1
|
Farshad A, Diel E, Wehrend A. Evaluating the Protective Effects of MitoQ and Antifreeze Protein III on Cryopreserved Canine Sperm. Animals (Basel) 2025; 15:270. [PMID: 39858270 PMCID: PMC11763333 DOI: 10.3390/ani15020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Cryopreservation can adversely affect sperm motility, structural integrity, and fertilization ability. This study investigated the effects of MitoQ and antifreeze protein III (AFP III) on frozen-thawed semen from eight adult dogs using a Tris-fructose extender. Ejaculates were divided and diluted with a standard Tris-fructose-egg yolk extender containing MitoQ (200 nM/mL) and AFP III (0.75, 1.0, 2.0 µg/mL), individually or combined. Post-thaw, samples were evaluated for motility, viability, membrane and acrosome integrity, lipid peroxidation, apoptosis indicators, mitochondrial function, and reactive oxygen species (ROS-H2O2). The results showed significant (p < 0.05) improvements in motility rate, progressive motility, VAP, VSL, VCL, ALH, and BCF with MitoQ or AFP alone. AFP III (0.75, 1.0 µg/mL) showed higher values than controls (p > 0.05), while MitoQ alone showed no significant effect. Viability and acrosome integrity improved with AFP III. Membrane integrity and lipid peroxidation were better in 0.75 and 1.0 µg/mL AFP III groups. ROS-H2O2 levels and mitochondrial membrane potential were unaffected except at 1.0 µg/mL AFP III. The phosphatidylserine translocation assay showed no significant differences in dead sperm between controls and individual treatments, but significant differences occurred with combined MitoQ/AFP III. In conclusion, AFP III and MitoQ in diluents protect canine sperm cells from cryodamage.
Collapse
Affiliation(s)
- Abbas Farshad
- Veterinary Clinic for Reproductive Medicine and Neonatology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany; (E.D.); (A.W.)
| | | | | |
Collapse
|
2
|
Wu L, Yang Z, Zhang Y, Li L, Tan C, Pan L, Wu Y, Zhong K, Gao H. Optimization of the Cryoprotectants for Direct Vat Set Starters in Sichuan Paocai Using Response Surface Methodology. Foods 2025; 14:157. [PMID: 39856825 PMCID: PMC11764757 DOI: 10.3390/foods14020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The quality of Sichuan paocai in natural fermentation is often inconsistent due to the complexity of its microbial community and environmental influences. To address this, dominant microbial strains were selectively inoculated to improve the product's quality and safety. However, vacuum freeze-drying, commonly used to prepare direct vat set (DVS) starters, can significantly damage strains due to freezing stress. This study aimed to optimize a freeze-drying protection system for Lactiplantibacillus plantarum and Bacillus subtilis to enhance their survival. Using response surface methodology, combinations of cryoprotectants were evaluated. A formulation comprising skim milk powder, glycerol, sucrose, and L-proline significantly improved strain viability after lyophilization, outperforming single cryoprotectants. Further investigation into storage conditions revealed that low temperatures (-20 °C) provided the best preservation for DVS starters. Furthermore, the optimized DVS starters demonstrated excellent fermentation performance in Sichuan paocai, enhancing its color, flavor, and sensory quality compared to natural fermentation. These findings offer a reliable freeze-drying protection strategy for survival and viability of L. plantarum and B. subtilis.
Collapse
Affiliation(s)
- Lianqun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (L.W.); (L.L.); (C.T.); (Y.W.); (H.G.)
| | - Zhenying Yang
- Sichuan Teway Food Group Co., Ltd., Chengdu 610000, China;
| | - Ying Zhang
- Guangxi Light Industry Science and Technology Research Institute Co., Ltd., Nanning 530031, China;
| | - Ling Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (L.W.); (L.L.); (C.T.); (Y.W.); (H.G.)
| | - Chunli Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (L.W.); (L.L.); (C.T.); (Y.W.); (H.G.)
| | - Lixia Pan
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Academy of Sciences, Nanning 530007, China;
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| | - Yanping Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (L.W.); (L.L.); (C.T.); (Y.W.); (H.G.)
| | - Kai Zhong
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (L.W.); (L.L.); (C.T.); (Y.W.); (H.G.)
| | - Hong Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (L.W.); (L.L.); (C.T.); (Y.W.); (H.G.)
| |
Collapse
|
3
|
Viana JVDS, Oliveira LRMD, Rodrigues LLV, Moura YBF, Pereira ABM, Alves PV, Silva HVR, Pereira AF. No synergistic effect of extracellular cryoprotectants with dimethyl sulfoxide in the conservation of northern tiger cat fibroblasts. Cryobiology 2024; 118:105169. [PMID: 39577602 DOI: 10.1016/j.cryobiol.2024.105169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/13/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
The success of somatic cell cryobanks is dependent on establishing reproducible cryopreservation methodologies. We supposed that associated extracellular cryoprotectants (sucrose and L-proline) with 2.5 or 10 % dimethyl sulfoxide (Me2SO) could guarantee better northern tiger cat cells quality rates after thawing when compared to Me2SO alone. Therefore, we evaluated the effects of sucrose or L-proline with 2.5 or 10 % Me2SO on the cryopreservation of northern tiger cat fibroblasts. Somatic cells were also cryopreserved with 2.5 % or 10 % Me2SO alone. All cells were analyzed for morphology, membrane integrity, proliferative activity, metabolism, apoptosis classification, reactive oxygen species (ROS) levels, and mitochondrial membrane potential (ΔΨm). Regardless of the cryoprotective solution, cryopreservation did not affect morphology, membrane integrity after culture, proliferative activity, and metabolism (P > 0.05). However, immediately after thawing, 2.5 % Me2SO with L-proline and 10 % Me2SO promoted higher rates of membrane integrity when compared to the other cryopreserved groups (P < 0.05). Interestingly, cells cryopreserved with 10 % Me2SO maintained ROS levels similar to non-cryopreserved cells (P > 0.05). However, the percentage of viable cells evaluated by apoptosis classification was reduced when using 10 % Me2SO with L-proline compared to non-cryopreserved groups (P < 0.05). Additionally, ΔΨm was altered in all cryopreserved groups (P < 0.05). In summary, sucrose and L-proline were less effective in cryopreservation of northern tiger cat fibroblasts in the presence of 2.5 % or 10 % Me2SO. Also, 10 % Me2SO appears to be the most suitable cryoprotectant for the formation of cryobanks of this species.
Collapse
Affiliation(s)
- João Vitor da Silva Viana
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid (UFERSA), Mossoro, RN, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Urbán-Duarte D, Tomita S, Sakai H, Sezutsu H, Álvarez-Gallardo H, Kainoh Y, Furukawa S, Uchino K. Permeability and Toxicity of Cryoprotective Agents in Silkworm Embryos: Impact on Cryopreservation. Int J Mol Sci 2024; 25:11396. [PMID: 39518950 PMCID: PMC11546613 DOI: 10.3390/ijms252111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The permeation of cryoprotectants into insect embryos is critical for successful cryopreservation. However, the permeability of silkworm embryos to cryoprotectants and the effects of cryopreservation remain poorly studied. In this study, we evaluated the permeability and toxicity of four cryoprotective agents (CPAs) as well as the vitrification effect on the viability of silkworm embryos. Among the four CPAs, propylene glycol (PG) showed the best permeability. Ethylene glycol (EG) and PG were the least toxic CPAs, but glycerol (GLY) and dimethyl sulfoxide (DMSO) were more toxic. Moreover, we examined several factors including the kind and the concentration of CPAs, exposure time, embryonic stage, and silkworm strains. Embryos at the earlier phases of stage 25 were more tolerant to vitrification using EG. We found that over 21% of embryos treated with EG at the early 2 phase of stage 25: 163 h after egg laying (AEL) developed and progressed to serosa ingestion after vitrification and rewarming. The result was the same in other strains as well. Our results are valuable for the development of new cryopreservation protocols of silkworm embryos.
Collapse
Affiliation(s)
- David Urbán-Duarte
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco 47600, Mexico;
| | - Shuichiro Tomita
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan; (S.T.); (H.S.); (H.S.)
| | - Hiroki Sakai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan; (S.T.); (H.S.); (H.S.)
| | - Hideki Sezutsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan; (S.T.); (H.S.); (H.S.)
| | - Horacio Álvarez-Gallardo
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Tepatitlán de Morelos, Jalisco 47600, Mexico;
| | - Yooichi Kainoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan; (Y.K.); (S.F.)
| | - Seiichi Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Japan; (Y.K.); (S.F.)
| | - Keiro Uchino
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Owashi, Tsukuba 305-8634, Japan; (S.T.); (H.S.); (H.S.)
| |
Collapse
|
5
|
Khaydukova IV, Ivannikova VM, Zhidkov DA, Belikov NV, Peshkova MA, Timashev PS, Tsiganov DI, Pushkarev AV. Current State and Challenges of Tissue and Organ Cryopreservation in Biobanking. Int J Mol Sci 2024; 25:11124. [PMID: 39456905 PMCID: PMC11508709 DOI: 10.3390/ijms252011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Recent years have witnessed significant advancements in the cryopreservation of various tissues and cells, yet several challenges persist. This review evaluates the current state of cryopreservation, focusing on contemporary methods, notable achievements, and ongoing difficulties. Techniques such as slow freezing and vitrification have enabled the successful preservation of diverse biological materials, including embryos and ovarian tissue, marking substantial progress in reproductive medicine and regenerative therapies. These achievements highlight improved post-thaw survival and functionality of cryopreserved samples. However, there are remaining challenges such as ice crystal formation, which can lead to cell damage, and the cryopreservation of larger, more complex tissues and organs. This review also explores the role of cryoprotectants and the importance of optimizing both cooling and warming rates to enhance preservation outcomes. Future research priorities include developing new cryoprotective agents, elucidating the mechanisms of cryoinjury, and refining protocols for preserving complex tissues and organs. This comprehensive overview underscores the transformative potential of cryopreservation in biomedicine, while emphasizing the necessity for ongoing innovation to address existing challenges.
Collapse
Affiliation(s)
- Irina V. Khaydukova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Valeria M. Ivannikova
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Dmitry A. Zhidkov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Nikita V. Belikov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Maria A. Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Peter S. Timashev
- Institute for Regenerative Medicine, Sechenov University, 119048 Moscow, Russia
| | - Dmitry I. Tsiganov
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Aleksandr V. Pushkarev
- Department of Refrigeration and Cryogenic Technology, Conditioning Systems, and Life Support Systems, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| |
Collapse
|
6
|
Boni R, Ruggiero R, Di Palma T, Ferrara MA, Preziosi G, Cecchini Gualandi S. Stallion Sperm Freezing with Different Extenders: Role of Antioxidant Activity and Nitric Oxide Production. Animals (Basel) 2024; 14:2465. [PMID: 39272250 PMCID: PMC11394550 DOI: 10.3390/ani14172465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Sensitivity to freezing remains a critical issue in stallion semen cryopreservation procedures. To explore this topic in-depth, semen was collected from ten stallions, diluted with three different extenders, transported to the laboratory, and then centrifuged and frozen with four different extenders. We conducted analyses of sperm kinetics, mitochondrial membrane potential (MMP), and hydrogen peroxide content both before and after freezing. Additionally, we assessed antioxidant activity using the ABTS and FRAP methods and measured nitric oxide stable metabolites (NOx) in the blank extenders, seminal plasma, and extenders conditioned by spermatozoa before and after freezing. We found significant variability in the antioxidant activity and NOx content of the blank extenders and the seminal plasma. In the seminal plasma, ABTS-based antioxidant activity and NOx values were correlated with some sperm kinematic parameters and MMP in refrigerated semen, while no correlation was observed in frozen sperm parameters. Sperm function varied significantly between stallions but not between extenders, either before or after freezing. However, significant differences in antioxidant activities and NOx values were found among extenders conditioned following freezing. These results provide new insights into the factors contributing to the variability in individual stallions' tolerance to sperm freezing.
