1
|
Niwa A, Taniguchi T, Tomita H, Okada H, Kinoshita T, Mizutani C, Matsuo M, Imaizumi Y, Kuroda T, Ichihashi K, Sugiyama T, Kanayama T, Yamaguchi Y, Sugie S, Matsuhashi N, Hara A. Conditional ablation of heparan sulfate expression in stromal fibroblasts promotes tumor growth in vivo. PLoS One 2023; 18:e0281820. [PMID: 36809261 PMCID: PMC9942975 DOI: 10.1371/journal.pone.0281820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Heparan sulfate (HS) is a glycocalyx component present in the extracellular matrix and cell-surface HS proteoglycans (HSPGs). Although HSPGs are known to play functional roles in multiple aspects of tumor development and progression, the effect of HS expression in the tumor stroma on tumor growth in vivo remains unclear. We conditionally deleted Ext1, which encodes a glycosyltransferase essential for the biosynthesis of HS chains, using S100a4-Cre (S100a4-Cre; Ext1f/f) to investigate the role of HS in cancer-associated fibroblasts, which is the main component of the tumor microenvironment. Subcutaneous transplantation experiments with murine MC38 colon cancer and Pan02 pancreatic cancer cells demonstrated substantially larger subcutaneous tumors in S100a4-Cre; Ext1f/f mice. Additionally, the number of myofibroblasts observed in MC38 and Pan02 subcutaneous tumors of S100a4-Cre; Ext1f/f mice decreased. Furthermore, the number of intratumoral macrophages decreased in MC38 subcutaneous tumors in S100a4-Cre; Ext1f/f mice. Finally, the expression of matrix metalloproteinase-7 (MMP-7) markedly increased in Pan02 subcutaneous tumors in S100a4-Cre; Ext1f/f mice, suggesting that it may contribute to rapid growth. Therefore, our study demonstrates that the tumor microenvironment with HS-reduced fibroblasts provides a favorable environment for tumor growth by affecting the function and properties of cancer-associated fibroblasts, macrophages, and cancer cells.
Collapse
Affiliation(s)
- Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Toshiaki Taniguchi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
- * E-mail:
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Takamasa Kinoshita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Chika Mizutani
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Mikiko Matsuo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Takahito Kuroda
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Koki Ichihashi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Takaaki Sugiyama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, Japan
| | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery/Pediatric Surgery, Gifu University Graduate School of Medicine, Gifu City, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu City, Japan
| |
Collapse
|
2
|
Kong W, Chen Y, Zhao Z, Zhang L, Lin X, Luo X, Wang S, Song Z, Lin X, Lai G, Yu Z. EXT1 methylation promotes proliferation and migration and predicts the clinical outcome of non-small cell lung carcinoma via WNT signalling pathway. J Cell Mol Med 2021; 25:2609-2620. [PMID: 33565239 PMCID: PMC7933929 DOI: 10.1111/jcmm.16277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/15/2023] Open
Abstract
DNA methylation is important for lung cancer prognosis. In this work, it is aimed to seek novel biomarkers with DNA methylation‐expression‐pathway pattern and explore its underlying mechanism. Prognostic DNA methylation sites and mRNAs were screened in NSCLC data set from TCGA, and further validated using the samples retrospectively collected, and EXT1 was identified as a potential target. Gene body methylation of three CpG sites (cg03276982, cg11592677, cg16286281) on EXT1 was significantly associated with clinical outcome, and the EXT1 gene expression also predicted prognosis. The expression level of EXT1 was also correlated with its DNA methylation level. This observation was further validated in a new data set consist of 170 samples. Knocking down of EXT1 resulted in decreased proliferation and migration. EXT1 targets were analysed using GSEA. It is found that the WNT signalling is the potential downstream target of EXT1. Further analyses revealed that the EXT1 targets the beta‐catenin and effect migration rate of NSCLC cell lines. The WNT signalling inhibitor, XAV‐939, effectively disrupted the migration promotion effect induced by EXT1. In summary, EXT1 methylation regulates the gene expression, effects the proliferation and migration via WNT pathway and predicted a poor prognosis for NSCLC.
