1
|
Wang H, Wen J, Ablimit N, Deng K, Wang W, Jiang W. Degradation of Natural Undaria pinnatifida into Unsaturated Guluronic Acid Oligosaccharides by a Single Alginate Lyase. Mar Drugs 2024; 22:453. [PMID: 39452861 PMCID: PMC11509462 DOI: 10.3390/md22100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Here, we report on a bifunctional alginate lyase (Vnalg7) expressed in Pichia pastoris, which can degrade natural Undaria pinnatifida into unsaturated guluronic acid di- and trisaccharide without pretreatment. The enzyme activity of Vnalg7 (3620.00 U/mL-culture) was 15.81-fold higher than that of the original alg (228.90 U/mL-culture), following engineering modification. The degradation rate reached 52.75%, and reducing sugar reached 30.30 mg/mL after combining Vnalg7 (200.00 U/mL-culture) and 14% (w/v) U. pinnatifida for 6 h. Analysis of the action mode indicated that Vnalg7 could degrade many substrates to produce a variety of unsaturated alginate oligosaccharides (AOSs), and the minimal substrate was tetrasaccharide. Site-directed mutagenesis showed that Glu238, Glu241, Glu312, Arg236, His307, Lys414, and Tyr418 are essential catalytic sites, while Glu334, Glu344, and Asp311 play auxiliary roles. Mechanism analysis revealed the enzymatic degradation pattern of Vnalg7, which mainly recognizes and attacks the third glycosidic linkage from the reducing end of oligosaccharide substrate. Our findings provide a novel alginate lyase tool and a sustainable and commercial production strategy for value-added biomolecules using seaweeds.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Jiang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Yuan Ming Yuan West Road No. 2, Haidian District, Beijing 100193, China; (H.W.); (J.W.); (N.A.); (K.D.); (W.W.)
| |
Collapse
|
2
|
You Y, Kong H, Li C, Gu Z, Ban X, Li Z. Carbohydrate binding modules: Compact yet potent accessories in the specific substrate binding and performance evolution of carbohydrate-active enzymes. Biotechnol Adv 2024; 73:108365. [PMID: 38677391 DOI: 10.1016/j.biotechadv.2024.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Carbohydrate binding modules (CBMs) are independent non-catalytic domains widely found in carbohydrate-active enzymes (CAZymes), and they play an essential role in the substrate binding process of CAZymes by guiding the appended catalytic modules to the target substrates. Owing to their precise recognition and selective affinity for different substrates, CBMs have received increasing research attention over the past few decades. To date, CBMs from different origins have formed a large number of families that show a variety of substrate types, structural features, and ligand recognition mechanisms. Moreover, through the modification of specific sites of CBMs and the fusion of heterologous CBMs with catalytic domains, improved enzymatic properties and catalytic patterns of numerous CAZymes have been achieved. Based on cutting-edge technologies in computational biology, gene editing, and protein engineering, CBMs as auxiliary components have become portable and efficient tools for the evolution and application of CAZymes. With the aim to provide a theoretical reference for the functional research, rational design, and targeted utilization of novel CBMs in the future, we systematically reviewed the function-related characteristics and potentials of CAZyme-derived CBMs in this review, including substrate recognition and binding mechanisms, non-catalytic contributions to enzyme performances, module modifications, and innovative applications in various fields.
Collapse
Affiliation(s)
- Yuxian You
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Haocun Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, China.
| |
Collapse
|
3
|
Liu G, Song L, Li J, Song X, Mei X, Zhang Y, Fan C, Chang Y, Xue C. Identification and characterization of a chondroitinase ABC with a novel carbohydrate-binding module. Int J Biol Macromol 2024; 271:132518. [PMID: 38777025 DOI: 10.1016/j.ijbiomac.2024.132518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Chondroitinases play important roles in structural and functional studies of chondroitin sulfates. Carbohydrate-binding module (CBM) is generally considered as an accessory module in carbohydrate-active enzymes, which promotes the association of the appended enzyme with the substrate and potentiates the catalytic activity. However, the role of natural CBM in chondroitinases has not been investigated. Herein, a novel chondroitinase ChABC29So containing an unknown domain with a predicted β-sandwich fold was discovered from Segatella oris. Recombinant ChABC29So showed enzyme activity towards chondroitin sulfates and hyaluronic acid and acted in a random endo-acting manner. The unknown domain exhibited a chondroitin sulfate-binding capacity and was identified as a CBM. Biochemical characterization of ChABC29So and the CBM-truncated enzyme revealed that the CBM enhances the catalytic activity, thermostability, and disaccharide proportion in the final enzymatic products of ChABC29So. These findings demonstrate the role of the natural CBM in a chondroitinase and will guide future modification of chondroitinases.
Collapse
Affiliation(s)
- Guanchen Liu
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Lin Song
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Jiajing Li
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xiao Song
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Chuan Fan
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao 266404, China
| |
Collapse
|
4
|
Wang XH, Zhang YQ, Zhang XR, Zhang XD, Sun XM, Wang XF, Sun XH, Song XY, Zhang YZ, Wang N, Chen XL, Xu F. High-Level Extracellular Production of a Trisaccharide-Producing Alginate Lyase AlyC7 in Escherichia coli and Its Agricultural Application. Mar Drugs 2024; 22:230. [PMID: 38786621 PMCID: PMC11123115 DOI: 10.3390/md22050230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Alginate oligosaccharides (AOS), products of alginate degradation by endotype alginate lyases, possess favorable biological activities and have broad applications. Although many have been reported, alginate lyases with homogeneous AOS products and secretory production by an engineered host are scarce. Herein, the alginate lyase AlyC7 from Vibrio sp. C42 was characterized as a trisaccharide-producing lyase exhibiting high activity and broad substrate specificity. With PelB as the signal peptide and 500 mM glycine as the additive, the extracellular production of AlyC7 in Escherichia coli reached 1122.8 U/mL after 27 h cultivation in Luria-Bertani medium. The yield of trisaccharides from sodium alginate degradation by the produced AlyC7 reached 758.6 mg/g, with a purity of 85.1%. The prepared AOS at 20 μg/mL increased the root length of lettuce, tomato, wheat, and maize by 27.5%, 25.7%, 9.7%, and 11.1%, respectively. This study establishes a robust foundation for the industrial and agricultural applications of AlyC7.
Collapse
Affiliation(s)
- Xiao-Han Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.W.); (Y.-Q.Z.); (X.-R.Z.); (X.-D.Z.); (X.-F.W.); (X.-H.S.); (X.-Y.S.); (Y.-Z.Z.)
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai 264006, China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.W.); (Y.-Q.Z.); (X.-R.Z.); (X.-D.Z.); (X.-F.W.); (X.-H.S.); (X.-Y.S.); (Y.-Z.Z.)
| | - Xin-Ru Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.W.); (Y.-Q.Z.); (X.-R.Z.); (X.-D.Z.); (X.-F.W.); (X.-H.S.); (X.-Y.S.); (Y.-Z.Z.)
| | - Xiao-Dong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.W.); (Y.-Q.Z.); (X.-R.Z.); (X.-D.Z.); (X.-F.W.); (X.-H.S.); (X.-Y.S.); (Y.-Z.Z.)
| | - Xiao-Meng Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
| | - Xiao-Fei Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.W.); (Y.-Q.Z.); (X.-R.Z.); (X.-D.Z.); (X.-F.W.); (X.-H.S.); (X.-Y.S.); (Y.-Z.Z.)
| | - Xiao-Hui Sun
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.W.); (Y.-Q.Z.); (X.-R.Z.); (X.-D.Z.); (X.-F.W.); (X.-H.S.); (X.-Y.S.); (Y.-Z.Z.)
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.W.); (Y.-Q.Z.); (X.-R.Z.); (X.-D.Z.); (X.-F.W.); (X.-H.S.); (X.-Y.S.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.W.); (Y.-Q.Z.); (X.-R.Z.); (X.-D.Z.); (X.-F.W.); (X.-H.S.); (X.-Y.S.); (Y.-Z.Z.)
