1
|
Saraiva HFRDA, Sangalli JR, Alves L, da Silveira JC, Meirelles FV, Perecin F. NPPC and AREG supplementation in IVM systems alter mRNA translation and decay programs-related gene expression in bovine COC. Anim Reprod 2024; 21:e20230101. [PMID: 39021501 PMCID: PMC11253787 DOI: 10.1590/1984-3143-ar2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/29/2024] [Indexed: 07/20/2024] Open
Abstract
During oocyte meiosis resumption, a coordinated program of transcript translation and decay machinery promotes a remodeling of mRNA stores, which determines the success of the acquisition of competence and early embryo development. We investigated levels of two genes related to mRNA translation (CPEB1 and CPEB4) and two related to mRNA degradation (CNOT7 and ZFP36L2) machinery and found ZFP36L2 downregulated in in vitro-matured bovine oocytes compared to in vivo counterparts. Thereafter, we tested the effects of a pre-IVM step with NPPC and a modified IVM with AREG on the modulation of members of mRNA translation and degradation pathways in cumulus cells and oocytes. Our data showed a massive upregulation of genes associated with translational and decay processes in cumulus cells, promoted by NPPC and AREG supplementation, up to 9h of IVM. The oocytes were less affected by NPPC and AREG, and even though ZFP36L2 transcript and protein levels were downregulated at 9 and 19h of IVM, only one (KDM4C) from the ten target genes evaluated was differently expressed in these treatments. These data suggest that cumulus cells are more prone to respond to NPPC and AREG supplementation in vitro, regarding translational and mRNA decay programs. Given the important nursing role of these cells, further studies could contribute to a better understanding of the impact of these modulators in maternal mRNA modulation and improve IVM outcomes.
Collapse
Affiliation(s)
| | - Juliano Rodrigues Sangalli
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Luana Alves
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Juliano Coelho da Silveira
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Flávio Vieira Meirelles
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Felipe Perecin
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
2
|
Kunitomi C, Romero M, Daldello EM, Schindler K, Conti M. Multiple intersecting pathways are involved in CPEB1 phosphorylation and regulation of translation during mouse oocyte meiosis. Development 2024; 151:dev202712. [PMID: 38785133 PMCID: PMC11190569 DOI: 10.1242/dev.202712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in regulating mRNA translation in oocytes. However, the specifics of how and which protein kinase cascades modulate CPEB1 activity are still controversial. Using genetic and pharmacological tools, and detailed time courses, we have re-evaluated the relationship between CPEB1 phosphorylation and translation activation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on CPEB1 phosphorylation during prometaphase of meiosis I. Only inactivation of the CDK1/MAPK pathway disrupts translation, whereas inactivation of either pathway alone leads to CPEB1 stabilization. However, CPEB1 stabilization induced by inactivation of the AURKA/PLK1 pathway does not affect translation, indicating that destabilization and/or degradation is not linked to translational activation. The accumulation of endogenous CCNB1 protein closely recapitulates the translation data that use an exogenous template. These findings support the overarching hypothesis that the activation of translation during prometaphase in mouse oocytes relies on a CDK1/MAPK-dependent CPEB1 phosphorylation, and that translational activation precedes CPEB1 destabilization.
Collapse
Affiliation(s)
- Chisato Kunitomi
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mayra Romero
- Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Karen Schindler
- Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Xiang K, Ly J, Bartel DP. Control of poly(A)-tail length and translation in vertebrate oocytes and early embryos. Dev Cell 2024; 59:1058-1074.e11. [PMID: 38460509 DOI: 10.1016/j.devcel.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/28/2023] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
During oocyte maturation and early embryogenesis, changes in mRNA poly(A)-tail lengths strongly influence translation, but how these tail-length changes are orchestrated has been unclear. Here, we performed tail-length and translational profiling of mRNA reporter libraries (each with millions of 3' UTR sequence variants) in frog oocytes and embryos and in fish embryos. Contrasting to previously proposed cytoplasmic polyadenylation elements (CPEs), we found that a shorter element, UUUUA, together with the polyadenylation signal (PAS), specify cytoplasmic polyadenylation, and we identified contextual features that modulate the activity of both elements. In maturing oocytes, this tail lengthening occurs against a backdrop of global deadenylation and the action of C-rich elements that specify tail-length-independent translational repression. In embryos, cytoplasmic polyadenylation becomes more permissive, and additional elements specify waves of stage-specific deadenylation. Together, these findings largely explain the complex tapestry of tail-length changes observed in early frog and fish development, with strong evidence of conservation in both mice and humans.
Collapse
Affiliation(s)
- Kehui Xiang
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jimmy Ly
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Tan J, Liu PP, Cao LY, Zou Y, Zhang ZY, Huang JL, Zhang ZQ, Xu DF, Fan L, Xia LZ, Xie Q, Tian LF, Xin CL, Li ZM, Wu QF. Reduced PATL2 Impairs the Proliferation of Ovarian Granulosa Cells by Decreasing ADM2 Expression in Patients with PCOS. Reprod Sci 2024; 31:1034-1044. [PMID: 38087182 DOI: 10.1007/s43032-023-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/29/2023] [Indexed: 03/24/2024]
Abstract
It is recognized that PCOS patients are often accompanied with aberrant follicular development, which is an important factor leading to infertility in patients. However, the relevant regulatory mechanisms of abnormal follicular development are not well understood. In the present study, by collecting human ovarian granulosa cells (GCs) from PCOS patients who underwent in vitro fertilization (IVF), we found that the proliferation ability of GCs in PCOS patients was significantly reduced. Surprisingly, PATL2 and adrenomedullin 2 (ADM2) were obviously decreased in the GCs of PCOS patients. To further explore the potential roles of PATL2 and ADM2 on GC, we transfected PATL2 siRNA into KGN cells to knock down the expression of PATL2. The results showed that the growth of GCs remarkably repressed after knocking down the PATL2, and ADM2 expression was also weakened. Subsequently, to study the relationship between PATL2 and ADM2, we constructed PATL2 mutant plasmid lacking the PAT construct and transfected it into KGN cells. The cells showed the normal PATL2 expression, but attenuated ADM2 expression and impaired proliferative ability of GCs. Finally, the rat PCOS model experiments further confirmed our findings in KGN cells. In conclusion, our study suggests that PATL2 promoted the proliferation of ovarian GCs by stabilizing the expression of ADM2 through "PAT" structure, which is beneficial to follicular development, whereas, in the ovary with polycystic lesions, reduction of PATL2 could result in the decreased expression of ADM2, subsequently weakened the proliferation ability of GCs and finally led to the occurrence of aberrant follicles.
Collapse
Affiliation(s)
- Jun Tan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China.
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China.
| | - Pei-Pei Liu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Li-Yun Cao
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Yang Zou
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Zi-Yu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi Province, China
| | - Jia-Lyu Huang
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Zhi-Qin Zhang
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Ding-Fei Xu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Lu Fan
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Lei-Zhen Xia
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Qi Xie
- Reproductive Medicine Center, Xinyu Maternal and Child Health Care Hospital, Xinyu, Jiangxi Province, China
| | - Li-Feng Tian
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Cai-Lin Xin
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Zeng-Ming Li
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| | - Qiong-Fang Wu
- Reproductive Medicine Center, Jiangxi Maternal and Child Health Hospital, No. 318, Bayi Avenue, Donghu District, Nanchang, Jiangxi Province, China
| |
Collapse
|
5
|
Yu M, Zhang S, Ma Z, Qiang J, Wei J, Sun L, Kocher TD, Wang D, Tao W. Disruption of Zar1 leads to arrested oogenesis by regulating polyadenylation via Cpeb1 in tilapia (Oreochromis niloticus). Int J Biol Macromol 2024; 260:129632. [PMID: 38253139 DOI: 10.1016/j.ijbiomac.2024.129632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Oogenesis is a complex process regulated by precise coordination of multiple factors, including maternal genes. Zygote arrest 1 (zar1) has been identified as an ovary-specific maternal gene that is vital for oocyte-to-embryo transition and oogenesis in mouse and zebrafish. However, its function in other species remains to be elucidated. In the present study, zar1 was identified with conserved C-terminal zinc finger domains in Nile tilapia. zar1 was highly expressed in the ovary and specifically expressed in phase I and II oocytes. Disruption of zar1 led to the failed transition from oogonia to phase I oocytes, with somatic cell apoptosis. Down-regulation and failed polyadenylation of figla, gdf9, bmp15 and wee2 mRNAs were observed in the ovaries of zar1-/- fish. Cpeb1, a gene essential for polyadenylation that interacts with Zar1, was down-regulated in zar1-/- fish. Moreover, decreased levels of serum estrogen and increased levels of androgen were observed in zar1-/- fish. Taken together, zar1 seems to be essential for tilapia oogenesis by regulating polyadenylation and estrogen synthesis. Our study shows that Zar1 has different molecular functions during gonadal development by the similar signaling pathway in different species.
Collapse
Affiliation(s)
- Miao Yu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Shiyi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhisheng Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Jing Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD 20742, United States of America
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Kunitomi C, Romero M, Daldello EM, Schindler K, Conti M. Multiple intersecting pathways are involved in the phosphorylation of CPEB1 to activate translation during mouse oocyte meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.575938. [PMID: 38293116 PMCID: PMC10827138 DOI: 10.1101/2024.01.17.575938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The RNA-binding protein cytoplasmic polyadenylation element binding 1 (CPEB1) plays a fundamental role in the regulation of mRNA translation in oocytes. However, the nature of protein kinase cascades modulating the activity of CPEB1 is still a matter of controversy. Using genetic and pharmacological tools and detailed time courses, here we have reevaluated the relationship between CPEB1 phosphorylation and the activation of translation during mouse oocyte maturation. We show that both the CDK1/MAPK and AURKA/PLK1 pathways converge on the phosphorylation of CPEB1 during prometaphase. Only inactivation of the CDK1/MAPK pathway disrupts translation, while inactivation of either pathway leads to CPEB1 stabilization. However, stabilization of CPEB1 induced by inactivation of the AURKA/PLK1 does not affect translation, indicating that destabilization/degradation can be dissociated from translational activation. The accumulation of the endogenous CCNB1 protein closely recapitulates the translation data. These findings support the overarching hypothesis that the activation of translation in prometaphase in mouse oocytes relies on a CDK1-dependent CPEB1 phosphorylation, and this translational activation precedes CPEB1 destabilization.
