1
|
Penadés R, Almodóvar-Payá C, García-Rizo C, Ruíz V, Catalán R, Valero S, Wykes T, Fatjó-Vilas M, Arias B. Changes in BDNF methylation patterns after cognitive remediation therapy in schizophrenia: A randomized and controlled trial. J Psychiatr Res 2024; 173:166-174. [PMID: 38537483 DOI: 10.1016/j.jpsychires.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Although cognitive remediation therapy (CRT) produces cognitive benefits in schizophrenia, we do not yet understand whether molecular changes are associated with this cognitive improvement. A gene central to synaptic plasticity, the BDNF, has been proposed as one potential route. This study assesses whether BDNF methylation changes following CRT-produced cognitive improvement are detected. A randomized and controlled trial was performed with two groups (CRT, n = 40; TAU: Treatment as Usual, n = 20) on a sample of participants with schizophrenia. CRT was delivered by trained therapists using a web-based computerized program. Mixed Models, where the interaction of treatment (CRT, TAU) by time (T0: 0 weeks, T1: 16 weeks) was the main effect were used. Then, we tested the association between the treatment and methylation changes in three CpG islands of the BDNF gene. CRT group showed significant improvements in some cognitive domains. Between-groups differential changes in 5 CpG units over time were found, 4 in island 1 (CpG1.2, CpG1.7, CpG1.10, CpG1.17) and 1 in island 3 (CpG3.2). CRT group showed increases in methylation in CpG1.2, CpG1.7 and decreases in pG1.10, CpG1.17, and CpG3.2. Differences in the degree of methylation were associated with changes in Speed of Processing, Working Memory, and Verbal Learning within the CRT group. Those findings provide new data on the relationship between cognitive improvement and changes in peripheral methylation levels of BDNF gene, a key factor involved in neuroplasticity regulation. Trial Registration: NCT04278027.
Collapse
Affiliation(s)
- Rafael Penadés
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Barcelona, Spain; Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - Carmen Almodóvar-Payá
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Clemente García-Rizo
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Barcelona, Spain; Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Victoria Ruíz
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Barcelona, Spain
| | - Rosa Catalán
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Barcelona, Spain; Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Sergi Valero
- ACE Alzheimer Center Barcelona, Barcelona, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Til Wykes
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; South London & Maudsley NHS Foundation Trust, London Hospital, London, United Kingdom
| | - Mar Fatjó-Vilas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Bárbara Arias
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
2
|
Liria Sánchez-Lafuente C, Martinez-Verbo L, Johnston JN, Floyd J, Esteller M, Kalynchuk LE, Ausió J, Caruncho HJ. Chronic corticosterone exposure in rats induces sex-specific alterations in hypothalamic reelin fragments, MeCP2, and DNMT3a protein levels. Neurosci Lett 2024; 830:137770. [PMID: 38616004 DOI: 10.1016/j.neulet.2024.137770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Women are disproportionately affected by stress-related disorders like depression. In our prior research, we discovered that females exhibit lower basal hypothalamic reelin levels, and these levels are differentially influenced by chronic stress induced through repeated corticosterone (CORT) injections. Although epigenetic mechanisms involving DNA methylation and the formation of repressor complexes by DNA methyl-transferases (DNMTs) and Methyl-CpG binding protein 2 (MeCP2) have been recognized as regulators of reelin expression in vitro, there is limited understanding of the impact of stress on the epigenetic regulation of reelin in vivo and whether sex differences exist in these mechanisms. To address these questions, we conducted various biochemical analyses on hypothalamic brain samples obtained from male and female rats previously treated with either 21 days of CORT (40 mg/kg) or vehicle (0.9 % saline) subcutaneous injections. Upon chronic CORT treatment, a reduction in reelin fragment NR2 was noted in males, while the full-length molecule remained unaffected. This decrease paralleled with an elevation in MeCP2 and a reduction in DNMT3a protein levels only in males. Importantly, sex differences in baseline and CORT-induced reelin protein levels were not associated with changes in the methylation status of the Reln promoter. These findings suggest that CORT-induced reelin decreases in the hypothalamus may be a combination of alterations in downstream processes beyond gene transcription. This research brings novel insights into the sexually distinct consequences of chronic stress, an essential aspect to understand, particularly concerning its role in the development of depression.
Collapse
Affiliation(s)
| | - Laura Martinez-Verbo
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Jenessa N Johnston
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jennifer Floyd
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Juan Ausió
- Biochemistry and Microbiology Department, University of Victoria, Victoria, British Columbia, Canada.
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
3
|
Halvorson CS, Sánchez-Lafuente CL, Johnston JN, Kalynchuk LE, Caruncho HJ. Molecular Mechanisms of Reelin in the Enteric Nervous System and the Microbiota-Gut-Brain Axis: Implications for Depression and Antidepressant Therapy. Int J Mol Sci 2024; 25:814. [PMID: 38255890 PMCID: PMC10815176 DOI: 10.3390/ijms25020814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Current pharmacological treatments for depression fail to produce adequate remission in a significant proportion of patients. Increasingly, other systems, such as the microbiome-gut-brain axis, are being looked at as putative novel avenues for depression treatment. Dysbiosis and dysregulation along this axis are highly comorbid with the severity of depression symptoms. The endogenous extracellular matrix protein reelin is present in all intestinal layers as well as in myenteric and submucosal ganglia, and its receptors are also present in the gut. Reelin secretion from subepithelial myofibroblasts regulates cellular migration along the crypt-villus axis in the small intestine and colon. Reelin brain expression is downregulated in mood and psychotic disorders, and reelin injections have fast antidepressant-like effects in animal models of depression. This review seeks to discuss the roles of reelin in the gastrointestinal system and propose a putative role for reelin actions in the microbiota-gut-brain axis in the pathogenesis and treatment of depression, primarily reflecting on alterations in gut epithelial cell renewal and in the clustering of serotonin transporters.
Collapse
Affiliation(s)
- Ciara S. Halvorson
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Carla Liria Sánchez-Lafuente
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Jenessa N. Johnston
- Section on the Neurobiology and Treatment of Mood Disorders, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa E. Kalynchuk
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| | - Hector J. Caruncho
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5C2, Canada; (C.S.H.); (C.L.S.-L.); (L.E.K.)
| |
Collapse
|
4
|
Markiewicz R, Markiewicz-Gospodarek A, Borowski B, Trubalski M, Łoza B. Reelin Signaling and Synaptic Plasticity in Schizophrenia. Brain Sci 2023; 13:1704. [PMID: 38137152 PMCID: PMC10741648 DOI: 10.3390/brainsci13121704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Recent research emphasizes the significance of studying the quality of life of schizophrenia patients, considering the complex nature of the illness. Identifying neuronal markers for early diagnosis and treatment is crucial. Reelin (RELN) stands out among these markers, with genetic studies highlighting its role in mental health. Suppression of RELN expression may contribute to cognitive deficits by limiting dendritic proliferation, affecting neurogenesis, and leading to improper neuronal circuits. Although the physiological function of reelin is not fully understood, it plays a vital role in hippocampal cell stratification and neuroglia formation. This analysis explores reelin's importance in the nervous system, shedding light on its impact on mental disorders such as schizophrenia, paving the way for innovative therapeutic approaches, and at the same time, raises the following conclusions: increased methylation levels of the RELN gene in patients with a diagnosis of schizophrenia results in a multiple decrease in the expression of reelin, and monitoring of this indicator, i.e., methylation levels, can be used to monitor the severity of symptoms in the course of schizophrenia.
Collapse
Affiliation(s)
- Renata Markiewicz
- Occupational Therapy Laboratory, Chair of Nursing Development, Medical University of Lublin, 4 Staszica St., 20-081 Lublin, Poland;
| | | | - Bartosz Borowski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (B.B.); (M.T.)
| | - Mateusz Trubalski
- Students Scientific Association, Department of Normal, Clinical and Imaging Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (B.B.); (M.T.)
| | - Bartosz Łoza
- Department of Psychiatry, Medical University of Warsaw, 02-091 Warsaw, Poland;
| |
Collapse
|
5
|
Ibi D, Nakasai G, Sawahata M, Takaba R, Kinoshita M, Yamada K, Hiramatsu M. Emotional behaviors as well as the hippocampal reelin expression in C57BL/6N male mice chronically treated with corticosterone. Pharmacol Biochem Behav 2023; 230:173617. [PMID: 37562494 DOI: 10.1016/j.pbb.2023.173617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Depression is a common psychiatric disorder affecting around 300 million people worldwide. Serum cortisol and glucocorticoid levels in humans are reportedly higher in patients with depression compared to controls. Furthermore, rodents repeatedly treated with exogenous corticosterone (CORT), a glucocorticoid in rodents, exhibit deficits in emotional behaviors. To confirm the availability of mice with chronic CORT treatment as an animal model of depression, we investigated the effect of chronic CORT treatment on depression-like behavioral and neuropathological phenotypes in C57BL/6N male mice. Behavioral studies showed depression- and anxiety-like behaviors in mice treated with CORT compared with control mice in the forced-swim and elevated-plus maze tests. Additionally, treated mice represented anhedonia and social behavior impairments in the sucrose preference and social interaction tests, respectively. Brains of depression patients have altered expression of reelin, an extracellular matrix protein involved in neuronal development and function. Likewise, in the present study, mice with chronic CORT treatment also exhibited reelin downregulation in cells of the hippocampus. Hence, we investigated therapeutic effects of reelin supplementation on CORT-induced behavioral abnormalities in mice. Microinjections of recombinant reelin protein into the hippocampus did not rescue behavioral deficits in mice with chronic CORT treatment. These results suggest that C57BL/6N male mice chronically treated with CORT are a suitable animal depression model, in which depressive behaviors may occur independently of the alternation of hippocampal Reelin expression.