Collapse
Affiliation(s)
- Wencui Kong
- Department of Respiratory Medicine and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Ying Chen
- Department of Respiratory Medicine and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Zhongquan Zhao
- Department of Respiratory Medicine and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Lei Zhang
- Department of Respiratory Medicine and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Xingguang Luo
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
| | - Shuiliang Wang
- Department of Urology, 900th Hospital of the Joint Logistics Team Support Force, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Transplant Biology, Affiliated Dongfang Hospital, Xiamen University School of Medicine, Fuzhou, China
| | - Zhengbo Song
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangwu Lin
- Medical Oncology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Guoxiang Lai
- Department of Respiratory Medicine and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, China
| | - Zongyang Yu
- Department of Respiratory Medicine and Critical Care Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fujian Medical University,Affiliated Dongfang Hospital, Xiamen University School of Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
3
|
Wu D, Huo C, Jiang S, Huang Y, Fang X, Liu J, Yang M, Ren J, Xu B, Liu Y. Exostosin1 as a novel prognostic and predictive biomarker for squamous cell lung carcinoma: A study based on bioinformatics analysis. Cancer Med 2020; 10:2787-2801. [PMID: 33314711 PMCID: PMC8026939 DOI: 10.1002/cam4.3643] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
The exostosin (EXT) protein family is involved in diverse human diseases. However, the expression and prognostic value of EXT genes in human lung squamous cell carcinoma (LUSC) is not well understood. In this study, we analyzed the association between expression of EXT1 and EXT2 genes and survival in patients with LUSC using bioinformatics resources such as Oncomine and The Cancer Genome Atlas (TCGA) databases, the Gene Expression Profiling Interactive Analysis (GEPIA) server and Kaplan–Meier plotter. Furthermore, regulatory microRNAs (miRNAs) were predicted for EXT1 and used to establish a potential miRNA‐messenger RNA (mRNA) regulation network for LUSC using the ENCORI platform. We observed that EXT1 and EXT2 expression levels were higher in LUSC than those in normal tissues. However, only EXT1 expression was significantly associated with poor overall survival (OS) in LUSC patients. Functional annotation enrichment analysis showed that genes co‐expressed with the EXT1 gene were enriched in biological processes such as cell adhesion and migration, and KEGG pathways such as extracellular matrix receptor interactions, complement and coagulation cascades, and cell death. Furthermore, three miRNAs, hsa‐mir‐190a‐5p, hsa‐mir‐195‐5p, and hsa‐mir‐490‐3p, were identified to be potentially involved in the regulation of EXT1. In summary, we identified EXT1 expression as a novel potential prognostic marker for human LUSC and the regulatory miRNAs that could possibly contribute to the prognosis of the disease.