Collapse
Affiliation(s)
- Chisato Kunitomi
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Mayra Romero
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Human Genetics Institute of New Jersey
| | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, F-75005 Paris, France
| | - Karen Schindler
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Human Genetics Institute of New Jersey
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
7
|
Kim HM, Kang MK, Seong SY, Jo JH, Kim MJ, Shin EK, Lee CG, Han SJ. Meiotic Cell Cycle Progression in Mouse Oocytes: Role of Cyclins. Int J Mol Sci 2023; 24:13659. [PMID: 37686466 PMCID: PMC10487953 DOI: 10.3390/ijms241713659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
All eukaryotic cells, including oocytes, utilize an engine called cyclin-dependent kinase (Cdk) to drive the cell cycle. Cdks are activated by a co-factor called cyclin, which regulates their activity. The key Cdk-cyclin complex that regulates the oocyte cell cycle is known as Cdk1-cyclin B1. Recent studies have elucidated the roles of other cyclins, such as B2, B3, A2, and O, in oocyte cell cycle regulation. This review aims to discuss the recently discovered roles of various cyclins in mouse oocyte cell cycle regulation in accordance with the sequential progression of the cell cycle. In addition, this review addresses the translation and degradation of cyclins to modulate the activity of Cdks. Overall, the literature indicates that each cyclin performs unique and redundant functions at various stages of the cell cycle, while their expression and degradation are tightly regulated. Taken together, this review provides new insights into the regulatory role and function of cyclins in oocyte cell cycle progression.
Collapse
Affiliation(s)
- Hye Min Kim
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Min Kook Kang
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Se Yoon Seong
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Jun Hyeon Jo
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Min Ju Kim
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
| | - Eun Kyeong Shin
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 46033, Republic of Korea; (M.K.K.); (C.G.L.)
| | - Seung Jin Han
- Department of Biological Science, Inje University, Gimhae 50834, Republic of Korea; (H.M.K.); (E.K.S.)
- Institute for Digital Antiaging Healthcare, Inje University, Gimhae 50834, Republic of Korea; (S.Y.S.); (J.H.J.); (M.J.K.)
- Department of Medical Biotechnology, Inje University, Gimhae 50834, Republic of Korea
- Institute of Basic Science, Inje University, Gimhae 50834, Republic of Korea
| |
Collapse
|
8
|
Rouhana L, Edgar A, Hugosson F, Dountcheva V, Martindale MQ, Ryan JF. Cytoplasmic Polyadenylation Is an Ancestral Hallmark of Early Development in Animals. Mol Biol Evol 2023; 40:msad137. [PMID: 37288606 PMCID: PMC10284499 DOI: 10.1093/molbev/msad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023] Open
Abstract
Differential regulation of gene expression has produced the astonishing diversity of life on Earth. Understanding the origin and evolution of mechanistic innovations for control of gene expression is therefore integral to evolutionary and developmental biology. Cytoplasmic polyadenylation is the biochemical extension of polyadenosine at the 3'-end of cytoplasmic mRNAs. This process regulates the translation of specific maternal transcripts and is mediated by the Cytoplasmic Polyadenylation Element-Binding Protein family (CPEBs). Genes that code for CPEBs are amongst a very few that are present in animals but missing in nonanimal lineages. Whether cytoplasmic polyadenylation is present in non-bilaterian animals (i.e., sponges, ctenophores, placozoans, and cnidarians) remains unknown. We have conducted phylogenetic analyses of CPEBs, and our results show that CPEB1 and CPEB2 subfamilies originated in the animal stem lineage. Our assessment of expression in the sea anemone, Nematostella vectensis (Cnidaria), and the comb jelly, Mnemiopsis leidyi (Ctenophora), demonstrates that maternal expression of CPEB1 and the catalytic subunit of the cytoplasmic polyadenylation machinery (GLD2) is an ancient feature that is conserved across animals. Furthermore, our measurements of poly(A)-tail elongation reveal that key targets of cytoplasmic polyadenylation are shared between vertebrates, cnidarians, and ctenophores, indicating that this mechanism orchestrates a regulatory network that is conserved throughout animal evolution. We postulate that cytoplasmic polyadenylation through CPEBs was a fundamental innovation that contributed to animal evolution from unicellular life.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Fredrik Hugosson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Valeria Dountcheva
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Song CR, Zhang RJ, Xue FR, Zhang XJ, Wang XY, Sun D, Ding K, Yang Q, Wang XY, Liang CG. mRNA 3' -UTR-mediate translational control through PAS and CPE in sheep oocyte. Theriogenology 2023; 201:30-40. [PMID: 36827867 DOI: 10.1016/j.theriogenology.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/21/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
In oocytes, the cytoplasmic polyadenylation and maternal mRNAs translation is regulated by cis-elements, including polyadenylation signal (PAS) and cytoplasmic polyadenylation element (CPE) in 3'-UTR. Recent studies illustrate non-canonical polyadenylation mechanisms of translational regulation in mouse oocytes, which is different from that in Xenopus oocytes. However, it is still unclear if this regulation in rodent oocytes functions in the domestic animal oocyte. Here, by using sheep as an animal model, we cloned the 3'-UTRs of Cpeb1 or Btg4 and ligated it into the pRK5-Flag-Gfp vector. Variant numbers and positions of PASs and CPEs within the 3'-UTRs were constructed to detect their effects on translational control. After in vitro-transcription and microinjection into sheep fully grown germinal vesicle stage oocytes, the expression efficiency of mRNAs was detected by the GFP and flag expression. Our results show that: (i) PAS located at the proximal end of 3'-UTR can mediate the translation of the maternal mRNAs, as long as they locate far from CPEs; (ii) The proximal PAS has higher efficiency in regulating transcription than the distal one; (iii) increase of PAS number can promote the translational activity more efficiently; (iv) a single CPE located close to PAS (<50 bp) in 3'-UTRs of Cpeb1 or Btg4 could partially repress translation. In 3'-UTRs of Btg4, two CPEs have a higher inhibitory effect, and three CPEs can completely inhibit mRNA translation. These results confirm the existence of the non-canonical mechanism in domestic animal oocytes.
Collapse
Affiliation(s)
- Chun-Ru Song
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Ru-Jing Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Fang-Rui Xue
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Xiao-Jie Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Dui Sun
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Kang Ding
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Qi Yang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Xin-Yu Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, People's Republic of China.
| |
Collapse
|
10
|
Heim A, Niedermeier ML, Stengel F, Mayer TU. The translation regulator Zar1l controls timing of meiosis in Xenopus oocytes. Development 2022; 149:278465. [DOI: 10.1242/dev.200900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Oocyte maturation and early embryo development occur in vertebrates in the near absence of transcription. Thus, sexual reproduction of vertebrates critically depends on the timely translation of mRNAs already stockpiled in the oocyte. Yet how translational activation of specific mRNAs is temporally coordinated is still incompletely understood. Here, we elucidate the function of Zar1l, a yet uncharacterized member of the Zar RNA-binding protein family, in Xenopus oocytes. Employing TRIM-Away, we demonstrate that loss of Zar1l accelerates hormone-induced meiotic resumption of Xenopus oocytes due to premature accumulation of the M-phase-promoting kinase cMos. We show that Zar1l is a constituent of a large ribonucleoparticle containing the translation repressor 4E-T and the central polyadenylation regulator CPEB1, and that it binds directly to the cMos mRNA. Partial, hormone-induced degradation of Zar1l liberates 4E-T from CPEB1, which weakens translational repression of mRNAs encoding cMos and likely additional M-phase-promoting factors. Thus, our study provides fundamental insights into the mechanisms that ensure temporally regulated translation of key cell cycle regulators during oocyte maturation, which is essential for sexual reproductivity.
Collapse
Affiliation(s)
- Andreas Heim
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
| | - Marie L. Niedermeier
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| | - Florian Stengel
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| | - Thomas U. Mayer
- University of Konstanz 1 Department of Biology , , 78457 Konstanz , Germany
- Konstanz Research School Chemical Biology, University of Konstanz 2 , 78457 Konstanz , Germany
| |
Collapse
|
11
|
Sun L, Tong K, Liu W, Tian Y, Yang S, Zhou D, Liu D, Huang G, Li J. Identification and characterization of a novel homozygous splice site variant of PATL2 causing female infertility due to oocyte germinal vesicle arrest. Front Genet 2022; 13:967288. [PMID: 36072676 PMCID: PMC9441802 DOI: 10.3389/fgene.2022.967288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: This study aims to describe clinical and diagnostic phenotype and identify pathogenic variants of a female with unknown causes of infertility.Methods: Clinical assessment was performed for the phenotype diagnosis. Whole-exome sequencing (WES) and the followed cDNA-PCR sequencing were applied to identify the pathogenic variant and investigate the potentially aberrant mRNA splicing event. The pathogenicity of the variant was analysed using multiple in silico prediction tools, including the 3D protein remodelling. Quantitative RT-PCR (qRT-PCR) was performed to measure PATL2 mRNA expression in the peripheral blood leukocytes of the proband and controls.Results: The proband was diagnosed with the female infertility due to oocyte germinal vesicle (GV) arrest. A novel homozygous splice site variant of PATL2 (NM_001145112.2, c.871-1G>A), inherited from her asymptomatic heterozygous parents, was detected by WES. Sequencing of cDNA amplification products demonstrated that this variant resulted in the exon 10 skipping and in-frame loss of 54 nucleotides in the PATL2 transcript. Quantitative RT-PCR suggested that the mutant transcript escape the mRNA degradation.Conclusion: We identified a novel pathogenic homozygous splice site of PATL2 (c.871-1G>A) underlying the oocyte GV arrest phenotype and elucidated its molecular mechanism. This study expands the variant spectrum of PATL2 and benefits our understanding of its genotype-phenotype correlations.