Collapse
Affiliation(s)
- Raffaele Boni
- Department of Basic and Applied Sciences (DiSBA), University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Raffaella Ruggiero
- Department of Basic and Applied Sciences (DiSBA), University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Tommaso Di Palma
- Breeders' Association (A.R.A.) of Basilicata, Via dell'Edilizia, 85100 Potenza, Italy
| | - Maria Antonietta Ferrara
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Italian National Research Council (ISASI-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Graziano Preziosi
- Institute of Applied Sciences and Intelligent Systems, Unit of Naples, Italian National Research Council (ISASI-CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Stefano Cecchini Gualandi
- Department of Basic and Applied Sciences (DiSBA), University of Basilicata, Via dell'Ateneo Lucano, 10, 85100 Potenza, Italy
| |
Collapse
|
7
|
Zhao R, Liu X, Ekpo MD, He Y, Tan S. Exploring the Cryopreservation Mechanism and Direct Removal Strategy of TAPS in Red Blood Cell Cryopreservation. ACS Biomater Sci Eng 2024; 10:4259-4268. [PMID: 38832439 DOI: 10.1021/acsbiomaterials.3c01701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Cryopreservation of red blood cells (RBCs) plays an indispensable role in modern clinical transfusion therapy. Researchers are dedicated to finding cryoprotectants (CPAs) with high efficiency and low toxicity to prevent RBCs from cryopreservation injury. This study presents, for the first time, the feasibility and underlying mechanisms of a novel CPA called tris(hydroxymethyl)aminomethane-3-propanesulfonic acid (TAPS) in RBCs cryopreservation. The results demonstrated that the addition of TAPS achieved a post-thaw recovery of RBCs at 79.12 ± 0.67%, accompanied by excellent biocompatibility (above 97%). Subsequently, the mechanism for preventing RBCs from cryopreservation injury was elucidated. On one hand, TAPS exhibits a significant amount of bound water and effectively inhibits ice recrystallization, thereby reducing mechanical damage. On the other hand, TAPS demonstrates high capacity to scavenge reactive oxygen species and strong endogenous antioxidant enzyme activity, providing effective protection against oxidative damage. Above all, TAPS can be readily removed through direct washing, and the RBCs after washing showed no significant differences in various physiological parameters (SEM, RBC hemolysis, ESR, ATPase activity, and Hb content) compared to fresh RBCs. Finally, the presented mathematical modeling analysis indicates the good benefits of TAPS. In summary, TAPS holds potential for both research and practical in the field of cryobiology, offering innovative insights for the improvement of RBCs cryopreservation in transfusion medicine.
Collapse
Affiliation(s)
- Rui Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Hunan Pilot Free Trade Zone Global Cell Bank, Changsha, Hunan 410000, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Monash Suzhou Research Institute, Monash University, Suzhou, SIP 215000, China
| |
Collapse
|
8
|
Campos Cassavia Cintra de Oliveira L, Queiroz Vacari G, Maurício Barbanti Duarte J. A Method to Freeze Skin Samples for Cryobanks: A Test of Some Cryoprotectants for an Endangered Deer. Biopreserv Biobank 2024; 22:211-216. [PMID: 37944047 DOI: 10.1089/bio.2023.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
The genetic diversity of endangered deer species, such as Mazama jucunda, can be preserved with the help of somatic cell cryopreservation. This procedure allows obtaining several cells from the individual even after its death, which is very important for applications in reproductive biotechnologies. This study's objective was to test cryopreservation protocols of skin fragments of M. jucunda, using different cryoprotectants in slow freezing. We evaluated four treatments, composed of three cryoprotectants, dimethyl sulfoxide (DMSO), polyvinylpyrrolidone (PVP), and ethylene glycol (EG), used alone and in combination. There was also a control group where the tissue did not undergo cryopreservation. Skin fragments were collected from the medial region of the pelvic limbs of three individuals. Each fragment was divided into 10 equal parts, standardized by weight, making two pieces for each treatment and control from each animal. The collected fragments were evaluated in culture, based on the speed of occupation of the free spaces of the cell culture flask. Cell viability was also evaluated using Trypan Blue dye and the mitotic index to understand the effect of toxicity and freezing on cell membrane integrity and cell division capacity, respectively. The treatments that used association with PVP proved to be more damaging to the cells, taking longer to reach confluence. EG alone showed better results than DMSO in the slow-freezing protocol. Clinical Trial Registration Number is 1390/21.
Collapse
Affiliation(s)
- Laura Campos Cassavia Cintra de Oliveira
- Departamento de Zootecnia, Deer Conservation and Research Center (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias, São Paulo State University, Jaboticabal, Brazil
| | - Gabrielle Queiroz Vacari
- Departamento de Zootecnia, Deer Conservation and Research Center (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias, São Paulo State University, Jaboticabal, Brazil
| | - José Maurício Barbanti Duarte
- Departamento de Zootecnia, Deer Conservation and Research Center (NUPECCE), Faculdade de Ciências Agrárias e Veterinárias, São Paulo State University, Jaboticabal, Brazil
| |
Collapse
|
9
|
Ruiz-Matus S, Goldstein P. On the universality of viscosity in supersaturated binary aqueous sugar solutions: Cryopreservation by vitrification. Cryobiology 2024; 115:104886. [PMID: 38555011 DOI: 10.1016/j.cryobiol.2024.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Nowadays, the physical nature of supersaturated binary aqueous sugar solutions in the vicinity of the glass transition represents a very important issue due to their biological applications in cryopreservation of cells and tissues, food science and stabilization and storage of nano genetic drugs. We present the construction of the Supplemented Phase Diagram and the non-equilibrium nature of the undersaturated-supersaturated kinetic transition. The description of its thermodynamic nature is achieved through the study of behavior of their viscosity as temperature is lowered and concentration increased. In this work, we find a universal character for the viscosities of several sugar water solutions.
Collapse
Affiliation(s)
- Soledad Ruiz-Matus
- Department of Physics, Faculty of Science, National Autonomous University of México, 04510, Coyoacán, Ciudad de México, Mexico.
| | - Patricia Goldstein
- Department of Physics, Faculty of Science, National Autonomous University of México, 04510, Coyoacán, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Browne DJ, Miller CM, Doolan DL. Technical pitfalls when collecting, cryopreserving, thawing, and stimulating human T-cells. Front Immunol 2024; 15:1382192. [PMID: 38812513 PMCID: PMC11133553 DOI: 10.3389/fimmu.2024.1382192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
The collection, cryopreservation, thawing, and culture of peripheral blood mononuclear cells (PBMCs) can profoundly influence T cell viability and immunogenicity. Gold-standard PBMC processing protocols have been developed by the Office of HIV/AIDS Network Coordination (HANC); however, these protocols are not universally observed. Herein, we have explored the current literature assessing how technical variation during PBMC processing can influence cellular viability and T cell immunogenicity, noting inconsistent findings between many of these studies. Amid the mounting concerns over scientific replicability, there is growing acknowledgement that improved methodological rigour and transparent reporting is required to facilitate independent reproducibility. This review highlights that in human T cell studies, this entails adopting stringent standardised operating procedures (SOPs) for PBMC processing. We specifically propose the use of HANC's Cross-Network PBMC Processing SOP, when collecting and cryopreserving PBMCs, and the HANC member network International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) PBMC Thawing SOP when thawing PBMCs. These stringent and detailed protocols include comprehensive reporting procedures to document unavoidable technical variations, such as delayed processing times. Additionally, we make further standardisation and reporting recommendations to minimise and document variability during this critical experimental period. This review provides a detailed overview of the challenges inherent to a procedure often considered routine, highlighting the importance of carefully considering each aspect of SOPs for PBMC collection, cryopreservation, thawing, and culture to ensure accurate interpretation and comparison between studies.
Collapse
Affiliation(s)
- Daniel J. Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Catherine M. Miller
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, Australia
| | - Denise L. Doolan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
11
|
Sahu S, Garg A, Saini R, Debnath A. Interface Water Assists in Dimethyl Sulfoxide Crossing and Poration in Model Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5764-5775. [PMID: 38445595 DOI: 10.1021/acs.langmuir.3c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Understanding the mechanism of transport and pore formation by a commonly used cryoprotectant, dimethyl sulfoxide (DMSO), across cell membranes is fundamentally crucial for drug delivery and cryopreservation. To shed light on the mechanism and thermodynamics of pore formation and crossing behavior of DMSO, extensive all-atom molecular dynamics simulations of 1,2-dimyristoyl-rac-glycero-3-phosphocholine (DMPC) bilayers are performed at various concentrations of DMSO at a temperature above the physiological temperature. Our results unveil that DMSO partially depletes water from the interface and positions itself between lipid heads without full dehydration. This induces a larger area per headgroup, increased disorder, and enhanced fluidity without any disintegration even at the highest DMSO concentration studied. The enhanced disorder fosters local fluctuations at the interface that nucleate dynamic and transient pores. The potential of mean force (PMF) of DMSO crossing is derived from two types of biased simulations: a single DMSO pulling using the umbrella sampling technique and a cylindrical pore formation using the recently developed chain reaction coordinate method. In both cases, DMSO crossing encounters a barrier attributed to unfavorable polar nonpolar interactions between DMSO and lipid tails. As the DMSO concentration increases, the barrier height reduces along with the faster lateral and perpendicular diffusion of DMSO suggesting favorable permeation. Our findings suggest that the energy required for pore formation decreases when water assists in the formation of DMSO pores. Although DMSO displaces water from the interface toward the far interface region without complete dehydration, the presence of interface water diminishes pore formation free energy. The existence of interface water leads to the formation of a two-dimensional percolated water-DMSO structure at the interface, which is absent otherwise. Overall, these insights into the mechanism of DMSO crossing and pore formation in the bilayer will contribute to understanding cryoprotectant behavior under supercooled conditions in the future.
