPC3 variants lead to HCM is essential for correlating the impact of specific genotypes on clinical severity. Herein, five c-MYBPC3 missense variants clinically associated with HCM were investigated; namely V1 (R177H), V2 (A216T), V3 (E258K), V4 (E441K) and double mutation V5 (V3 + V4), all located within the C1 and C2 domains of MyBP-C, a region known to interact with sarcomeric protein, actin. Injection of the variant complementary RNAs in zebrafish embryos was observed to recapitulate phenotypic aspects of HCM in patients. Interestingly, V3- and V5-cRNA injection produced the most severe zebrafish cardiac phenotype, exhibiting increased diastolic/systolic myocardial thickness and significantly reduced heart rate compared with control zebrafish. Molecular analysis of recombinant C0-C2 protein fragments revealed that c-MYBPC3 variants alter the C0-C2 domain secondary structure, thermodynamic stability and importantly, result in a reduced binding affinity to cardiac actin. V5 (double mutant), displayed the greatest protein instability with concomitant loss of actin-binding function. Our study provides specific mechanistic insight into how c-MYBPC3 pathogenic variants alter both functional and structural characteristics of C0-C2 domains leading to impaired actin interaction and reduced contractility, which may provide a basis for elucidating the disease mechanism in HCM patients with c- MYBPC3 mutations.
Collapse
|
24
|
Jensen HH, Brohus M, Nyegaard M, Overgaard MT. Human Calmodulin Mutations. Front Mol Neurosci 2018; 11:396. [PMID: 30483049 PMCID: PMC6243062 DOI: 10.3389/fnmol.2018.00396] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/11/2018] [Indexed: 01/18/2023] Open
Abstract
Fluxes of calcium (Ca2+) across cell membranes enable fast cellular responses. Calmodulin (CaM) senses local changes in Ca2+ concentration and relays the information to numerous interaction partners. The critical role of accurate Ca2+ signaling on cellular function is underscored by the fact that there are three independent CaM genes (CALM1-3) in the human genome. All three genes are functional and encode the exact same CaM protein. Moreover, CaM has a completely conserved amino acid sequence across all vertebrates. Given this degree of conservation, it was long thought that mutations in CaM were incompatible with life. It was therefore a big surprise when the first CaM mutations in humans were identified six years ago. Today, more than a dozen human CaM missense mutations have been described, all found in patients with severe cardiac arrhythmias. Biochemical studies have demonstrated differential effects on Ca2+ binding affinities for these CaM variants. Moreover, CaM regulation of central cardiac ion channels is impaired, including the voltage-gated Ca2+ channel, CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor isoform 2, RyR2. Currently, no non-cardiac phenotypes have been described for CaM variant carriers. However, sequencing of large human cohorts reveals a cumulative frequency of additional rare CaM mutations that raise the possibility of CaM variants not exclusively causing severe cardiac arrhythmias. Here, we provide an overview of the identified CaM variants and their known consequences for target regulation and cardiac disease phenotype. We discuss experimental data, patient genotypes and phenotypes as well as which questions remain open to understand this complexity.
Collapse
Affiliation(s)
- Helene H Jensen
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Malene Brohus
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michael T Overgaard
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
25
|
Arrhythmia mutations in calmodulin cause conformational changes that affect interactions with the cardiac voltage-gated calcium channel. Proc Natl Acad Sci U S A 2018; 115:E10556-E10565. [PMID: 30348784 DOI: 10.1073/pnas.1808733115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Calmodulin (CaM) represents one of the most conserved proteins among eukaryotes and is known to bind and modulate more than a 100 targets. Recently, several disease-associated mutations have been identified in the CALM genes that are causative of severe cardiac arrhythmia syndromes. Although several mutations have been shown to affect the function of various cardiac ion channels, direct structural insights into any CaM disease mutation have been lacking. Here we report a crystallographic and NMR investigation of several disease mutant CaMs, linked to long-QT syndrome, in complex with the IQ domain of the cardiac voltage-gated calcium channel (CaV1.2). Surprisingly, two mutants (D95V, N97I) cause a major distortion of the C-terminal lobe, resulting in a pathological conformation not reported before. These structural changes result in altered interactions with the CaV1.2 IQ domain. Another mutation (N97S) reduces the affinity for Ca2+ by introducing strain in EF hand 3. A fourth mutant (F141L) shows structural changes in the Ca2+-free state that increase the affinity for the IQ domain. These results thus show that different mechanisms underlie the ability of CaM disease mutations to affect Ca2+-dependent inactivation of the voltage-gated calcium channel.