Collapse
Affiliation(s)
- Liwei Sun
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Keya Tong
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Weiwei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Yin Tian
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Sheng Yang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Danni Zhou
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Dongyun Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Guoning Huang, ; Jingyu Li,
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Guoning Huang, ; Jingyu Li,
| |
Collapse
|
12
|
He Y, Chen Q, Zhang J, Yu J, Xia M, Wang X. Pervasive 3'-UTR Isoform Switches During Mouse Oocyte Maturation. Front Mol Biosci 2021; 8:727614. [PMID: 34733887 PMCID: PMC8558312 DOI: 10.3389/fmolb.2021.727614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Oocyte maturation is the foundation for developing healthy individuals of mammals. Upon germinal vesicle breakdown, oocyte meiosis resumes and the synthesis of new transcripts ceases. To quantitatively profile the transcriptomic dynamics after meiotic resumption throughout the oocyte maturation, we generated transcriptome sequencing data with individual mouse oocytes at three main developmental stages: germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). When clustering the sequenced oocytes, results showed that isoform-level expression analysis outperformed gene-level analysis, indicating isoform expression provided extra information that was useful in distinguishing oocyte stages. Comparing transcriptomes of the oocytes at the GV stage and the MII stage, in addition to identification of differentially expressed genes (DEGs), we detected many differentially expressed transcripts (DETs), some of which came from genes that were not identified as DEGs. When breaking down the isoform-level changes into alternative RNA processing events, we found the main source of isoform composition changes was the alternative usage of polyadenylation sites. With detailed analysis focusing on the alternative usage of 3′-UTR isoforms, we identified, out of 3,810 tested genes, 512 (13.7%) exhibiting significant switches of 3′-UTR isoforms during the process of moues oocyte maturation. Altogether, our data and analyses suggest the importance of examining isoform abundance changes during oocyte maturation, and further investigation of the pervasive 3′-UTR isoform switches in the transition may deepen our understanding on the molecular mechanisms underlying mammalian early development.
Collapse
Affiliation(s)
- Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuzhen Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Jing Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Xia
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Hu Y, Hu X, Li D, Du Z, Shi K, He C, Zhang Y, Zhang D. The APC/C FZY-1/Cdc20 Complex Coordinates With OMA-1 to Regulate the Oocyte-to-Embryo Transition in Caenorhabditis elegans. Front Cell Dev Biol 2021; 9:749654. [PMID: 34722532 PMCID: PMC8554129 DOI: 10.3389/fcell.2021.749654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
During oocyte maturation and the oocyte-to-embryo transition, key developmental regulators such as RNA-binding proteins coordinate translation of particular messenger RNA (mRNAs) and related developmental processes by binding to their cognate maternal mRNAs. In the nematode Caenorhabditis elegans, these processes are regulated by a set of CCCH zinc finger proteins. Oocyte maturation defective-1 (OMA-1) and OMA-2 are two functionally redundant CCCH zinc finger proteins that turnover rapidly during the first embryonic cell division. These turnovers are required for proper transition from oogenesis to embryogenesis. A gain-of-function mutant of OMA-1, oma-1(zu405), stabilizes and delays degradation of OMA-1, resulting in delayed turnover and mis-segregation of other cell fate determinants, which eventually causes embryonic lethality. We performed a large-scale forward genetic screen to identify suppressors of the oma-1(zu405) mutant. We show here that multiple alleles affecting functions of various anaphase promoting complex/cyclosome (APC/C) subunits, including MAT-1, MAT-2, MAT-3, EMB-30, and FZY-1, suppress the gain-of-function mutant of OMA-1. Transcriptome analysis suggested that overall transcription in early embryos occurred after introducing mutations in APC/C genes into the oma-1(zu405) mutant. Mutations in APC/C genes prevent OMA-1 enrichment in P granules and correct delayed degradation of downstream cell fate determinants including pharynx and intestine in excess-1 (PIE-1), posterior segregation-1 (POS-1), muscle excess-3 (MEX-3), and maternal effect germ-cell defective-1 (MEG-1). We demonstrated that only the activator FZY-1, but not FZR-1, is incorporated in the APC/C complex to regulate the oocyte-to-embryo transition. Our findings suggested a genetic relationship linking the APC/C complex and OMA-1, and support a model in which the APC/C complex promotes P granule accumulation and modifies RNA binding of OMA-1 to regulate the oocyte-to-embryo transition process.
Collapse
Affiliation(s)
- Yabing Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuewen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongchen Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenxia He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donglei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Voronina AS, Pshennikova ES. mRNPs: Structure and role in development. Cell Biochem Funct 2021; 39:832-843. [PMID: 34212408 DOI: 10.1002/cbf.3656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 11/11/2022]
Abstract
In eukaryotic cells, mRNA molecules are coated with numerous RNA-binding proteins and so exist in ribonucleoproteins (mRNPs). The proteins associated with the mRNA regulate the fate of mRNA, including its localization, translation and decay. Before activation of translation, the mRNA does not display any template functions-it is masked. The coordinated activity of certain RNA-binding proteins determines the future fate of each mRNA individually. In embryo development, the temporal and spatial regulation of translation can cause a situation when the mRNA and the encoded protein are localized in different compartments and so the differentiation of the cells can be determined. The fundamentals of regulation of the mRNAs fate and functioning in nerves are similar to those already described for oo- and embryogenesis. Disorders in the mRNA masking and demasking result in the emergence of various diseases, in particular cancers and neuro-degenerative diseases.
Collapse
Affiliation(s)
- Anna S Voronina
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena S Pshennikova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Peng SL, Wu QF, Xie Q, Tan J, Shu KY. PATL2 regulated the apoptosis of ovarian granulosa cells in patients with PCOS. Gynecol Endocrinol 2021; 37:629-634. [PMID: 34008465 DOI: 10.1080/09513590.2021.1928066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM PCOS often showed abnormal follicular development. Previous studies have found that the increased apoptosis of granulosa cells (GCs) is one of the key factors leading to follicular dysplasia. It has been found that the decrease or deletion of PATL2 function can significantly inhibit the development and maturation of human oocytes. We found that PATL2 was also expressed in human ovarian GCs, suggesting that PATL2 may be involved in the regulation of related biological events in GCs. This study aims to explore the function of PATL2 on regulation of GCs apoptosis, and the potential role of PATL2 in the development of PCOS-related abnormal follicles. MATERIALS AND METHODS The follicular GCs of PCOS patients and normal ovulating female patients were collected. Moreover, human granular cell line (KGN) was used for in vitro experiments. RESULTS (1) The maturation rate and fertilization rate of oocytes in the PCOS group were significantly lower than those in the normal control group (p<0.05). (2) Flow cytometry and TUNEL staining showed that the apoptosis level of GCs in the PCOS group was significantly increased. (3) Immunofluorescence and Western Blot showed that the PATL2 expression level of GCs in the PCOS group was significantly reduced. (4) Knocking down the expression of PATL2 by siRNA significantly prevented the apoptosis of GCs. CONCLUSIONS Reduced PATL2 could resulted in the increased apoptosis level of ovarian GCs, which might be closely related to the occurrence and development of abnormal follicles in PCOS.
Collapse
Affiliation(s)
- Shao-Lan Peng
- Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P. R. China
- Yongkang Maternity and Child Health Care Hospital, Yongkang, Zhejiang, P. R. China
| | - Qiong-Fang Wu
- Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P. R. China
- Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal andChild Health Hospital, Nanchang, P. R. China
| | - Qi Xie
- Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P. R. China
- Jiangxi Medical College, Nanchang University, Nanchang, P. R. China
| | - Jun Tan
- Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P. R. China
- Reproductive Medicine Center, Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal andChild Health Hospital, Nanchang, P. R. China
| | - Kuan-Yong Shu
- Maternal and Child Health Hospital Affiliated to Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, P. R. China
- Department of Gynecology, Maternal and Child Health Hospital of Nanchang University, Jiangxi Maternal and Child Health Hospital, Nanchang, P. R. China
| |
Collapse
|
16
|
Jiang JC, Zhang H, Cao LR, Dai XX, Zhao LW, Liu HB, Fan HY. Oocyte meiosis-coupled poly(A) polymerase α phosphorylation and activation trigger maternal mRNA translation in mice. Nucleic Acids Res 2021; 49:5867-5880. [PMID: 34048556 PMCID: PMC8191758 DOI: 10.1093/nar/gkab431] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 01/25/2023] Open
Abstract
Mammalian oocyte maturation is driven by strictly regulated polyadenylation and translational activation of maternal mRNA stored in the cytoplasm. However, the poly(A) polymerase (PAP) that directly mediates cytoplasmic polyadenylation in mammalian oocytes has not been determined. In this study, we identified PAPα as the elusive enzyme that catalyzes cytoplasmic mRNA polyadenylation implicated in mouse oocyte maturation. PAPα was mainly localized in the germinal vesicle (GV) of fully grown oocytes but was distributed to the ooplasm after GV breakdown. Inhibition of PAPα activity impaired cytoplasmic polyadenylation and translation of maternal transcripts, thus blocking meiotic cell cycle progression. Once an oocyte resumes meiosis, activated CDK1 and ERK1/2 cooperatively mediate the phosphorylation of three serine residues of PAPα, 537, 545 and 558, thereby leading to increased activity. This mechanism is responsible for translational activation of transcripts lacking cytoplasmic polyadenylation elements in their 3′-untranslated region (3′-UTR). In turn, activated PAPα stimulated polyadenylation and translation of the mRNA encoding its own (Papola) through a positive feedback circuit. ERK1/2 promoted Papola mRNA translation in a 3′-UTR polyadenylation signal-dependent manner. Through these mechanisms, PAPα activity and levels were significantly amplified, improving the levels of global mRNA polyadenylation and translation, thus, benefiting meiotic cell cycle progression.