Collapse
Affiliation(s)
- Samapika Sahu
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Avinash Garg
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Renu Saini
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| |
Collapse
|
12
|
Tornacı S, Erginer M, Gökalsın B, Aysan A, Çetin M, Sadauki M, Fındıklı N, Genç S, Sesal C, Toksoy Öner E. Investigating the cryoprotective efficacy of fructans in mammalian cell systems via a structure-functional perspective. Carbohydr Polym 2024; 328:121704. [PMID: 38220340 DOI: 10.1016/j.carbpol.2023.121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
Fructans have long been known with their role in protecting organisms against various stress factors due to their ability to induce controlled dehydration and support membrane stability. Considering the vital importance of such features in cryo-technologies, this study aimed to explore the cryoprotective efficacy of fructans in mammalian cell systems where structurally different fructan polymers were examined on in vitro cell models derived from organs such as the liver, frequently used in transplantation, osteoblast, and cord cells, commonly employed in cell banking, as well as human seminal fluids that are of vital importance in assisted reproductive technology. To gain insights into the fructan/membrane interplay, structural differences were linked to rheological properties as well as to lipid membrane interactions where both fluorescein leakage from unilamellar liposomes and membrane integrity of osteoblast cells were monitored. High survival rates obtained with human endothelial, osteoblast and liver cells for up to two months clearly showed that fructans could be considered as effective non-permeating cryoprotectants, especially for extended periods of cryopreservation. In trials with human seminal fluid, short chained levan in combination with human serum albumin and glycerol proved very effective in preserving semen samples across multiple patients without any morphological abnormalities.
Collapse
Affiliation(s)
- Selay Tornacı
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Merve Erginer
- Istanbul University-Cerrahpaşa, Institute of Nanotechnology and Biotechnology, Istanbul, Turkey
| | - Barış Gökalsın
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Arzu Aysan
- Gebze Technical University, Department of Molecular Biology and Genetics, Kocaeli, Turkey
| | - Metin Çetin
- Gebze Technical University, Department of Molecular Biology and Genetics, Kocaeli, Turkey
| | - Mubarak Sadauki
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Necati Fındıklı
- Department of Biomedical Engineering, Beykent University, Istanbul, Turkey; Bahceci Health Group, Istanbul, Turkey
| | - Seval Genç
- Marmara University, Department of Metallurgical & Materials Engineering, Istanbul, Turkey
| | - Cenk Sesal
- Marmara University, Department of Biology, Istanbul, Turkey
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey.
| |
Collapse
|
13
|
Awad MN, Brown SJ, Abraham AN, Sezer D, Han Q, Wang X, Le TC, Elbourne A, Bryant G, Greaves TL, Bryant SJ. Biophysical Characterization and Cryopreservation of Mammalian Cells Using Ionic Liquids. J Phys Chem B 2024; 128:2504-2515. [PMID: 38416751 DOI: 10.1021/acs.jpcb.3c06797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Ionic liquids (ILs) are a diverse class of solvents which can be selected for task-specific properties, making them attractive alternatives to traditional solvents. To tailor ILs for specific biological applications, it is necessary to understand the structure-property relationships of ILs and their interactions with cells. Here, a selection of carboxylate anion-based ILs were investigated as cryoprotectants, which are compounds added to cells before freezing to mitigate lethal freezing damage. The cytotoxicity, cell permeability, thermal behavior, and cryoprotective efficacy of the ILs were assessed with two model mammalian cell lines. We found that the biophysical interactions, including permeability of the ILs, were influenced by considering the IL pair together, rather than as single species acting independently. All of the ILs tested had high cytotoxicity, but ethylammonium acetate demonstrated good cryoprotective efficacy for both cell types tested. These results demonstrate that despite toxicity, ILs may be suitable for certain biological applications. It also demonstrates that more research is required to understand the contribution of ion pairs to structure-property relationships and that knowing the behavior of a single ionic species will not necessarily predict its behavior as part of an IL.
Collapse
Affiliation(s)
- Miyah N Awad
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Stuart J Brown
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Amanda N Abraham
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, Victoria 3001, Australia
| | - Dilek Sezer
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Qi Han
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoying Wang
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- Digital Services, Deakin University, Melbourne, Victoria 3008, Australia
| | - Tu C Le
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
14
|
Correia LFL, Leal GR, Brandão FZ, Batista RITP, Souza-Fabjan JMG. Effect of antifreeze protein I in the freezing solution on in vivo-derived sheep embryos. Res Vet Sci 2024; 168:105132. [PMID: 38183895 DOI: 10.1016/j.rvsc.2023.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
This study evaluated the effects of different antifreeze protein type I (AFP I) concentrations added to a slow freezing solution in sheep in vivo-derived embryos. Good-quality embryos were allocated into: AFP-free (CONT); 0.1 μg/mL of AFP I (AFP0.1); or 0.5 μg/mL of AFP I (AFP0.5). After thawing, embryos were in vitro cultured (IVC) for 48 h. At 24 h and 48 h of IVC, dead cells and apoptosis, mitochondrial activity, intracellular reactive oxygen species (ROS), and glutathione (GSH) evaluations were performed. At 24 h, evaluated embryos were submitted to RT-qPCR for metabolism (SIRT2, PRDX1, OCT4, CDX2) and quality (AQP3, CDH1, HSP70, BAX, BCL2) genes. The in vitro survival rate was 56% (22/39) for CONT, 60% (32/53) for AFP0.1, and 53% (23/43) for AFP0.5 (p > 0.05). A tendency (p = 0.09) for a higher blastocyst hatching rate was noted in AFP0.1 (62%) compared to AFP0.5 (33%), and both groups were similar to CONT (50%). An increased (p < 0.05) mitochondrial activity at 24 h was observed in AFP0.1 compared to CONT. No differences (p > 0.05) were observed in oxidative stress homeostasis and viability between treatments. A downregulation (p < 0.05) of CDH1 in AFP0.1 and a downregulation of AQP3 in AFP0.5 were observed in comparison to the other groups. An upregulation (p < 0.05) was detected in HSP70 and BCL2 on AFP0.5 compared to AFP0.1 group. The addition of AFP I in slow freezing solution can benefit cryopreserved sheep in vivo-derived embryos, without affecting embryonic survival.
Collapse
Affiliation(s)
- Lucas F L Correia
- Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brazil Filho, 64, CEP 24230-340 Niterói, RJ, Brazil.
| | - Gabriela R Leal
- Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brazil Filho, 64, CEP 24230-340 Niterói, RJ, Brazil
| | - Felipe Z Brandão
- Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brazil Filho, 64, CEP 24230-340 Niterói, RJ, Brazil
| | - Ribrio I T P Batista
- Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brazil Filho, 64, CEP 24230-340 Niterói, RJ, Brazil
| | - Joanna M G Souza-Fabjan
- Faculdade de Veterinária, Universidade Federal Fluminense, Av. Vital Brazil Filho, 64, CEP 24230-340 Niterói, RJ, Brazil.
| |
Collapse
|
15
|
Hu Y, Liu X, Zhang W, Chen J, Chen X, Tan S. Inulin Can Improve Red Blood Cell Cryopreservation by Promoting Vitrification, Stabilizing Cell Membranes, and Inhibiting Ice Recrystallization. ACS Biomater Sci Eng 2024; 10:851-862. [PMID: 38176101 DOI: 10.1021/acsbiomaterials.3c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In transfusion medicine, the cryopreservation of red blood cells (RBCs) is of major importance. The organic solvent glycerol (Gly) is considered the current gold-standard cryoprotectant (CPA) for RBC cryopreservation, but the deglycerolization procedure is complex and time-consuming, resulting in severe hemolysis. Therefore, it remains a research hotspot to find biocompatible and effective novel CPAs. Herein, the natural and biocompatible inulin, a polysaccharide, was first employed as a CPA for RBC cryopreservation. The presence of inulin could improve the thawed RBC recovery from 11.83 ± 1.40 to 81.86 ± 0.37%. It was found that inulin could promote vitrification because of its relatively high viscosity and glass transition temperature (Tg'), thus reducing the damage during cryopreservation. Inulin possessed membrane stability, which also had beneficial effects on RBC recovery. Moreover, inulin could inhibit the mechanical damage induced by ice recrystallization during thawing. After cryopreservation, the RBC properties were maintained normally. Mathematical modeling analysis was adopted to compare the performance of inulin, Gly, and hydroxyethyl starch (HES) in cryopreservation, and inulin presented the best efficiency. This work provides a promising CPA for RBC cryopreservation and may be beneficial for transfusion therapy in the clinic.
Collapse
Affiliation(s)
- Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenqian Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jiangming Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiaoxiao Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
16
|
Mohammed L, Marquez-Curtis LA, Elliott JAW. Cryopreservation of human cerebral microvascular endothelial cells with glycerol. Cryobiology 2023; 113:104551. [PMID: 37328025 DOI: 10.1016/j.cryobiol.2023.104551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/14/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
The cryopreservation of human cerebral microvascular endothelial cells (hCMEC) has facilitated their commercial availability for research studying the blood-brain barrier. The currently employed cryopreservation protocol uses 10% dimethyl sulfoxide (Me2SO) in cell medium, or 5% Me2SO in 95% fetal bovine serum (FBS) as cryoprotective agents (CPAs). However, Me2SO is toxic to cells and FBS is animal-derived and not chemically defined, so reducing the concentrations of these components is desirable. Recently, we showed that cryopreserving hCMEC in cell medium with 5% Me2SO and 6% hydroxyethyl starch (HES) results in over 90% post-thaw cell viability. This previous work was performed using an interrupted slow cooling (graded freezing) approach followed by SYTO13/GelRed staining to assay for membrane integrity. In this paper, we repeated graded freezing of hCMEC in cell medium containing 5% Me2SO and 6% HES, but this time using Calcein AM/propidium iodide staining to ensure that the stain is an equivalent alternative to SYTO13/GelRed for assessment of cell viability, and that results are comparable to those previously published. Next, using graded freezing experiments and Calcein AM/propidium iodide staining, we examined the effectiveness of non-toxic glycerol as a CPA at different concentrations, loading times, and cooling rates. The cryobiological response of hCMEC was used to develop a protocol that optimizes both the permeating and non-permeating capabilities of glycerol. HCMEC in cell medium loaded with 10% glycerol for 1 h at room temperature, ice nucleated at -5 °C and held for 3 min, and then cooled at -1 °C/min to -30 °C before plunging into liquid nitrogen had post-thaw viability of 87.7% ± 1.8%. Matrigel tube formation assay and immunocytochemical staining of junction protein ZO-1 were carried out on post-thaw hCMEC to ensure that the cryopreserved cells were viable and functional, in addition to being membrane-intact.