Collapse
Affiliation(s)
- Daisuke Ibi
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya 468-8503, Japan; Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan.
| | - Genki Nakasai
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Masahito Sawahata
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Rika Takaba
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Maho Kinoshita
- Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Masayuki Hiramatsu
- Department of Chemical Pharmacology, Graduate School of Pharmacy, Meijo University, Nagoya 468-8503, Japan; Department of Chemical Pharmacology, Faculty of Pharmacy, Meijo University, Nagoya 468-8503, Japan.
| |
Collapse
|
6
|
Escudero B, Moya M, López-Valencia L, Arias F, Orio L. Reelin Plasma Levels Identify Cognitive Decline in Alcohol Use Disorder Patients During Early Abstinence: The Influence of APOE4 Expression. Int J Neuropsychopharmacol 2023; 26:545-556. [PMID: 37350760 PMCID: PMC10464928 DOI: 10.1093/ijnp/pyad034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Apolipoprotein E (APOE)-4 isoform, reelin, and clusterin share very-low-density liporeceptor and apolipoprotein E receptor 2 receptors and are related to cognition in neuropsychiatric disorders. These proteins are expressed in plasma and brain, but studies involving plasma expression and cognition are scarce. METHODS We studied the peripheral expression (plasma and peripheral blood mononuclear cells) of these proteins in 24 middle-aged patients with alcohol use disorder (AUD) diagnosed at 4 to 12 weeks of abstinence (t = 0) and 34 controls. Cognition was assessed using the Test of Detection of Cognitive Impairment in Alcoholism. In a follow-up study (t = 1), we measured reelin levels and evaluated cognitive improvement at 6 months of abstinence. RESULTS APOE4 isoform was present in 37.5% and 58.8% of patients and controls, respectively, reaching similar plasma levels in ε4 carriers regardless of whether they were patients with AUD or controls. Plasma reelin and clusterin were higher in the AUD group, and reelin levels peaked in patients expressing APOE4 (P < .05, η2 = 0.09), who showed reduced very-low-density liporeceptor and apolipoprotein E receptor 2 expression in peripheral blood mononuclear cells. APOE4 had a negative effect on memory/learning mainly in the AUD group (P < .01, η2 = 0.15). Multivariate logistic regression analyses identified plasma reelin as a good indicator of AUD cognitive impairment at t = 0. At t = 1, patients with AUD showed lower reelin levels vs controls along with some cognitive improvement. CONCLUSIONS Reelin plasma levels are elevated during early abstinence in patients with AUD who express the APOE4 isoform, identifying cognitive deterioration to a great extent, and it may participate as a homeostatic signal for cognitive recovery in the long term.
Collapse
Affiliation(s)
- Berta Escudero
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Marta Moya
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Leticia López-Valencia
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Francisco Arias
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- RIAPAd: Research Network in Primary Care in Addictions (“Red de investigación en atención primaria en adicciones”), Spain
| | - Laura Orio
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- RIAPAd: Research Network in Primary Care in Addictions (“Red de investigación en atención primaria en adicciones”), Spain
| |
Collapse
|
7
|
Alexander A, Herz J, Calvier L. Reelin through the years: From brain development to inflammation. Cell Rep 2023; 42:112669. [PMID: 37339050 PMCID: PMC10592530 DOI: 10.1016/j.celrep.2023.112669] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/09/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Reelin was originally identified as a regulator of neuronal migration and synaptic function, but its non-neuronal functions have received far less attention. Reelin participates in organ development and physiological functions in various tissues, but it is also dysregulated in some diseases. In the cardiovascular system, Reelin is abundant in the blood, where it contributes to platelet adhesion and coagulation, as well as vascular adhesion and permeability of leukocytes. It is a pro-inflammatory and pro-thrombotic factor with important implications for autoinflammatory and autoimmune diseases such as multiple sclerosis, Alzheimer's disease, arthritis, atherosclerosis, or cancer. Mechanistically, Reelin is a large secreted glycoprotein that binds to several membrane receptors, including ApoER2, VLDLR, integrins, and ephrins. Reelin signaling depends on the cell type but mostly involves phosphorylation of NF-κB, PI3K, AKT, or JAK/STAT. This review focuses on non-neuronal functions and the therapeutic potential of Reelin, while highlighting secretion, signaling, and functional similarities between cell types.
Collapse
Affiliation(s)
- Anna Alexander
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Laurent Calvier
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Lai YH, Audira G, Liang ST, Siregar P, Suryanto ME, Lin HC, Villalobos O, Villaflores OB, Hao E, Lim KH, Hsiao CD. Duplicated dnmt3aa and dnmt3ab DNA Methyltransferase Genes Play Essential and Non-Overlapped Functions on Modulating Behavioral Control in Zebrafish. Genes (Basel) 2020; 11:genes11111322. [PMID: 33171840 PMCID: PMC7695179 DOI: 10.3390/genes11111322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/22/2022] Open
Abstract
DNA methylation plays several roles in regulating neuronal proliferation, differentiation, and physiological functions. The major de novo methyltransferase, DNMT3, controls the DNA methylation pattern in neurons according to environmental stimulations and behavioral regulations. Previous studies demonstrated that knockout of Dnmt3 induced mouse anxiety; however, controversial results showed that activation of Dnmt3 causes anxiolytic behavior. Thus, an alternative animal model to clarify Dnmt3 on modulating behavior is crucial. Therefore, we aimed to establish a zebrafish (Danio rerio) model to clarify the function of dnmt3 on fish behavior by behavioral endpoint analyses. We evaluated the behaviors of the wild type, dnmt3aa, and dnmt3ab knockout (KO) fish by the novel tank, mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm locomotor activity, color preference, and short-term memory tests. The results indicated that the dnmt3aa KO fish possessed abnormal exploratory behaviors and less fear response to the predator. On the other hand, dnmt3ab KO fish displayed less aggression, fear response to the predator, and interests to interact with their conspecifics, loosen shoaling formation, and dysregulated color preference index ranking. Furthermore, both knockout fishes showed higher locomotion activity during the night cycle, which is a sign of anxiety. However, changes in some neurotransmitter levels were observed in the mutant fishes. Lastly, whole-genome DNA methylation sequencing demonstrates a potential network of Dnmt3a proteins that is responsive to behavioral alterations. To sum up, the results suggested that the dnmt3aa KO or dnmt3ab KO fish display anxiety symptoms, which supported the idea that Dnmt3 modulates the function involved in emotional control, social interaction, and cognition.
Collapse
Affiliation(s)
- Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan;
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Petrus Siregar
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Michael Edbert Suryanto
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
| | - Huan-Chau Lin
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Number 92, Section 2, Chungshan North Road, Taipei 10449, Taiwan;
| | - Omar Villalobos
- Department of Pharmacy, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines;
| | - Oliver B. Villaflores
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila 1015, Philippines;
| | - Erwei Hao
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
- Correspondence: (E.H.); (K.-H.L.); (C.-D.H.)
| | - Ken-Hong Lim
- Division of Hematology and Oncology, Department of Internal Medicine, Mackay Memorial Hospital, Number 92, Section 2, Chungshan North Road, Taipei 10449, Taiwan;
- Department of Medicine, MacKay Medical College, Sanzhi Dist., New Taipei City 252, Taiwan
- Correspondence: (E.H.); (K.-H.L.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan; (S.-T.L.); (M.E.S.)
- Center of Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (E.H.); (K.-H.L.); (C.-D.H.)
| |
Collapse
|
9
|
Environmental enrichment during forced abstinence from cocaine self-administration opposes gene network expression changes associated with the incubation effect. Sci Rep 2020; 10:11291. [PMID: 32647308 PMCID: PMC7347882 DOI: 10.1038/s41598-020-67966-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Environmental enrichment (EE) is a robust intervention for reducing cocaine-seeking behaviors in animals when given during forced abstinence. However, the mechanisms that underlie these effects are not well-established. We investigated the adult male rat transcriptome using RNA-sequencing (RNA-seq) following differential housing during forced abstinence from cocaine self-administration for either 1 or 21 days. Enriched, 21-day forced abstinence rats displayed a significant reduction in cocaine-seeking behavior compared to rats housed in isolation. RNA-seq of the nucleus accumbens shell revealed hundreds of differentially regulated transcripts between rats of different forced abstinence length and housing environment, as well as within specific contrasts such as enrichment (isolated 21 days vs. enriched 21 days) or incubation (isolated 1 day vs. isolated 21 days). Ingenuity Pathway Analysis affirmed several pathways as differentially enriched based on housing condition and forced abstinence length including RELN, the Eif2 signaling pathway, synaptogenesis and neurogenesis pathways. Numerous pathways showed upregulation with incubation, but downregulation with EE, suggesting that EE may prevent or reverse changes in gene expression associated with protracted forced abstinence. The findings reveal novel candidate mechanisms involved in the protective effects of EE against cocaine seeking, which may inform efforts to develop pharmacological and gene therapies for treating cocaine use disorders. Furthermore, the finding that EE opposes multiple pathway changes associated with incubation of cocaine seeking strongly supports EE as a therapeutic intervention and suggests EE is capable of preventing or reversing the widespread dysregulation of signaling pathways that occurs during cocaine forced abstinence.