Collapse
Affiliation(s)
- Jun-Chao Jiang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hua Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan-Rui Cao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xing-Xing Dai
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hong-Bin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
17
|
Na Y, Kim H, Choi Y, Shin S, Jung JH, Kwon SC, Kim VN, Kim JS. FAX-RIC enables robust profiling of dynamic RNP complex formation in multicellular organisms in vivo. Nucleic Acids Res 2021; 49:e28. [PMID: 33332543 PMCID: PMC7968992 DOI: 10.1093/nar/gkaa1194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023] Open
Abstract
RNA-protein interaction is central to post-transcriptional gene regulation. Identification of RNA-binding proteins relies mainly on UV-induced crosslinking (UVX) followed by the enrichment of RNA-protein conjugates and LC-MS/MS analysis. However, UVX has limited applicability in tissues of multicellular organisms due to its low penetration depth. Here, we introduce formaldehyde crosslinking (FAX) as an alternative chemical crosslinking for RNA interactome capture (RIC). Mild FAX captures RNA-protein interaction with high specificity and efficiency in cell culture. Unlike UVX-RIC, FAX-RIC robustly detects proteins that bind to structured RNAs or uracil-poor RNAs (e.g. AGO1, STAU1, UPF1, NCBP2, EIF4E, YTHDF proteins and PABP), broadening the coverage. Applied to Xenopus laevis oocytes and embryos, FAX-RIC provided comprehensive and unbiased RNA interactome, revealing dynamic remodeling of RNA-protein complexes. Notably, translation machinery changes during oocyte-to-embryo transition, for instance, from canonical eIF4E to noncanonical eIF4E3. Furthermore, using Mus musculus liver, we demonstrate that FAX-RIC is applicable to mammalian tissue samples. Taken together, we report that FAX can extend the RNA interactome profiling into multicellular organisms.
Collapse
Affiliation(s)
- Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyunjoon Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Hun Jung
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - S Chul Kwon
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
18
|
de Breyne S, Vindry C, Guillin O, Condé L, Mure F, Gruffat H, Chavatte L, Ohlmann T. Translational control of coronaviruses. Nucleic Acids Res 2020; 48:12502-12522. [PMID: 33264393 PMCID: PMC7736815 DOI: 10.1093/nar/gkaa1116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.
Collapse
Affiliation(s)
- Sylvain de Breyne
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Caroline Vindry
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Olivia Guillin
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Lionel Condé
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Fabrice Mure
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Laurent Chavatte
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, F-69007, Lyon, France
| |
Collapse
|
19
|
Takei N, Takada Y, Kawamura S, Sato K, Saitoh A, Bormann J, Yuen WS, Carroll J, Kotani T. Changes in subcellular structures and states of pumilio 1 regulate the translation of target Mad2 and cyclin B1 mRNAs. J Cell Sci 2020; 133:jcs249128. [PMID: 33148609 DOI: 10.1242/jcs.249128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Temporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal and spatial control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate times to promote the progression of meiosis and development. Here, we show that changes in subcellular structures and states of the RNA-binding protein pumilio 1 (Pum1) regulate the translation of target mRNAs and progression of oocyte maturation. Pum1 was shown to bind to Mad2 (also known as Mad2l1) and cyclin B1 mRNAs, assemble highly clustered aggregates, and surround Mad2 and cyclin B1 RNA granules in mouse oocytes. These Pum1 aggregates were dissolved prior to the translational activation of target mRNAs, possibly through phosphorylation. Stabilization of Pum1 aggregates prevented the translational activation of target mRNAs and progression of oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation.
Collapse
Affiliation(s)
- Natsumi Takei
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shohei Kawamura
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Saitoh
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jenny Bormann
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - John Carroll
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
20
|
Mossanen-Parsi A, Parisi D, Browne-Marke N, Bharudin I, Connell SR, Mayans O, Fucini P, Morozov IY, Caddick MX. Histone mRNA is subject to 3' uridylation and re-adenylation in Aspergillus nidulans. Mol Microbiol 2020; 115:238-254. [PMID: 33047379 DOI: 10.1111/mmi.14613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022]
Abstract
The role of post-transcriptional RNA modification is of growing interest. One example is the addition of non-templated uridine residues to the 3' end of transcripts. In mammalian systems, uridylation is integral to cell cycle control of histone mRNA levels. This regulatory mechanism is dependent on the nonsense-mediated decay (NMD) component, Upf1, which promotes histone mRNA uridylation and degradation in response to the arrest of DNA synthesis. We have identified a similar system in Aspergillus nidulans, where Upf1 is required for the regulation of histone mRNA levels. However, other NMD components are also implicated, distinguishing it from the mammalian system. As in human cells, 3' uridylation of histone mRNA is induced upon replication arrest. Disruption of this 3' tagging has a significant but limited effect on histone transcript regulation, consistent with multiple mechanisms acting to regulate mRNA levels. Interestingly, 3' end degraded transcripts are also subject to re-adenylation. Both mRNA pyrimidine tagging and re-adenylation are dependent on the same terminal-nucleotidyltransferases, CutA, and CutB, and we show this is consistent with the in vitro activities of both enzymes. Based on these data we argue that mRNA 3' tagging has diverse and distinct roles associated with transcript degradation, functionality and regulation.
Collapse
Affiliation(s)
- Amir Mossanen-Parsi
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Daniele Parisi
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK.,Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | | | - Izwan Bharudin
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Sean R Connell
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Olga Mayans
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Paola Fucini
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Igor Y Morozov
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK.,Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Mark X Caddick
- Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| |
Collapse
|
21
|
Ma XY, Zhang H, Feng JX, Hu JL, Yu B, Luo L, Cao YL, Liao S, Wang J, Gao S. Structures of mammalian GLD-2 proteins reveal molecular basis of their functional diversity in mRNA and microRNA processing. Nucleic Acids Res 2020; 48:8782-8795. [PMID: 32633758 PMCID: PMC7470959 DOI: 10.1093/nar/gkaa578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/20/2020] [Accepted: 07/03/2020] [Indexed: 11/12/2022] Open
Abstract
The stability and processing of cellular RNA transcripts are efficiently controlled via non-templated addition of single or multiple nucleotides, which is catalyzed by various nucleotidyltransferases including poly(A) polymerases (PAPs). Germline development defective 2 (GLD-2) is among the first reported cytoplasmic non-canonical PAPs that promotes the translation of germline-specific mRNAs by extending their short poly(A) tails in metazoan, such as Caenorhabditis elegans and Xenopus. On the other hand, the function of mammalian GLD-2 seems more diverse, which includes monoadenylation of certain microRNAs. To understand the structural basis that underlies the difference between mammalian and non-mammalian GLD-2 proteins, we determine crystal structures of two rodent GLD-2s. Different from C. elegans GLD-2, mammalian GLD-2 is an intrinsically robust PAP with an extensively positively charged surface. Rodent and C. elegans GLD-2s have a topological difference in the β-sheet region of the central domain. Whereas C. elegans GLD-2 prefers adenosine-rich RNA substrates, mammalian GLD-2 can work on RNA oligos with various sequences. Coincident with its activity on microRNAs, mammalian GLD-2 structurally resembles the mRNA and miRNA processor terminal uridylyltransferase 7 (TUT7). Our study reveals how GLD-2 structurally evolves to a more versatile nucleotidyltransferase, and provides important clues in understanding its biological function in mammals.
Collapse
Affiliation(s)
- Xiao-Yan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jian-Xiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jia-Li Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Li Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yu-Lu Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuang Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.,Department of histology and embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China
| |
Collapse
|
22
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
Meneau F, Dupré A, Jessus C, Daldello EM. Translational Control of Xenopus Oocyte Meiosis: Toward the Genomic Era. Cells 2020; 9:E1502. [PMID: 32575604 PMCID: PMC7348711 DOI: 10.3390/cells9061502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
The study of oocytes has made enormous contributions to the understanding of the G2/M transition. The complementarity of investigations carried out on various model organisms has led to the identification of the M-phase promoting factor (MPF) and to unravel the basis of cell cycle regulation. Thanks to the power of biochemical approaches offered by frog oocytes, this model has allowed to identify the core signaling components involved in the regulation of M-phase. A central emerging layer of regulation of cell division regards protein translation. Oocytes are a unique model to tackle this question as they accumulate large quantities of dormant mRNAs to be used during meiosis resumption and progression, as well as the cell divisions during early embryogenesis. Since these events occur in the absence of transcription, they require cascades of successive unmasking, translation, and discarding of these mRNAs, implying a fine regulation of the timing of specific translation. In the last years, the Xenopus genome has been sequenced and annotated, enabling the development of omics techniques in this model and starting its transition into the genomic era. This review has critically described how the different phases of meiosis are orchestrated by changes in gene expression. The physiological states of the oocyte have been described together with the molecular mechanisms that control the critical transitions during meiosis progression, highlighting the connection between translation control and meiosis dynamics.