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.W.); (Y.-Q.Z.); (X.-R.Z.); (X.-D.Z.); (X.-F.W.); (X.-H.S.); (X.-Y.S.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.W.); (Y.-Q.Z.); (X.-R.Z.); (X.-D.Z.); (X.-F.W.); (X.-H.S.); (X.-Y.S.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (X.-H.W.); (Y.-Q.Z.); (X.-R.Z.); (X.-D.Z.); (X.-F.W.); (X.-H.S.); (X.-Y.S.); (Y.-Z.Z.)
- Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266237, China
| |
Collapse
|
5
|
Liu H, Huang M, Wei S, Wang X, Zhao Y, Han Z, Ye X, Li Z, Ji Y, Cui Z, Huang Y. Characterization of a multi-domain exo-β-1,3-galactanase from Paenibacillus xylanexedens. Int J Biol Macromol 2024; 266:131413. [PMID: 38582482 DOI: 10.1016/j.ijbiomac.2024.131413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
β-1,3-Galactanases selectively degrade β-1,3-galactan, thus it is an attractive enzyme technique to map high-galactan structure and prepare galactooligosaccharides. In this work, a gene encoding exo-β-1,3-galactanase (PxGal43) was screened form Paenibacillus xylanexedens, consisting of a GH43 domain, a CBM32 domain and α-L-arabinofuranosidase B (AbfB) domain. Using β-1,3-galactan (AG-II-P) as substrate, the recombined enzyme expressed in Escherichia coli BL21 (DE3) exhibited an optimal activity at pH 7.0 and 30 °C. The enzyme was thermostable, retaining >70 % activity after incubating at 50 °C for 2 h. In addition, it showed high tolerance to various metal ions, denaturants and detergents. Substrate specificity indicated that PxGal43 hydrolysis only β-1,3-linked galactosyl oligosaccharides and polysaccharides, releasing galactose as an exo-acting manner. The function of the CBM32 and AbfB domain was revealed by their sequential deletion and suggested that their connection to the catalytic domain was crucial for the oligomerization, catalytic activity, substrate binding and thermal stability of PxGal43. The substrate docking and site-directed mutagenesis proposed that Glu191, Gln244, Asp138 and Glu81 served as the catalytic acid, catalytic base, pKa modulator, and substrate identifier in PxGal43, respectively. These results provide a better understanding and optimization of multi-domain bacterial GH43 β-1,3-galactanase for the degradation of arabinogalactan.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Min Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shuxin Wei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaowen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yaqin Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhengyang Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanling Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
6
|
Zhang X, Tang Y, Gao F, Xu X, Chen G, Li Y, Wang L. Low-cost and efficient strategy for brown algal hydrolysis: Combination of alginate lyase and cellulase. BIORESOURCE TECHNOLOGY 2024; 397:130481. [PMID: 38395233 DOI: 10.1016/j.biortech.2024.130481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Brown algae are rich in biostimulants that not only stimulate the overall development and growth of plants but also have great beneficial effects on the whole soil-plant system. However, alginate, the major component of brown algae, is comparatively difficult to degrade. The cost of preparing alginate oligosaccharides (AOSs) is still too high to produce seaweed fertilizer. In this work, the marine bacterium Vibrio sp. B1Z05 is found to be capable of efficient alginate depolymerization and harbors an extended pathway for alginate metabolism. The B1Z05 extracellular cell-free supernatant exhibited great potential for AOS production at low cost, which, together with cellulase, can efficiently hydrolyze seaweed. The brown algal hydrolysis rates were significantly greater than those of the commercial alginate lyase product CE201, and the obtained seaweed extracts were rich in phytohormones. This work provides a low-cost but efficient strategy for the sustainable production of desirable AOSs and seaweed fertilizer.
Collapse
Affiliation(s)
- Xiyue Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yongqi Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Feng Gao
- Qingdao Vland Biotech Company Group, Qingdao 266061, China
| | - Xiaodong Xu
- Qingdao Vland Biotech Company Group, Qingdao 266061, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Chen C, Li X, Lu C, Zhou X, Chen L, Qiu C, Jin Z, Long J. Advances in alginate lyases and the potential application of enzymatic prepared alginate oligosaccharides: A mini review. Int J Biol Macromol 2024; 260:129506. [PMID: 38244735 DOI: 10.1016/j.ijbiomac.2024.129506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Alginate is mainly a linear polysaccharide composed of randomly arranged β-D-mannuronic acid and α-L-guluronic acid linked by α, β-(1,4)-glycosidic bonds. Alginate lyases degrade alginate mainly adopting a β-elimination mechanism, breaking the glycosidic bonds between the monomers and forming a double bond between the C4 and C5 sugar rings to produce alginate oligosaccharides consisting of 2-25 monomers, which have various physiological functions. Thus, it can be used for the continuous industrial production of alginate oligosaccharides with a specific degree of polymerization, in accordance with the requirements of green exploitation of marine resources. With the development of structural analysis, the quantity of characterized alginate lyase structures is progressively growing, leading to a concomitant improvement in understanding the catalytic mechanism. Additionally, the use of molecular modification methods including rational design, truncated expression of non-catalytic domains, and recombination of conserved domains can improve the catalytic properties of the original enzyme, enabling researchers to screen out the enzyme with the expected excellent performance with high success rate and less workload. This review presents the latest findings on the catalytic mechanism of alginate lyases and outlines the methods for molecular modifications. Moreover, it explores the connection between the degree of polymerization and the physiological functions of alginate oligosaccharides, providing a reference for enzymatic preparation development and utilization.
Collapse
Affiliation(s)
- Chen Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingfei Li
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Cheng Lu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Bioengineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xing Zhou
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Long Chen
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Chao Qiu
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhengyu Jin
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jie Long
- The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Xu H, Gao Q, Li L, Su T, Ming D. How alginate lyase produces quasi-monodisperse oligosaccharides: A normal-mode-based docking and molecular dynamics simulation study. Carbohydr Res 2024; 536:109022. [PMID: 38242069 DOI: 10.1016/j.carres.2024.109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Oligosaccharide degradation products of alginate (AOS) hold significant potential in diverse fields, including pharmaceuticals, health foods, textiles, and agricultural production. Enzymatic alginate degradation is appealing due to its mild conditions, predictable activity, high yields, and controllability. However, the alginate degradation often results in a complex mixture of oligosaccharides, necessitating costly purification to isolate highly active oligosaccharides with a specific degree of polymerization (DP). Addressing this, our study centers on the alginate lyase AlyB from Vibrio Splendidus OU02, which uniquely breaks down alginate into mono-distributed trisaccharides. This enzyme features a polysaccharide lyase family 7 domain (PL-7) and a CBM32 carbohydrate-binding module connected by a helical structure. Through normal-mode-based docking and all-atom molecular simulations, we demonstrate that AlyB's substrate and product specificities are influenced by the spatial conformation of the catalytic pocket and the flexibility of its structure. The helically attached CBM is pivotal in releasing trisaccharides, which is crucial for avoiding further degradation. This study sheds light on AlyB's specificity and efficiency and contributes to the evolving field of enzyme design for producing targeted oligosaccharides, with significant implications for various bioindustries.
Collapse
Affiliation(s)
- Hengyue Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China; Now Studying in the State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Qi Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China
| | - Lu Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China
| | - Ting Su
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing City, Jiangsu, 211816, PR China.
| |
Collapse
|
9
|
Du M, Li X, Qi W, Li Y, Wang L. Identification and characterization of a critical loop for the high activity of alginate lyase VaAly2 from the PL7_5 subfamily. Front Microbiol 2024; 14:1333597. [PMID: 38282736 PMCID: PMC10811132 DOI: 10.3389/fmicb.2023.1333597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
As the major component in the cell wall of brown algae, alginates are degradable by alginate lyases via β-elimination. Alginate lyases can be categorized into various polysaccharide lyase (PL) families, and PL7 family alginate lyases are the largest group and can be divided into six subfamilies. However, the major difference among different PL7 subfamilies is not fully understood. In this work, a marine alginate lyase, VaAly2, from Vibrio alginolyticus ATCC 17749 belonging to the PL7_5 subfamily was identified and characterized. It displayed comparatively high alginolytic activities toward different alginate substrates and functions as a bifunctional lyase. Molecular docking and biochemical analysis suggested that VaAly2 not only contains a key catalyzing motif (HQY) conserved in the PL7 family but also exhibits some specific characters limited in the PL7_5 subfamily members, such as the key residues and a long loop1 structure around the active center. Our work provides insight into a loop structure around the center site which plays an important role in the activity and substrate binding of alginate lyases belonging to the PL7_5 subfamily.
