1
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
2
|
Shakya G, Cattaneo M, Guerriero G, Prasanna A, Fiorini S, Supponen O. Ultrasound-responsive microbubbles and nanodroplets: A pathway to targeted drug delivery. Adv Drug Deliv Rev 2024; 206:115178. [PMID: 38199257 DOI: 10.1016/j.addr.2023.115178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Ultrasound-responsive agents have shown great potential as targeted drug delivery agents, effectively augmenting cell permeability and facilitating drug absorption. This review focuses on two specific agents, microbubbles and nanodroplets, and provides a sequential overview of their drug delivery process. Particular emphasis is given to the mechanical response of the agents under ultrasound, and the subsequent physical and biological effects on the cells. Finally, the state-of-the-art in their pre-clinical and clinical implementation are discussed. Throughout the review, major challenges that need to be overcome in order to accelerate their clinical translation are highlighted.
Collapse
Affiliation(s)
- Gazendra Shakya
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Marco Cattaneo
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Giulia Guerriero
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Anunay Prasanna
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Samuele Fiorini
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland
| | - Outi Supponen
- Institute of Fluid Dynamics, D-MAVT, Sonneggstrasse 3, ETH Zurich, Zurich, 8092, Switzerland.
| |
Collapse
|
3
|
Abdulazeez I, Alrajjal AS, Ganiyu S, Baig N, Salhi B, AbdElazem S. Facile engineering of mesoporous silica for the effective removal of anionic dyes from wastewater: Insights from DFT and experimental studies. Heliyon 2023; 9:e21356. [PMID: 37920496 PMCID: PMC10618791 DOI: 10.1016/j.heliyon.2023.e21356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
The discharge of dye effluents from the textile industries has become a major environmental issue due to its potential to impart serious harm to human health and aquatic life. Mesoporous silica due to its high chemical stability, large surface area, tunable morphologies, large pore volume and pore size and cost-effectiveness is commonly used to remove such dyes before recycling of the wastewater for agricultural, domestic, and industrial applications. However, the low colloidal stability, the fast aggregation of the silica particles and the slow etching of the silica surface often results in the fast deactivation of the adsorbents and limits their long-term applications. In this study, we report the functionalization of mesoporous silica (SBA-15) with ZnO nanoparticles for the effective removal of anionic dyes. The Zn-silica exhibited highly positive surface with a dipole moment of 172 Debye and high charge transfer efficacy with an energy bandgap (ΔE) of 3.35 eV as revealed by quantum chemical DFT simulations. It achieved excellent removal of Alizarin red dye reaching a removal efficiency of 99.99 % and an adsorption capacity of 50 mg/g. In the presence of heavy metal ions commonly present in wastewater (Cd2+, Co2+, Zn2+, Ni2+, Cu2+ and Hg2+), the Zn-silica maintain excellent stability, high selectivity, and reusability within 5 cycles without a significant decline in efficiency. This study thus presents an effective way of wastewater purification on cost-effective adsorbents for meeting the water scarcity demands.
Collapse
Affiliation(s)
- Ismail Abdulazeez
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Ali S. Alrajjal
- Aerospace Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Saheed Ganiyu
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Billel Salhi
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Sohaib AbdElazem
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Adam A, Mertz D. Iron Oxide@Mesoporous Silica Core-Shell Nanoparticles as Multimodal Platforms for Magnetic Resonance Imaging, Magnetic Hyperthermia, Near-Infrared Light Photothermia, and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1342. [PMID: 37110927 PMCID: PMC10145772 DOI: 10.3390/nano13081342] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The design of core-shell nanocomposites composed of an iron oxide core and a silica shell offers promising applications in the nanomedicine field, especially for developing efficient theranostic systems which may be useful for cancer treatments. This review article addresses the different ways to build iron oxide@silica core-shell nanoparticles and it reviews their properties and developments for hyperthermia therapies (magnetically or light-induced), combined with drug delivery and MRI imaging. It also highlights the various challenges encountered, such as the issues associated with in vivo injection in terms of NP-cell interactions or the control of the heat dissipation from the core of the NP to the external environment at the macro or nanoscale.