Collapse
Affiliation(s)
| | | | | | - Enrico Maria Daldello
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement—Institut de Biologie Paris Seine, LBD—IBPS, F-75005 Paris, France; (F.M.); (A.D.); (C.J.)
| |
Collapse
|
25
|
A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol 2020; 21:542-556. [PMID: 32483315 DOI: 10.1038/s41580-020-0246-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
Abstract
RNA tailing, or the addition of non-templated nucleotides to the 3' end of RNA, is the most frequent and conserved type of RNA modification. The addition of tails and their composition reflect RNA maturation stages and have important roles in determining the fate of the modified RNAs. Apart from canonical poly(A) polymerases, which add poly(A) tails to mRNAs in a transcription-coupled manner, a family of terminal nucleotidyltransferases (TENTs), including terminal uridylyltransferases (TUTs), modify RNAs post-transcriptionally to control RNA stability and activity. The human genome encodes 11 different TENTs with distinct substrate specificity, intracellular localization and tissue distribution. In this Review, we discuss recent advances in our understanding of non-canonical RNA tails, with a focus on the functions of human TENTs, which include uridylation, mixed tailing and post-transcriptional polyadenylation of mRNAs, microRNAs and other types of non-coding RNA.
Collapse
|
26
|
Luong XG, Daldello EM, Rajkovic G, Yang CR, Conti M. Genome-wide analysis reveals a switch in the translational program upon oocyte meiotic resumption. Nucleic Acids Res 2020; 48:3257-3276. [PMID: 31970406 PMCID: PMC7102970 DOI: 10.1093/nar/gkaa010] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
During oocyte maturation, changes in gene expression depend exclusively on translation and degradation of maternal mRNAs rather than transcription. Execution of this translation program is essential for assembling the molecular machinery required for meiotic progression, fertilization, and embryo development. With the present study, we used a RiboTag/RNA-Seq approach to explore the timing of maternal mRNA translation in quiescent oocytes as well as in oocytes progressing through the first meiotic division. This genome-wide analysis reveals a global switch in maternal mRNA translation coinciding with oocyte re-entry into the meiotic cell cycle. Messenger RNAs whose translation is highly active in quiescent oocytes invariably become repressed during meiotic re-entry, whereas transcripts repressed in quiescent oocytes become activated. Experimentally, we have defined the exact timing of the switch and the repressive function of CPE elements, and identified a novel role for CPEB1 in maintaining constitutive translation of a large group of maternal mRNAs during maturation.
Collapse
Affiliation(s)
- Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Gabriel Rajkovic
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Cai-Rong Yang
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
27
|
Yang CR, Rajkovic G, Daldello EM, Luong XG, Chen J, Conti M. The RNA-binding protein DAZL functions as repressor and activator of mRNA translation during oocyte maturation. Nat Commun 2020; 11:1399. [PMID: 32170089 PMCID: PMC7070028 DOI: 10.1038/s41467-020-15209-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 02/14/2020] [Indexed: 01/06/2023] Open
Abstract
Deleted in azoospermia-like (DAZL) is an RNA-binding protein critical for gamete development. In full-grown oocytes, the DAZL protein increases 4-fold during reentry into the meiotic cell cycle. Here, we have investigated the functional significance of this accumulation at a genome-wide level. Depletion of DAZL causes a block in maturation and widespread disruption in the pattern of ribosome loading on maternal transcripts. In addition to decreased translation, DAZL depletion also causes translational activation of a distinct subset of mRNAs both in quiescent and maturing oocytes, a function recapitulated with YFP-3′UTR reporters. DAZL binds to mRNAs whose translation is both repressed and activated during maturation. Injection of recombinant DAZL protein in DAZL-depleted oocytes rescues the translation and maturation to MII. Mutagenesis of putative DAZL-binding sites in these mRNAs mimics the effect of DAZL depletion. These findings demonstrate that DAZL regulates translation of maternal mRNAs, functioning both as the translational repressor and activator during oocyte maturation. The RNA binding protein DAZL plays a critical role during germ cell development. Here the authors provide evidence that DAZL functions both as activator and repressor of translation during oocyte maturation in mouse.
Collapse
Affiliation(s)
- Cai-Rong Yang
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Gabriel Rajkovic
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Jing Chen
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA.,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA, 94143, USA. .,USA Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, 94143, USA. .,Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
28
|
Zebrafish embryogenesis – A framework to study regulatory RNA elements in development and disease. Dev Biol 2020; 457:172-180. [DOI: 10.1016/j.ydbio.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 12/26/2022]
|
29
|
Dai XX, Jiang JC, Sha QQ, Jiang Y, Ou XH, Fan HY. A combinatorial code for mRNA 3'-UTR-mediated translational control in the mouse oocyte. Nucleic Acids Res 2019; 47:328-340. [PMID: 30335155 PMCID: PMC6326793 DOI: 10.1093/nar/gky971] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/06/2018] [Indexed: 12/16/2022] Open
Abstract
Meiotic maturation of mammalian oocytes depends on the temporally and spatially regulated cytoplasmic polyadenylation and translational activation of maternal mRNAs. Cytoplasmic polyadenylation is controlled by cis-elements in the 3′-UTRs of mRNAs including the polyadenylation signal (PAS), which is bound by the cleavage and polyadenylation specificity factor (CPSF) and the cytoplasmic polyadenylation element (CPE), which recruits CPE binding proteins. Using the 3′-UTRs of mouse Cpeb1, Btg4 and Cnot6l mRNAs, we deciphered the combinatorial code that controls developmental stage-specific translation during meiotic maturation: (i) translation of a maternal transcript at the germinal vesicle (GV) stage requires one or more PASs that locate far away from CPEs; (ii) PASs distal and proximal to the 3′-end of the transcripts are equally effective in mediating translation at the GV stage, as long as they are not close to the CPEs; (iii) Both translational repression at the GV stage and activation after germinal vesicle breakdown require at least one CPE adjacent to the PAS; (iv) The numbers and positions of CPEs in relation to PASs within the 3′-UTR of a given transcript determines its repression efficiency in GV oocytes. This study reveals a previously unrecognized non-canonical mechanism by which the proximal PASs mediate 3′-terminal polyadenylation and translation of maternal transcripts.
Collapse
Affiliation(s)
- Xing-Xing Dai
- MOEKey Laboratory for Biosystems Homeostasis & Protection and InnovationCenter for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jun-Chao Jiang
- MOEKey Laboratory for Biosystems Homeostasis & Protection and InnovationCenter for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qian-Qian Sha
- MOEKey Laboratory for Biosystems Homeostasis & Protection and InnovationCenter for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yu Jiang
- MOEKey Laboratory for Biosystems Homeostasis & Protection and InnovationCenter for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiang-Hong Ou
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Heng-Yu Fan
- MOEKey Laboratory for Biosystems Homeostasis & Protection and InnovationCenter for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
30
|
Ozturk S. The translational functions of embryonic poly(A)‐binding protein during gametogenesis and early embryo development. Mol Reprod Dev 2019; 86:1548-1560. [DOI: 10.1002/mrd.23253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Saffet Ozturk
- Department of Histology and EmbryologyAkdeniz University School of MedicineAntalya Turkey
| |
Collapse
|
31
|
Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes. Results Probl Cell Differ 2019; 63:297-324. [PMID: 28779323 DOI: 10.1007/978-3-319-60855-6_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
From the beginning of oogenesis, oocytes accumulate tens of thousands of mRNAs for promoting oocyte growth and development. A large number of these mRNAs are translationally repressed and localized within the oocyte cytoplasm. Translational activation of these dormant mRNAs at specific sites and timings plays central roles in driving progression of the meiotic cell cycle, axis formation, mitotic cleavages, transcriptional initiation, and morphogenesis. Regulation of the localization and temporal translation of these mRNAs has been shown to rely on cis-acting elements in the mRNAs and trans-acting factors recognizing and binding to the elements. Recently, using model vertebrate zebrafish, localization itself and formation of physiological structures such as RNA granules have been shown to coordinate the accurate timings of translational activation of dormant mRNAs. This subcellular regulation of mRNAs is also utilized in other animals including mouse. In this chapter, we review fundamental roles of temporal regulation of mRNA translation in oogenesis and early development and then focus on the mechanisms of mRNA regulation in the oocyte cytoplasm by which the activation of dormant mRNAs at specific timings is achieved.
Collapse
|
32
|
Bállega E, Carballar R, Samper B, Ricco N, Ribeiro MP, Bru S, Jiménez J, Clotet J. Comprehensive and quantitative analysis of G1 cyclins. A tool for studying the cell cycle. PLoS One 2019; 14:e0218531. [PMID: 31237904 PMCID: PMC6592645 DOI: 10.1371/journal.pone.0218531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, the cell cycle is driven by the actions of several cyclin dependent kinases (CDKs) and an array of regulatory proteins called cyclins, due to the cyclical expression patterns of the latter. In yeast, the accepted pattern of cyclin waves is based on qualitative studies performed by different laboratories using different strain backgrounds, different growing conditions and media, and different kinds of genetic manipulation. Additionally, only the subset of cyclins regulating Cdc28 was included, while the Pho85 cyclins were excluded. We describe a comprehensive, quantitative and accurate blueprint of G1 cyclins in the yeast Saccharomyces cerevisiae that, in addition to validating previous conclusions, yields new findings and establishes an accurate G1 cyclin blueprint. For the purposes of this research, we produced a collection of strains with all G1 cyclins identically tagged using the same and most respectful procedure possible. We report the contribution of each G1 cyclin for a broad array of growing and stress conditions, describe an unknown role for Pcl2 in heat-stress conditions and demonstrate the importance of maintaining the 3’UTR sequence of cyclins untouched during the tagging process.