Collapse
Affiliation(s)
- Muxuan Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- School of Life Sciences, Shandong University, Qingdao, China
| | - Xue Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Weipeng Qi
- Foshan Haitian (Gaoming) Flavoring & Food Co., Ltd., Foshan, China
| | - Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Xiao Z, Li K, Li T, Zhang F, Xue J, Zhao M, Yin H. Characterization and Mechanism Study of a Novel PL7 Family Exolytic Alginate Lyase from Marine Bacteria Vibrio sp. W13. Appl Biochem Biotechnol 2024; 196:68-84. [PMID: 37099125 DOI: 10.1007/s12010-023-04483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
Alginate lyase can degrade alginate into oligosaccharides through β-elimination for various biological, biorefinery, and agricultural purposes. Here, we report a novel PL7 family exolytic alginate lyase VwAlg7A from marine bacteria Vibrio sp. W13 and achieve the heterologous expression in E. coli BL21 (DE3). VwAlg7A is 348aa with a calculated molecular weight of 36 kDa, containing an alginate lyase 2 domain. VwAlg7A exhibits specificity towards poly-guluronate. The optimal temperature and pH of VwAlg7A are 30 °C and 7.0, respectively. The activity of VwAlg7A can be significantly inhibited by the Ni2+, Zn2+, and NaCl. The Km and Vmax of VwAlg7A are 36.9 mg/ml and 395.6 μM/min, respectively. The ESI and HPAEC-PAD results indicate that VwAlg7A cleaves the sugar bond in an exolytic mode. Based on the molecular docking and mutagenesis results, we further confirmed that R98, H169, and Y303 are important catalytic residues.
Collapse
Affiliation(s)
- Zhongbin Xiao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tang Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fanxing Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Jiayi Xue
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Miao Zhao
- Department of Materials and Chemicals, Dalian Polytechnic University, Dalian, 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
11
|
Zhou R, Zhang L, Zeng B, Zhou Y, Jin W, Zhang G. A novel self-purified auxiliary protein enhances the lichenase activity towards lichenan for biomass degradation. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12608-y. [PMID: 37272940 DOI: 10.1007/s00253-023-12608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Due to the complex composition of lichenan, lichenase alone cannot always hydrolyze it efficiently. Carbohydrate-binding modules (CBMs) and lytic polysaccharide monooxygenases (LPMOs) have been confirmed to increase the hydrolysis efficiency of lichenases. However, their practical application was hampered by the complex and costly preparation procedure, as well as the poor stability of LPMOs. Herein, we discovered a novel and stable auxiliary protein named SCE to boost the hydrolysis efficiency. SCE was composed of SpyCatcher (SC) and elastin-like polypeptides (ELPs) and could be easily and cheaply prepared. Under the optimal conditions, the boosting degree for SCE/lichenase was 1.45, and the reducing sugar yield improved by nearly 45%. The results of high-performance liquid chromatography (HPLC) indicated that SCE had no influence on the hydrolysis pattern of lichenase. Through the experimental verification and bioinformatics analysis, we proposed the role of SCE in promoting the interaction between the lichenase and substrates. These findings endow SC with a novel function in binding to insoluble lichenan, paving the way for biomass degradation and biorefinery. KEY POINTS: • A novel self-purification auxiliary protein that could boost the hydrolysis efficiency of lichenase has been identified. • The protein is highly produced, simple to prepare, well stable, and does not require any external electron donor. • The novel function of SpyCatcher in binding to insoluble lichenan was first demonstrated.
Collapse
Affiliation(s)
- Rui Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Lingzhi Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Bo Zeng
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Yanhong Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Wenhui Jin
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian Province, People's Republic of China
| | - Guangya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China.
| |
Collapse
|
12
|
Chettri D, Verma AK. Biological significance of carbohydrate active enzymes and searching their inhibitors for therapeutic applications. Carbohydr Res 2023; 529:108853. [PMID: 37235954 DOI: 10.1016/j.carres.2023.108853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Glycans are the most abundant and diverse group of biomolecules with a crucial role in all the biological processes. Their structural and functional diversity is not genetically encoded, but depends on Carbohydrate Active Enzymes (CAZymes) which carry out all catalytic activities in terms of synthesis, modification, and degradation. CAZymes comprise large families of enzymes with specific functions and are widely used for various commercial applications ranging from biofuel production to textile and food industries with impact on biorefineries. To understand the structure and functional mechanism of these CAZymes for their modification for industrial use, together with knowledge of therapeutic aspects of their dysfunction associated with various diseases, CAZyme inhibitors can be used as a valuable tool. In search for new inhibitors, the screening of various secondary metabolites using high-throughput techniques and rational design techniques have been explored. The inhibitors can thus help tune CAZymes and are emerging as a potential research interest.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
13
|
Kołaczkowski BM, Moroz OV, Blagova E, Davies GJ, Møller MS, Meyer AS, Westh P, Jensen K, Wilson KS, Krogh KBRM. Structural and functional characterization of a multi-domain GH92 α-1,2-mannosidase from Neobacillus novalis. Acta Crystallogr D Struct Biol 2023; 79:387-400. [PMID: 37071393 PMCID: PMC10167667 DOI: 10.1107/s2059798323001663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/23/2023] [Indexed: 04/19/2023] Open
Abstract
Many secreted eukaryotic proteins are N-glycosylated with oligosaccharides composed of a high-mannose N-glycan core and, in the specific case of yeast cell-wall proteins, an extended α-1,6-mannan backbone carrying a number of α-1,2- and α-1,3-mannose substituents of varying lengths. α-Mannosidases from CAZy family GH92 release terminal mannose residues from these N-glycans, providing access for the α-endomannanases, which then degrade the α-mannan backbone. Most characterized GH92 α-mannosidases consist of a single catalytic domain, while a few have extra domains including putative carbohydrate-binding modules (CBMs). To date, neither the function nor the structure of a multi-domain GH92 α-mannosidase CBM has been characterized. Here, the biochemical investigation and crystal structure of the full-length five-domain GH92 α-1,2-mannosidase from Neobacillus novalis (NnGH92) with mannoimidazole bound in the active site and an additional mannoimidazole bound to the N-terminal CBM32 are reported. The structure of the catalytic domain is very similar to that reported for the GH92 α-mannosidase Bt3990 from Bacteroides thetaiotaomicron, with the substrate-binding site being highly conserved. The function of the CBM32s and other NnGH92 domains was investigated by their sequential deletion and suggested that whilst their binding to the catalytic domain was crucial for the overall structural integrity of the enzyme, they appear to have little impact on the binding affinity to the yeast α-mannan substrate. These new findings provide a better understanding of how to select and optimize other multi-domain bacterial GH92 α-mannosidases for the degradation of yeast α-mannan or mannose-rich glycans.
Collapse
Affiliation(s)
- Bartłomiej M. Kołaczkowski
- Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, 4000 Roskilde, Denmark
- Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark
| | - Olga V. Moroz
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elena Blagova
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, 2800 Kongens Lyngby, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Biologiens Vej 2, 2800 Kongens Lyngby, Denmark
| | - Keith S. Wilson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | | |
Collapse
|
14
|
Cao S, Li L, Li Q, Jiang L, Zhu B, Yao Z. A novel alginate lyase and its domain functions for the preparation of unsaturated monosaccharides. Appl Microbiol Biotechnol 2023; 107:1737-1749. [PMID: 36795142 DOI: 10.1007/s00253-023-12424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/30/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Brown algae are considered promising crops for the production of sustainable biofuels. However, the commercial application has been limited by lack of efficient methods for converting alginate into fermentable sugars. Herein, we cloned and characterized a novel alginate lyase AlyPL17 from Pedobacter hainanensis NJ-02. It possessed outstanding catalytic efficiency toward polymannuronic acid (polyM), polyguluronic acid (polyG), and alginate sodium, with kcat of 39.42 ± 1.9 s-1, 32.53 ± 0.88 s-1, and 38.30 ± 2.12 s-1, respectively. AlyPL17 showed maximum activity at 45 °C and pH 9.0. The domain truncation did not change the optimal temperature and optimal pH, but greatly reduced the activity. In addition, AlyPL17 degrades alginate through the cooperative action of two structural domains in an exolytic mode. The minimal degradation substrate of AlyPL17 is a disaccharide. Furthermore, AlyPL17 and AlyPL6 can synergistically degrade alginate to prepare unsaturated monosaccharides that can be converted to 4-deoxy-L-erythron-5-hexoseuloseuronate acid (DEH). DEH is reduced to KDG by DEH reductase (Sdr), which enters the Entner-Doudoroff (ED) pathway as a common metabolite and is converted to bioethanol. KEY POINTS: • Biochemical characterization of alginate lyase from Pedobacter hainanensis NJ-02 and its truncated form. • Degradation patterns of AlyPL17 and the role of its domains in product distribution and mode of action. • Potential of synergistic degradation system for efficient preparation of unsaturated monosaccharides.