Collapse
|
5
|
Mezghrani B, Ali LMA, Jakimoska S, Cunin F, Hesemann P, Durand JO, Bettache N. Periodic Mesoporous Ionosilica Nanoparticles for BODIPY Delivery and Photochemical Internalization of siRNA. Chempluschem 2023; 88:e202300021. [PMID: 36779542 DOI: 10.1002/cplu.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/14/2023]
Abstract
Periodic Mesoporous Ionosilica Nanoparticles (PMINPs) made via co-condensation reactions starting from an ionosilica precursor and a porphyrin derivative were used for simultaneous BODIPY/siRNA delivery in cancer cells. We observed high BODIPY loading capacities and efficiencies of the PMINPs that are triggered by anion exchange. siRNA adsorption took place on the surface of the nanoparticles, whereas BODIPY was encapsulated within the core of the nanoparticles. BODIPY release was found to be pH-dependent. Our results indicate 94 % BODIPY release after 16 h at pH 4, whereas only 2 % were released at pH 7.4. Furthermore, complexation with siRNA against luciferase gene was observed at the surface of PMINPs and gene silencing through its delivery via photochemical internalization (PCI) mechanism was efficient in MDA-MB-231 breast cancer cells expressing stable luciferase.
Collapse
Affiliation(s)
- Braham Mezghrani
- IBMM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
- ICGM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| | - Lamiaa M A Ali
- IBMM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
- Department of Biochemistry Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sara Jakimoska
- IBMM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| | - Frédérique Cunin
- ICGM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| | - Peter Hesemann
- ICGM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| | - Jean-Olivier Durand
- ICGM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| | - Nadir Bettache
- IBMM, Univ. Montpellier-CNRS-ENSCM, 1919, route de Mende, 34293, Montpellier Cedex 05, France
| |
Collapse
|
6
|
Trzeciak K, Chotera-Ouda A, Bak-Sypien II, Potrzebowski MJ. Mesoporous Silica Particles as Drug Delivery Systems-The State of the Art in Loading Methods and the Recent Progress in Analytical Techniques for Monitoring These Processes. Pharmaceutics 2021; 13:pharmaceutics13070950. [PMID: 34202794 PMCID: PMC8309060 DOI: 10.3390/pharmaceutics13070950] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Conventional administration of drugs is limited by poor water solubility, low permeability, and mediocre targeting. Safe and effective delivery of drugs and therapeutic agents remains a challenge, especially for complex therapies, such as cancer treatment, pain management, heart failure medication, among several others. Thus, delivery systems designed to improve the pharmacokinetics of loaded molecules, and allowing controlled release and target specific delivery, have received considerable attention in recent years. The last two decades have seen a growing interest among scientists and the pharmaceutical industry in mesoporous silica nanoparticles (MSNs) as drug delivery systems (DDS). This interest is due to the unique physicochemical properties, including high loading capacity, excellent biocompatibility, and easy functionalization. In this review, we discuss the current state of the art related to the preparation of drug-loaded MSNs and their analysis, focusing on the newest advancements, and highlighting the advantages and disadvantages of different methods. Finally, we provide a concise outlook for the remaining challenges in the field.
Collapse
|
7
|
Alhalmi A, Beg S, Kohli K, Waris M, Singh T. Nanotechnology Based Approach for Hepatocellular Carcinoma Targeting. Curr Drug Targets 2021; 22:779-792. [PMID: 33302831 DOI: 10.2174/1389450121999201209194524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is the primary liver cancer that has shown a high incidence and mortality rate worldwide among several types of cancers. A large variety of chemotherapeutic agents employed for the treatment have a limited success rate owing to their limited site-specific drug targeting ability. Thus, there is a demand to develop novel approaches for the treatment of HCC. With advancements in nanotechnology-based drug delivery approaches, the challenges of conventional chemotherapy have been continuously decreasing. Nanomedicines constituted of lipidic and polymeric composites provide a better platform for delivering and opening new pathways for HCC treatment. A score of nanocarriers such as surface-engineered liposomes, nanoparticles, nanotubes, micelles, quantum dots, etc., has been investigated in the treatment of HCC. These nanocarriers are considered to be highly effective clinically for delivering chemotherapeutic drugs with high site-specificity ability and therapeutic efficiency. The present review highlights the current focus on the application of nanocarrier systems using various ligand-based receptor-specific targeting strategies for the treatment and management of HCC. Moreover, the article has also included information on the current clinically approved drug therapy for hepatocellular carcinoma treatment and updates of regulatory requirements for approval of such nanomedicines.