Collapse
|
10
|
Ho NF, Tng JXJ, Wang M, Chen G, Subbaraju V, Shukor S, Ng DSX, Tan BL, Puang SJ, Kho SH, Siew RWE, Sin GL, Eu PW, Zhou J, Sng JCG, Sim K, Medalia A. Plasticity of DNA methylation, functional brain connectivity and efficiency in cognitive remediation for schizophrenia. J Psychiatr Res 2020; 126:122-133. [PMID: 32317108 DOI: 10.1016/j.jpsychires.2020.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 11/24/2022]
Abstract
Cognitive remediation (CR) is predicated on principles of neuroplasticity, but the actual molecular and neurocircuitry changes underlying cognitive change in individuals with impaired neuroplastic processes is poorly understood. The present study examined epigenetic-neurocircuitry-behavioral outcome measures in schizophrenia, before and after participating in a CR program that targeted higher-order cognitive functions. Outcome measures included DNA methylation of genes central to synaptic plasticity (CpG sites of Reelin promoter and BDNF promoter) from buccal swabs, resting-state functional brain connectivity and topological network efficiency, and global scores of a cognitive battery from 35 inpatients in a rehabilitative ward (18 CR, 17 non-CR) with similar premorbid IQ to 15 healthy controls. Baseline group differences between healthy controls and schizophrenia, group-by-time effects of CR in schizophrenia, and associations between the outcome measures were tested. Baseline functional connectivity abnormalities within the frontal, fronto-temporal and fronto-parietal regions, and trending decreases in global efficiency, but not DNA methylation, were found in schizophrenia; the frontal and fronto-temporal connectivity, and global efficiency correlated with global cognitive performance across all individuals. Notably, CR resulted in differential changes in Reelin promoter CpG methylation levels, altered within-frontal and fronto-temporal functional connectivity, increasing global efficiency and improving cognitive performance in schizophrenia, when compared to non-CR. In the CR inpatients, positive associations between the micro to macro measures: Reelin methylation changes, higher global efficiency and improving global cognitive performance were found. Present findings provide a neurobiological insight into potential CR-led epigenetics-neurocircuitry modifications driving cognitive plasticity.
Collapse
Affiliation(s)
- New Fei Ho
- Institute of Mental Health, Singapore; Duke-National University of Singapore Medical School, Singapore.
| | | | | | | | | | | | | | - Bhing-Leet Tan
- Institute of Mental Health, Singapore; Singapore Institute of Technology, Singapore
| | - Shu Juan Puang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sok-Hong Kho
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rachel Wan En Siew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Juan Zhou
- Duke-National University of Singapore Medical School, Singapore; Center for Sleep and Cognition, Cognitive Neuroscience, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore
| | - Judy Chia Ghee Sng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kang Sim
- Institute of Mental Health, Singapore
| | - Alice Medalia
- Columbia University College of Physicians and Surgeons, New York, USA
| |
Collapse
|
11
|
Poon CH, Tse LSR, Lim LW. DNA methylation in the pathology of Alzheimer's disease: from gene to cognition. Ann N Y Acad Sci 2020; 1475:15-33. [PMID: 32491215 DOI: 10.1111/nyas.14373] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a debilitating disorder that manifests with amyloid beta plaque deposition, neurofibrillary tangles, neuronal loss, and severe cognitive impairment. Although much effort has been made to decipher the pathogenesis of this disease, the mechanisms causing these detrimental outcomes remain obscure. Over the past few decades, neuroepigenetics has emerged as an important field that, among other things, explores how reversible modifications can change gene expression to control behavior and cognitive abilities. Among epigenetic modifications, DNA methylation requires further elucidation for the conflicting observations from AD research and its pivotal role in learning and memory. In this review, we focus on the essential components of DNA methylation, the effects of aberrant methylation on gene expressions in the amyloidogenic pathway and neurochemical processes, as well as memory epigenetics in Alzheimer's disease.
Collapse
Affiliation(s)
- Chi Him Poon
- Neuromodulation Laboratory, Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, the University of Hong Kong, Hong Kong, P. R. China
| | - Long Sum Rachel Tse
- Neuromodulation Laboratory, Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, the University of Hong Kong, Hong Kong, P. R. China
| | - Lee Wei Lim
- Neuromodulation Laboratory, Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, the University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
12
|
Dalla Vecchia E, Di Donato V, Young AMJ, Del Bene F, Norton WHJ. Reelin Signaling Controls the Preference for Social Novelty in Zebrafish. Front Behav Neurosci 2019; 13:214. [PMID: 31607872 PMCID: PMC6761276 DOI: 10.3389/fnbeh.2019.00214] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/30/2019] [Indexed: 11/29/2022] Open
Abstract
Reelin (Reln) is an extracellular glycoprotein that is important for brain patterning. During development Reln coordinates the radial migration of postmitotic cortical neurons, cerebellar and hippocampal neurons, whereas it promotes dendrite maturation, synaptogenesis, synaptic transmission, plasticity and neurotransmitter release in the postnatal and adult brain. Genetic studies of human patients have demonstrated association between the RELN locus and autism spectrum disorder, schizophrenia, bipolar disorder, and Alzheimer’s disease. In this study we have characterized the behavioral phenotype of reelin (reln) mutant zebrafish, as well as two canonical signaling pathway targets DAB adaptor protein 1a (dab1a) and the very low density lipoprotein receptor (vldlr). Zebrafish reln–/– mutants display a selective reduction in preference for social novelty that is not observed in dab1a–/– or vldlr–/– mutant lines. They also exhibit an increase in 5-HT signaling in the hindbrain that parallels but does not underpin the alteration in social preference. These results suggest that zebrafish reln–/– mutants can be used to model some aspects of human diseases in which changes to Reln signaling alter social behavior.
Collapse
Affiliation(s)
- Elisa Dalla Vecchia
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Vincenzo Di Donato
- Institut Curie, Paris, France.,ZeClinics SL, Institute for Health Science Research Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Andrew M J Young
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | | | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
13
|
Chang YC, Daza R, Hevner R, Costa LG, Cole TB. Prenatal and early life diesel exhaust exposure disrupts cortical lamina organization: Evidence for a reelin-related pathogenic pathway induced by interleukin-6. Brain Behav Immun 2019; 78:105-115. [PMID: 30668980 PMCID: PMC6557404 DOI: 10.1016/j.bbi.2019.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022] Open
Abstract
Several epidemiological studies have shown associations between developmental exposure to traffic-related air pollution and increased risk for autism spectrum disorders (ASD), a spectrum of neurodevelopmental disorders with increasing prevalence rate in the United States. Though animal studies have provided support for these associations, little is known regarding possible underlying mechanisms. In a previous study we found that exposure of C57BL/6J mice of both sexes to environmentally relevant levels (250-300 µg/m3) of diesel exhaust (DE) from embryonic day 0 to postnatal day 21 (E0 to PND21) caused significant changes in all three characteristic behavioral domains of ASD in the offspring. In the present study we investigated a potential mechanistic pathway that may be of relevance for ASD-like changes associated with developmental DE exposure. Using the same DE exposure protocol (250-300 µg/m3 DE from E0 to PND21) several molecular markers were examined in the brains of male and female mice at PND3, 21, and 60. Exposure to DE as above increased levels of interleukin-6 (IL-6) in placenta and in neonatal brain. The JAK2/STAT3 pathway, a target for IL-6, was activated by STAT3 phosphorylation, and the expression of DNA methyltransferase 1 (DNMT1), a STAT3 target gene, was increased in DE-exposed neonatal brain. DNMT1 has been reported to down-regulate expression of reelin (RELN), an extracellular matrix glycoprotein important in regulating the processes of neuronal migration. RELN is considered an important modulator for ASD, since there are several polymorphisms in this gene linked to the disease, and since lower levels of RELN have been reported in brains of ASD patients. We observed decreased RELN expression in brains of the DE-exposed mice at PND3. Since disorganized patches in the prefrontal cortex have been reported in ASD patients and disrupted cortical organization has been found in RELN-deficient mice, we also assessed cortical organization, by labeling cells expressing the lamina-specific-markers RELN and calretinin. In DE-exposed mice we found increased cell density in deeper cortex (lamina layers VI-IV) for cells expressing either RELN or calretinin. These findings demonstrate that developmental DE exposure is associated with subtle disorganization of the cerebral cortex at PND60, and suggest a pathway involving IL-6, STAT3, and DNMT1 leading to downregulation of RELN expression that could be contributing to this long-lasting disruption in cortical laminar organization.
Collapse
Affiliation(s)
- Yu-Chi Chang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| | - Ray Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
| | - Robert Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
| | - Lucio G. Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Toby B. Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA,Center on Human Development and Disability, University of Washington, Seattle, WA, USA,Corresponding author at: Department of Environmental and Occupational Health Sciences, University of Washington, Box 357234, 1959 NE Pacific St., Seattle, WA, USA. (Y.-C. Chang), , (R. Daza), , (R. Hevner), (L.G. Costa), (T.B. Cole)
| |
Collapse
|
14
|
Chistiakov DA, Chekhonin VP. Early-life adversity-induced long-term epigenetic programming associated with early onset of chronic physical aggression: Studies in humans and animals. World J Biol Psychiatry 2019; 20:258-277. [PMID: 28441915 DOI: 10.1080/15622975.2017.1322714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objectives: To examine whether chronic physical aggression (CPA) in adulthood can be epigenetically programmed early in life due to exposure to early-life adversity. Methods: Literature search of public databases such as PubMed/MEDLINE and Scopus. Results: Children/adolescents susceptible for CPA and exposed to early-life abuse fail to efficiently cope with stress that in turn results in the development of CPA later in life. This phenomenon was observed in humans and animal models of aggression. The susceptibility to aggression is a complex trait that is regulated by the interaction between environmental and genetic factors. Epigenetic mechanisms mediate this interaction. Subjects exposed to stress early in life exhibited long-term epigenetic programming that can influence their behaviour in adulthood. This programming affects expression of many genes not only in the brain but also in other systems such as neuroendocrine and immune. Conclusions: The propensity to adult CPA behaviour in subjects experienced to early-life adversity is mediated by epigenetic programming that involves long-term systemic epigenetic alterations in a whole genome.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- a Department of Fundamental and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia
| | - Vladimir P Chekhonin
- a Department of Fundamental and Applied Neurobiology , Serbsky Federal Medical Research Center of Psychiatry and Narcology , Moscow , Russia.,b Department of Medical Nanobiotechnology , Pirogov Russian State Medical University (RSMU) , Moscow , Russia
| |
Collapse
|
15
|
Wang RH, Chen YF, Chen S, Hao B, Xue L, Wang XG, Shi YW, Zhao H. Maternal Deprivation Enhances Contextual Fear Memory via Epigenetically Programming Second-Hit Stress-Induced Reelin Expression in Adult Rats. Int J Neuropsychopharmacol 2018; 21:1037-1048. [PMID: 30169690 PMCID: PMC6209857 DOI: 10.1093/ijnp/pyy078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early-life stress increases the risk for posttraumatic stress disorder. However, the epigenetic mechanism of early-life stress-induced susceptibility to posttraumatic stress disorder in adulthood remains unclear. METHODS Rat pups were exposed to maternal deprivation during postnatal days 1 to 14 for 3 hours daily and treated with the DNA methyltransferase inhibitor zebularine, L-methionine, or vehicle 7 days before contextual fear conditioning, which was used as a second stress and to mimic the reexperiencing symptom of posttraumatic stress disorder in adulthood. Long-term potentiation, dendritic spine density, DNA methyltransferase mRNA, Reelin gene methylation, and Reelin protein expression in the hippocampal CA1 were measured. RESULTS Maternal deprivation enhanced contextual fear memory in adulthood. Meanwhile, maternal deprivation decreased DNA methyltransferase mRNA and Reelin gene methylation in the hippocampal CA1 on postnatal days 22 and 90. Reelin protein expression was increased in the hippocampal CA1 following contextual fear conditioning in adulthood. Furthermore, compared with rats that experienced maternal deprivation alone, rats also exposed to contextual fear conditioning showed an enhanced induction of hippocampal long-term potentiation and increased dendritic spine density in the hippocampal CA1 following contextual fear conditioning in adulthood. Zebularine pretreatment led to an enhancement of contextual fear memory, hypomethylation of the Reelin gene, and increased Reelin protein expression in adult rats, while L-methionine had the opposite effects. CONCLUSIONS Maternal deprivation can epigenetically program second-hit stress-induced Reelin expression and enhance the susceptibility to contextual fear memory in adulthood. These findings provide a new framework for understanding the cumulative stress hypothesis.