Collapse
Affiliation(s)
- Shengsheng Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Li Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
15
|
Ji S, Tian X, Li X, She Q. Identification and structural analysis of a carbohydrate-binding module specific to alginate, a representative of a new family, CBM96. J Biol Chem 2023; 299:102854. [PMID: 36592931 PMCID: PMC9971899 DOI: 10.1016/j.jbc.2022.102854] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Carbohydrate-binding modules (CBMs) are the noncatalytic modules that assist functions of the catalytic modules in carbohydrate-active enzymes, and they are usually discrete structural domains in larger multimodular enzymes. CBMs often occur in tandem in different alginate lyases belonging to the CBM families 13, 16, and 32. However, none of the currently known CBMs in alginate lyases specifically bind to an internal alginate chain. In our investigation of the multidomain alginate lyase Dp0100 carrying several ancillary domains, we identified an alginate-binding domain denoted TM6-N4 using protein truncation analysis. The structure of this CBM domain was determined at 1.35 Å resolution. TM6-N4 exhibited an overall β-sandwich fold architecture with two antiparallel β-sheets. We identified an extended binding groove in the CBM using site-directed mutagenesis, docking, and surface electrostatic potential analysis. Affinity analysis revealed that residues of Lys10, Lys22, Lys25, Lys27, Lys31, Arg36, and Tyr159 located on the bottom or the wall of the shallow groove are responsible for alginate binding, and isothermal titration calorimetry analyses indicated that the binding cleft consists of six subsites for sugar recognition. This substrate binding pattern is typical for type B CBM, and it represents the first CBM domain that specifically binds internal alginate chain. Phylogenetic analysis supports that TM6-N4 constitutes the founding member of a new CBM family denoted as CBM96. Our reported structure not only facilitates the investigation of the CBM-alginate ligand recognition mechanism but also inspires the utilization of the CBM domain in biotechnical applications.
Collapse
Affiliation(s)
- Shiqi Ji
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Xuhui Tian
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xin Li
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
16
|
Determination of oligosaccharide product distributions of PL7 alginate lyases by their structural elements. Commun Biol 2022; 5:782. [PMID: 35918517 PMCID: PMC9345997 DOI: 10.1038/s42003-022-03721-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Alginate lyases can be used to produce well-defined alginate oligosaccharides (AOSs) because of their specificities for AOS products. A large number of alginate lyases have been recorded in the CAZy database; however, the majority are annotated-only alginate lyases that include little information on their products, thus limiting their applications. Here, we establish a simple and experiment-saving approach to predict product distributions for PL7 alginate lyases through extensive structural biology, bioinformatics and biochemical studies. Structural study on several PL7 alginate lyases reveals that two loops around the substrate binding cleft determine product distribution. Furthermore, a database containing the loop information of all annotated-only single-domain PL7 alginate lyases is constructed, enabling systematic exploration of the association between loop and product distribution. Based on these results, a simplified loop/product distribution relationship is proposed, giving us information on product distribution directly from the amino acid sequence. Characterization of PL7 alginate lyase structure and products enables a bioinformatics approach to predict product distribution from the amino acid sequence.
Collapse
|
17
|
Tang L, Bao M, Wang Y, Fu Z, Han F, Yu W. Effects of Module Truncation of a New Alginate Lyase VxAly7C from Marine Vibrio xiamenensis QY104 on Biochemical Characteristics and Product Distribution. Int J Mol Sci 2022; 23:ijms23094795. [PMID: 35563187 PMCID: PMC9102848 DOI: 10.3390/ijms23094795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Alginate lyase has received extensive attention as an important tool for oligosaccharide preparation, pharmaceutical production, and energy biotransformation. Noncatalytic module carbohydrate-binding modules (CBM) have a major impact on the function of alginate lyases. Although the effects of two different families of CBMs on enzyme characteristics have been reported, the effect of two combined CBM32s on enzyme function has not been elucidated. Herein, we cloned and expressed a new multimodular alginate lyase, VxAly7C, from Vibrioxiamenensis QY104, consisting of two CBM32s at N-terminus and a polysaccharide lyase family 7 (PL7) at C-terminus. To explore the function of CBM32s in VxAly7C, full-length (VxAly7C-FL) and two truncated mutants, VxAly7C-TM1 (with the first CBM32 deleted) and VxAly7C-TM2 (with both CBM32s deleted), were characterized. The catalytic efficiency of recombinant VxAly7C-TM2 was 1.82 and 4.25 times higher than that of VxAly7C-TM1 and VxAly7C-FL, respectively, indicating that CBM32s had an antagonistic effect. However, CBM32s improved the temperature stability, the adaptability in an alkaline environment, and the preference for polyG. Moreover, CBM32s contributed to the production of tri- and tetrasaccharides, significantly affecting the end-product distribution. This study advances the understanding of module function and provides a reference for broader enzymatic applications and further enzymatic improvement and assembly.
Collapse
Affiliation(s)
- Luyao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengmeng Bao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Ying Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Zheng Fu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Correspondence: (F.H.); (W.Y.); Tel.: +86-532-82032067 (F.H.); +86-532-82031680 (W.Y.)
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (L.T.); (M.B.); (Y.W.); (Z.F.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
- Correspondence: (F.H.); (W.Y.); Tel.: +86-532-82032067 (F.H.); +86-532-82031680 (W.Y.)
| |
Collapse
|
18
|
Sulfated alginate oligosaccharide exerts antitumor activity and autophagy induction by inactivating MEK1/ERK/mTOR signaling in a KSR1-dependent manner in osteosarcoma. Oncogenesis 2022; 11:16. [PMID: 35418575 PMCID: PMC9008062 DOI: 10.1038/s41389-022-00390-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
Alginate oligosaccharide (AOS) has the function to inhibit tumor progression and the sulfated modification can enhance the antitumor activity. To date, the function and mechanism of sulfated AOS (AOS-SO4) in tumors remain largely elusive. We prepared AOS by the enzymatic degradation of alginate, collected AOS-SO4 by sulfating following the canonical procedure. Using these materials, in vitro assays showed that both AOS and AOS-SO4 elicited antitumor effects in osteosarcoma cells. Sulfated modification significantly enhanced the antitumor activity. In addition, AOS-SO4 had obvious effects on cell cycle arrest, apoptosis, and autophagy induction in vitro and in vivo. Mechanistically, we observed that AOS-SO4 treatment triggered proapoptotic autophagy by inhibiting MEK1/ERK/mTOR signaling. The ERK activator reversed AOS-SO4-induced autophagy. More importantly, we found that KSR1 interacted with MEK1 and functioned as a positive regulator of MEK1 protein in osteosarcoma cells. High KSR1 expression was significantly associated with poor survival in osteosarcoma patients. Together, these results suggest that AOS-SO4 has a better antitumor effect in osteosarcoma by inhibiting MEK1/ERK/mTOR signaling, which is KSR1-dependent; thus, AOS-SO4 can be a new potential therapeutic candidate for the treatment of osteosarcoma.