Collapse
Affiliation(s)
- Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Waris
- Department of Botany, Thakur Prasad Singh College, Patna, Magadh University, Bodh Gaya, India
| | - Tanuja Singh
- University Department of Botany, Patliputra University, Patna, Bihar, India
| |
Collapse
|
8
|
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. NATURE REVIEWS. MATERIALS 2021; 6:351-370. [PMID: 34950512 PMCID: PMC8691416 DOI: 10.1038/s41578-020-00269-6] [Citation(s) in RCA: 356] [Impact Index Per Article: 118.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Progress in the field of precision medicine has changed the landscape of cancer therapy. Precision medicine is propelled by technologies that enable molecular profiling, genomic analysis, and optimized drug design to tailor treatments for individual patients. Although precision medicines have resulted in some clinical successes, the use of many potential therapeutics has been hindered by pharmacological issues, including toxicities and drug resistance. Drug delivery materials and approaches have now advanced to a point where they can enable the modulation of a drug's pharmacological parameters without compromising the desired effect on molecular targets. Specifically, they can modulate a drug's pharmacokinetics, stability, absorption, and exposure to tumours and healthy tissues, and facilitate the administration of synergistic drug combinations. This Review highlights recent progress in precision therapeutics and drug delivery, and identifies opportunities for strategies to improve the therapeutic index of cancer drugs, and consequently, clinical outcomes.
Collapse
Affiliation(s)
- Mandana T. Manzari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- These authors have contributed equally to this work
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- These authors have contributed equally to this work
| | - Hiroto Kiguchi
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- These authors have contributed equally to this work
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
9
|
Nemec S, Kralj S. A Versatile Interfacial Coassembly Method for Fabrication of Tunable Silica Shells with Radially Aligned Dual Mesopores on Diverse Magnetic Core Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1883-1894. [PMID: 33389999 PMCID: PMC7883998 DOI: 10.1021/acsami.0c17863] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Anisotropic magnetic nanoparticles with a mesoporous silica shell have the combined merits of a magnetic core and a robust shell. Preparation of magnetically guidable core-shell nanostructures with a robust silica shell that contains well-defined, large, radially aligned silica pores is challenging, and hence this has rarely been described in detail. Herein, a dynamic soft-templating strategy is developed to controllably synthesize hierarchical, dual-mesoporous silica shells on diverse core nanoparticles, in terms of nanoparticle shape (i.e., spherical, chainlike, and disclike), magnetic properties (i.e., hard magnetic and superparamagnetic), and dimensions (i.e., from 3 nm to submicrometers). The developed interfacial coassembly method allows easy design of applicable silica shells containing tunable pore geometries with pore sizes ranging from below 5 nm to above 40 nm, with a specific surface area of 577 m2 g-1 and pore volume of 1.817 cm3 g-1. These are the highest values reported for magnetically guidable anisotropic nanoparticles. The versatility of the method is shown by transfer of the coating procedure to core particles as diverse as spherical superparamagnetic nanoparticles and their clusters as well as by ferromagnetic 3 nm thick hexaferrite nanoplatelets. This method can serve as a general approach for the fabrication of well-designed mesoporous silica coatings on a wide variety of core nanoparticles.
Collapse
Affiliation(s)
- Sebastjan Nemec
- Department
for Materials Synthesis, Jožef Stefan
Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Slavko Kralj
- Department
for Materials Synthesis, Jožef Stefan
Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
- Nanos
SCI, Nanos Scientificae d.o.o., Teslova 30, 1000 Ljubljana, Slovenia
- (S.K.)
| |
Collapse
|
10
|
Bizeau J, Mertz D. Design and applications of protein delivery systems in nanomedicine and tissue engineering. Adv Colloid Interface Sci 2021; 287:102334. [PMID: 33341459 DOI: 10.1016/j.cis.2020.102334] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Proteins are biological macromolecules involved in a wide range of biological functions, which makes them very appealing as therapeutics agents. Indeed, compared to small molecule drugs, their endogenous nature ensures their biocompatibility and biodegradability, they can be used in a large range of applications and present a higher specificity and activity. However, they suffer from unfolding, enzymatic degradation, short half-life and poor membrane permeability. To overcome such drawbacks, the development of protein delivery systems to protect, carry and deliver them in a controlled way have emerged importantly these last years. In this review, the formulation of a wide panel of protein delivery systems either in the form of polymer or inorganic nanoengineered colloids and scaffolds are presented and the protein loading and release mechanisms are addressed. A section is also dedicated to the detection of proteins and the characterization methods of their release. Then, the main protein delivery systems developed these last three years for anticancer, tissue engineering or diabetes applications are presented, as well as the major in vivo models used to test them. The last part of this review aims at presenting the perspectives of the field such as the use of protein-rich material or the sequestration of proteins. This part will also deal with less common applications and gene therapy as an indirect method to deliver protein.