Collapse
Affiliation(s)
- Lanah Mohammed
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
17
|
Nascimento MB, Moura YBF, Oliveira REM, Borges AA, Oliveira MF, Luna FO, Attademo FLN, Pereira AF. Influence of Intracellular Cryoprotectants on the Conservation of Dermal Somatic Tissues Derived from Antillean Manatees ( Trichechus manatus manatus Linnaeus, 1758). Biopreserv Biobank 2023; 21:483-492. [PMID: 36459125 DOI: 10.1089/bio.2022.0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Cryopreservation of somatic tissue has been studied as a tool for the knowledge and conservation of endangered species, such as Antillean manatees. The use of vitrification protocols is an important step in the establishment of biological banks. To decrease the damage caused by this technique, a reduction in the concentration of cryoprotectants has been proposed. Therefore, we aimed to evaluate combinations and concentrations of intracellular cryoprotectants for the conservation of somatic tissues derived from Antillean manatees. Dulbecco's modified Eagle's medium, F-12 composed of 10% fetal bovine serum and 0.25 M sucrose, was supplemented with 3.0 M ethylene glycol (EG) plus 3.0 M dimethyl sulfoxide (DMSO), or 1.5 M EG plus 1.5 M DMSO or 3.0 M EG or 3.0 M DMSO, to produce four solutions for solid-surface vitrification. Noncryopreserved tissues were used as the controls. After warming, tissues derived from four Antillean manatees were evaluated for ultrastructure, histology, and in vitro culture. No differences were observed among the cryopreserved and noncryopreserved tissues in terms of ultrastructure. The dermis thickness of the cryopreserved fragments in solutions containing 3.0 M EG plus 3.0 M DMSO, 3.0 M EG, and 3.0 DMSO was similar to that of the control. Moreover, cryopreservation with 3.0 M EG plus 3.0 M DMSO maintained tissue proliferative capacity potential evaluated by quantification of nucleolar organizing regions. Nevertheless, none of the cryopreserved fragments were able to maintain the number of fibroblasts and the collagen percentage as compared with that of the noncryopreserved fragments. Also, none of the cryopreserved fragments in the different solutions were able to produce cells in vitro. In summary, even reducing the concentration of intracellular cryoprotectants as well as their association did not guarantee the maintenance of cells after in vitro culture. Further studies are needed to optimize the cryopreservation protocols in Antillean manatee somatic tissues.
Collapse
Affiliation(s)
- Matheus B Nascimento
- Department of Biosciences, Laboratory of Animal Biotechnology, Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid (UFERSA), Mossoro, Brazil
| | - Yasmin B F Moura
- Department of Biosciences, Laboratory of Animal Biotechnology, Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid (UFERSA), Mossoro, Brazil
| | - Radan E M Oliveira
- Department of Animal Sciences, Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid (UFERSA), Mossoro, Brazil
| | - Alana A Borges
- Department of Biosciences, Laboratory of Animal Biotechnology, Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid (UFERSA), Mossoro, Brazil
| | - Moacir F Oliveira
- Department of Animal Sciences, Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid (UFERSA), Mossoro, Brazil
| | - Fábia O Luna
- National Center for Research and Conservation of Aquatic Mammals by Chico Mendes Institute for Biodiversity Conservation, Santos, Brazil
| | - Fernanda L N Attademo
- National Center for Research and Conservation of Aquatic Mammals by Chico Mendes Institute for Biodiversity Conservation, Santos, Brazil
- Laboratory of Behavior and Conservation Ecology, Department of Zoology, Recife, Brazil
| | - Alexsandra F Pereira
- Department of Biosciences, Laboratory of Animal Biotechnology, Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid (UFERSA), Mossoro, Brazil
| |
Collapse
|
18
|
Tan S, Zhou W. Starting Editorial of "Cellular Damage: Protection and Induction" Addressing Hot Topics in Cellular Damage, Protection of Cells and Therapy Targeting Bad Cells. Int J Mol Sci 2023; 24:13702. [PMID: 37762004 PMCID: PMC10531010 DOI: 10.3390/ijms241813702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The cell, the fundamental unit of life, is constantly subjected to a myriad of molecular biophysical disturbances [...].
Collapse
Affiliation(s)
- Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
19
|
Saadat Maryan H, Ghasemian F, Bahadori MH. Effects of cryopreservation in the presence of Natural Deep Eutectic Solvents (NADESs) on sperm parameters. Cryobiology 2023; 112:104550. [PMID: 37230456 DOI: 10.1016/j.cryobiol.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Natural Deep Eutectic Solvents (NADESs) are being considered as a potential alternative to traditional cryoprotective agents (CPAs) in sperm freezing. The study aimed to assess the effects of NADESs as a CPA on human sperm parameters. A total of 32 normozoospermic semen samples were collected from the Alzahra infertility treatment center (Iran) between July 2021 and September 2022. The samples were categorized into eight different groups: 1) a control (nonfrozen), and groups frozen with 2) SpermFreeze Solution, 3) ChX (Choline chloride and Xylitol), 4) ChS (Choline chloride and D-sorbitol), 5) ChG (Choline chloride and Glucose), 6) ChU (Choline chloride and Urea), 7) EtP (Ethylene glycol and l-proline), and 8) GlyP (Glycerol and l-proline). The study also analyzed the quality of sperm parameters, such as chromatin condensation and integrity, acrosome integrity, and survival, along with the expression of some genes that affect sperm fertility (TRPV1, TRPV4, SPACA3, and OGG1). The study found there were notable variations in sperm parameters (such as viability, chromatin condensation and integrity, and acrosome integrity) among frozen groups with some NADESs compared to the SpermFreeze Solution and control groups (P < 0.05). Analysis of gene expression demonstrated that the levels of TRPV1, TRPV4, SPACA3, and OGG1 genes were superior in the GlyP group compared to the other groups (P < 0.05). Additionally, the ChS and ChU groups exhibited preserved expression of these genes compared with the SpermFreeze Solution group. The use of NADESs led to the discovery of a more appropriate CPA that has low toxicity and is highly effective in maintaining the fertility potential of sperm.
Collapse
Affiliation(s)
| | - Fatemeh Ghasemian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Mohammad Hadi Bahadori
- Cellular and Molecular Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
20
|
Li L, Tian Y, Li Z, Duan P, Wang X, Chen S, Wang L, Liu Y, Wang Q, Li W, Zhao X, Ma W, Zhai J. Effect of non-permeable cryoprotectant sucrose on the development of spotted knifejaw (Oplegnathus punctatus) embryos. Cryobiology 2023; 112:104555. [PMID: 37385538 DOI: 10.1016/j.cryobiol.2023.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
In this study, the toxicity of sucrose to Oplegnathus punctatus embryos was evaluated. Embryos at the 4-6 somite, tail-bud, heart formation, and heart-beating stages were exposed to 0, 0.5, 1,1.5, 2, 2.5, or 3 M sucrose for 1 h. Survival rates of embryos at the tail-bud, heart formation, and heart-beating stages after rehydration for 1 h were not affected by treatment with 2 M sucrose (the maximum concentration). Embryos at the tail-bud, heart formation, and heart-beating stages were exposed to 2 M sucrose for 0, 30, 60, 90, 120, 150, or 180 min. Long-term developmental indicators, including rates of survival, hatching, swimming, and malformation, were evaluated for 4 days after rehydration. Based on the survival rates 10 min after rehydration, the longest tolerance time for embryos at the three stages was 120 min. Based on long-term developmental indicators, the longest tolerance times were 60 min at the tail-bud, 60 min at the heart formation stage and 30 min at the heart beating stage. The malformation rates increased as the treatment time increased. The malformation rates were 100% when embryos were exposed to sucrose for ≥120 min. Malformation was divided into larval and embryonic abnormality. As the exposure time increased for tail-bud stage embryos, the rate of larval malformation increased. Treatment at heart formation and heart-beating stages resulted in higher rates of failure to hatch at exposure time. Based on these results, toxicity tests of non-permeable cryoprotectant in embryos requires the observation of development for at least 2 days after rehydration. Based on long-term observation, it was concluded that dehydration before freezing was not the direct cause of larvae deformity that hatched from frozen-thawing embryo. These results provide a reference for the singly use of representative non-permeable cryoprotectant sucrose.
Collapse
Affiliation(s)
- Linlin Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Yongsheng Tian
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| | - Zhentong Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Pengfei Duan
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xinyi Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shuai Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Linna Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Yang Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China
| | - Qingbin Wang
- Laizhou Mingbo Aquatic Co., Ltd, Yantai, 2614000, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co., Ltd, Yantai, 2614000, China
| | - Xia Zhao
- Laizhou Mingbo Aquatic Co., Ltd, Yantai, 2614000, China
| | - Wenhui Ma
- Laizhou Mingbo Aquatic Co., Ltd, Yantai, 2614000, China
| | - Jieming Zhai
- Laizhou Mingbo Aquatic Co., Ltd, Yantai, 2614000, China
| |
Collapse
|
21
|
Andres S, Bartling B, Stiensmeier V, Starke A, Schmicke M. Comparative cryopreservation of bovine and porcine primary hepatocytes. Front Vet Sci 2023; 10:1211135. [PMID: 37614462 PMCID: PMC10442649 DOI: 10.3389/fvets.2023.1211135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 08/25/2023] Open
Abstract
The isolation of primary hepatocytes from liver tissue of farm animals yields a very high number of cells, and a part of them can be stored by cryopreservation for future experiments. As no experience exists with the cryopreservation of hepatocytes from cattle, our study aimed at the cryopreservation of bovine hepatocytes by use of different protocols compared with the cryopreservation of hepatocytes from pig. We tested different freezing media (William's Medium E vs. University of Wisconsin solution), cryoprotectants (dimethyl sulfoxide with vs. without trehalose as additional additive), freezing systems (standard freezing container vs. controlled-rate freezer) and freezing times (4 vs. 28 d). These tests identified a general influence of species and freezing systems, whereas the influence of freezing media, trehalose additive and freezing time was less or not obvious. In this regard, we determined a mean recovery of 30% of bovine hepatocytes and 55% of porcine hepatocytes cryopreserved in a controlled-rate freezer, whereas the rates were about 10% less when hepatocytes were frozen in a standard freezing container. In accordance with this observation, the cultivation of cryopreserved hepatocytes from cattle was less effective than that of porcine hepatocytes. Hepatocytes from cattle can be successfully cryopreserved and partially cultured after cryopreservation but with lower percentage than porcine hepatocytes.
Collapse
Affiliation(s)
- Sandra Andres
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Vera Stiensmeier
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Starke
- Department for Ruminants and Swine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Marion Schmicke
- Institute of Agricultural and Nutritional Sciences, Animal Health Management, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Clinic for Cattle, Endocrinology, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
22
|
Matsuura H, Takano K, Shirakashi R. Slow water dynamics in dehydrated human Jurkat T cells evaluated by dielectric spectroscopy with the Bruggeman-Hanai equation. RSC Adv 2023; 13:20934-20940. [PMID: 37441032 PMCID: PMC10334875 DOI: 10.1039/d3ra02892e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The picosecond orientational dynamics of intracellular water was measured by dielectric spectroscopy, with the aim of revealing the effects of cryoprotective agents (CPAs) on biological cells. As a first step, Jurkat cells (human T lymphocyte cells) suspended in aqueous sucrose solutions of different concentrations ranging from 0.3 M (isotonic) to 0.9 M (hypertonic) were examined at 25 °C with a frequency range up to 43.5 GHz. The Bruggeman-Hanai equation was employed to obtain a cellular dielectric spectrum without extracellular contributions from the measured complex permittivity of the cell suspensions. By analyzing the γ process around 1010 Hz based on the Debye relaxation function, two types of water (bulk-like water and hydration water with slower molecular dynamics) were observed. An increase in the fraction of intracellular slower water was observed in the dehydrated cells which had a highly concentrated environment of biomolecules.