Collapse
|
26
|
Giudicessi JR, Ackerman MJ. Calcium Revisited: New Insights Into the Molecular Basis of Long-QT Syndrome. Circ Arrhythm Electrophysiol 2018; 9:CIRCEP.116.002480. [PMID: 27390209 DOI: 10.1161/circep.116.002480] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/27/2016] [Indexed: 12/12/2022]
Affiliation(s)
- John R Giudicessi
- From the Internal Medicine Residency and Clinician-Investigator Programs, Department of Medicine (J.R.G.) and Departments of Cardiovascular Diseases, Pediatrics (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (M.J.A.), Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | - Michael J Ackerman
- From the Internal Medicine Residency and Clinician-Investigator Programs, Department of Medicine (J.R.G.) and Departments of Cardiovascular Diseases, Pediatrics (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (M.J.A.), Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN.
| |
Collapse
|
27
|
Gu M, Zhu Y, Yin X, Zhang DM. Small-conductance Ca 2+-activated K + channels: insights into their roles in cardiovascular disease. Exp Mol Med 2018; 50:1-7. [PMID: 29651007 PMCID: PMC5938042 DOI: 10.1038/s12276-018-0043-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/13/2022] Open
Abstract
Life-threatening malignant arrhythmias in pathophysiological conditions can increase the mortality and morbidity of patients with cardiovascular diseases. Cardiac electrical activity depends on the coordinated propagation of excitatory stimuli and the generation of action potentials in cardiomyocytes. Action potential formation results from the opening and closing of ion channels. Recent studies have indicated that small-conductance calcium-activated potassium (SK) channels play a critical role in cardiac repolarization in pathophysiological but not normal physiological conditions. The aim of this review is to describe the role of SK channels in healthy and diseased hearts, to suggest cardiovascular pathophysiologic targets for intervention, and to discuss studies of agents that target SK channels for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mingxia Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210006, Nanjing, China
- Department of Cardiology, Nanjing Central Hospital, Jiangsu, 210018, Nanjing, China
| | - Yanrong Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210006, Nanjing, China
| | - Xiaorong Yin
- Department of Cardiology, Nanjing Central Hospital, Jiangsu, 210018, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Jiangsu, 210006, Nanjing, China.
| |
Collapse
|
28
|
Györke S, Belevych AE, Liu B, Kubasov IV, Carnes CA, Radwański PB. The role of luminal Ca regulation in Ca signaling refractoriness and cardiac arrhythmogenesis. J Gen Physiol 2017; 149:877-888. [PMID: 28798279 PMCID: PMC5583712 DOI: 10.1085/jgp.201711808] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/19/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023] Open
Abstract
Györke et al. discuss the role of sarcoplasmic reticulum Ca2+ in cardiac refractoriness and pathological implications.