Collapse
|
11
|
Singh B, Na J, Konarova M, Wakihara T, Yamauchi Y, Salomon C, Gawande MB. Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200136] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Department of Chemistry, Aveiro 3810-193, Portugal
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Muxina Konarova
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Toru Wakihara
- Graduate School of Engineering, The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo 169-0051, Japan
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Manoj B. Gawande
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna, 431203 Maharashtra, India
| |
Collapse
|
12
|
Szafraniec-Szczęsny J, Janik-Hazuka M, Odrobińska J, Zapotoczny S. Polymer Capsules with Hydrophobic Liquid Cores as Functional Nanocarriers. Polymers (Basel) 2020; 12:E1999. [PMID: 32887444 PMCID: PMC7565928 DOI: 10.3390/polym12091999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Recent developments in the fabrication of core-shell polymer nanocapsules, as well as their current and future applications, are reported here. Special attention is paid to the newly introduced surfactant-free fabrication method of aqueous dispersions of nanocapsules with hydrophobic liquid cores stabilized by amphiphilic copolymers. Various approaches to the efficient stabilization of such vehicles, tailoring their cores and shells for the fabrication of multifunctional, navigable nanocarriers and/or nanoreactors useful in various fields, are discussed. The emphasis is placed on biomedical applications of polymer nanocapsules, including the delivery of poorly soluble active compounds and contrast agents, as well as their use as theranostic platforms. Other methods of fabrication of polymer-based nanocapsules are briefly presented and compared in the context of their biomedical applications.
Collapse
Affiliation(s)
- Joanna Szafraniec-Szczęsny
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Małgorzata Janik-Hazuka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.J.-H.); (J.O.)
| | - Joanna Odrobińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.J.-H.); (J.O.)
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (M.J.-H.); (J.O.)
| |
Collapse
|
13
|
Duenas-Ramirez P, Bertagnolli C, Müller R, Sartori K, Boos A, Elhabiri M, Bégin-Colin S, Mertz D. Highly chelating stellate mesoporous silica nanoparticles for specific iron removal from biological media. J Colloid Interface Sci 2020; 579:140-151. [PMID: 32580084 DOI: 10.1016/j.jcis.2020.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
In this work, the design of a new generation of functionalized large pore silica nanoparticles is addressed for the specific removal of iron from biological environments. Herein, mesoporous silica with a large pore stellate morphology, denoted STMS, were grafted with the highly specific iron chelating agent desferrioxamine B, DFoB. The challenge of this work was the step by step elaboration of the nanoplatform and the evaluation of its chelating efficiency and selectivity. Hence, the controlled covalent grafting of DFoB specific iron chelator, was successfully achieved ensuring a high grafting rate of chelating ligand of 730 nmol·mg-1 (i.e., 0.85 ligand·nm-2). Furthermore, these highly chelating STMS silica were able to capture iron(III) stabilized with nitrilotriacetic acid (NTA) in solution at physiological pH with a fast kinetics (less than 30 min). For a stoichiometry 0.85:1 (FeNTA : DFoB), the STMS-DFoB nanoparticles allowed reaching capture capacity and efficiency of 480 nmolFe3+/mg SiO2 and 78%, respectively. Regarding the selectivity features of the removal process, studies were performed with two different media composed of various metal ions: (i) an equimolar solution of various metal cations and (ii) a Barth's buffer mimicking the brain solution composition. In both cases, the chelating STMS-DFoB showed a high selectivity for iron versus other ions at the same (Al3+) or different valency (Na+, K+…). Finally, this work paves the way for new nanosystems for metal overload treatments as well as for future highly chelating nanoplatforms that can be used at the interface between depollution and nanomedecine.
Collapse
Affiliation(s)
- Paula Duenas-Ramirez
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034 Strasbourg Cedex 2, France
| | - Caroline Bertagnolli
- Equipe de Reconnaissance et Procédés pour la Séparation Moléculaire (RePSeM), IPHC, UMR 7178 CNRS, Université de Strasbourg, ECPM, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Roxane Müller
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034 Strasbourg Cedex 2, France
| | - Kevin Sartori
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034 Strasbourg Cedex 2, France
| | - Anne Boos
- Equipe de Reconnaissance et Procédés pour la Séparation Moléculaire (RePSeM), IPHC, UMR 7178 CNRS, Université de Strasbourg, ECPM, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France
| | - Mourad Elhabiri
- Equipe de Chimie Bioorganique et Médicinale, Laboratoire d'Innovation Moléculaire et Applications (LIMA), UMR 7042, CNRS-ECPM-Université de Strasbourg-Université de Haute Alsace, 25 rue Becquerel, 67087 Strasbourg Cedex, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034 Strasbourg Cedex 2, France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, 23 rue du Lœss, BP 34 67034 Strasbourg Cedex 2, France.