Collapse
|
19
|
Sun XK, Gong Y, Shang DD, Liu BT, Du ZJ, Chen GJ. Degradation of Alginate by a Newly Isolated Marine Bacterium Agarivorans sp. B2Z047. Mar Drugs 2022; 20:254. [PMID: 35447927 PMCID: PMC9029943 DOI: 10.3390/md20040254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/21/2022] Open
Abstract
Alginate is the main component of brown algae, which is an important primary production in marine ecosystems and represents a huge marine biomass. The efficient utilization of alginate depends on alginate lyases to catalyze the degradation, and remains to be further explored. In this study, 354 strains were isolated from the gut of adult abalones, which mainly feed on brown algae. Among them, 100 alginate-degrading strains were gained and the majority belonged to the Gammaproteobacteria, followed by the Bacteroidetes and Alphaproteobacteria. A marine bacterium, Agarivorans sp. B2Z047, had the strongest degradation ability of alginate with the largest degradation circle and the highest enzyme activity. The optimal alginate lyase production medium of strain B2Z047 was determined as 1.1% sodium alginate, 0.3% yeast extract, 1% NaCl, and 0.1% MgSO4 in artificial seawater (pH 7.0). Cells of strain B2Z047 were Gram-stain-negative, aerobic, motile by flagella, short rod-shaped, and approximately 0.7-0.9 µm width and 1.2-1.9 µm length. The optimal growth conditions were determined to be at 30 °C, pH 7.0-8.0, and in 3% (w/v) NaCl. A total of 12 potential alginate lyase genes were identified through whole genome sequencing and prediction, which belonged to polysaccharide lyase family 6, 7, 17, and 38 (PL6, PL7, PL17, and PL38, respectively). Furthermore, the degradation products of nine alginate lyases were detected, among which Aly38A was the first alginate lyase belonging to the PL38 family that has been found to degrade alginate. The combination of alginate lyases functioning in the alginate-degrading process was further demonstrated by the growth curve and alginate lyase production of strain B2Z047 cultivated with or without sodium alginate, as well as the content changes of total sugar and reducing sugar and the transcript levels of alginate lyase genes. A simplified model was proposed to explain the alginate utilization process of Agarivorans sp. B2Z047.
Collapse
Affiliation(s)
- Xun-Ke Sun
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
| | - Ya Gong
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Dan-Dan Shang
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
| | - Bang-Tao Liu
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Guan-Jun Chen
- Marine College, Shandong University, Weihai 264209, China; (X.-K.S.); (D.-D.S.); (B.-T.L.); (Z.-J.D.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
20
|
Cao S, Li Q, Xu Y, Tang T, Ning L, Zhu B. Evolving strategies for marine enzyme engineering: recent advances on the molecular modification of alginate lyase. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:106-116. [PMID: 37073348 PMCID: PMC10077200 DOI: 10.1007/s42995-021-00122-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 05/03/2023]
Abstract
Alginate, an acidic polysaccharide, is formed by β-d-mannuronate (M) and α-l-guluronate (G). As a type of polysaccharide lyase, alginate lyase can efficiently degrade alginate into alginate oligosaccharides, having potential applications in the food, medicine, and agriculture fields. However, the application of alginate lyase has been limited due to its low catalytic efficiency and poor temperature stability. In recent years, various structural features of alginate lyase have been determined, resulting in modification strategies that can increase the applicability of alginate lyase, making it important to summarize and discuss the current evidence. In this review, we summarized the structural features and catalytic mechanisms of alginate lyase. Molecular modification strategies, such as rational design, directed evolution, conserved domain recombination, and non-catalytic domain truncation, are also described in detail. Lastly, the application of alginate lyase is discussed. This comprehensive summary can inform future applications of alginate lyases.
Collapse
Affiliation(s)
- Shengsheng Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Yinxiao Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| | - Limin Ning
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
21
|
Tang L, Guo E, Zhang L, Wang Y, Gao S, Bao M, Han F, Yu W. The Function of CBM32 in Alginate Lyase VxAly7B on the Activity on Both Soluble Sodium Alginate and Alginate Gel. Front Microbiol 2022; 12:798819. [PMID: 35069502 PMCID: PMC8776709 DOI: 10.3389/fmicb.2021.798819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/29/2022] Open
Abstract
Carbohydrate-binding modules (CBMs), as an important auxiliary module, play a key role in degrading soluble alginate by alginate lyase, but the function on alginate gel has not been elucidated. Recently, we reported alginate lyase VxAly7B containing a CBM32 and a polysaccharide lyase family 7 (PL7). To investigate the specific function of CBM32, we characterized the full-length alginate lyase VxAly7B (VxAly7B-FL) and truncated mutants VxAly7B-CM (PL7) and VxAly7B-CBM (CBM32). Both VxAly7B-FL and native VxAly7B can spontaneously cleavage between CBM32 and PL7. The substrate-binding capacity and activity of VxAly7B-CM to soluble alginate were 0.86- and 1.97-fold those of VxAly7B-FL, respectively. Moreover, CBM32 could accelerate the expansion and cleavage of alginate gel beads, and the degradation rate of VxAly7B-FL to alginate gel beads was threefold that of VxAly7B-CM. Results showed that CBM32 is not conducive to the degradation of soluble alginate by VxAly7B but is helpful for binding and degradation of insoluble alginate gel. This study provides new insights into the function of CBM32 on alginate gel, which may inspire the application strategy of CBMs in insoluble substrates.
Collapse
Affiliation(s)
- Luyao Tang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Enwen Guo
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ying Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Gao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengmeng Bao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Key Laboratory of Marine Drugs, Ministry of Education, Qingdao, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Thomas F, Le Duff N, Wu TD, Cébron A, Uroz S, Riera P, Leroux C, Tanguy G, Legeay E, Guerquin-Kern JL. Isotopic tracing reveals single-cell assimilation of a macroalgal polysaccharide by a few marine Flavobacteria and Gammaproteobacteria. THE ISME JOURNAL 2021; 15:3062-3075. [PMID: 33953365 PMCID: PMC8443679 DOI: 10.1038/s41396-021-00987-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 02/03/2023]
Abstract
Algal polysaccharides constitute a diverse and abundant reservoir of organic matter for marine heterotrophic bacteria, central to the oceanic carbon cycle. We investigated the uptake of alginate, a major brown macroalgal polysaccharide, by microbial communities from kelp-dominated coastal habitats. Congruent with cell growth and rapid substrate utilization, alginate amendments induced a decrease in bacterial diversity and a marked compositional shift towards copiotrophic bacteria. We traced 13C derived from alginate into specific bacterial incorporators and quantified the uptake activity at the single-cell level, using halogen in situ hybridization coupled to nanoscale secondary ion mass spectrometry (HISH-SIMS) and DNA stable isotope probing (DNA-SIP). Cell-specific alginate uptake was observed for Gammaproteobacteria and Flavobacteriales, with carbon assimilation rates ranging from 0.14 to 27.50 fg C µm-3 h-1. DNA-SIP revealed that only a few initially rare Flavobacteriaceae and Alteromonadales taxa incorporated 13C from alginate into their biomass, accounting for most of the carbon assimilation based on bulk isotopic measurements. Functional screening of metagenomic libraries gave insights into the genes of alginolytic Alteromonadales active in situ. These results highlight the high degree of niche specialization in heterotrophic communities and help constraining the quantitative role of polysaccharide-degrading bacteria in coastal ecosystems.