Collapse
Affiliation(s)
- Run-Hua Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Ye-Fei Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Si Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bo Hao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China
| | - Li Xue
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Correspondence: Hu Zhao, PhD, MD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China (); and Yan-Wei Shi, PhD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China ()
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, China,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China,Correspondence: Hu Zhao, PhD, MD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China (); and Yan-Wei Shi, PhD, Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China ()
| |
Collapse
|
16
|
Chen J, Hutchison KE, Bryan AD, Filbey FM, Calhoun VD, Claus ED, Lin D, Sui J, Du Y, Liu J. Opposite Epigenetic Associations With Alcohol Use and Exercise Intervention. Front Psychiatry 2018; 9:594. [PMID: 30498460 PMCID: PMC6249510 DOI: 10.3389/fpsyt.2018.00594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
Alcohol use disorder (AUD) is a devastating public health problem in which both genetic and environmental factors play a role. Growing evidence supports that epigenetic regulation is one major mechanism in neuroadaptation that contributes to development of AUD. Meanwhile, epigenetic patterns can be modified by various stimuli including exercise. Thus, it is an intriguing question whether exercise can lead to methylation changes that are opposite to those related to drinking. We herein conducted a comparative study to explore this issue. Three cohorts were profiled for DNA methylation (DNAm), including a longitudinal exercise intervention cohort (53 healthy participants profiled at baseline and after a 12-months exercise intervention), a cross-sectional case-control cohort (81 hazardous drinkers and 81 healthy controls matched in age and sex), and a cross-sectional binge drinking cohort (281 drinkers). We identified 906 methylation sites showing significant DNAm differences between drinkers and controls in the case-control cohort, as well as, associations with drinking behavior in the drinking cohort. In parallel, 341 sites were identified for significant DNAm alterations between baseline and follow-up in the exercise cohort. Thirty-two sites overlapped between these two set of findings, of which 15 sites showed opposite directions of DNAm associations between exercise and drinking. Annotated genes of these 15 sites were enriched in signaling pathways related to synaptic plasticity. In addition, the identified methylation sites significantly associated with impaired control over drinking, suggesting relevance to neural function. Collectively, the current findings provide preliminary evidence that exercise has the potential to partially reverse DNAm differences associated with drinking at some CpG sites, motivating rigorously designed longitudinal studies to better characterize epigenetic effects with respect to prevention and intervention of AUD.
Collapse
Affiliation(s)
- Jiayu Chen
- The Mind Research Network, Albuquerque, NM, United States
| | - Kent E Hutchison
- The Mind Research Network, Albuquerque, NM, United States.,Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States
| | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States
| | - Francesca M Filbey
- Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, United States.,Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, United States
| | - Eric D Claus
- The Mind Research Network, Albuquerque, NM, United States
| | - Dongdong Lin
- The Mind Research Network, Albuquerque, NM, United States
| | - Jing Sui
- The Mind Research Network, Albuquerque, NM, United States.,Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yuhui Du
- The Mind Research Network, Albuquerque, NM, United States.,School of Computer & Information Technology, Shanxi University, Taiyuan, China
| | - Jingyu Liu
- The Mind Research Network, Albuquerque, NM, United States.,Department of Electrical Engineering, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
17
|
Singh P, Srivas S, Thakur MK. Epigenetic Regulation of Memory-Therapeutic Potential for Disorders. Curr Neuropharmacol 2017; 15:1208-1221. [PMID: 28393704 PMCID: PMC5725549 DOI: 10.2174/1570159x15666170404144522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/03/2017] [Accepted: 03/25/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Memory is a vital function which declines in different physiological and pathological conditions such as aging and neurodegenerative diseases. Research in the past has reported that memory formation and consolidation require the precise expression of synaptic plasticity genes. However, little is known about the regulation of these genes. Epigenetic modification is now a well established mechanism that regulates synaptic plasticity genes and neuronal functions including memory. Therefore, we have reviewed the epigenetic regulation of memory and its therapeutic potential for memory dysfunction during aging and neurological disorders. METHOD Research reports and online contents relevant to epigenetic regulation of memory during physiological and pathological conditions have been compiled and discussed. RESULTS Epigenetic modifications include mainly DNA methylation and hydroxymethylation, histone acetylation and methylation which involve chromatin modifying enzymes. These epigenetic marks change during memory formation and impairment due to dementia, aging and neurodegeneration. As the epigenetic modifications are reversible, they can be modulated by enzyme inhibitors leading to the recovery of memory. CONCLUSION Epigenetic modifications could be exploited as a potential therapeutic target to recover memory disorders during aging and pathological conditions.
Collapse
Affiliation(s)
- Padmanabh Singh
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Sweta Srivas
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - M K Thakur
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| |
Collapse
|
18
|
Singh P, Thakur MK. Histone Deacetylase 2 Inhibition Attenuates Downregulation of Hippocampal Plasticity Gene Expression during Aging. Mol Neurobiol 2017; 55:2432-2442. [PMID: 28364391 DOI: 10.1007/s12035-017-0490-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022]
Abstract
The brain undergoes several anatomical, biochemical, and molecular changes during aging, which subsequently result in downregulation of synaptic plasticity genes and decline of memory. However, the regulation of these genes during aging is not clearly understood. Previously, we reported that the expression of histone deacetylase (HDAC)2 was upregulated in the hippocampus of old mice and negatively correlated with the decline in recognition memory. As HDAC2 regulates key synaptic plasticity neuronal immediate early genes (IEGs), we have examined their expression and epigenetic regulation. We noted that the expression of neuronal IEGs decreased both at mRNA and protein level in the hippocampus of old mice. To explore the underlying regulation, we analyzed the binding of HDAC2 and level of histone acetylation at the promoter of neuronal IEGs. While the binding of HDAC2 was higher, H3K9 and H3K14 acetylation level was lower at the promoter of these genes in old as compared to young and adult mice. Further, we inhibited HDAC2 non-specifically by sodium butyrate and specifically by antisense oligonucleotide to recover epigenetic modification, expression of neuronal IEGs, and memory in old mice. Inhibition of HDAC2 increased histone H3K9 and H3K14 acetylation level at the promoter of neuronal IEGs, their expression, and recognition memory in old mice as compared to control. Thus, inhibition of HDAC2 can be used as a therapeutic target to recover decline in memory due to aging and associated neurological disorders.
Collapse
Affiliation(s)
- Padmanabh Singh
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - M K Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
19
|
Bock HH, May P. Canonical and Non-canonical Reelin Signaling. Front Cell Neurosci 2016; 10:166. [PMID: 27445693 PMCID: PMC4928174 DOI: 10.3389/fncel.2016.00166] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Reelin is a large secreted glycoprotein that is essential for correct neuronal positioning during neurodevelopment and is important for synaptic plasticity in the mature brain. Moreover, Reelin is expressed in many extraneuronal tissues; yet the roles of peripheral Reelin are largely unknown. In the brain, many of Reelin's functions are mediated by a molecular signaling cascade that involves two lipoprotein receptors, apolipoprotein E receptor-2 (Apoer2) and very low density-lipoprotein receptor (Vldlr), the neuronal phosphoprotein Disabled-1 (Dab1), and members of the Src family of protein tyrosine kinases as crucial elements. This core signaling pathway in turn modulates the activity of adaptor proteins and downstream protein kinase cascades, many of which target the neuronal cytoskeleton. However, additional Reelin-binding receptors have been postulated or described, either as coreceptors that are essential for the activation of the "canonical" Reelin signaling cascade involving Apoer2/Vldlr and Dab1, or as receptors that activate alternative or additional signaling pathways. Here we will give an overview of canonical and alternative Reelin signaling pathways, molecular mechanisms involved, and their potential physiological roles in the context of different biological settings.