| |
Collapse
|
14
|
Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. NANOMATERIALS 2020; 10:nano10050847. [PMID: 32354008 PMCID: PMC7711922 DOI: 10.3390/nano10050847] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Polymer-based nanocapsules have been widely studied as a potential drug delivery system in recent years. Nanocapsules-as one of kind nanoparticle-provide a unique nanostructure, consisting of a liquid/solid core with a polymeric shell. This is of increasing interest in drug delivery applications. In this review, nanocapsules delivery systems studied in last decade are reviewed, along with nanocapsule formulation, characterizations of physical/chemical/biologic properties and applications. Furthermore, the challenges and opportunities of nanocapsules applications are also proposed.
Collapse
|
15
|
Ménard M, Meyer F, Affolter-Zbaraszczuk C, Rabineau M, Adam A, Ramirez PD, Bégin-Colin S, Mertz D. Design of hybrid protein-coated magnetic core-mesoporous silica shell nanocomposites for MRI and drug release assessed in a 3D tumor cell model. NANOTECHNOLOGY 2019; 30:174001. [PMID: 30641488 DOI: 10.1088/1361-6528/aafe1c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we describe the design and the use of a novel theranostic hybrid nanocomposite made of an iron oxide core and a mesoporous silica shell (IO@MS) of ca. 30 nm coated by human serum albumin (HSA) layer for magnetic resonance imaging and drug delivery applications. The porosity of IO@MS nanoparticles was loaded with an antitumoral drug, Doxorubicin (Dox) reaching a high drug loading capacity (DLC) of 34 w%. To entrap the drug, a tight HSA coating held via isobutyramide (IBAM) binders was deposited. We show that this protein nanoassembly entraps the drugs efficiently and behaves as an innovative enzyme-sensitive gatekeeper that is degraded upon protease action. Finally we assess the Dox release in a 3D cell model via confocal imaging and its cytotoxicity is shown by growth inhibition studies on liver cancer cell spheroids.
Collapse
Affiliation(s)
- Mathilde Ménard
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, CNRS, Université de Strasbourg, 23, rue du Loess, BP 43, F-67034, Strasbourg, France. Université de Strasbourg, INSERM, UMR_S 1121 Biomatériaux et bioingénierie, FMTS, 11 rue Humann, F-67085, Strasbourg, Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Dragar Č, Potrč T, Nemec S, Roškar R, Pajk S, Kocbek P, Kralj S. One-Pot Method for Preparation of Magnetic Multi-Core Nanocarriers for Drug Delivery. MATERIALS 2019; 12:ma12030540. [PMID: 30759725 PMCID: PMC6384742 DOI: 10.3390/ma12030540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/27/2022]
Abstract
The development of various magnetically-responsive nanostructures is of great importance in biomedicine. The controlled assembly of many small superparamagnetic nanocrystals into large multi-core clusters is needed for effective magnetic drug delivery. Here, we present a novel one-pot method for the preparation of multi-core clusters for drug delivery (i.e., magnetic nanocarriers). The method is based on hot homogenization of a hydrophobic phase containing a nonpolar surfactant into an aqueous phase, using ultrasonication. The solvent-free hydrophobic phase that contained tetradecan-1-ol, γ-Fe2O3 nanocrystals, orlistat, and surfactant was dispersed into a warm aqueous surfactant solution, with the formation of small droplets. Then, a pre-cooled aqueous phase was added for rapid cooling and the formation of solid magnetic nanocarriers. Two different nonpolar surfactants, polyethylene glycol dodecyl ether (B4) and our own N1,N1-dimethyl-N2-(tricosan-12-yl)ethane-1,2-diamine (SP11), were investigated for the preparation of MC-B4 and MC-SP11 magnetic nanocarriers, respectively. The nanocarriers formed were of spherical shape, with mean hydrodynamic sizes <160 nm, good colloidal stability, and high drug loading (7.65 wt.%). The MC-B4 nanocarriers showed prolonged drug release, while no drug release was seen for the MC-SP11 nanocarriers over the same time frame. Thus, the selection of a nonpolar surfactant for preparation of magnetic nanocarriers is crucial to enable drug release from nanocarrier.
Collapse
Affiliation(s)
- Črt Dragar
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Tanja Potrč
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Sebastjan Nemec
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Robert Roškar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Stane Pajk
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
- Laboratory of Biophysics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
| | - Petra Kocbek
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|