Collapse
Affiliation(s)
- François Thomas
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France.
| | - Nolwen Le Duff
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Ting-Di Wu
- Institut Curie, Université Paris-Saclay, Paris, France
- Université Paris-Saclay, INSERM US43, CNRS UMS2016, Multimodal Imaging Center, Orsay, France
| | | | - Stéphane Uroz
- Université de Lorraine, INRAE, UMR1136 « Interactions Arbres-Microorganismes », Champenoux, France
| | - Pascal Riera
- Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff (SBR), Roscoff, France
| | - Cédric Leroux
- CNRS, Sorbonne Université, FR2424, Metabomer, Station Biologique de Roscoff, Roscoff, France
| | - Gwenn Tanguy
- CNRS, Sorbonne Université, FR2424, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Erwan Legeay
- CNRS, Sorbonne Université, FR2424, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Luc Guerquin-Kern
- Institut Curie, Université Paris-Saclay, Paris, France
- Université Paris-Saclay, INSERM US43, CNRS UMS2016, Multimodal Imaging Center, Orsay, France
| |
Collapse
|
23
|
Meng Q, Zhou L, Hassanin HA, Jiang B, Liu Y, Chen J, Zhang T. A new role of family 32 carbohydrate binding module in alginate lyase from Vibrio natriegens SK42.001 in altering its catalytic activity, thermostability and product distribution. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Zhang K, Yang Y, Wang W, Liu W, Lyu Q. Substrate-Binding Mode and Intermediate-Product Distribution Coguided Protein Design of Alginate Lyase AlyF for Altered End-Product Distribution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7190-7198. [PMID: 34133153 DOI: 10.1021/acs.jafc.1c02473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, we reported alginate lyase AlyF that predominantly produced trisaccharides (the trisaccharide content is 87.0%), and the determination of its substrate-binding mode facilitated its protein engineering for new product distribution. To clarify the relationship between the substrate-binding pocket and end-product distribution, the open binding pocket change was initially designed. The resulting F128T_W172R mutant of AlyF exhibited different intermediate-product distributions but still similar end-product distributions. However, these observations suggested that cleavage pattern changes for intermediate products might contribute to an altered end-product distribution. Structural analysis indicated that the sugar-binding affinity at subsite -2 should be redesigned to achieve this goal. Thus, residue Arg266, which is involved in sugar binding at subsite -2, was selected for site-saturation mutagenesis in the F128T_W172R mutant. The dominant end products of the F128T_W172R_R226H mutant were altered to disaccharides and trisaccharides (the disaccharide content increased to 40.5%).
Collapse
Affiliation(s)
- Keke Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yan Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Weizhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| | - Qianqian Lyu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China
| |
Collapse
|
25
|
Li Q, Zheng L, Guo Z, Tang T, Zhu B. Alginate degrading enzymes: an updated comprehensive review of the structure, catalytic mechanism, modification method and applications of alginate lyases. Crit Rev Biotechnol 2021; 41:953-968. [PMID: 34015998 DOI: 10.1080/07388551.2021.1898330] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Alginate, a kind of linear acidic polysaccharide, consists of α-L-guluronate (G) and β-D-mannuronate (M). Both alginate and its degradation products (alginate oligosaccharides) possess abundant biological activities such as antioxidant activity, antitumor activity, and antimicrobial activity. Therefore, alginate and alginate oligosaccharides have great value in food, pharmaceutical, and agricultural fields. Alginate lyase can degrade alginate into alginate oligosaccharides via the β-elimination reaction. It plays an important role in marine carbon recycling and the deep utilization of brown algae. Elucidating the structural features of alginate lyase can improve our knowledge of its catalytic mechanisms. With the development of structural analysis techniques, increasing numbers of alginate lyases have been characterized at the structural level. Hence, it is essential and helpful to summarize and discuss the up-to-date findings. In this review, we have summarized progress on the structural features and the catalytic mechanisms of alginate lyases. Furthermore, the molecular modification strategies and the applications of alginate lyases have also been discussed. This comprehensive information should be helpful to expand the applications of alginate lyases.
Collapse
Affiliation(s)
- Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Ling Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zilong Guo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
26
|
Li Q, Jiang C, Tan H, Zhao X, Li K, Yin H. Characterization of recombinant E. coli expressing a novel fucosidase from Bacillus cereus 2-8 belonging to GH95 family. Protein Expr Purif 2021; 186:105897. [PMID: 33991676 DOI: 10.1016/j.pep.2021.105897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/09/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
Fucoidan oligosaccharides possesses diverse physicochemical and biological activities. Specific glycoside hydrolases are valuable tools for degrading polysaccharides to produce oligosaccharides. In this study, BcFucA, a novel fucosidase belonging to GH95 family from Bacillus cereus 2-8, was cloned into pET21a vector, expressed in E. coli BL21 (DE3) and characterized. The protein consists of 1136 amino acid residues encoded by 3411 bases and has a molecular weight of 125.35 kDa. The optimal temperature and pH of this enzyme are 50 °C and pH 4.0. In addition, this study showed that the unknown function domain (encoding Lys261-Thr681) defined as a linker is quite important for its activity. The obtained novel enzyme BcFucA will contribute to the effective degradation of fucoidan and future industrial applications.
Collapse
Affiliation(s)
- Qian Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, Dalian, 116023, China; Department of Food Science and Engineering, Dalian Ocean University, Dalian, 116023, China
| | - Chaofeng Jiang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haidong Tan
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, Dalian, 116023, China
| | - Xiaoming Zhao
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, Dalian, 116023, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, Dalian, 116023, China.
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, CAS, Dalian, 116023, China.
| |
Collapse
|
27
|
Mahajan S, Ramya TNC. Cellulophaga algicola alginate lyase inhibits biofilm formation of a clinical Pseudomonas aeruginosa strain MCC 2081. IUBMB Life 2020; 73:444-462. [PMID: 33350564 DOI: 10.1002/iub.2442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022]
Abstract
Alginate lyases are potential agents for disrupting alginate-rich Pseudomonas biofilms in the infected lungs of cystic fibrosis patients but there is as yet no clinically approved alginate lyase that can be used as a therapeutic. We report here the endolytic alginate lyase activity of a recombinant Cellulophaga algicola alginate lyase domain (CaAly) encoded by a gene that also codes for an N-terminal carbohydrate-binding module, CBM6, and a central F-type lectin domain (CaFLD). CaAly degraded both polyM and polyG alginates with optimal temperature and pH of 37°C and pH 7, respectively, with greater preference for polyG. Recombinant CaFLD bound to fucosylated glycans with a preference for H-type 2 glycan motif, and did not have any apparent effect on the enzyme activity of the co-associated alginate lyase domain in the recombinant protein construct, CaFLD_Aly. We assessed the potential of CaAly and other alginate lyases previously reported in published literature to inhibit biofilm formation by a clinical strain, Pseudomonas aeruginosa MCC 2081. Of all the alginate lyases tested, CaAly displayed most inhibition of in vitro biofilm formation on plastic surfaces. We also assessed its inhibitory ability against P. aeruginosa 2081 biofilms formed over a monolayer of A549 lung epithelial cells. Our study indicated that CaAly is efficacious in inhibition of biofilm formation even on A549 lung epithelial cell line monolayers.
Collapse
Affiliation(s)
- Sonal Mahajan
- Protein Science and Engineering Department, Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
28
|
Structural basis for binding uronic acids by family 32 carbohydrate-binding modules. Biochem Biophys Res Commun 2020; 533:257-261. [PMID: 33010888 DOI: 10.1016/j.bbrc.2020.09.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/24/2022]
Abstract
The alginate lyase AlyQ from Persicobacter sp. CCB-QB2 is a three-domained enzyme with a carbohydrate-binding module (CBM) from family 32. The CBM32 domain, AlyQB, binds enzymatically cleaved but not intact alginate. Co-crystallisation of AlyQB with the cleaved alginate reveals that it binds to the 4,5-unsaturated mannuronic acid of the non-reducing end. The binding pocket contains a conserved R248 that interacts with the sugar's carboxyl group, as well as an invariant W303 that stacks against the unsaturated pyranose ring. Targeting specifically the non-reducing end is more efficient than the reducing end since the latter consists of a mixture of mannuronic acid and guluronic acid. AlyQB also seems unable to bind these two saturated sugars as they contain OH groups that will clash with the pocket. Docking analysis of YeCBM32, which binds oligogalacturonic acid, shows that the stacking of the pyranose ring is shifted in order to accommodate the sugar's axial C1-OH, and its R69 is accordingly elevated to bind the sugar's carboxyl group. Unlike AlyQB, YeCBM32's binding pocket is able to accommodate both saturated and unsaturated galacturonic acid.