Collapse
Affiliation(s)
- Hans H Bock
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Petra May
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
20
|
Preethi J, Singh HK, Rajan KE. Possible Involvement of Standardized Bacopa monniera Extract (CDRI-08) in Epigenetic Regulation of reelin and Brain-Derived Neurotrophic Factor to Enhance Memory. Front Pharmacol 2016; 7:166. [PMID: 27445807 PMCID: PMC4921742 DOI: 10.3389/fphar.2016.00166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/02/2016] [Indexed: 11/17/2022] Open
Abstract
Bacopa monniera extract (CDRI-08; BME) has been known to improve learning and memory, and understanding the molecular mechanisms may help to know its specificity. We investigated whether the BME treatment alters the methylation status of reelin and brain-derived neurotropic factor (BDNF) to enhance the memory through the interaction of N-methyl-D-aspartate receptor (NMDAR) with synaptic proteins. Rat pups were subjected to novel object recognition test following daily oral administration of BME (80 mg/kg) in 0.5% gum acacia (per-orally, p.o.; PND 15–29)/three doses of 5-azacytidine (5-azaC; 3.2 mg/kg) in 0.9% saline (intraperitoneally, i.p.) on PND-30. After the behavioral test, methylation status of reelin, BDNF and activation of NMDAR, and its interactions with synaptic proteins were tested. Rat pups treated with BME/5-azaC showed higher discrimination towards novel objects than with old objects during testing. Further, we observed an elevated level of unmethylated DNA in reelin and BDNF promoter region. Up-regulated reelin along with the splice variant of apolipoprotein E receptor 2 (ApoER 2, ex 19) form a cluster and activate NMDAR through disabled adopter protein-1 (DAB1) to enhance BDNF. Observed results suggest that BME regulate reelin epigenetically, which might enhance NMDAR interactions with synaptic proteins and induction of BDNF. These changes may be linked with improved novel object recognition memory.
Collapse
Affiliation(s)
- Jayakumar Preethi
- Behavioral Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University Tiruchirappalli, India
| | - Hemant K Singh
- Laboratories for CNS Disorder, Learning and Memory, Division of Pharmacology, Central Drug Research Institute Lucknow, India
| | - Koilmani E Rajan
- Behavioral Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University Tiruchirappalli, India
| |
Collapse
|
21
|
Cuchillo-Ibañez I, Balmaceda V, Mata-Balaguer T, Lopez-Font I, Sáez-Valero J. Reelin in Alzheimer’s Disease, Increased Levels but Impaired Signaling: When More is Less. J Alzheimers Dis 2016; 52:403-16. [DOI: 10.3233/jad-151193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Valeria Balmaceda
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Trinidad Mata-Balaguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d’Alacant, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
22
|
Lintas C, Sacco R, Persico AM. Differential methylation at the RELN gene promoter in temporal cortex from autistic and typically developing post-puberal subjects. J Neurodev Disord 2016; 8:18. [PMID: 27134686 PMCID: PMC4850686 DOI: 10.1186/s11689-016-9151-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/12/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Reelin plays a pivotal role in neurodevelopment and in post-natal synaptic plasticity and has been implicated in the pathogenesis of autism spectrum disorder (ASD). The reelin (RELN) gene expression is significantly decreased in ASD, both in the brain and peripherally. Methylation at the RELN gene promoter is largely triggered at puberty, and hypermethylation has been found in post-mortem brains of schizophrenic and bipolar patients. METHODS In this study, we assessed RELN gene methylation status in post-mortem temporocortical tissue samples (BA41/42 or 22) of six pairs of post-puberal individuals with ASD and typically developing subjects, matched for sex (male:female, M:F = 5:1), age, and post-mortem interval. RESULTS ASD patients display a significantly higher number of methylated CpG islands and heavier methylation in the 5' region of the RELN gene promoter, spanning from -458 to -223 bp, whereas controls have more methylated CpG positions and greater extent of methylation at the 3' promoter region, spanning from -222 to +1 bp. The most upstream promoter region (-458 to -364 bp) is methylated only in ASD brains, while the most downstream region (-131 to +1 bp) is methylated exclusively in control brains. Within this general framework, three different methylation patterns are discernible, each correlated with different extents of reduction in reelin gene expression among ASD individuals compared to controls. CONCLUSIONS The methylation pattern is different in ASD and control post-mortem brains. ASD-specific CpG positions, located in the most upstream gene promoter region, may exert a functional role potentially conferring ASD risk by blunting RELN gene expression.
Collapse
Affiliation(s)
- Carla Lintas
- Unit of Child and Adolescent Neuropsychiatry, University Campus Bio-Medico, Rome, Italy ; Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Roberto Sacco
- Unit of Child and Adolescent Neuropsychiatry, University Campus Bio-Medico, Rome, Italy ; Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Antonio M Persico
- Unit of Child and Adolescent Neuropsychiatry, "Gaetano Martino" University Hospital, University of Messina, via Consolare Valeria 1, I-98125 Messina, Italy ; Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| |
Collapse
|
23
|
Guidotti A, Grayson DR, Caruncho HJ. Epigenetic RELN Dysfunction in Schizophrenia and Related Neuropsychiatric Disorders. Front Cell Neurosci 2016; 10:89. [PMID: 27092053 PMCID: PMC4820443 DOI: 10.3389/fncel.2016.00089] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/21/2016] [Indexed: 01/02/2023] Open
Abstract
REELIN (RELN) is a large (420 kDa) glycoprotein that in adulthood is mostly synthesized in GABAergic neurons of corticolimbic structures. Upon secretion in the extracellular matrix (ECM), RELN binds to VLDL, APOE2, and α3β2 Integrin receptors located on dendritic shafts and spines of postsynaptic pyramidal neurons. Reduced levels of RELN expression in the adult brain induce cognitive impairment and dendritic spine density deficits. RELN supplementation recovers these deficits suggesting a trophic action for RELN in synaptic plasticity. We and others have shown that altered RELN expression in schizophrenia (SZ) and bipolar (BP) disorder patients is difficult to reconcile with classical Mendelian genetic disorders and it is instead plausible to associate these disorders with altered epigenetic homeostasis. Support for the contribution of altered epigenetic mechanisms in the down-regulation of RELN expression in corticolimbic structures of psychotic patients includes the concomitant increase of DNA-methyltransferases and the increased levels of the methyl donor S-adenosylmethionine (SAM). It is hypothesized that these conditions lead to RELN promoter hypermethylation and a reduction in RELN protein amounts in psychotic patients. The decreased synthesis and release of RELN from GABAergic corticolimbic neurons could serve as a model to elucidate the epigenetic pathophysiological mechanisms acting at pyramidal neuron dendrites that regulate synaptic plasticity and cognition in psychotic and non-psychotic subjects.
Collapse
Affiliation(s)
- Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Dennis R Grayson
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Hector J Caruncho
- College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|
24
|
Zhou Q, Obana EA, Radomski KL, Sukumar G, Wynder C, Dalgard CL, Doughty ML. Inhibition of the histone demethylase Kdm5b promotes neurogenesis and derepresses Reln (reelin) in neural stem cells from the adult subventricular zone of mice. Mol Biol Cell 2016; 27:627-39. [PMID: 26739753 PMCID: PMC4750923 DOI: 10.1091/mbc.e15-07-0513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023] Open
Abstract
The role of epigenetic regulators in the control of adult neurogenesis is largely undefined. We show that the histone demethylase enzyme Kdm5b (Jarid1b) negatively regulates neurogenesis from adult subventricular zone (SVZ) neural stem cells (NSCs) in culture. shRNA-mediated depletion of Kdm5b in proliferating adult NSCs decreased proliferation rates and reduced neurosphere formation in culture. When transferred to differentiation culture conditions, Kdm5b-depleted adult NSCs migrated from neurospheres with increased velocity. Whole-genome expression screening revealed widespread transcriptional changes with Kdm5b depletion, notably the up-regulation of reelin (Reln), the inhibition of steroid biosynthetic pathway component genes and the activation of genes with intracellular transport functions in cultured adult NSCs. Kdm5b depletion increased extracellular reelin concentration in the culture medium and increased phosphorylation of the downstream reelin signaling target Disabled-1 (Dab1). Sequestration of extracellular reelin with CR-50 reelin-blocking antibodies suppressed the increase in migratory velocity of Kdm5b-depleted adult NSCs. Chromatin immunoprecipitation revealed that Kdm5b is present at the proximal promoter of Reln, and H3K4me3 methylation was increased at this locus with Kdm5b depletion in differentiating adult NSCs. Combined the data suggest Kdm5b negatively regulates neurogenesis and represses Reln in neural stem cells from the adult SVZ.
Collapse
Affiliation(s)
- Qiong Zhou
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Edwin A Obana
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Kryslaine L Radomski
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Gauthaman Sukumar
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Christopher Wynder
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Clifton L Dalgard
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Martin L Doughty
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
25
|
The Role of Reelin Signaling in Alzheimer’s Disease. Mol Neurobiol 2015; 53:5692-700. [DOI: 10.1007/s12035-015-9459-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/25/2015] [Indexed: 12/23/2022]
|
26
|
Dines M, Lamprecht R. The Role of Ephs and Ephrins in Memory Formation. Int J Neuropsychopharmacol 2015; 19:pyv106. [PMID: 26371183 PMCID: PMC4851260 DOI: 10.1093/ijnp/pyv106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022] Open
Abstract
The ability to efficiently store memories in the brain is a fundamental process and its impairment is associated with multiple human mental disorders. Evidence indicates that long-term memory formation involves alterations of synaptic efficacy produced by modifications in neural transmission and morphology. The Eph receptors and their cognate ephrin ligands have been shown to be involved in these key neuronal processes by regulating events such as presynaptic transmitter release, postsynaptic glutamate receptor conductance and trafficking, synaptic glutamate reuptake, and dendritic spine morphogenesis. Recent findings show that Ephs and ephrins are needed for memory formation in different organisms. These proteins participate in the formation of various types of memories that are subserved by different neurons and brain regions. Ephs and ephrins are involved in brain disorders and diseases with memory impairment symptoms, including Alzheimer's disease and anxiety. Drugs that agonize or antagonize Ephs/ephrins signaling have been developed and could serve as therapeutic agents to treat such diseases. Ephs and ephrins may therefore induce cellular alterations mandatory for memory formation and serve as a target for pharmacological intervention for treatment of memory-related brain diseases.