Collapse
Affiliation(s)
- Sándor Györke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH .,Davis Heart and Lung Research Institute, Columbus, OH
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, Columbus, OH
| | - Bin Liu
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, Columbus, OH
| | - Igor V Kubasov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Cynthia A Carnes
- College of Pharmacy, The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, Columbus, OH
| | - Przemysław B Radwański
- College of Pharmacy, The Ohio State University, Columbus, OH.,Davis Heart and Lung Research Institute, Columbus, OH
| |
Collapse
|
29
|
Søndergaard MT, Liu Y, Larsen KT, Nani A, Tian X, Holt C, Wang R, Wimmer R, Van Petegem F, Fill M, Chen SRW, Overgaard MT. The Arrhythmogenic Calmodulin p.Phe142Leu Mutation Impairs C-domain Ca2+ Binding but Not Calmodulin-dependent Inhibition of the Cardiac Ryanodine Receptor. J Biol Chem 2017; 292:1385-1395. [PMID: 27927985 PMCID: PMC5270481 DOI: 10.1074/jbc.m116.766253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 11/30/2016] [Indexed: 11/29/2022] Open
Abstract
A number of point mutations in the intracellular Ca2+-sensing protein calmodulin (CaM) are arrhythmogenic, yet their underlying mechanisms are not clear. These mutations generally decrease Ca2+ binding to CaM and impair inhibition of CaM-regulated Ca2+ channels like the cardiac Ca2+ release channel (ryanodine receptor, RyR2), and it appears that attenuated CaM Ca2+ binding correlates with impaired CaM-dependent RyR2 inhibition. Here, we investigated the RyR2 inhibitory action of the CaM p.Phe142Leu mutation (F142L; numbered including the start-Met), which markedly reduces CaM Ca2+ binding. Surprisingly, CaM-F142L had little to no aberrant effect on RyR2-mediated store overload-induced Ca2+ release in HEK293 cells compared with CaM-WT. Furthermore, CaM-F142L enhanced CaM-dependent RyR2 inhibition at the single channel level compared with CaM-WT. This is in stark contrast to the actions of arrhythmogenic CaM mutations N54I, D96V, N98S, and D130G, which all diminish CaM-dependent RyR2 inhibition. Thermodynamic analysis showed that apoCaM-F142L converts an endothermal interaction between CaM and the CaM-binding domain (CaMBD) of RyR2 into an exothermal one. Moreover, NMR spectra revealed that the CaM-F142L-CaMBD interaction is structurally different from that of CaM-WT at low Ca2+ These data indicate a distinct interaction between CaM-F142L and the RyR2 CaMBD, which may explain the stronger CaM-dependent RyR2 inhibition by CaM-F142L, despite its reduced Ca2+ binding. Collectively, these results add to our understanding of CaM-dependent regulation of RyR2 as well as the mechanistic effects of arrhythmogenic CaM mutations. The unique properties of the CaM-F142L mutation may provide novel clues on how to suppress excessive RyR2 Ca2+ release by manipulating the CaM-RyR2 interaction.
Collapse
Affiliation(s)
- Mads Toft Søndergaard
- From the Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
- the Libin Cardiovascular Institute of Alberta, the Department of Physiology and Pharmacology and the Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yingjie Liu
- the Libin Cardiovascular Institute of Alberta, the Department of Physiology and Pharmacology and the Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Kamilla Taunsig Larsen
- From the Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Alma Nani
- the Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612
| | - Xixi Tian
- the Libin Cardiovascular Institute of Alberta, the Department of Physiology and Pharmacology and the Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Christian Holt
- From the Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Ruiwu Wang
- the Libin Cardiovascular Institute of Alberta, the Department of Physiology and Pharmacology and the Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Reinhard Wimmer
- From the Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Filip Van Petegem
- the Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, and
| | - Michael Fill
- the Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612
| | - S R Wayne Chen
- the Libin Cardiovascular Institute of Alberta, the Department of Physiology and Pharmacology and the Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- the Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois 60612
| | - Michael Toft Overgaard
- From the Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark,
| |
Collapse
|
30
|
Dulhunty AF, Board PG, Beard NA, Casarotto MG. Physiology and Pharmacology of Ryanodine Receptor Calcium Release Channels. ADVANCES IN PHARMACOLOGY 2017; 79:287-324. [DOI: 10.1016/bs.apha.2016.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|