Collapse
|
29
|
Chettri D, Verma AK, Verma AK. Innovations in CAZyme gene diversity and its modification for biorefinery applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00525. [PMID: 32963975 PMCID: PMC7490808 DOI: 10.1016/j.btre.2020.e00525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
For sustainable growth, concept of biorefineries as recourse to the "fossil derived" energy source is important. Here, the Carbohydrate Active enZymes (CAZymes) play decisive role in generation of biofuels and related sugar-based products utilizing lignocellulose as a carbon source. Given their industrial significance, extensive studies on the evolution of CAZymes have been carried out. Various bacterial and fungal organisms have been scrutinized for the development of CAZymes, where advance techniques for strain enhancement such as CRISPR and analysis of specific expression systems have been deployed. Specific Omic-based techniques along with protein engineering have been adopted to unearth novel CAZymes and improve applicability of existing enzymes. In-Silico computational research and functional annotation of new CAZymes to synergy experiments are being carried out to devise cocktails of enzymes for use in biorefineries. Thus, with the establishment of these technologies, increased diversity of CAZymes with broad span of functions and applications is seen.
Collapse
|
30
|
Hu F, Cao S, Li Q, Zhu B, Yao Z. Construction and biochemical characterization of a novel hybrid alginate lyase with high activity by module recombination to prepare alginate oligosaccharides. Int J Biol Macromol 2020; 166:1272-1279. [PMID: 33159942 DOI: 10.1016/j.ijbiomac.2020.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023]
Abstract
Alginate lyases are essential tools to prepare alginate oligosaccharides with various biological activities. However, alginate lyases with excellent properties such as high activity and good thermal stability are still in shortage. Therefore, it is crucial to exploit new alginate lyases with high activity and polysaccharide-degrading efficiency for alginate oligosaccharide preparation. Herein, we proposed to construct a novel hybrid alginate lyase with improved property by module recombination. The hybrid alginate lyase, designated as Aly7C, was successfully constructed by recombining the carbohydrate binding module (CBM) of Aly7A with the catalytic module of Aly7B. Interestingly, the hybrid enzyme Aly7C exhibited higher activity than the catalytic domain. Moreover, it could degrade sodium alginate, polyM and polyG into oligosaccharides with degrees of polymerization (Dps) 2-5, which exhibit perfect product specificity. This work provides a new insight into well-defined generation of alginate oligosaccharides with associated CBMs and enhances the understanding of functions of the modules.
Collapse
Affiliation(s)
- Fu Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shengsheng Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
31
|
Elucidation of a Unique Pattern and the Role of Carbohydrate Binding Module of an Alginate Lyase. Mar Drugs 2019; 18:md18010032. [PMID: 31905894 PMCID: PMC7024192 DOI: 10.3390/md18010032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Alginate oligosaccharides with different degrees of polymerization (DPs) possess diverse physiological activities. Therefore, in recent years, increasing attention has been drawn to the use of enzymes for the preparation of alginate oligosaccharides for food and industrial applications. Previously, we identified and characterized a novel bifunctional alginate lyase Aly7A, which can specifically release trisaccharide from three different substrate types with a unique degradation pattern. Herein, we investigated its degradation pattern by modular truncation and molecular docking. The results suggested that Aly7A adopted a unique action mode towards different substrates with the substrate chain sliding into the binding pocket of the catalytic domain to position the next trisaccharide for cleavage. Deletion of the Aly7A carbohydrate binding module (CBM) domain resulted in a complex distribution of degradation products and no preference for trisaccharide formation, indicating that the CBM may act as a “controller” during the trisaccharide release process. This study further testifies CBM as a regulator of product distribution and provides new insights into well-defined generation of alginate oligosaccharides with associated CBMs.
Collapse
|
32
|
Zhang Z, Tang L, Bao M, Liu Z, Yu W, Han F. Functional Characterization of Carbohydrate-Binding Modules in a New Alginate Lyase, TsAly7B, from Thalassomonas sp. LD5. Mar Drugs 2019; 18:md18010025. [PMID: 31888109 PMCID: PMC7024181 DOI: 10.3390/md18010025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
Alginate lyases degrade alginate into oligosaccharides, of which the biological activities have vital roles in various fields. Some alginate lyases contain one or more carbohydrate-binding modules (CBMs), which assist the function of the catalytic modules. However, the precise function of CBMs in alginate lyases has yet to be fully elucidated. We have identified a new multi-domain alginate lyase, TsAly7B, in the marine bacterium Thalassomonas sp. LD5. This novel lyase contains an N-terminal CBM9, an internal CBM32, and a C-terminal polysaccharide lyase family 7 (PL7) catalytic module. To investigate the specific function of each of these CBMs, we expressed and characterized the full-length TsAly7B and three truncated mutants: TM1 (CBM32-PL7), TM2 (CBM9-PL7), and TM3 (PL7 catalytic module). CBM9 and CBM32 could enhance the degradation of alginate. Notably, the specific activity of TM2 was 7.6-fold higher than that of TM3. CBM32 enhanced the resistance of the catalytic module to high temperatures. In addition, a combination of CBM9 and CBM32 showed enhanced thermostability when incubated at 80 °C for 1 h. This is the first report that finds CBM9 can significantly improve the ability of enzyme degradation. Our findings provide new insight into the interrelationships of tandem CBMs and alginate lyases and other polysaccharide-degrading enzymes, which may inspire CBM fusion strategies.
Collapse
Affiliation(s)
- Zhelun Zhang
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Luyao Tang
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mengmeng Bao
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhigang Liu
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (W.Y.); (F.H.); Tel.: +86-532-82032067 (F.H.)
| | - Feng Han
- Key Laboratory of Marine Drugs (Ministry of Education), Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Z.Z.); (L.T.); (M.B.); (Z.L.)
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: (W.Y.); (F.H.); Tel.: +86-532-82032067 (F.H.)
| |
Collapse
|
33
|
Ji S, Dix SR, Aziz AA, Sedelnikova SE, Baker PJ, Rafferty JB, Bullough PA, Tzokov SB, Agirre J, Li FL, Rice DW. The molecular basis of endolytic activity of a multidomain alginate lyase from Defluviitalea phaphyphila, a representative of a new lyase family, PL39. J Biol Chem 2019; 294:18077-18091. [PMID: 31624143 DOI: 10.1074/jbc.ra119.010716] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Alginate is a polymer containing two uronic acid epimers, β-d-mannuronate (M) and α-l-guluronate (G), and is a major component of brown seaweed that is depolymerized by alginate lyases. These enzymes have diverse specificity, cleaving the chain with endo- or exotype activity and with differential selectivity for the sequence of M or G at the cleavage site. Dp0100 is a 201-kDa multimodular, broad-specificity endotype alginate lyase from the marine thermophile Defluviitalea phaphyphila, which uses brown algae as a carbon source, converting it to ethanol, and bioinformatics analysis suggested that its catalytic domain represents a new polysaccharide lyase family, PL39. The structure of the Dp0100 catalytic domain, determined at 2.07 Å resolution, revealed that it comprises three regions strongly resembling those of the exotype lyase families PL15 and PL17. The conservation of key catalytic histidine and tyrosine residues belonging to the latter suggests these enzymes share mechanistic similarities. A complex of Dp0100 with a pentasaccharide, M5, showed that the oligosaccharide is located in subsites -2, -1, +1, +2, and +3 in a long, deep canyon open at both ends, explaining the endotype activity of this lyase. This contrasted with the hindered binding sites of the exotype enzymes, which are blocked such that only one sugar moiety can be accommodated at the -1 position in the catalytic site. The biochemical and structural analyses of Dp0100, the first for this new class of endotype alginate lyases, have furthered our understanding of the structure-function and evolutionary relationships within this important class of enzymes.