Collapse
Affiliation(s)
- Hiroaki Matsuura
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
- Research Fellow of the Japan Society for the Promotion of Science Chiyoda Tokyo 102-0083 Japan
| | - Kiyoshi Takano
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo Meguro Tokyo 153-8505 Japan
| |
Collapse
|
23
|
Parihar A, Kumar A, Panda U, Khan R, Parihar DS, Khan R. Cryopreservation: A Comprehensive Overview, Challenges, and Future Perspectives. Adv Biol (Weinh) 2023; 7:e2200285. [PMID: 36755194 DOI: 10.1002/adbi.202200285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Indexed: 02/10/2023]
Abstract
Cryopreservation is the most prevalent method of long-term cell preservation. Effective cell cryopreservation depends on freezing, adequate storage, and correct thawing techniques. Recent advances in cryopreservation techniques minimize the cellular damage which occurs while processing samples. This article focuses on the fundamentals of cryopreservation techniques and how they can be implemented in a variety of clinical settings. The article presents a brief description of each of the standard cryopreservation procedures, such as slow freezing and vitrification. Alongside that, the membrane permeating and nonpermeating cryoprotectants are briefly discussed, along with current advancements in the field of cryopreservation and variables influencing the cryopreservation process. The diminution of cryoinjury incurred by the cell via the resuscitation process will also be highlighted. In the end application of cryopreservation techniques in many fields, with a special emphasis on stem cell preservation techniques and current advancements presented. Furthermore, the challenges while implementing cryopreservation and the futuristic scope of the fields are illustrated herein. The content of this review sheds light on various ways to enhance the output of the cell preservation process and minimize cryoinjury while improving cell revival.
Collapse
Affiliation(s)
- Arpana Parihar
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| | - Avinash Kumar
- Department of Mechanical Engineering, Indian Institute of Information Technology, Design & Manufacturing (IIITD&M), Kancheepuram, 600127, India
| | - Udwesh Panda
- Department of Mechanical Engineering, Indian Institute of Information Technology, Design & Manufacturing (IIITD&M), Kancheepuram, 600127, India
| | - Rukhsar Khan
- Department of Biosciences, Barkatullah University, Bhopal, Madhya Pradesh, 462026, India
| | | | - Raju Khan
- Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India
| |
Collapse
|
24
|
Hu Y, Liu X, Ekpo MD, Chen J, Chen X, Zhang W, Zhao R, Xie J, He Y, Tan S. Dimethylglycine Can Enhance the Cryopreservation of Red Blood Cells by Reducing Ice Formation and Oxidative Damage. Int J Mol Sci 2023; 24:ijms24076696. [PMID: 37047668 PMCID: PMC10095525 DOI: 10.3390/ijms24076696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
The cryopreservation of red blood cells (RBCs) holds great potential for ensuring timely blood transfusions and maintaining an adequate RBC inventory. The conventional cryoprotectants (CPAs) have a lot of limitations, and there is an obvious need for novel, efficient, and biocompatible CPAs. Here, it is shown for the first time that the addition of dimethylglycine (DMG) improved the thawed RBC recovery from 11.55 ± 1.40% to 72.15 ± 1.22%. We found that DMG could reduce the mechanical damage by inhibiting ice formation and recrystallization during cryopreservation. DMG can also scavenge reactive oxygen species (ROS) and maintain endogenous antioxidant enzyme activities to decrease oxidative damage during cryopreservation. Furthermore, the properties of thawed RBCs were found to be similar to the fresh RBCs in the control. Finally, the technique for order performance by similarity to ideal solution (TOPSIS) was used to compare the performance of glycerol (Gly), hydroxyethyl starch (HES), and DMG in cryopreservation, and DMG exhibited the best efficiency. This work confirms the use of DMG as a novel CPA for cryopreservation of RBCs and may promote clinical transfusion therapy.
Collapse
Affiliation(s)
- Yuying Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiangjian Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jiangming Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaoxiao Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wenqian Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Rui Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Jingxian Xie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yongju He
- School of Materials Science and Engineering, Central South University, Changsha 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
25
|
Popova E, Kulichenko I, Kim HH. Critical Role of Regrowth Conditions in Post-Cryopreservation of In Vitro Plant Germplasm. BIOLOGY 2023; 12:biology12040542. [PMID: 37106743 PMCID: PMC10135868 DOI: 10.3390/biology12040542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Cryopreservation is an effective option for the long-term conservation of plant genetic resources, including vegetatively propagated crops and ornamental plants, elite tree genotypes, threatened plant species with non-orthodox seeds or limited seed availability, as well as cell and root cultures useful for biotechnology. With increasing success, an arsenal of cryopreservation methods has been developed and applied to many species and material types. However, severe damage to plant material accumulating during the multi-step cryopreservation procedure often causes reduced survival and low regrowth, even when the optimized protocol is applied. The conditions at the recovery stage play a vital role in supporting material regrowth after cryopreservation and, when optimized, may shift the life-and-death balance toward a positive outcome. In this contribution, we provide an overview of the five main strategies available at the recovery stage to improve post-cryopreservation survival of in vitro plant materials and their further proliferation and development. In particular, we discuss the modification of the recovery medium composition (iron- and ammonium-free), exogenous additives to cope with oxidative stress and absorb toxic chemicals, and the modulation of medium osmotic potential. Special attention is paid to plant growth regulators used at various steps of the recovery process to induce the desired morphological response in cryopreserved tissues. Given studies on electron transport and energy provision in rewarmed materials, we discuss the effects of light-and-dark conditions and light quality. We hope that this summary provides a helpful guideline and a set of references for choosing the recovery conditions for plant species that have not been cryopreserved. We also propose that step-wise recovery may be most effective for materials sensitive to cryopreservation-induced osmotic and chemical stresses.
Collapse
Affiliation(s)
- Elena Popova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia
| | - Irina Kulichenko
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Sciences, Botanicheskaya 35, Moscow 127276, Russia
| | - Haeng-Hoon Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
26
|
Málková A, Savvulidi FG, Ptáček M, Machová K, Janošíková M, Nagy S, Stádník L. Glycerol-Free Equilibration with the Addition of Glycerol Shortly before the Freezing Procedure: A Perspective Strategy for Cryopreservation of Wallachian Ram Sperm. Animals (Basel) 2023; 13:ani13071200. [PMID: 37048456 PMCID: PMC10093609 DOI: 10.3390/ani13071200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
This study investigated the effect of glycerol added in different phases of sperm equilibration on CASA and flow cytometry parameters of thawed ram spermatozoa. Sperm was collected from adult Wallachian rams. The freezing extender was glycerol-free ANDROMED® (Minitub GmbH, Tiefenbach, Germany) supplied by 6% exogenous glycerol at different stages of the cryopreservation process. The purpose of this study was to compare two strategies of glycerol addition for sperm cryopreservation. The first strategy included the use of a glycerol-free extender for the procedure of glycerol-free equilibration and chilling, with the glycerolation of the extender by 6% glycerol shortly before sperm slow freezing (GFA). The second strategy included the use of a freezing extender already glycerolated by 6% glycerol before the equilibration and chilling of sperm and following slow freezing (GA). Sperm samples were analyzed after equilibration (but before freezing) and after thawing (at T0, T1 h, and T2 h time points). iSperm® mCASA (Aidmics Biotechnology Co., LTD., Taipei, Taiwan) was used for the evaluation of sperm kinematics. Flow cytometry was used to measure sperm viability (plasma membrane/acrosome intactness) and mitochondrial membrane potential. The obtained results significantly demonstrated that the glycerol-free equilibration with the addition of glycerol shortly before freezing is a perspective strategy for cryopreservation of Wallachian ram sperm.
Collapse
Affiliation(s)
- Anežka Málková
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (A.M.)
| | - Filipp Georgijevič Savvulidi
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (A.M.)
- Correspondence: ; Tel.: +420-223-383-069
| | - Martin Ptáček
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (A.M.)
| | - Karolína Machová
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic
| | - Martina Janošíková
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (A.M.)
| | - Szabolcs Nagy
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, H8360 Keszthely, Hungary
| | - Luděk Stádník
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic; (A.M.)
| |
Collapse
|
27
|
Polesi LG, Goeten D, Fraga HPDF, Steiner N, Guerra MP. Enzymatic Antioxidant System Activation Assures the Viability of Guadua chacoensis (Bambusoideae, Poaceae) Embryogenic Cultures during Cryopreservation. PLANTS (BASEL, SWITZERLAND) 2023; 12:673. [PMID: 36771757 PMCID: PMC9920021 DOI: 10.3390/plants12030673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to establish a cryopreservation protocol for G. chacoensis embryogenic cultures (ECs) and to investigate the role of antioxidant enzymes activities during cryopreservation. The growth dynamics of cell suspensions were also investigated, followed by a phytotoxicity test to assess the ECs' ability to tolerate the use of cryoprotective solutions for different incubation times (0, 30, 60, 120, and 240 min). We evaluated the EC redox state in three steps of cryopreservation: after incubation in cryoprotection solution, after thawing, and 60 days after regrowth. Our results showed that the ECs support the use of cryoprotective solution until 120 min, showing phytotoxic effects with 240 min of incubation. This study reports a 100% survival of the cultures and a 10% increase ratio in fresh material for both incubation times tested (60 and 120 min). Increased malonaldehyde content was identified after incubation in the cryoprotective solution. An increase in the activities of catalase and ascorbate peroxidase was also identified in the subsequent steps, suggesting that the activation of antioxidant enzymes is essential for maintaining cell homeostasis during cryopreservation.