Collapse
Affiliation(s)
- Elisabet Bállega
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Reyes Carballar
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Bàrbara Samper
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natalia Ricco
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mariana P. Ribeiro
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Samuel Bru
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Jiménez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- * E-mail: (JJ); (JC)
| | - Josep Clotet
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
- * E-mail: (JJ); (JC)
| |
Collapse
|
33
|
Wu L, Chen H, Li D, Song D, Chen B, Yan Z, Lyu Q, Wang L, Kuang Y, Li B, Sang Q. Novel mutations in PATL2: expanding the mutational spectrum and corresponding phenotypic variability associated with female infertility. J Hum Genet 2019; 64:379-385. [PMID: 30765866 DOI: 10.1038/s10038-019-0568-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/21/2018] [Accepted: 01/20/2019] [Indexed: 01/09/2023]
Abstract
Oocyte maturation arrest results in primary female infertility, but the genetic etiology of this phenotype remains largely unknown. Previously, we and other groups have reported that biallelic mutations in PATL2 are mainly responsible for human oocyte germinal vesicle-stage arrest and that the specific phenotype varies for different mutations. Here, we identified four novel missense mutations (p.V260M, p.Q300*, p.T425P, and p.D293Y), a novel frameshift mutation (p.N239Tfs*9), and a reported splicing mutation (p.R75Vfs*21) in PATL2 in seven affected individuals from five unrelated families, showing a multiplicity of phenotypes in oocyte maturation arrest, fertilization failure, or embryonic developmental arrest, which further expands the mutational and phenotypic spectrum in patients with PALTL2 mutations. This work further indicates the critical role of PATL2 in oocyte maturation and early embryo development and will provide a basis for pursuing the determination of genetic variation in PALT2 as an additional criterion for evaluating the quality of oocytes and embryos for assisted reproduction techniques.
Collapse
Affiliation(s)
- Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Chen
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 20032, China
| | - Da Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Di Song
- Reproductive Medicine Centre, Second Military Medical University, Shanghai Hospital, Shanghai Medical College, Fudan University, Shanghai, 200433, China
| | - Biaobang Chen
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Zheng Yan
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qifeng Lyu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yanping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Qing Sang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Pumilio1 phosphorylation precedes translational activation of its target mRNA in zebrafish oocytes. ZYGOTE 2018; 26:372-380. [DOI: 10.1017/s0967199418000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryTranslational regulation of mRNAs is crucial for promoting various cellular and developmental processes. Pumilio1 (Pum1) has been shown to play key roles in translational regulation of target mRNAs in many systems of diverse organisms. In zebrafish immature oocytes, Pum1 was shown to bind to cyclin B1 mRNA and promote the formation of cyclin B1 RNA granules. This Pum1-mediated RNA granule formation seemed critical to determine the timing of translational activation of cyclin B1 mRNA during oocyte maturation, leading to activation of maturation/M-phase-promoting factor (MPF) at the appropriate timing. Despite its fundamental importance, the mechanisms of translational regulation by Pum1 remain elusive. In this study, we examined the phosphorylation of Pum1 as a first step to understand the mechanisms of Pum1-mediated translation. SDS-PAGE analyses and phosphatase treatments showed that Pum1 was phosphorylated at multiple sites during oocyte maturation. This phosphorylation began in an early period after induction of oocyte maturation, which preceded the polyadenylation of cyclin B1 mRNA. Interestingly, depolymerization of actin filaments in immature oocytes caused phosphorylation of Pum1, disassembly of cyclin B1 RNA granules, and polyadenylation of cyclin B1 mRNA but not translational activation of the mRNA. Overexpression of the Pum1 N-terminus prevented the phosphorylation of Pum1, disassembly of cyclin B1 RNA granules, and translational activation of the mRNA even after induction of oocyte maturation. These results suggest that Pum1 phosphorylation in the early period of oocyte maturation is one of the key processes for promoting the disassembly of cyclin B1 RNA granules and translational activation of target mRNA.
Collapse
|
35
|
Fukuda K, Masuda A, Naka T, Suzuki A, Kato Y, Saga Y. Requirement of the 3'-UTR-dependent suppression of DAZL in oocytes for pre-implantation mouse development. PLoS Genet 2018; 14:e1007436. [PMID: 29883445 PMCID: PMC6010300 DOI: 10.1371/journal.pgen.1007436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/20/2018] [Accepted: 05/19/2018] [Indexed: 12/25/2022] Open
Abstract
Functional oocytes are produced through complex molecular and cellular processes. In particular, the contribution of post-transcriptional gene regulation mediated by RNA-binding proteins (RBPs) is crucial for controlling proper gene expression during this process. DAZL (deleted in azoospermia-like) is one of the RBPs required for the sexual differentiation of primordial germ cells and for the progression of meiosis in ovulated oocytes. However, the involvement of DAZL in the development of follicular oocytes is still unknown. Here, we show that Dazl is translationally suppressed in a 3'-UTR-dependent manner in follicular oocytes, and this suppression is required for normal pre-implantation development. We found that suppression of DAZL occurred in postnatal oocytes concomitant with the formation of primordial follicles, whereas Dazl mRNA was continuously expressed throughout oocyte development, raising the possibility that DAZL is dispensable for the survival and growth of follicular oocytes. Indeed, follicular oocyte-specific knockout of Dazl resulted in the production of normal number of pups. On the other hand, genetically modified female mice that overexpress DAZL produced fewer numbers of pups than the control due to defective pre-implantation development. Our data suggest that post-transcriptional suppression of DAZL in oocytes is an important mechanism controlling gene expression in the development of functional oocytes.
Collapse
Affiliation(s)
- Kurumi Fukuda
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Aki Masuda
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takuma Naka
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Faculty of Engineering, Yokohama National University, Yokohama Kanagawa, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Faculty of Engineering, Yokohama National University, Yokohama Kanagawa, Japan
| | - Yuzuru Kato
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- * E-mail: (YK); (YS)
| | - Yumiko Saga
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (YK); (YS)
| |
Collapse
|
36
|
Molecular Mechanisms of Prophase I Meiotic Arrest Maintenance and Meiotic Resumption in Mammalian Oocytes. Reprod Sci 2018; 26:1519-1537. [DOI: 10.1177/1933719118765974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanisms of meiotic prophase I arrest maintenance (germinal vesicle [GV] stage) and meiotic resumption (germinal vesicle breakdown [GVBD] stage) in mammalian oocytes seem to be very complicated. These processes are regulated via multiple molecular cascades at transcriptional, translational, and posttranslational levels, and many of them are interrelated. There are many molecular cascades of meiosis maintaining and meiotic resumption in oocyte which are orchestrated by multiple molecules produced by pituitary gland and follicular cells. Furthermore, many of these molecular cascades are duplicated, thus ensuring the stability of the entire system. Understanding mechanisms of oocyte maturation is essential to assess the oocyte status, develop effective protocols of oocyte in vitro maturation, and design novel contraceptive drugs. Mechanisms of meiotic arrest maintenance at prophase I and meiotic resumption in mammalian oocytes are covered in the present article.
Collapse
|
37
|
Adrian-Kalchhauser I, Walser JC, Schwaiger M, Burkhardt-Holm P. RNA sequencing of early round goby embryos reveals that maternal experiences can shape the maternal RNA contribution in a wild vertebrate. BMC Evol Biol 2018; 18:34. [PMID: 29566669 PMCID: PMC5863367 DOI: 10.1186/s12862-018-1132-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
Background It has been proposed that non-genetic inheritance could promote species fitness. Non-genetic inheritance could allow offspring to benefit from the experience of their parents, and could advocate pre-adaptation to prevailing and potentially selective conditions. Indeed, adaptive parental effects have been modeled and observed, but the molecular mechanisms behind them are far from understood. Results In the present study, we investigated whether maternal RNA can carry information about environmental conditions experienced by the mother in a wild vertebrate. Maternal RNA directs the development of the early embryo in many non-mammalian vertebrates and invertebrates. However, it is not known whether vertebrate maternal RNA integrates information about the parental environment. We sequenced the maternal RNA contribution from a model that we expected to rely on parental effects: the invasive benthic fish species Neogobius melanostomus (Round Goby). We found that maternal RNA expression levels correlated with the water temperature experienced by the mother before oviposition, and identified temperature-responsive gene groups such as core nucleosome components or the microtubule cytoskeleton. Conclusions Our findings suggest that the maternal RNA contribution may incorporate environmental information. Maternal RNA should therefore be considered a potentially relevant pathway for non-genetic inheritance. Also, the ability of a species to integrate environmental information in the maternal RNA contribution could potentially contribute to species fitness and may also play a role in extraordinary adaptive success stories of invasive species such as the round goby. Electronic supplementary material The online version of this article (10.1186/s12862-018-1132-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Adrian-Kalchhauser
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| | - Jean-Claude Walser
- Department of Environmental Systems Science, Genetic Diversity Centre Zurich, ETH Zurich, Universitätstrasse 16, CH-8092, Zurich, Switzerland
| | - Michaela Schwaiger
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Patricia Burkhardt-Holm
- Program Man-Society-Environment, Department of Environmental Sciences, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| |
Collapse
|
38
|
Kalous J, Tetkova A, Kubelka M, Susor A. Importance of ERK1/2 in Regulation of Protein Translation during Oocyte Meiosis. Int J Mol Sci 2018; 19:ijms19030698. [PMID: 29494492 PMCID: PMC5877559 DOI: 10.3390/ijms19030698] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
Although the involvement of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the regulation of cytostatic factor (CSF) activity; as well as in microtubules organization during meiotic maturation of oocytes; has already been described in detail; rather less attention has been paid to the role of ERK1/2 in the regulation of mRNA translation. However; important data on the role of ERK1/2 in translation during oocyte meiosis have been documented. This review focuses on recent findings regarding the regulation of translation and the role of ERK1/2 in this process in the meiotic cycle of mammalian oocytes. The specific role of ERK1/2 in the regulation of mammalian target of rapamycin (mTOR); eukaryotic translation initiation factor 4E (eIF4E) and cytoplasmic polyadenylation element binding protein 1 (CPEB1) activity is addressed along with additional focus on the other key players involved in protein translation.