Collapse
Affiliation(s)
- Disheng Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Marine Medicine Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Chao Huo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Marine Medicine Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China.,Department of Anus and Intestines, Shenzhen Nanshan District People's Hospital, Shenzhen, Guangdong, China
| | - Siyu Jiang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Marine Medicine Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanxia Huang
- Department of Pharmacy, The Third People's Hospital of Shantou, Shantou, Guangdong, China
| | - Xuehong Fang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Marine Medicine Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jun Liu
- Shenzhen Ritzcon Biological Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Min Yang
- Shenzhen Ritzcon Biological Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Jianwei Ren
- Shenzhen Ritzcon Biological Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Bilian Xu
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Marine Medicine Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Wei Z, Han C, Li H, He W, Zhou J, Dong H, Wu Y, Tian Y, Luo G. Molecular Mechanism of Mesenchyme Homeobox 1 in Transforming Growth Factor β1-Induced P311 Gene Transcription in Fibrosis. Front Mol Biosci 2020; 7:59. [PMID: 32411720 PMCID: PMC7199492 DOI: 10.3389/fmolb.2020.00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
Organ fibrosis is characterized by excessive fibroblast, and extracellular matrix and the molecular basis are not fully elucidated. Recent studies have proven that P311, an 8-kDa conserved protein, could promote various organ fibrosis, such as skin, kidney, liver, and lung, partially through upregulating transforming growth factor β1 (TGF-β1) translation. However, the upstream regulators and mechanism of P311 gene regulation remain unclear, although we previously found that cytokines, hypoxia, and TGF-β1 could upregulate P311 transcription. Here, we aimed to elucidate the molecular mechanism of TGF-β1–induced P311 transcriptional regulation, focusing on mesenchyme homeobox 1 (Meox1). In this article, we identified the core promoter of P311 through bioinformatics analysis and luciferase reporter assays. Moreover, we demonstrated that Meox1, induced by TGF-β1, could bind to the promoter of P311 and promote its transcriptional activity. Furthermore, the effect of Meox1 on P311 transcriptional expression contributed to altered migration and proliferation in human dermal fibroblast cells. In conclusion, we identified Meox1 as a novel transcription factor of P311 gene, providing a new clue of the pathogenesis in fibrosis.
Collapse
Affiliation(s)
- Zhiyuan Wei
- Institute of Burn Research, PLA, State Key Laboratory of Trauma, Burn and Combined Injury, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Chao Han
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haisheng Li
- Institute of Burn Research, PLA, State Key Laboratory of Trauma, Burn and Combined Injury, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Weifeng He
- Institute of Burn Research, PLA, State Key Laboratory of Trauma, Burn and Combined Injury, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Junyi Zhou
- Institute of Burn Research, PLA, State Key Laboratory of Trauma, Burn and Combined Injury, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui Dong
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Gaoxing Luo
- Institute of Burn Research, PLA, State Key Laboratory of Trauma, Burn and Combined Injury, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
The exostosin family of glycosyltransferases: mRNA expression profiles and heparan sulphate structure in human breast carcinoma cell lines. Biosci Rep 2018; 38:BSR20180770. [PMID: 30054430 PMCID: PMC6117623 DOI: 10.1042/bsr20180770] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 05/07/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Breast cancer remains a leading cause of cancer-related mortality in women. In recent years, regulation of genes involved in heparan sulphate (HS) biosynthesis have received increased interest as regulators of breast cancer cell adhesion and invasion. The exostosin (EXT) proteins are glycosyltransferases involved in elongation of HS, a regulator of intracellular signaling, cell–cell interactions, and tissue morphogenesis. The EXT family contains five members: EXT1, EXT2, and three EXT-like (EXTL) members: EXTL1, EXTL2, and EXTL3. While the expression levels of these enzymes change in tumor cells, little is known how this changes the structure and function of HS. In the present study, we investigated gene expression profiles of the EXT family members, their glycosyltransferase activities and HS structure in the estrogen receptor (ER), and progesterone receptor (PR) positive MCF7 cells, and the ER, PR, and human epidermal growth factor receptor-2 (HER2) negative MDA-MB-231 and HCC38 epithelial breast carcinoma cell lines. The gene expression profiles for MDA-MB-231 and HCC38 cells were very similar. In both cell lines EXTL2 was found to be up-regulated whereas EXT2 was down-regulated. Interestingly, despite having similar expression of HS elongation enzymes the two cell lines synthesized HS chains of significantly different lengths. Furthermore, both MDA-MB-231 and HCC38 exhibited markedly decreased levels of HS 6-O-sulphated disaccharides. Although the gene expression profiles of the elongation enzymes did not correlate with the length of HS chains, our results indicated specific differences in EXT enzyme levels and HS fine structure characteristic of the carcinogenic properties of the breast carcinoma cells.
Collapse
|