Collapse
Affiliation(s)
- Luiza Giacomolli Polesi
- Graduate Program in Plant Genetic Resources, Laboratory of Plant Developmental Physiology and Genetics, Federal University of Santa Catarina, Florianópolis 88034-001, SC, Brazil
| | - Daniela Goeten
- Graduate Program in Plant Genetic Resources, Laboratory of Plant Developmental Physiology and Genetics, Federal University of Santa Catarina, Florianópolis 88034-001, SC, Brazil
- Departament of Botany, Federal University of Santa Catarina, Florianópolis 88040-535, SC, Brazil
| | | | - Neusa Steiner
- Graduate Program in Plant Genetic Resources, Laboratory of Plant Developmental Physiology and Genetics, Federal University of Santa Catarina, Florianópolis 88034-001, SC, Brazil
- Departament of Botany, Federal University of Santa Catarina, Florianópolis 88040-535, SC, Brazil
| | - Miguel Pedro Guerra
- Graduate Program in Plant Genetic Resources, Laboratory of Plant Developmental Physiology and Genetics, Federal University of Santa Catarina, Florianópolis 88034-001, SC, Brazil
- Graduate Program in Agricultural and Natural Ecosystems, Federal University of Santa Catarina, Curitibanos Campus, Ulysses Gaboardi Road, Km 3, Curitibanos 89520-000, SC, Brazil
| |
Collapse
|
28
|
Shamhari A‘A, Jefferi NES, Abd Hamid Z, Budin SB, Idris MHM, Taib IS. The Role of Promyelocytic Leukemia Zinc Finger (PLZF) and Glial-Derived Neurotrophic Factor Family Receptor Alpha 1 (GFRα1) in the Cryopreservation of Spermatogonia Stem Cells. Int J Mol Sci 2023; 24:ijms24031945. [PMID: 36768269 PMCID: PMC9915902 DOI: 10.3390/ijms24031945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The cryopreservation of spermatogonia stem cells (SSCs) has been widely used as an alternative treatment for infertility. However, cryopreservation itself induces cryoinjury due to oxidative and osmotic stress, leading to reduction in the survival rate and functionality of SSCs. Glial-derived neurotrophic factor family receptor alpha 1 (GFRα1) and promyelocytic leukemia zinc finger (PLZF) are expressed during the self-renewal and differentiation of SSCs, making them key tools for identifying the functionality of SSCs. To the best of our knowledge, the involvement of GFRα1 and PLZF in determining the functionality of SSCs after cryopreservation with therapeutic intervention is limited. Therefore, the purpose of this review is to determine the role of GFRα1 and PLZF as biomarkers for evaluating the functionality of SSCs in cryopreservation with therapeutic intervention. Therapeutic intervention, such as the use of antioxidants, and enhancement in cryopreservation protocols, such as cell encapsulation, cryoprotectant agents (CPA), and equilibrium of time and temperature increase the expression of GFRα1 and PLZF, resulting in maintaining the functionality of SSCs. In conclusion, GFRα1 and PLZF have the potential as biomarkers in cryopreservation with therapeutic intervention of SSCs to ensure the functionality of the stem cells.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
| | - Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics, and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Wilayah Persekutuan, Malaysia
- Correspondence: ; Tel.: +603-928-97608
| |
Collapse
|
29
|
Wang Z, Li M, Wu T. Ice recrystallization inhibition activity in bile salts. J Colloid Interface Sci 2023; 629:728-738. [PMID: 36193617 DOI: 10.1016/j.jcis.2022.09.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022]
Abstract
Ice recrystallization inhibitors are novel cryoprotective agents that can reduce the freezing damage of cells, tissues, and organs in cryopreservation. To date, potent ice recrystallization inhibition (IRI) activity has been found on antifreeze (glyco)proteins, polymers, nanomaterials, and a limited number of chemically synthesized small molecules. This paper reports a relatively potent IRI activity on a group of small biological molecules - bile salts. The IRI activity increased as the number of hydroxyl groups decreased in bile salts. Among sodium cholate (NaC), sodium deoxycholate (NaDC), sodium chenodeoxycholate (NaCC), and sodium lithocholate (NaLC), the least hydrophilic NaLC at a concentration of 25.0 mM entirely blocked the ice growth in phosphate-buffered saline (PBS) under test conditions. The IRI activity of bile salts was not related to viscosity or gelation. No IRI activity was found below the critical micelle concentration. The IRI activity was independent of liquid crystal formation. No ice shaping and thermal hysteresis were observed on any bile salts, but NaC and NaLC could increase the ice nucleation temperature. The findings add bile salts to the existing material list of ice recrystallization inhibitors.
Collapse
Affiliation(s)
- Zhihong Wang
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA
| | - Min Li
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA
| | - Tao Wu
- Department of Food Science, The University of Tennessee, Knoxville, 2510 River Drive, TN 37996, USA.
| |
Collapse
|
30
|
Lin M, Cao H, Li J. Control strategies of ice nucleation, growth, and recrystallization for cryopreservation. Acta Biomater 2023; 155:35-56. [PMID: 36323355 DOI: 10.1016/j.actbio.2022.10.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 02/02/2023]
Abstract
The cryopreservation of biomaterials is fundamental to modern biotechnology and biomedicine, but the biggest challenge is the formation of ice, resulting in fatal cryoinjury to biomaterials. To date, abundant ice control strategies have been utilized to inhibit ice formation and thus improve cryopreservation efficiency. This review focuses on the mechanisms of existing control strategies regulating ice formation and the corresponding applications to biomaterial cryopreservation, which are of guiding significance for the development of ice control strategies. Herein, basics related to biomaterial cryopreservation are introduced first. Then, the theoretical bases of ice nucleation, growth, and recrystallization are presented, from which the key factors affecting each process are analyzed, respectively. Ice nucleation is mainly affected by melting temperature, interfacial tension, shape factor, and kinetic prefactor, and ice growth is mainly affected by solution viscosity and cooling/warming rate, while ice recrystallization is inhibited by adsorption or diffusion mechanisms. Furthermore, the corresponding research methods and specific control strategies for each process are summarized. The review ends with an outlook of the current challenges and future perspectives in cryopreservation. STATEMENT OF SIGNIFICANCE: Ice formation is the major limitation of cryopreservation, which causes fatal cryoinjury to cryopreserved biomaterials. This review focuses on the three processes related to ice formation, called nucleation, growth, and recrystallization. The theoretical models, key influencing factors, research methods and corresponding ice control strategies of each process are summarized and discussed, respectively. The systematic introduction on mechanisms and control strategies of ice formation is instructive for the cryopreservation development.
Collapse
Affiliation(s)
- Min Lin
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China
| | - Haishan Cao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China.
| | - Junming Li
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for CO(2) Utilization and Reduction Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
How does metabolic rate in plant shoot tips change after cryopreservation? Cryobiology 2022; 109:1-9. [PMID: 36356915 DOI: 10.1016/j.cryobiol.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
Abstract
Cryopreservation allows the long-term storage of plant germplasm, but can cause damage to plant tissues, which must be repaired for survival to occur. This repair process is fuelled by the metabolic function of mitochondria; however, little is known about how metabolic function is affected by the cryopreservation process in plants. We compared metabolic rates of shoot tips of two Australian native species, Androcalva perlaria and Anigozanthos viridis. Overall, cryopreservation resulted in a significant reduction in the metabolic rates of shoot tips from both species, even in tissues that regenerated after cryopreservation. Metabolic rate did not increase within 48 h after of thawing, even in shoot tips which later regenerated. When examined in isolation, both pre-treatment on desiccation medium and exposure to cryoprotective agents significantly decreased metabolic rates in regenerating shoot tips of A. viridis, however both caused a significant increase in shoot tips of A. perlaria, suggesting diversity of response to cryopreservation stresses across species. Measurements of shoot tip metabolic rate during cryopreservation will inform investigations into cellular energy production and provide critical information on the state of shoot health after exposure to different cryoprotective treatments, which could play a useful role in guiding protocol optimisation for threatened species to maximise post-cryopreservation regeneration.
Collapse
|
32
|
Boafo GF, Magar KT, Ekpo MD, Qian W, Tan S, Chen C. The Role of Cryoprotective Agents in Liposome Stabilization and Preservation. Int J Mol Sci 2022; 23:ijms232012487. [PMID: 36293340 PMCID: PMC9603853 DOI: 10.3390/ijms232012487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022] Open
Abstract
To improve liposomes’ usage as drug delivery vehicles, cryoprotectants can be utilized to prevent constituent leakage and liposome instability. Cryoprotective agents (CPAs) or cryoprotectants can protect liposomes from the mechanical stress of ice by vitrifying at a specific temperature, which forms a glassy matrix. The majority of studies on cryoprotectants demonstrate that as the concentration of the cryoprotectant is increased, the liposomal stability improves, resulting in decreased aggregation. The effectiveness of CPAs in maintaining liposome stability in the aqueous state essentially depends on a complex interaction between protectants and bilayer composition. Furthermore, different types of CPAs have distinct effective mechanisms of action; therefore, the combination of several cryoprotectants may be beneficial and novel attributed to the synergistic actions of the CPAs. In this review, we discuss the use of liposomes as drug delivery vehicles, phospholipid–CPA interactions, their thermotropic behavior during freezing, types of CPA and their mechanism for preventing leakage of drugs from liposomes.
Collapse
Affiliation(s)
- George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Wang Qian
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.T.); (C.C.)
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Correspondence: (S.T.); (C.C.)
| |
Collapse
|
33
|
Ekpo MD, Boafo GF, Xie J, Liu X, Chen C, Tan S. Strategies in developing dimethyl sulfoxide (DMSO)-free cryopreservation protocols for biotherapeutics. Front Immunol 2022; 13:1030965. [PMID: 36275725 PMCID: PMC9579275 DOI: 10.3389/fimmu.2022.1030965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | | | | | | | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
34
|
Gao Z, Li W, Zhang H, Yang Z, Zhao X, Wei Q, Ma B. Effects of nylon mesh vitrification on the cytoskeleton, mitochondria, and aquaporins of mouse 2-cell embryos. In Vitro Cell Dev Biol Anim 2022; 58:638-642. [PMID: 36074254 DOI: 10.1007/s11626-022-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/10/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Zhen Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wei Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhenshan Yang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoe Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qiang Wei
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Baohua Ma
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
35
|
Biological activity, solvation properties and microstructuring of protic imidazolium ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Wang W, Todorov P, Pei C, Wang M, Isachenko E, Rahimi G, Mallmann P, Isachenko V. Epigenetic Alterations in Cryopreserved Human Spermatozoa: Suspected Potential Functional Defects. Cells 2022; 11:cells11132110. [PMID: 35805194 PMCID: PMC9266127 DOI: 10.3390/cells11132110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Gene set enrichment analysis (GSEA) was conducted on raw data, and alternative splicing (AS) events were found after mRNA sequencing of human spermatozoa. In this study, we aimed to compare unknown micro-epigenetics alternations in fresh and cryopreserved spermatozoa to evaluate the effectivity of cryopreservation protocols. Methods: Spermatozoa were divided into three groups: fresh spermatozoa (group 1), cryoprotectant-free vitrified spermatozoa (group 2), and conventionally frozen spermatozoa (group 3). Nine RNA samples (three replicates in each group) were detected and were used for library preparation with an Illumina compatible kit and sequencing by the Illumina platform. Results: Three Gene Ontology (GO) terms were found to be enriched in vitrified spermatozoa compared with fresh spermatozoa: mitochondrial tRNA aminoacylation, ATP-dependent microtubule motor activity, and male meiotic nuclear division. In alternative splicing analysis, a number of unknown AS events were found, including functional gene exon skipping (SE), alternative 5′ splice sites (A5SS), alternative 3′ splice sites (A3SS), mutually exclusive exon (MXE), and retained intron (RI). Conclusions: Cryopreservation of spermatozoa from some patients can agitate epigenetic instability, including increased alternative splicing events and changes in crucial mitochondrial functional activities. For fertilization of oocytes, for such patients, it is recommended to use fresh spermatozoa whenever possible; cryopreservation of sperm is recommended to be used only in uncontested situations.
Collapse
Affiliation(s)
- Wanxue Wang
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Plamen Todorov
- Institute of Biology and Immunology of Reproduction of Bulgarian Academy of Sciences, Tsarigradsko highway 73A, 1113 Sofia, Bulgaria;
| | - Cheng Pei
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Mengying Wang
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Evgenia Isachenko
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Gohar Rahimi
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Peter Mallmann
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
| | - Vladimir Isachenko
- Department of Obstetrics and Gynaecology, Medical Faculty, Cologne University, 50931 Cologne, Germany; (W.W.); (C.P.); (M.W.); (E.I.); (G.R.); (P.M.)