Collapse
Affiliation(s)
- Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Anna Tetkova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Albertov 6, 12843 Prague 2, Czech Republic.
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
| |
Collapse
|
39
|
Hara M, Lourido S, Petrova B, Lou HJ, Von Stetina JR, Kashevsky H, Turk BE, Orr-Weaver TL. Identification of PNG kinase substrates uncovers interactions with the translational repressor TRAL in the oocyte-to-embryo transition. eLife 2018; 7:33150. [PMID: 29480805 PMCID: PMC5826265 DOI: 10.7554/elife.33150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022] Open
Abstract
The Drosophila Pan Gu (PNG) kinase complex regulates hundreds of maternal mRNAs that become translationally repressed or activated as the oocyte transitions to an embryo. In a previous paper (Hara et al., 2017), we demonstrated PNG activity is under tight developmental control and restricted to this transition. Here, examination of PNG specificity showed it to be a Thr-kinase yet lacking a clear phosphorylation site consensus sequence. An unbiased biochemical screen for PNG substrates identified the conserved translational repressor Trailer Hitch (TRAL). Phosphomimetic mutation of the PNG phospho-sites in TRAL reduced its ability to inhibit translation in vitro. In vivo, mutation of tral dominantly suppressed png mutants and restored Cyclin B protein levels. The repressor Pumilio (PUM) has the same relationship with PNG, and we also show that PUM is a PNG substrate. Furthermore, PNG can phosphorylate BICC and ME31B, repressors that bind TRAL in cytoplasmic RNPs. Therefore, PNG likely promotes translation at the oocyte-to-embryo transition by phosphorylating and inactivating translational repressors.
Collapse
Affiliation(s)
| | | | | | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, United States
| | | | | | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, United States
| | - Terry L Orr-Weaver
- Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
40
|
Rosario R, Smith RWP, Adams IR, Anderson RA. RNA immunoprecipitation identifies novel targets of DAZL in human foetal ovary. Mol Hum Reprod 2017; 23:177-186. [PMID: 28364521 PMCID: PMC5943682 DOI: 10.1093/molehr/gax004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Study question Can novel meiotic RNA targets of DAZL (deleted in azoospermia-like) be identified in the human foetal ovary? Summary answer SYCP1 (synaptonemal complex protein-1), TEX11 (testis expressed 11) and SMC1B (structural maintenance of chromosomes 1B) are novel DAZL targets in the human foetal ovary, thus DAZL may have previously unrecognised roles in the translational regulation of RNAs involved in chromosome cohesion and DNA recombination in the oocyte from the time of initiation of meiosis. What is known already The phenotype of Dazl deficiency in mouse is infertility in both sexes and DAZL has also been linked to infertility in humans. Few studies have explored targets of this RNA-binding protein. The majority of these investigations have been carried out in mouse, and have focussed on the male thus the basis for its central function in regulating female fertility is largely unknown. Study design size, duration We carried out RNA sequencing after immunoprecipitation of endogenous DAZL from human foetal ovarian tissue (17 weeks of gestation, obtained after elective termination of pregnancy) to identify novel DAZL targets involved in meiosis (n = 3 biological replicates). Participants/materials, setting, methods Using quantitative RT-PCR, we examined the expression of selected RNAs identified by our immunoprecipitation across gestation, and visualised the expression of potential target SMC1B in relation to DAZL, with a combination of in situ hybridisation and immunohistochemistry. 3′ untranslated region (3′UTR)-luciferase reporter assays and polysome profile analysis were used to investigate the regulation of three RNA targets by DAZL, representing key functionalities: SYCP1, TEX11 and SMC1B. Main results and the role of chance We identified 764 potential RNA targets of DAZL in the human foetal ovary (false discovery rate 0.05 and log-fold change ≥ 2), with functions in synaptonemal complex formation (SYCP1, SYCP3), cohesin formation (SMC1B, RAD21), spindle assembly checkpoint (MAD2L1, TRIP13) and recombination and DNA repair (HORMAD1, TRIP13, TEX11, RAD18, RAD51). We demonstrated that the translation of novel targets SYCP1 (P = 0.004), TEX11 (P = 0.004) and SMC1B (P = 0.002) is stimulated by the presence of DAZL but not by a mutant DAZL with impaired RNA-binding activity. Large scale data The raw data are available at GEO using the study ID: GSE81524. Limitations, reasons for caution This analysis is based on identification of DAZL targets at the time when meiosis starts in the ovary: it may have other targets at other stages of oocyte development, and in the testis. Representative targets were validated, but detailed analysis was not performed on the majority of putative targets. Wider implications of the findings These data indicate roles for DAZL in the regulation of several key functions in human oocytes. Through the translational regulation of novel RNA targets SMC1B and TEX11, DAZL may have a key role in regulating chromosome cohesion and DNA recombination; two processes fundamental in determining oocyte quality and whose establishment in foetal life may support lifelong fertility. Study funding and competing interest(s) This study was supported by the UK Medical Research Council (grant no G1100357 to R.A.A. and an intramural MRC programme grant to I.R.A.). The authors declare no competing interests.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Richard W P Smith
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
41
|
Zeng M, Li F, Wang L, Chen C, Huang X, Wu X, She W, Zhou L, Tao Z. Downregulated cytoplasmic polyadenylation element-binding protein-4 is associated with the carcinogenesis of head and neck squamous cell carcinoma. Oncol Lett 2017; 15:3226-3232. [PMID: 29435062 DOI: 10.3892/ol.2017.7661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
Cytoplasmic polyadenylation element-binding protein-4 (CPEB4) is involved in several biological processes that are associated with cancer progression. However, it remains unknown whether CPEB4 expression levels are associated with head and neck squamous cell carcinoma (HNSCC). The aim of the present study was to explore the potential function of CPEB4 in HNSCC. The expression of CPEB4 was analyzed in HNSCC from six Gene Expression Omnibus (GEO) datasets. Immunohistochemical staining was conducted to examine CPEB4 protein levels in an HNSCC tissue microarray (TMA). According to the GEO dataset analyses, CPEB4 gene expression was downregulated in HNSCC compared with normal samples (P<0.05). Notably, a statistical difference was observed between different tumor grades (P<0.05). Furthermore, the methylation of the CPEB4 gene in HNSCC was significantly increased compared with that observed in normal samples (P<0.01). The outcome from the TMA demonstrated that CPEB4 protein expression in human HNSCC tumors was significantly decreased compared with normal samples (P<0.05). In addition, the expression of CPEB4 protein was negatively associated with histological grades of HNSCC (P<0.05). The results from the present study suggested that CPEB4 may function as a tumor suppressor gene in HNSCC, which identifies the potential value of CPEB4 in predicting prognosis of HNSCC. Hypermethylation of the CPEB4 gene may be responsible for the downregulation of CPEB4 expression in HNSCC and result in tumorigenesis.
Collapse
Affiliation(s)
- Manli Zeng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Chen Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaolin Huang
- Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Xingyu Wu
- Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Wensheng She
- Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Lin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Ezhou Central Hospital, Ezhou, Hubei 436000, P.R. China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
42
|
Rabani M, Pieper L, Chew GL, Schier AF. A Massively Parallel Reporter Assay of 3' UTR Sequences Identifies In Vivo Rules for mRNA Degradation. Mol Cell 2017; 68:1083-1094.e5. [PMID: 29225039 DOI: 10.1016/j.molcel.2017.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 12/31/2022]
Abstract
The stability of mRNAs is regulated by signals within their sequences, but a systematic and predictive understanding of the underlying sequence rules remains elusive. Here we introduce UTR-seq, a combination of massively parallel reporter assays and regression models, to survey the dynamics of tens of thousands of 3' UTR sequences during early zebrafish embryogenesis. UTR-seq revealed two temporal degradation programs: a maternally encoded early-onset program and a late-onset program that accelerated degradation after zygotic genome activation. Three signals regulated early-onset rates: stabilizing poly-U and UUAG sequences and destabilizing GC-rich signals. Three signals explained late-onset degradation: miR-430 seeds, AU-rich sequences, and Pumilio recognition sites. Sequence-based regression models translated 3' UTRs into their unique decay patterns and predicted the in vivo effect of sequence signals on mRNA stability. Their application led to the successful design of artificial 3' UTRs that conferred specific mRNA dynamics. UTR-seq provides a general strategy to uncover the rules of RNA cis regulation.
Collapse
Affiliation(s)
- Michal Rabani
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Lindsey Pieper
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Guo-Liang Chew
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; The Broad Institute, Cambridge, MA 02140, USA.
| |
Collapse
|
43
|
The Translation of Cyclin B1 and B2 is Differentially Regulated during Mouse Oocyte Reentry into the Meiotic Cell Cycle. Sci Rep 2017; 7:14077. [PMID: 29074977 PMCID: PMC5658433 DOI: 10.1038/s41598-017-13688-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/29/2017] [Indexed: 01/15/2023] Open
Abstract
Control of protein turnover is critical for meiotic progression. Using RiboTag immunoprecipitation, RNA binding protein immunoprecipitation, and luciferase reporter assay, we investigated how rates of mRNA translation, protein synthesis and degradation contribute to the steady state level of Cyclin B1 and B2 in mouse oocytes. Ribosome loading onto Ccnb1 and Mos mRNAs increases during cell cycle reentry, well after germinal vesicle breakdown (GVBD). This is followed by the translation of reporters containing 3′ untranslated region of Mos or Ccnb1 and the accumulation of Mos and Cyclin B1 proteins. Conversely, ribosome loading onto Ccnb2 mRNA and Cyclin B2 protein level undergo minimal changes during meiotic reentry. Degradation rates of Cyclin B1 or B2 protein at the GV stage are comparable. The translational activation of Mos and Ccnb1, but not Ccnb2, mRNAs is dependent on the RNA binding protein CPEB1. Inhibition of Cdk1 activity, but not Aurora A kinase activity, prevents the translation of Mos or Ccnb1 reporters, suggesting that MPF is required for their translation in mouse oocytes. Conversely, Ccnb2 translation is insensitive to Cdk1 inhibition. Thus, the poised state that allows rapid meiotic reentry in mouse GV oocytes may be determined by the differential translational control of two Cyclins.