Collapse
Affiliation(s)
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Israel.
| |
Collapse
|
27
|
Abstract
The establishment of synaptic plasticity and long-term memory requires lasting cellular and molecular modifications that, as a whole, must endure despite the rapid turnover of their constituent parts. Such a molecular feat must be mediated by a stable, self-perpetuating, cellular information storage mechanism. DNA methylation, being the archetypal cellular information storage mechanism, has been heavily implicated as being necessary for stable activity-dependent transcriptional alterations within the CNS. This review details the foundational discoveries from both gene-targeted and whole-genome sequencing studies that have brought DNA methylation to our attention as a chief regulator of activity- and experience-dependent transcriptional alterations within the CNS. We present a hypothetical framework to resolve disparate experimental findings regarding distinct manipulations of DNA methylation and their effect on memory, taking into account the unique impact activity-dependent alterations in DNA methylation potentially have on both memory-promoting and memory-suppressing gene expression. And last, we discuss potential avenues for future inquiry into the role of DNA methylation during remote memory formation.
Collapse
Affiliation(s)
- Frankie D Heyward
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J David Sweatt
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
28
|
Lui CC, Hsu MH, Kuo HC, Chen CC, Sheen JM, Yu HR, Tiao MM, Tain YL, Chang KA, Huang LT. Effects of melatonin on prenatal dexamethasone-induced epigenetic alterations in hippocampal morphology and reelin and glutamic acid decarboxylase 67 levels. Dev Neurosci 2015; 37:105-14. [PMID: 25720733 DOI: 10.1159/000368768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
Prenatal glucocorticoid exposure causes brain damage in adult offspring; however, the underlying mechanisms remain unclear. Melatonin has been shown to have beneficial effects in compromised pregnancies. Pregnant Sprague-Dawley rats were administered vehicle (VEH) or dexamethasone between gestation days 14 and 21. The programming effects of prenatal dexamethasone exposure on the brain were assessed at postnatal days (PND) 7, 42, and ∼120. Melatonin was administered from PND21 to the rats exposed to dexamethasone, and the outcome was assessed at ∼PND120. In total, there were four groups: VEH, vehicle plus melatonin (VEHM), prenatal dexamethasone-exposure (DEX), and prenatal dexamethasone exposure plus melatonin (DEXM). Spatial memory, gross hippocampal morphology, and hippocampal biochemistry were examined. Spatial memory assessed by the Morris water maze showed no significant differences among the four groups. Brain magnetic resonance imaging showed that all rats with prenatal dexamethasone exposure (DEX + DEXM) exhibited increased T2-weighted signals in the hippocampus. There were no significant differences in the levels of mRNA expression of hippocampal reln, which encodes reelin, and GAD1, which encodes glutamic acid decarboxylase 67, at PND7. At both PND42 and ∼PND120, reln and GAD1 mRNA expression levels were decreased. At ∼PND120, melatonin restored the reduced levels of hippocampal reln and GAD1 mRNA expression in the DEXM group. In addition, melatonin restored the reln mRNA expression levels by (1) reducing DNA methyltransferase 1 (DNMT1) mRNA expression and (2) reducing the binding of DNMT1 and the methyl-CpG binding protein 2 (MeCP2) to the reln promoter. The present study showed that prenatal dexamethasone exposure induced gross alterations in hippocampal morphology and reduced the levels of hippocampal mRNA expression of reln and GAD1. Spatial memory was unimpaired. Thus, melatonin had a beneficial effect in restoring hippocampal reln mRNA expression by reducing DNMT1 and MeCP2 binding to the reln promoter.
Collapse
Affiliation(s)
- Chun-Chung Lui
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Palacios-García I, Lara-Vásquez A, Montiel JF, Díaz-Véliz GF, Sepúlveda H, Utreras E, Montecino M, González-Billault C, Aboitiz F. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats. PLoS One 2015; 10:e0117680. [PMID: 25679528 PMCID: PMC4332679 DOI: 10.1371/journal.pone.0117680] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/30/2014] [Indexed: 01/03/2023] Open
Abstract
Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS) upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that can yield new insights on the molecular mechanisms behind the effects of prenatal stress.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, Nuclear/genetics
- Antigens, Nuclear/metabolism
- Behavior, Animal
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cerebral Cortex/metabolism
- Cyclin-Dependent Kinase 5/metabolism
- DNA Methylation
- Disease Models, Animal
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Female
- Maternal Exposure
- Mental Disorders/etiology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons/metabolism
- Pregnancy
- Prenatal Exposure Delayed Effects
- Promoter Regions, Genetic
- Rats
- Reelin Protein
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Signal Transduction
- Stress, Physiological
- Stress, Psychological
Collapse
Affiliation(s)
- Ismael Palacios-García
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ariel Lara-Vásquez
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan F. Montiel
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad Diego Portales, Santiago, Chile
| | - Gabriela F. Díaz-Véliz
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Hugo Sepúlveda
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, and Fondo de Áreas Prioritarias (FONDAP) “Center for Genome Regulation”, Universidad Andrés Bello, Santiago, Chile
| | - Elías Utreras
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Martín Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, and Fondo de Áreas Prioritarias (FONDAP) “Center for Genome Regulation”, Universidad Andrés Bello, Santiago, Chile
| | - Christian González-Billault
- Laboratory of Cell and Neuronal Dynamics (Cenedyn), Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de Medicina, and Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Takesian AE, Hensch TK. Balancing plasticity/stability across brain development. PROGRESS IN BRAIN RESEARCH 2014; 207:3-34. [PMID: 24309249 DOI: 10.1016/b978-0-444-63327-9.00001-1] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potency of the environment to shape brain function changes dramatically across the lifespan. Neural circuits exhibit profound plasticity during early life and are later stabilized. A focus on the cellular and molecular bases of these developmental trajectories has begun to unravel mechanisms, which control the onset and closure of such critical periods. Two important concepts have emerged from the study of critical periods in the visual cortex: (1) excitatory-inhibitory circuit balance is a trigger; and (2) molecular "brakes" limit adult plasticity. The onset of the critical period is determined by the maturation of specific GABA circuits. Targeting these circuits using pharmacological or genetic approaches can trigger premature onset or induce a delay. These manipulations are so powerful that animals of identical chronological age may be at the peak, before, or past their plastic window. Thus, critical period timing per se is plastic. Conversely, one of the outcomes of normal development is to stabilize the neural networks initially sculpted by experience. Rather than being passively lost, the brain's intrinsic potential for plasticity is actively dampened. This is demonstrated by the late expression of brake-like factors, which reversibly limit excessive circuit rewiring beyond a critical period. Interestingly, many of these plasticity regulators are found in the extracellular milieu. Understanding why so many regulators exist, how they interact and, ultimately, how to lift them in noninvasive ways may hold the key to novel therapies and lifelong learning.
Collapse
Affiliation(s)
- Anne E Takesian
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
31
|
Corticosterone treatment during adolescence induces down-regulation of reelin and NMDA receptor subunit GLUN2C expression only in male mice: implications for schizophrenia. Int J Neuropsychopharmacol 2014; 17:1221-32. [PMID: 24556017 DOI: 10.1017/s1461145714000121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Stress exposure during adolescence/early adulthood has been shown to increase the risk for psychiatric disorders such as schizophrenia. Reelin plays an essential role in brain development and its levels are decreased in schizophrenia. However, the relationship between stress exposure and reelin expression remains unclear. We therefore treated adolescent reelin heteroyzogous mice (HRM) and wild-type (WT) littermates with the stress hormone, corticosterone (CORT) in their drinking water (25 mg/l) for 3 wk. In adulthood, we measured levels of full-length (FL) reelin and the N-R6 and N-R2 cleavage fragments in the frontal cortex (FC) and dorsal (DH) and ventral (VH) hippocampus. As expected, levels of all reelin forms were approximately 50% lower in HRMs compared to WT. In male mice, CORT treatment significantly decreased FL and N-R2 expression in the FC and N-R2 and N-R6 levels in the DH. This reelin down-regulation was accompanied by significant reductions in downstream N-methyl-D-aspartate (NMDA) GluN2C subunit levels. There were no effects of CORT treatment in the VH of either of the sexes and only subtle changes in female DH. CORT-induced reelin and GluN2C down-regulation in males was not associated with changes in two GABAergic neuron markers, GAD67 and parvalbumin, or glucocorticoids receptors (GR). These results show that CORT treatment causes long-lasting and selective reductions of reelin form levels in male FC and DH accompanied by changes in NMDAR subunit composition. This sex-specific reelin down-regulation in regions implicated in schizophrenia could be involved in the effects of stress in this disease.
Collapse
|
32
|
Divekar SD, Burrell TC, Lee JE, Weeber EJ, Rebeck GW. Ligand-induced homotypic and heterotypic clustering of apolipoprotein E receptor 2. J Biol Chem 2014; 289:15894-903. [PMID: 24755222 DOI: 10.1074/jbc.m113.537548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
ApoE Receptor 2 (ApoER2) and the very low density lipoprotein receptor (VLDLR) are type I transmembrane proteins belonging to the LDLR family of receptors. They are neuronal proteins found in synaptic compartments that play an important role in neuronal migration during development. ApoER2 and VLDLR bind to extracellular glycoproteins, such as Reelin and F-spondin, which leads to phosphorylation of adaptor proteins and subsequent activation of downstream signaling pathways. It is thought that ApoER2 and VLDLR undergo clustering upon binding to their ligands, but no direct evidence of clustering has been shown. Here we show strong clustering of ApoER2 induced by the dimeric ligands Fc-RAP, F-spondin, and Reelin but relatively weak clustering with the ligand apoE in the absence of lipoproteins. This clustering involves numerous proteins besides ApoER2, including amyloid precursor protein and the synaptic adaptor protein PSD-95. Interestingly, we did not observe strong clustering of ApoER2 with VLDLR. Clustering was modulated by both extracellular and intracellular domains of ApoER2. Together, our data demonstrate that several multivalent ligands for ApoER2 induce clustering in transfected cells and primary neurons and that these complexes included other synaptic molecules, such as APP and PSD-95.