- Correspondence:
| |
Collapse
|
37
|
Beşchea GA, Câmpean SI, Tăbăcaru MB, Vuţoiu BG, Şerban A, Năstase G. A State of the Art Review of Isochoric Cryopreservation and Cryoprotectants. CRYOLETTERS 2022. [DOI: 10.54680/fr22410110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is a developing enthusiasm for discovering new methods, cryoprotectants, systems and devices for cells, tissues, and organ preservation in medicine, in sub-zero temperature conditions and a growing interest in developing more efficient and economical methods for long-term preservation
of food in a frozen state. Most of the preservation protocols currently used in medicine and food preservation involve the use of atmospheric pressure, and temperatures lower than normal body temperature in medicine, or lower than room temperature in the food industry. In this state of the
art review, we analyzed the results of a new preservation method that uses an isochoric system. We aimed to offer a clear overview of the potential of this new technology. Firstly, to study the origins of isochoric preservation, we searched using the WoS Database. A search with the world "isochoric"
returned 488 results. A more specific search of the term "isochoric freezing" returned 94 results. From these searches, we selected the 12 most relevant articles and discuss them here in detail. We present an overall characterization and criticism of the current use and potential of this new
preservation method that can be used in the medicine and food industry. The main findings indicate encouraging results for the tested biological matter, including for the preservation of food products (e.g.cherries, spinach, potatoes), biological organisms (e. g. Caenorhabditis elegans,
Escherichia coli, Listeria, Salmonella typhimurium), organs (e.g. rat hearts), tissues (e. g., tilapia fish filets) or cells (e. g., mammalian cells, pancreatic cells). Accordingly, we conclude that the isochoric system holds huge potential as a new technique in the
field of preservation.
Collapse
Affiliation(s)
- George-Andrei Beşchea
- Transilvania University of Braşov, Faculty of Civil Engineering, Department of Building Services, Braşov, Romania
| | - Stefan-Ioan Câmpean
- Transilvania University of Braşov, Faculty of Civil Engineering, Department of Building Services, Braşov, Romania
| | - Maria-Bianca Tăbăcaru
- Transilvania University of Braşov, Faculty of Civil Engineering, Department of Building Services, Braşov, Romania
| | - Beatrice-Georgiana Vuţoiu
- Transilvania University of Braşov, Faculty of Civil Engineering, Department of Building Services, Braşov, Romania
| | - Alexandru Şerban
- Transilvania University of Braşov, Faculty of Civil Engineering, Department of Building Services, Braşov, Romania
| | - Gabriel Năstase
- University Politehnica of Bucharest, Faculty of Mechanical Mechatornics, Thermotechnics, engines, thermal and refrigeration equipment Department, Bucharest, Romania
| |
Collapse
|
38
|
Bryant SJ, Awad MN, Elbourne A, Christofferson AJ, Martin AV, Meftahi N, Drummond CJ, Greaves TL, Bryant G. Deep eutectic solvents as cryoprotective agents for mammalian cells. J Mater Chem B 2022; 10:4546-4560. [PMID: 35670530 DOI: 10.1039/d2tb00573e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cryopreservation has facilitated numerous breakthroughs including assisted reproductive technology, stem cell therapies, and species preservation. Successful cryopreservation requires the addition of cryoprotective agents to protect against freezing damage and dehydration. For decades, cryopreservation has largely relied on the same two primary agents: dimethylsulfoxide and glycerol. However, both of these are toxic which limits their use for cells destined for clinical applications. Furthermore, these two agents are ineffective for hundreds of cell types, and organ and tissue preservation has not been achieved. The research presented here shows that deep eutectic solvents can be used as cryoprotectants. Six deep eutectic solvents were explored for their cryoprotective capacity towards mammalian cells. The solvents were tested for their thermal properties, including glass transitions, toxicity, and permeability into mammalian cells. A deep eutectic solvent made from proline and glycerol was an effective cryoprotective agent for all four cell types tested, even with extended incubation prior to freezing. This deep eutectic solvent was more effective and less toxic than its individual components, highlighting the importance of multi-component systems. Cells were characterised post-thawing using atomic force microscopy and confocal microscopy. Molecular dynamics simulations support the biophysical parameters obtained by experimentation. This is one of the first times that this class of solvents has been systematically tested for cryopreservation of mammalian cells and as such this research opens the way for the development of potentially thousands of new cryoprotective agents that can be tailored to specific cell types. The demonstrated capacity of cells to be incubated with the deep eutectic solvent at 37 °C for hours prior to freezing without significant loss of viability is a major step toward the storage of organs and tissues.
Collapse
Affiliation(s)
- Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Miyah N Awad
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Andrew J Christofferson
- School of Science, College of STEM, RMIT University, Melbourne, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, College of STEM, RMIT University, Melbourne, Australia.
| | - Andrew V Martin
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, College of STEM, RMIT University, Melbourne, Australia.
| | - Calum J Drummond
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Australia
| |
Collapse
|
39
|
Xie J, Ekpo MD, Xiao J, Zhao H, Bai X, Liang Y, Zhao G, Liu D, Tan S. Principles and Protocols For Post-Cryopreservation Quality Evaluation of Stem Cells in Novel Biomedicine. Front Pharmacol 2022; 13:907943. [PMID: 35592426 PMCID: PMC9113563 DOI: 10.3389/fphar.2022.907943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/05/2023] Open
Abstract
Stem cell therapy is a thriving topic of interest among researchers and clinicians due to evidence of its effectiveness and promising therapeutic advantage in numerous disease conditions as presented by novel biomedical research. However, extensive clinical application of stem cells is limited by its storage and transportation. The emergence of cryopreservation technology has made it possible for living organs, tissues, cells and even living organisms to survive for a long time at deep low temperatures. During the cryopreservation process, stem cell preparations are subject to three major damages: osmotic damage, mechanical damage, and peroxidative damage. Therefore, Assessing the effectiveness and safety of stem cells following cryopreservation is fundamental to the quality control of stem cell preparations. This article presents the important biosafety and quality control parameters to be assessed during the manufacturing of clinical grade stem cell products, highlights the significance of preventing cryodamage. and provides a reference for protocols in the quality control of stem cell preparations.
Collapse
Affiliation(s)
- Jingxian Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Marlene Davis Ekpo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Zhao
- Hunan Carnation Biotechnology Co. LTD, Changsha, China.,Hainan Nova Doctor Group Co. Ltd, Haikou, China
| | - Xiaoyong Bai
- Hunan Carnation Biotechnology Co. LTD, Changsha, China.,Hainan Nova Doctor Group Co. Ltd, Haikou, China
| | - Yijie Liang
- Hunan Carnation Biotechnology Co. LTD, Changsha, China.,Hainan Nova Doctor Group Co. Ltd, Haikou, China
| | - Guang Zhao
- Hunan Sheng Bao Biological Technology Co., Ltd (in Yinfeng Biological Group., Ltd), Changsha, China
| | - Dong Liu
- Hunan Sheng Bao Biological Technology Co., Ltd (in Yinfeng Biological Group., Ltd), Changsha, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
40
|
Marcantonini G, Bartolini D, Zatini L, Costa S, Passerini M, Rende M, Luca G, Basta G, Murdolo G, Calafiore R, Galli F. Natural Cryoprotective and Cytoprotective Agents in Cryopreservation: A Focus on Melatonin. Molecules 2022; 27:3254. [PMID: 35630729 PMCID: PMC9145333 DOI: 10.3390/molecules27103254] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 01/31/2023] Open
Abstract
Cryoprotective and cytoprotective agents (Cytoprotective Agents) are fundamental components of the cryopreservation process. This review presents the essentials of the cryopreservation process by examining its drawbacks and the role of cytoprotective agents in protecting cell physiology. Natural cryoprotective and cytoprotective agents, such as antifreeze proteins, sugars and natural deep eutectic systems, have been compared with synthetic ones, addressing their mechanisms of action and efficacy of protection. The final part of this article focuses melatonin, a hormonal substance with antioxidant properties, and its emerging role as a cytoprotective agent for somatic cells and gametes, including ovarian tissue, spermatozoa and spermatogonial stem cells.
Collapse
Affiliation(s)
- Giada Marcantonini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| | - Linda Zatini
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| | - Stefania Costa
- Angelantoni Life Science S.r.l., 06056 Massa Martana, Italy; (S.C.); (M.P.)
| | | | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinic and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy;
| | - Giovanni Luca
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
| | - Giuseppe Basta
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
| | - Giuseppe Murdolo
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
| | - Riccardo Calafiore
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (G.L.); (G.B.); (G.M.); (R.C.)
- Centro Biotecnologico Internazionale di Ricerca Traslazionale ad Indirizzo Endocrino, Metabolico ed Embrio-Riproduttivo (CIRTEMER), 06132 Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Lipidomics and Micronutrient Vitamins Laboratory and Human Anatomy Laboratory, University of Perugia, 06126 Perugia, Italy; (G.M.); (D.B.); (L.Z.)
| |
Collapse
|
41
|
Sreter JA, Foxall TL, Varga K. Intracellular and Extracellular Antifreeze Protein Significantly Improves Mammalian Cell Cryopreservation. Biomolecules 2022; 12:669. [PMID: 35625597 PMCID: PMC9139014 DOI: 10.3390/biom12050669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 12/03/2022] Open
Abstract
Cell cryopreservation is an essential part of the biotechnology, food, and health care industries. There is a need to develop more effective, less toxic cryoprotective agents (CPAs) and methods, especially for mammalian cells. We investigated the impact of an insect antifreeze protein from Anatolica polita (ApAFP752) on mammalian cell cryopreservation using the human embryonic kidney cell line HEK 293T. An enhanced green fluorescent protein (EGFP)-tagged antifreeze protein, EGFP-ApAFP752, was transfected into the cells and the GFP was used to determine the efficiency of transfection. AFP was assessed for its cryoprotective effects intra- and extracellularly and both simultaneously at different concentrations with and without dimethyl sulfoxide (DMSO) at different concentrations. Comparisons were made to DMSO or medium alone. Cells were cryopreserved at -196 °C for ≥4 weeks. Upon thawing, cellular viability was determined using trypan blue, cellular damage was assessed by lactate dehydrogenase (LDH) assay, and cellular metabolism was measured using a metabolic activity assay (MTS). The use of this AFP significantly improved cryopreserved cell survival when used with DMSO intracellularly. Extracellular AFP also significantly improved cell survival when included in the DMSO freezing medium. Intra- and extracellular AFP used together demonstrated the most significantly increased cryoprotection compared to DMSO alone. These findings present a potential method to improve the viability of cryopreserved mammalian cells.