Collapse
Affiliation(s)
- Shiqi Ji
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101 Qingdao, China
| | - Samuel R Dix
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Adli A Aziz
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Svetlana E Sedelnikova
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Patrick J Baker
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - John B Rafferty
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Per A Bullough
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Svetomir B Tzokov
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington YO10 5DD, York, United Kingdom
| | - Fu-Li Li
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuel, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, 266101 Qingdao, China
| | - David W Rice
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, S10 2TN Sheffield, United Kingdom.
| |
Collapse
|
34
|
Zhu B, Li K, Wang W, Ning L, Tan H, Zhao X, Yin H. Preparation of trisaccharides from alginate by a novel alginate lyase Alg7A from marine bacterium Vibrio sp. W13. Int J Biol Macromol 2019; 139:879-885. [DOI: 10.1016/j.ijbiomac.2019.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/24/2019] [Accepted: 08/01/2019] [Indexed: 01/18/2023]
|
35
|
Lyu Q, Zhang K, Shi Y, Li W, Diao X, Liu W. Structural insights into a novel Ca2+-independent PL-6 alginate lyase from Vibrio OU02 identify the possible subsites responsible for product distribution. Biochim Biophys Acta Gen Subj 2019; 1863:1167-1176. [DOI: 10.1016/j.bbagen.2019.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
|
36
|
Koch H, Freese HM, Hahnke RL, Simon M, Wietz M. Adaptations of Alteromonas sp. 76-1 to Polysaccharide Degradation: A CAZyme Plasmid for Ulvan Degradation and Two Alginolytic Systems. Front Microbiol 2019; 10:504. [PMID: 30936857 PMCID: PMC6431674 DOI: 10.3389/fmicb.2019.00504] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/27/2019] [Indexed: 11/16/2022] Open
Abstract
Studying the physiology and genomics of cultured hydrolytic bacteria is a valuable approach to decipher the biogeochemical cycling of marine polysaccharides, major nutrients derived from phytoplankton and macroalgae. We herein describe the profound potential of Alteromonas sp. 76-1, isolated from alginate-enriched seawater at the Patagonian continental shelf, to degrade the algal polysaccharides alginate and ulvan. Phylogenetic analyses indicated that strain 76-1 might represent a novel species, distinguished from its closest relative (Alteromonas naphthalenivorans) by adaptations to their contrasting habitats (productive open ocean vs. coastal sediments). Ecological distinction of 76-1 was particularly manifested in the abundance of carbohydrate-active enzymes (CAZymes), consistent with its isolation from alginate-enriched seawater and elevated abundance of a related OTU in the original microcosm. Strain 76-1 encodes multiple alginate lyases from families PL6, PL7, PL17, and PL18 largely contained in two polysaccharide utilization loci (PUL), which may facilitate the utilization of different alginate structures in nature. Notably, ulvan degradation relates to a 126 Kb plasmid dedicated to polysaccharide utilization, encoding several PL24 and PL25 ulvan lyases and monomer-processing genes. This extensive and versatile CAZyme repertoire allowed substantial growth on polysaccharides, showing comparable doubling times with alginate (2 h) and ulvan (3 h) in relation to glucose (3 h). The finding of homologous ulvanolytic systems in distantly related Alteromonas spp. suggests CAZyme plasmids as effective vehicles for PUL transfer that mediate niche gain. Overall, the demonstrated CAZyme repertoire substantiates the role of Alteromonas in marine polysaccharide degradation and how PUL exchange influences the ecophysiology of this ubiquitous marine taxon.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heike M. Freese
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Richard L. Hahnke
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
37
|
Pei X, Chang Y, Shen J. Cloning, expression and characterization of an endo-acting bifunctional alginate lyase of marine bacterium Wenyingzhuangia fucanilytica. Protein Expr Purif 2018; 154:44-51. [PMID: 30248453 DOI: 10.1016/j.pep.2018.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 11/15/2022]
Abstract
Alginate is the major constituent of brown algae and a commercially important polysaccharide with wide applications. Alginate lyases are desired tools for degrading alginate. Based on the genome mining of marine bacterium Wenyingzhuangia funcanilytica, an alginate lyase Aly7B_Wf was discovered, cloned and expressed in Escherichia coli. Aly7B_Wf belonged to subfamily 6 of PL7 family. Its biochemical properties, kinetic constants, substrate specificity and degradation pattern were clarified. The enzyme is an endo-acting bifunctional alginate lyase, and preferably cleaved polymannuronate (polyM). The Km (0.0237 ± 0.0004 μM, 0.0105 ± 0.0002 mg/mL) and kcat/Km (1180.65 ± 19.81 μM-1 s-1, 2654.34 ± 44.54 mg-1 ml s-1) indicated relatively high substrate-binding affinity and catalysis efficiency of Aly7B_Wf. By using mass spectrometry, final products of alginate degraded by Aly7B_Wf were identified as alginate hexasaccharide to disaccharide, and final products of polyguluronate (polyG) and polyM were confirmed as tetrasaccharide to disaccharide. The most predominant oligosaccharide in the final products of polyG and polyM was trisaccharide and disaccharide respectively. The broad substrate specificity, endo-acting degradation pattern and high catalysis efficiency suggested that Aly7B_Wf could be utilizied as a potential tool for tailoring the size of alginate and preparing alginate oligosaccharides.
Collapse
Affiliation(s)
- Xiaojie Pei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
38
|
Zhuang J, Zhang K, Liu X, Liu W, Lyu Q, Ji A. Characterization of a Novel PolyM-Preferred Alginate Lyase from Marine Vibrio splendidus OU02. Mar Drugs 2018; 16:md16090295. [PMID: 30135412 PMCID: PMC6165035 DOI: 10.3390/md16090295] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
Alginate lyases are enzymes that degrade alginate into oligosaccharides which possess a variety of biological activities. Discovering and characterizing novel alginate lyases has great significance for industrial and medical applications. In this study, we reported a novel alginate lyase, AlyA-OU02, derived from the marine Vibrio splendidus OU02. The BLASTP searches showed that AlyA-OU02 belonged to polysaccharide lyase family 7 (PL7) and contained two consecutive PL7 domains, which was rare among the alginate lyases in PL7 family. Both the two domains, AlyAa and AlyAb, had lyase activities, while AlyAa exhibited polyM preference, and AlyAb was polyG-preferred. In addition, the enzyme activity of AlyAa was much higher than AlyAb at 25 °C. The full-length enzyme of AlyA-OU02 showed polyM preference, which was the same as AlyAa. AlyAa degraded alginate into di-, tri-, and tetra-alginate oligosaccharides, while AlyAb degraded alginate into tri-, tetra-, and penta-alginate oligosaccharides. The degraded products of AlyA-OU02 were similar to AlyAa. Our work provided a potential candidate in the application of alginate oligosaccharide production and the characterization of the two domains might provide insights into the use of alginate of this organism.
Collapse
Affiliation(s)
| | - Keke Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Xiaohua Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Weizhi Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Qianqian Lyu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China.
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
39
|
Lin JD, Lemay MA, Parfrey LW. Diverse Bacteria Utilize Alginate Within the Microbiome of the Giant Kelp Macrocystis pyrifera. Front Microbiol 2018; 9:1914. [PMID: 30177919 PMCID: PMC6110156 DOI: 10.3389/fmicb.2018.01914] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Bacteria are integral to marine carbon cycling. They transfer organic carbon to higher trophic levels and remineralise it into inorganic forms. Kelp forests are among the most productive ecosystems within the global oceans, yet the diversity and metabolic capacity of bacteria that transform kelp carbon is poorly understood. Here, we use 16S amplicon and metagenomic shotgun sequencing to survey bacterial communities associated with the surfaces of the giant kelp Macrocystis pyrifera and assess the capacity of these bacteria for carbohydrate metabolism. We find that Macrocystis-associated communities are distinct from the water column, and that they become more diverse and shift in composition with blade depth, which is a proxy for tissue age. These patterns are also observed in metagenomic functional profiles, though the broader functional groups—carbohydrate active enzyme families—are largely consistent across samples and depths. Additionally, we assayed more than 250 isolates cultured from Macrocystis blades and the surrounding water column for the ability to utilize alginate, the primary polysaccharide in Macrocystis tissue. The majority of cultured bacteria (66%) demonstrated this capacity; we find that alginate utilization is patchily distributed across diverse genera in the Bacteroidetes and Proteobacteria, yet can also vary between isolates with identical 16S rRNA sequences. The genes encoding enzymes involved in alginate metabolism were detected in metagenomic data across taxonomically diverse bacterial communities, further indicating this capacity is likely widespread amongst bacteria in kelp forests. Overall, the M. pyrifera epibiota shifts across a depth gradient, demonstrating a connection between bacterial assemblage and host tissue state.
Collapse
Affiliation(s)
- Jordan D Lin
- Department of Botany, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | - Matthew A Lemay
- Department of Botany, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Heriot Bay, BC, Canada
| | - Laura W Parfrey
- Department of Botany, Biodiversity Research Centre, The University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Heriot Bay, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|