Collapse
Affiliation(s)
- Shailaja D Divekar
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| | - Teal C Burrell
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| | - Jennifer E Lee
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| | - Edwin J Weeber
- the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida 33613
| | - G William Rebeck
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| |
Collapse
|
33
|
Zhubi A, Cook EH, Guidotti A, Grayson DR. Epigenetic Mechanisms in Autism Spectrum Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 115:203-44. [DOI: 10.1016/b978-0-12-801311-3.00006-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Balmaceda V, Cuchillo-Ibáñez I, Pujadas L, García-Ayllón MS, Saura CA, Nimpf J, Soriano E, Sáez-Valero J. ApoER2 processing by presenilin-1 modulates reelin expression. FASEB J 2013; 28:1543-54. [PMID: 24344333 DOI: 10.1096/fj.13-239350] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The reelin signaling protein and its downstream components have been associated with synaptic plasticity and neurotransmission. The reelin signaling pathway begins with the binding of reelin to the transmembrane lipoprotein receptor apolipoprotein E receptor 2 (ApoER2), which in turns induces the sequential cleavage of ApoER2 by the sequential action of α- and γ-secretases. Using conditional-knockout mice of the catalytic component of the γ-secretase complex, presenilin 1 (PS1), we demonstrated increased brain ApoER2 and reelin protein and transcript levels, with no changes in the number of reelin-positive cells. Using the human SH-SY5Y neuroblastoma cell line, we showed that ApoER2 processing occurs in the presence of PS1, producing an intracellular ApoER2 C-terminal fragment. In addition, the pharmacologic inhibition of γ-secretase in SH-SY5Y cells led to increased reelin levels. Overexpression of ApoER2 decreased reelin mRNA levels in these cells. A luciferase reporter gene assay and nuclear fractionation confirmed that increased amounts of intracellular fragment of ApoER2 suppressed reelin expression at a transcriptional level. Chromatin immunoprecipitation experiments corroborated that the intracellular fragment of ApoER2 bound to the RELN promoter region. Our study suggests that PS1/γ-secretase-dependent processing of the reelin receptor ApoER2 inhibits reelin expression and may regulate its signaling.
Collapse
Affiliation(s)
- Valeria Balmaceda
- 1Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, E-03550 Sant Joan d'Alacant, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Neurobehavioral performances and brain regional metabolism in Dab1scm (scrambler) mutant mice. Behav Brain Res 2013; 252:92-100. [DOI: 10.1016/j.bbr.2013.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 05/15/2013] [Indexed: 12/26/2022]
|
36
|
Stranahan AM, Erion JR, Wosiski-Kuhn M. Reelin signaling in development, maintenance, and plasticity of neural networks. Ageing Res Rev 2013; 12:815-22. [PMID: 23352928 DOI: 10.1016/j.arr.2013.01.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/16/2022]
Abstract
The developing brain is formed through an orchestrated pattern of neuronal migration, leading to the formation of heterogeneous functional regions in the adult. Several proteins and pathways have been identified as mediators of developmental neuronal migration and cell positioning. However, these pathways do not cease to be functionally relevant after the embryonic and early postnatal period; instead, they switch from guiding cells, to guiding synapses. The outcome of synaptic guidance determines the strength and plasticity of neuronal networks by creating a scalable functional architecture that is sculpted by cues from the internal and external environment. Reelin is a multifunctional signal that coordinates cortical and subcortical morphogenesis during development and regulates structural plasticity in adulthood and aging. Gain or loss of function in reelin or its receptors has the potential to influence synaptic strength and patterns of connectivity, with consequences for memory and cognition. The current review highlights similarities in the signaling cascades that modulate neuronal positioning during development, and synaptic plasticity in the adult, with a focus on reelin, a glycoprotein that is increasingly recognized for its dual role in the formation and maintenance of neural circuits.
Collapse
|
37
|
MiR-138 promotes the migration of cultured chicken embryonic hypothalamic cells by targeting reelin. Neuroscience 2013; 238:114-24. [DOI: 10.1016/j.neuroscience.2013.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 11/24/2022]
|
38
|
Decisive role of Reelin signaling during early stages of Alzheimer's disease. Neuroscience 2013; 246:108-16. [PMID: 23632168 DOI: 10.1016/j.neuroscience.2013.04.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the largest unmet medical concerns of our society. Around 25 million patients worldwide together with their families are still waiting for an effective treatment. We have recently initiated a re-evaluation of our knowledge of the molecular and cellular mechanisms underlying sporadic AD. Based on the existing literature, we have proposed a mechanistic explanation of how the late-onset form of the disease may evolve on the cellular level. Here, we expand this hypothesis by addressing the pathophysiological changes underlying the early and almost invariant appearance of the neurofibrillary tangles, the only reliable correlate of the cognitive status, in distinct brain areas and their consistent "spread" along interconnected neurons as the disease advances. In this review we present and discuss novel evidence that the extracellular signaling protein Reelin, expressed along the olfactory and limbic pathways in the adult brain, might hold a key to understand the earliest steps of the disease, highlighting the olfactory pathway as the brain's Achilles heel involved in the initiation of the pathophysiological characteristic of late-onset AD.
Collapse
|
39
|
Razafsha M, Behforuzi H, Harati H, Wafai RA, Khaku A, Mondello S, Gold MS, Kobeissy FH. An updated overview of animal models in neuropsychiatry. Neuroscience 2013; 240:204-18. [PMID: 23473749 DOI: 10.1016/j.neuroscience.2013.02.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/28/2013] [Accepted: 02/20/2013] [Indexed: 12/20/2022]
Abstract
Animal models are vital tools to study the genetic, molecular, cellular, and environmental parameters involved in several neuropsychiatric disorders. Over the years, these models have expanded our understanding of the pathogenesis of many neuropsychiatric disorders and neurodegenerative diseases. Although animal models have been widely used in psychiatry, and despite several years of extensive research with these models, their validity is still being investigated and presents a challenge to both investigators and clinicians as well. In this concise review, we will describe the most common animal models utilized in neuropsychiatry, including animal models of depression, anxiety, and psychosis. In addition, we will also discuss the validity and reliability of these models and current challenges in this domain. Furthermore, this work will discuss the role of gene-environment interaction as an additional contributing factor that modulates neuropsychological outcome and its implication on animal models. This overview will give a succinct summary of animal models in psychiatry which will be useful both to the seasoned researcher, as well as novices in the field.
Collapse
Affiliation(s)
- M Razafsha
- Residency Program, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Millan MJ. An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy. Neuropharmacology 2012; 68:2-82. [PMID: 23246909 DOI: 10.1016/j.neuropharm.2012.11.015] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) are characterized by aberrant and delayed early-life development of the brain, leading to deficits in language, cognition, motor behaviour and other functional domains, often accompanied by somatic symptoms. Environmental factors like perinatal infection, malnutrition and trauma can increase the risk of the heterogeneous, multifactorial and polygenic disorders, autism and schizophrenia. Conversely, discrete genetic anomalies are involved in Down, Rett and Fragile X syndromes, tuberous sclerosis and neurofibromatosis, the less familiar Phelan-McDermid, Sotos, Kleefstra, Coffin-Lowry and "ATRX" syndromes, and the disorders of imprinting, Angelman and Prader-Willi syndromes. NDDs have been termed "synaptopathies" in reference to structural and functional disturbance of synaptic plasticity, several involve abnormal Ras-Kinase signalling ("rasopathies"), and many are characterized by disrupted cerebral connectivity and an imbalance between excitatory and inhibitory transmission. However, at a different level of integration, NDDs are accompanied by aberrant "epigenetic" regulation of processes critical for normal and orderly development of the brain. Epigenetics refers to potentially-heritable (by mitosis and/or meiosis) mechanisms controlling gene expression without changes in DNA sequence. In certain NDDs, prototypical epigenetic processes of DNA methylation and covalent histone marking are impacted. Conversely, others involve anomalies in chromatin-modelling, mRNA splicing/editing, mRNA translation, ribosome biogenesis and/or the regulatory actions of small nucleolar RNAs and micro-RNAs. Since epigenetic mechanisms are modifiable, this raises the hope of novel therapy, though questions remain concerning efficacy and safety. The above issues are critically surveyed in this review, which advocates a broad-based epigenetic framework for understanding and ultimately treating a diverse assemblage of NDDs ("epigenopathies") lying at the interface of genetic, developmental and environmental processes. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Mark J Millan
- Unit for Research and Discovery in Neuroscience, IDR Servier, 125 chemin de ronde, 78290 Croissy sur Seine, Paris, France.
| |
Collapse
|
41
|
Strazielle C, Lefevre A, Jacquelin C, Lalonde R. Abnormal grooming activity in Dab1scm (scrambler) mutant mice. Behav Brain Res 2012; 233:24-8. [DOI: 10.1016/j.bbr.2012.04.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
|
42
|
Sui L, Wang Y, Ju LH, Chen M. Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-term potentiation in rat medial prefrontal cortex. Neurobiol Learn Mem 2012; 97:425-40. [DOI: 10.1016/j.nlm.2012.03.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 01/05/2023]
|
43
|
Abstract
Although the term 'epigenetics' was coined nearly seventy years ago, its critical function in memory processing by the adult CNS has only recently been appreciated. The hypothesis that epigenetic mechanisms regulate memory and behavior was motivated by the need for stable molecular processes that evade turnover of the neuronal proteome. In this article, we discuss evidence that supports a role for neural epigenetic modifications in the formation, consolidation and storage of memory. In addition, we will review the evidence that epigenetic mechanisms regulate synaptic plasticity, a cellular correlate of memory. We will also examine how the concerted action of multiple epigenetic mechanisms with varying spatiotemporal profiles influence selective gene expression in response to behavioral experience. Finally, we will suggest key areas for future research that will help elucidate the complex, vital and still mysterious, role of epigenetic mechanisms in neural function and behavior.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F McKnight Brain Institute, 1007 Shelby Building, 1825 University Boulevard Birmingham, AL 35294-2182, USA
| | | |
Collapse
|
44
|
Abstract
Abstract
Objectives
Epigenetics refers to the heritable, but reversible regulation of various biological functions. Changes in DNA methylation and chromatin structure derived from histone modifications are involved in the brain development, pathogenesis and pharmacotherapy of brain disorders.