Collapse
Affiliation(s)
- Jonathan A. Sreter
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| | - Thomas L. Foxall
- Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA;
| | - Krisztina Varga
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| |
Collapse
|
42
|
Assessment of larval quality of two bivalve species, Crassostrea angulata and Chamelea gallina, exposed and cryopreserved with different cryoprotectant solutions. Cryobiology 2022; 106:24-31. [PMID: 35523313 DOI: 10.1016/j.cryobiol.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/21/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Marine bivalves are valuable resources, however, some shellfish populations are endangered due to factors such as anthropogenic pressure, pathologies or lack of reproduction synchrony. Portuguese oyster (Crassostrea angulata) and striped venus clam (Chamelea gallina) have high socio-economic value and their endangered natural populations require rehabilitation. Cryopreservation is a valuable method for the preservation and management of genetic resources for aquaculture and restocking. Larvae cryopreservation is particularly valuable since diploid organisms are obtained upon thawing. The objective of this work was the establishment of C. angulata and C. gallina D-larvae cryopreservation through the selection of permeant cryoprotectant in the freezing solution, namely ethylene glycol (EG) and dimethyl sulfoxide (Me2SO). Cryoprotectants exposure showed that, in C. angulata, Me2SO promoted significantly higher incidence of abnormalities and enhanced glutathione reductase activity when compared to control (larvae without cryoprotectant exposure) or even to EG treatment. However, for both species, EG significantly reduced D-larvae average path velocity (VAP). In C. angulata post-thaw D-larvae, EG treatment promoted significantly lower motility and velocity when compared to control and Me2SO treatment. Superoxide dismutase (SOD) activity showed a reduction in C. angulata post-thaw D-larvae when compared to control, which was compensated by the enhancement of glutathione peroxidase (GPX) activity. In C. gallina post-thaw D-larvae, only motility, velocity and SOD activity were significantly lower than control. Therefore, the best treatment to cryopreserve C. angulata D-larvae was EG while for C. gallina Me2SO produced better results. This work established for the first time D-larvae cryopreservation protocols for C. angulata and C. gallina.
Collapse
|
43
|
Malajczuk CJ, Stachura SS, Hendry JO, Mancera RL. Redefining the Molecular Interplay between Dimethyl Sulfoxide, Lipid Bilayers, and Dehydration. J Phys Chem B 2022; 126:2513-2529. [PMID: 35344357 DOI: 10.1021/acs.jpcb.2c00353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The potentially damaging action of dimethyl sulfoxide (DMSO) on phospholipid bilayers remains a matter of controversy. We have conducted a series of long-scale molecular dynamics simulations of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers at various levels of hydration in the presence of variable quantities of DMSO. These simulations provide evidence for a non-destructive dehydrating mechanism of action for DMSO on DOPC bilayers across a wide concentration range and levels of hydration. Specifically, under full- and low-hydration conditions, the bilayer underwent a minor lateral contraction, coinciding with surface dehydration in the presence of dilute DMSO solutions (XDMSO < 0.3). At higher DMSO concentrations, this bilayer structure was retained despite a progressive deterioration of the hydration structure at the interface. A similar convergence of bilayer structural properties was observed under dehydration conditions for 0.3 < XDMSO < 0.7. Destabilization occurred for dehydrated bilayers in the presence of XDMSO ≥ 0.7, suggesting the existence of a DMSO concentration and/or dehydration threshold. However, such DMSO concentrations far exceed those established as toxic to other cellular components. Our findings represent a computational model for DMSO-DOPC interactions that is consistent with a range of experimental characterizations, offering new molecular insights into the cryoprotective mechanisms of action of DMSO.
Collapse
Affiliation(s)
- Chris J Malajczuk
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Sławomir S Stachura
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - James O Hendry
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia
| |
Collapse
|
44
|
Impact of equilibration duration combined with temperature on the outcome of bovine oocyte vitrification. Theriogenology 2022; 184:110-123. [DOI: 10.1016/j.theriogenology.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022]
|
45
|
Ekpo MD, Xie J, Hu Y, Liu X, Liu F, Xiang J, Zhao R, Wang B, Tan S. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking. Int J Mol Sci 2022; 23:2639. [PMID: 35269780 PMCID: PMC8910022 DOI: 10.3390/ijms23052639] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing temperature of the water below its melting point in a process termed thermal hysteresis which is then responsible for ice crystal equilibrium and inhibition of ice recrystallisation; the major cause of cell dehydration, membrane rupture and subsequent cryodamage. Scientists on the other hand have been exploring various substances as cryoprotectants. Some of the cryoprotectants in use include trehalose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), sucrose, propylene glycol (PG) and glycerol but their extensive application is limited mostly by toxicity, thus fueling the quest for better cryoprotectants. Hence, extracting or synthesizing antifreeze protein and testing their cryoprotective activity has become a popular topic among researchers. Research concerning AFPs encompasses lots of effort ranging from understanding their sources and mechanism of action, extraction and purification/synthesis to structural elucidation with the aim of achieving better outcomes in cryopreservation. This review explores the potential clinical application of AFPs in the cryopreservation of different cells, tissues and organs. Here, we discuss novel approaches, identify research gaps and propose future research directions in the application of AFPs based on recent studies with the aim of achieving successful clinical and commercial use of AFPs in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (M.D.E.); (J.X.); (Y.H.); (X.L.); (F.L.); (J.X.); (R.Z.); (B.W.)
| |
Collapse
|
46
|
Su T, Sun Y, Han L, Cai W, Shao X. Revealing the interactions of water with cryoprotectant and protein by near-infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120417. [PMID: 34600324 DOI: 10.1016/j.saa.2021.120417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Taking formamide (FA) as a model compound of protein, the water structure in the ternary mixtures of dimethyl sulfoxide (DMSO)-water-FA was studied by near-infrared (NIR) spectroscopy. The interaction of DMSO and water, and the effect of FA on the interaction, were analyzed with the help of chemometric methods. Continuous wavelet transform (CWT) was used to enhance the resolution of the spectra. A peak at 6437 cm-1 depicting the interaction of DMSO and water through hydrogen bonding (SO…HO) was observed in the transformed spectra. When FA exists in the mixture, the intensity of the peak decreases with the increase of formamide content, showing that FA may replace the water to form the hydrogen bond of SO and HN. In addition, temperature-dependent NIR spectroscopy was used to analyze the effect of the three components on the spectral variation with temperature. Analyzing the spectral data by alternating trilinear decomposition (ATLD) and multiple linear regression, two varying spectral features were obtained that are related to water and DMSO, but no spectral feature was found that significantly varies with the content of FA. The result implies that DMSO is still the key component to prevent the water from icing, although FA may reduce slightly the anti-freezing effect.
Collapse
Affiliation(s)
- Tao Su
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Yan Sun
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Li Han
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China.
| |
Collapse
|
47
|
Whelehan LM, Funnekotter B, Bunn E, Mancera RL. Review: The case for studying mitochondrial function during plant cryopreservation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111134. [PMID: 35067304 DOI: 10.1016/j.plantsci.2021.111134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Cryopreservation has several advantages over other ex situ conservation methods, and indeed is the only viable storage method for the long term conservation of most plant species. However, despite many advances in this field, it is increasingly clear that some species are ill-equipped to overcome the intense stress imposed by the cryopreservation process, making protocol development incredibly difficult using traditional trial and error methods. Cryobiotechnology approaches have been recently recognised as a strategic way forward, utilising intimate understanding of biological systems to inform development of more effective cryopreservation protocols. Mitochondrial function is a model candidate for a cryobiotechnological approach, as it underpins not only energy provision, but also several other key determinants of germplasm outcome, including stress response, reduction-oxidation status, and programmed cell death. Extensive research in animal cell and tissue cryopreservation has established a clear link between mitochondrial health and cryopreservation survival, but also indicates that mitochondria are routinely subject to damage from multiple aspects of the cryopreservation process. Evidence is already emerging that mitochondrial dysfunction may also occur in plant cryopreservation, and this research can be greatly expanded by using considered applications of innovative technologies. A range of mitochondria-targeted prophylactic and therapeutic interventions already exist with potential to improve cryopreservation outcomes through mitochondrial function.
Collapse
Affiliation(s)
- Lily M Whelehan
- Curtin Medical School, Curtin University, Perth, WA, Australia; Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia.
| | - Bryn Funnekotter
- Curtin Medical School, Curtin University, Perth, WA, Australia; Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia.
| | - Eric Bunn
- Kings Park Science, Department of Biodiversity, Conservation and Attractions, Perth, WA, Australia.
| | | |
Collapse
|
48
|
Conclusions About Osmotically Inactive Volume and Osmotic Fragility from a Detailed Erythrocyte Model. J Theor Biol 2022; 539:110982. [DOI: 10.1016/j.jtbi.2021.110982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
|
49
|
Gore M, Narvekar A, Bhagwat A, Jain R, Dandekar P. Macromolecular cryoprotectants for the preservation of mammalian cell culture: lessons from crowding, overview and perspectives. J Mater Chem B 2021; 10:143-169. [PMID: 34913462 DOI: 10.1039/d1tb01449h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cryopreservation is a process used for the storage of mammalian cells at a very low temperature, in a state of 'suspended animation.' Highly effective and safe macromolecular cryoprotectants (CPAs) have gained significant attention as they obviate the toxicity of conventional CPAs like dimethyl sulfoxide (DMSO) and reduce the risks involved in the storage of cultures at liquid nitrogen temperatures. These agents provide cryoprotection through multiple mechanisms, involving extracellular and intracellular macromolecular crowding, thereby impacting the biophysical and biochemical dynamics of the freezing medium and the cryopreserved cells. These CPAs vary in their structures and physicochemical properties, which influence their cryoprotective activities. Moreover, the introduction of polymeric crowders in the cryopreservation media enables serum-free storage at low-DMSO concentrations and high-temperature vitrification of frozen cultures (-80 °C). This review highlights the need for macromolecular CPAs and describes their mechanisms of cryopreservation, by elucidating the role of crowding effects. It also classifies the macromolecules based on their chemistry and their structure-activity relationships. Furthermore, this article provides perspectives on the factors that may influence the outcomes of the cell freezing process or may help in designing and evaluating prospective macromolecules. This manuscript also includes case studies about cellular investigations that have been conducted to demonstrate the cryoprotective potential of macromolecular CPAs. Ultimately, this review provides essential directives that will further improve the cell cryopreservation process and may encourage the use of macromolecular CPAs to fortify basic, applied, and translational research.
Collapse
Affiliation(s)
- Manish Gore
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Aditya Narvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Advait Bhagwat
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| |
Collapse
|
50
|
Yang J, Xu Y, Luo S, Dang H, Cao M. Effect of cryoprotectants on rat kidney decellularization by freeze-thaw process. Cryobiology 2021; 105:71-82. [PMID: 34848188 DOI: 10.1016/j.cryobiol.2021.11.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022]
Abstract
To overcome the shortage of organ donors and morbidity and mortality caused by lifetime immunosuppression, development of a transplantable graft to permanently replace the organ function is required. This study is focused on the effects of a freeze-thaw process and cryoprotectants on the ultrastructure and composition of decellularization scaffolds. Results showed that cryoprotectants and freezing temperatures had significant effects on the decellularization scaffold. The vascular network integrity at -20 °C was better than that at -80 °C. For low-concentration cryoprotectants, 10% dimethyl sulfoxide and 5% trehalose could achieve a better balance between preserving the vascular tree and decellularization. For high-concentration cryoprotectants (vitrification solutions VS55 and VS83), the vascular network integrity was best because of the absence of freezing damage and ice-induced disruption of cells, but the decellularization effect was poor because the cells remained in the scaffold. Collagen, elastic fiber, protein, and mechanical properties of the scaffold could be retained after decellularization using the freeze-thaw method. Further studies and further optimization of the freeze-thaw decellularization protocol are necessary for clinical applications.
Collapse
Affiliation(s)
- Jiamin Yang
- Department of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yi Xu
- Department of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Sichang Luo
- Department of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Hangyu Dang
- Department of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Mengyuan Cao
- Department of Food Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|