Key findings
Evidence suggests that epigenetic modulations play key roles in psychiatric diseases such as schizophrenia and bipolar disorder. The analysis of epigenetic aberrations in the mechanisms of psychoactive drugs helps to determine dysfunctional genes and pathways in the brain, to predict side effects of drugs on human genome and identify new pharmaceutical targets for treatment of psychiatric diseases.
Summary
Although numerous studies have concentrated on epigenetics of psychosis, the epigenetic studies of antipsychotics are limited. Here we present epigenetic mechanisms of various psychoactive drugs and review the current literature on psychiatric epigenomics. Furthermore, we discuss various epigenetic modulations in the pharmacology and toxicology of typical and atypical antipsychotics, methionine, lithium and valproic acid.
Collapse
Affiliation(s)
- Nadka Boyadjieva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria
- Department of Animal Sciences, Cook College, Rutgers University, New Brunswick, NJ, USA
| | - Miroslava Varadinova
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria
| |
Collapse
|
45
|
Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S, Guo X, Zheng D, Lachman HM. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogenet 2011; 25:88-103. [PMID: 21797804 DOI: 10.3109/01677063.2011.597908] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Induced pluripotent stem cell (iPSC) technology has the potential to transform regenerative medicine. It also offers a powerful tool for establishing in vitro models of disease, in particular, for neuropsychiatric disorders where live human neurons are essentially impossible to procure. Using iPSCs derived from three schizophrenia (SZ) patients, one of whom has 22q11.2del (velocardiofacial syndrome; VCFS), the authors developed a culture system to study SZ on a molecular and cellular level. SZ iPSCs were differentiated into functional, primarily glutamatergic neurons that were able to fire action potentials after ∼8 weeks in culture. Early differentiating neurons expressed a number of transcription factors/chromatin remodeling proteins and synaptic proteins relevant to SZ pathogenesis, including ZNF804A, RELN, CNTNAP2, CTNNA2, SMARCA2, and NRXN1. Although a small number of lines were developed in this preliminary study, the SZ line containing 22q11.2del showed a significant delay in the reduction of endogenous OCT4 and NANOG expression that normally occurs during differentiation. Constitutive expression of OCT4 has been observed in Dgcr8-deficient mouse embryonic stem cells (mESCs); DGCR8 maps to the 22q11.2-deleted region. These findings demonstrate that the method of inducing neural differentiation employed is useful for disease modeling in SZ and that the transition of iPSCs with 22q11.2 deletions towards a differentiated state may be marked by subtle changes in expression of pluripotency-associated genes.
Collapse
Affiliation(s)
- Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York 10416, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lussier AL, Romay-Tallón R, Kalynchuk LE, Caruncho HJ. Reelin as a putative vulnerability factor for depression: Examining the depressogenic effects of repeated corticosterone in heterozygous reeler mice. Neuropharmacology 2011; 60:1064-74. [DOI: 10.1016/j.neuropharm.2010.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/01/2010] [Accepted: 09/07/2010] [Indexed: 12/20/2022]
|
47
|
Kiser PJ, Liu Z, Wilt SD, Mower GD. Cellular and laminar expression of Dab-1 during the postnatal critical period in cat visual cortex and the effects of dark rearing. Brain Res 2011; 1383:81-9. [PMID: 21303666 DOI: 10.1016/j.brainres.2011.01.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/14/2011] [Accepted: 01/31/2011] [Indexed: 11/28/2022]
Abstract
This study describes postnatal critical period changes in cellular and laminar expression of Dab-1, a gene shown to play a role in controlling neuronal positioning during embryonic brain development, in cat visual cortex and the effects of dark rearing (DR). At 1week, there is dense cellular staining which is uniform across cortical layers and very light neuropil staining. At the peak of the critical period (5weeks), dense cell staining is largely restricted to large pyramidal cells of deep layer III and layer V, there is faint cell body staining throughout all cortical layers, neuropil staining is markedly increased and uniform in layers III to VI. This dramatic change in laminar and cellular labeling is independent of visual input, since immunostaining is similar in 5-week DR cats. By 10weeks, the mature laminar and cellular staining pattern is established and the major subsequent change is a further reduction in the density of cellular staining in all cortical layers. Neuropil staining is pronounced and uniform across cortical layers. These developmental changes are altered by DR. Quantification by cell counts indicated that age and DR interact such that differences in cellular expression are opposite in direction between 5- and 20-week-old cats. This bidirectional regulation of cellular expression is the same in all cortical laminae. The bidirectional regulation of cellular expression matches the effects of age and DR on physiological plasticity during the critical period as assessed by ocular dominance shifts in response to monocular deprivation.
Collapse
Affiliation(s)
- Paul J Kiser
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 500 South Preston St., Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
48
|
Dieckmann M, Dietrich MF, Herz J. Lipoprotein receptors--an evolutionarily ancient multifunctional receptor family. Biol Chem 2011; 391:1341-63. [PMID: 20868222 DOI: 10.1515/bc.2010.129] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The evolutionarily ancient low-density lipoprotein (LDL) receptor gene family represents a class of widely expressed cell surface receptors. Since the dawn of the first primitive multicellular organisms, several structurally and functionally distinct families of lipoprotein receptors have evolved. In accordance with the now obsolete 'one-gene-one-function' hypothesis, these cell surface receptors were originally perceived as mere transporters of lipoproteins, lipids, and nutrients or as scavenger receptors, which remove other kinds of macromolecules, such as proteases and protease inhibitors from the extracellular environment and the cell surface. This picture has since undergone a fundamental change. Experimental evidence has replaced the perception that these receptors serve merely as cargo transporters. Instead it is now clear that the transport of macromolecules is inseparably intertwined with the molecular machinery by which cells communicate with each other. Lipoprotein receptors are essentially sensors of the extracellular environment that participate in a wide range of physiological processes by physically interacting and coevolving with primary signal transducers as co-regulators. Furthermore, lipoprotein receptors modulate cellular trafficking and localization of the amyloid precursor protein (APP) and the β-amyloid peptide (Aβ), suggesting a role in the pathogenesis of Alzheimer's disease. Moreover, compelling evidence shows that LDL receptor family members are involved in tumor development and progression.
Collapse
Affiliation(s)
- Marco Dieckmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9046, USA
| | | | | |
Collapse
|
49
|
Epigenetic GABAergic targets in schizophrenia and bipolar disorder. Neuropharmacology 2010; 60:1007-16. [PMID: 21074545 DOI: 10.1016/j.neuropharm.2010.10.021] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/18/2010] [Accepted: 10/21/2010] [Indexed: 12/15/2022]
Abstract
It is becoming increasingly clear that a dysfunction of the GABAergic/glutamatergic network in telencephalic brain structures may be the pathogenetic mechanism underlying psychotic symptoms in schizophrenia (SZ) and bipolar (BP) disorder patients. Data obtained in Costa's laboratory (1996-2009) suggest that this dysfunction may be mediated primarily by a downregulation in the expression of GABAergic genes (e.g., glutamic acid decarboxylase₆₇[GAD₆₇] and reelin) associated with DNA methyltransferase (DNMT)-dependent hypermethylation of their promoters. A pharmacological strategy to reduce the hypermethylation of GABAergic promoters is to administer drugs, such as the histone deacetylase (HDAC) inhibitor valproate (VPA), that induce DNA-demethylation when administered at doses that facilitate chromatin remodeling. The benefits elicited by combining VPA with antipsychotics in the treatment of BP disorder suggest that an investigation of the epigenetic interaction of these drugs is warranted. Our studies in mice suggest that when associated with VPA, clinically relevant doses of clozapine elicit a synergistic potentiation of VPA-induced GABAergic promoter demethylation. Olanzapine and quetiapine (two clozapine congeners) also facilitate chromatin remodeling but at doses higher than used clinically, whereas haloperidol and risperidone are inactive. Hence, the synergistic potentiation of VPA's action on chromatin remodeling by clozapine appears to be a unique property of the dibenzepines and is independent of their action on catecholamine or serotonin receptors. By activating DNA-demethylation, the association of clozapine or its derivatives with VPA or other more potent and selective HDAC inhibitors may be considered a promising treatment strategy for normalizing GABAergic promoter hypermethylation and the GABAergic gene expression downregulation detected in the postmortem brain of SZ and BP disorder patients. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
|
50
|
Abstract
Schizophrenia postmortem brain is characterized by gamma aminobutyric acid downregulation and by decreased dendritic spine density in frontal cortex. Protracted L-methionine treatment exacerbates schizophrenia symptoms, and our earlier work (Tremolizzo et al. and Dong et al.) has shown that L-methionine decreases reelin and GAD67 transcription in mice which is prevented by co-administration of valproate. In this study, we observed a decrease in spine density following L-methionine treatment, which was prevented by co-administration of valproate. Together with our earlier findings conducted under the same experimental conditions, we suggest that downregulation of spine density in L-methionine-treated mice may be because of the decreased expression of reelin and that valproate may prevent spine downregulation by inhibiting the methylation induced decrease in reelin.
Collapse
|