Collapse
|
44
|
Maddirevula S, Coskun S, Alhassan S, Elnour A, Alsaif HS, Ibrahim N, Abdulwahab F, Arold ST, Alkuraya FS. Female Infertility Caused by Mutations in the Oocyte-Specific Translational Repressor PATL2. Am J Hum Genet 2017; 101:603-608. [PMID: 28965844 DOI: 10.1016/j.ajhg.2017.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022] Open
Abstract
Infertility is a relatively common disorder of the reproductive system and remains unexplained in many cases. In vitro fertilization techniques have uncovered previously unrecognized infertility phenotypes, including oocyte maturation arrest, the molecular etiology of which remains largely unknown. We report two families affected by female-limited infertility caused by oocyte maturation failure. Positional mapping and whole-exome sequencing revealed two homozygous, likely deleterious variants in PATL2, each of which fully segregates with the phenotype within the respective family. PATL2 encodes a highly conserved oocyte-specific mRNP repressor of translation. Previous data have shown the strict requirement for PATL2 in oocyte-maturation in model organisms. Data gathered from the families in this study suggest that the role of PATL2 is conserved in humans and expand our knowledge of the factors that are necessary for female meiosis.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Saad Alhassan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Atif Elnour
- Dr. Sulaiman Al Habib Medical Group, Olaya Complex, Riyadh 11643, Saudi Arabia
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Stefan T Arold
- King Abdullah University of Science and Technology, Computational Bioscience Research Center, Division of Biological and Environmental Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia.
| |
Collapse
|
45
|
Chen B, Zhang Z, Sun X, Kuang Y, Mao X, Wang X, Yan Z, Li B, Xu Y, Yu M, Fu J, Mu J, Zhou Z, Li Q, Jin L, He L, Sang Q, Wang L. Biallelic Mutations in PATL2 Cause Female Infertility Characterized by Oocyte Maturation Arrest. Am J Hum Genet 2017; 101:609-615. [PMID: 28965849 DOI: 10.1016/j.ajhg.2017.08.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/28/2017] [Indexed: 01/22/2023] Open
Abstract
Oocyte maturation arrest results in female infertility, but the genetic determinants of human oocyte maturation arrest remain largely unknown. Previously, we identified TUBB8 mutations responsible for human oocyte maturation arrest, indicating the important role of genetic factors in the disorder. However, TUBB8 mutations account for only around 30% of individuals with oocyte maturation arrest; thus, the disorder is likely to involve other genetic factors that are as yet unknown. Here, we initially identified a homozygous nonsense mutation of PATL2 (c.784C>T [p.Arg262∗]) in a consanguineous family with a phenotype characterized by human oocyte germinal vesicle (GV) arrest. Subsequent mutation screening of PATL2 in a cohort of 179 individuals identified four additional independent individuals with compound-heterozygous PATL2 mutations with slight phenotypic variability. A genetic burden test further confirmed the genetic contribution of PATL2 to human oocyte maturation arrest. By western blot in HeLa cells, identification of splicing events in affected individuals' granulosa cells, and immunostaining in affected individuals' oocytes, we provide evidence that mutations in PATL2 lead to decreased amounts of protein. These findings suggest an important role for PATL2 mutations in oocyte maturation arrest and expand our understanding of the genetic basis of female infertility.
Collapse
Affiliation(s)
- Biaobang Chen
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China; Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhihua Zhang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiaoyan Mao
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xueqian Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yao Xu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Min Yu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Jian Mu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Qiaoli Li
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Center, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China; Lin He's Academician Workstation of New Medicine and Clinical Translation at the Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Qing Sang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China; Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Lei Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, Institutes of Biomedical Sciences, School of Life Sciences, Fudan University, Shanghai 200032, China; Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
46
|
Rosario R, Childs AJ, Anderson RA. RNA-binding proteins in human oogenesis: Balancing differentiation and self-renewal in the female fetal germline. Stem Cell Res 2017; 21:193-201. [PMID: 28434825 PMCID: PMC5446320 DOI: 10.1016/j.scr.2017.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
Primordial germ cells undergo three significant processes on their path to becoming primary oocytes: the initiation of meiosis, the formation and breakdown of germ cell nests, and the assembly of single oocytes into primordial follicles. However at the onset of meiosis, the germ cell becomes transcriptionally silenced. Consequently translational control of pre-stored mRNAs plays a central role in coordinating gene expression throughout the remainder of oogenesis; RNA binding proteins are key to this regulation. In this review we examine the role of exemplars of such proteins, namely LIN28, DAZL, BOLL and FMRP, and highlight how their roles during germ cell development are critical to oogenesis and the establishment of the primordial follicle pool. RNA-binding proteins (RBPs) are key regulators of gene expression during oogenesis. RBPs LIN28, DAZL, BOLL and FMRP display stage-specific expression in fetal oocytes. LIN28 and DAZL may regulate self-renewal and progression into meiosis respectively. BOLL and FMRP may be involved in the later stages of prophase I and oocyte growth. RBPs may have critical roles in establishing the ovarian reserve during fetal life.
Collapse
Affiliation(s)
- Roseanne Rosario
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew J Childs
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, London NW1 0TU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
47
|
Toombs JA, Sytnikova YA, Chirn GW, Ang I, Lau NC, Blower MD. Xenopus Piwi proteins interact with a broad proportion of the oocyte transcriptome. RNA (NEW YORK, N.Y.) 2017; 23:504-520. [PMID: 28031481 PMCID: PMC5340914 DOI: 10.1261/rna.058859.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Piwi proteins utilize small RNAs (piRNAs) to recognize target transcripts such as transposable elements (TE). However, extensive piRNA sequence diversity also suggests that Piwi/piRNA complexes interact with many transcripts beyond TEs. To determine Piwi target RNAs, we used ribonucleoprotein-immunoprecipitation (RIP) and cross-linking and immunoprecipitation (CLIP) to identify thousands of transcripts associated with the Piwi proteins XIWI and XILI (Piwi-protein-associated transcripts, PATs) from early stage oocytes of X. laevis and X. tropicalis Most PATs associate with both XIWI and XILI and include transcripts of developmentally important proteins in oogenesis and embryogenesis. Only a minor fraction of PATs in both frog species displayed near perfect matches to piRNAs. Since predicting imperfect pairing between all piRNAs and target RNAs remains intractable, we instead determined that PAT read counts correlate well with the lengths and expression levels of transcripts, features that have also been observed for oocyte mRNAs associated with Drosophila Piwi proteins. We used an in vitro assay with exogenous RNA to confirm that XIWI associates with RNAs in a length- and concentration-dependent manner. In this assay, noncoding transcripts with many perfectly matched antisense piRNAs were unstable, whereas coding transcripts with matching piRNAs were stable, consistent with emerging evidence that Piwi proteins both promote the turnover of TEs and other RNAs, and may also regulate mRNA localization and translation. Our study suggests that Piwi proteins play multiple roles in germ cells and establishes a tractable vertebrate system to study the role of Piwi proteins in transcript regulation.
Collapse
Affiliation(s)
- James A Toombs
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yuliya A Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Ignatius Ang
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
48
|
Orozco-Lucero E, Dufort I, Sirard MA. Regulation of ATF1 and ATF2 transcripts by sequences in their 3' untranslated region in cleavage-stage cattle embryos. Mol Reprod Dev 2017; 84:296-309. [PMID: 28198054 DOI: 10.1002/mrd.22785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/06/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
The sequence of a 3' untranslated region (3'UTR) of mRNA governs the timing of its polyadenylation and translation in mammalian oocytes and early embryos. The objective of this study was to assess the influence of cis-elements in the 3'UTR of the developmentally important ATF1 and ATF2 transcripts on their timely translation during first cleavages in bovine embryos. Eight different reporter mRNAs (coding sequence of green fluorescent protein [GFP] fused to the 3'UTR of short or long isoforms of cattle ATF1 or -2, with or without polyadenylation) or a control GFP mRNA were microinjected separately into presumptive bovine zygotes at 18 hr post-insemination (hpi), followed by epifluorescence assessment for GFP translation between 24 and 80 hpi (expressed as percentage of GFP-positive embryos calculated from the total number of individuals). The presence of either polyadenine or 3'UTR sequence in deadenylated constructs is required for GFP translation (implying the need for polyadenylation), and all exogenous mRNAs that met either criteria were translated as soon as 24 hpi-except for long-deadenylated ATF2-UTR, whose translation began at 36 hpi. Overall, GFP was more visibly translated in competent (cleaving) embryos, particularly in long ATF1/2 constructs. The current data shows a timely GFP translation in bovine embryos depending on sequences in the 3'UTR of ATF1/2, and indicates a difference between short and long isoforms. In addition, cleaving embryos displayed increased translational capacity of the tested constructs. Functional confirmation of the identification cis-sequences in the 3'UTR of ATF1/2 will contribute to the understanding of maternal mRNA translation regulation during early cattle development.
Collapse
Affiliation(s)
- Ernesto Orozco-Lucero
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| | - Isabelle Dufort
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| | - Marc-André Sirard
- Faculté des Sciences de l'Agriculture et de l'Alimentation, Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Pavillon INAF, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
49
|
Sakurai T, Shindo T, Sato M. Noninheritable Maternal Factors Useful for Genetic Manipulation in Mammals. Results Probl Cell Differ 2017; 63:495-510. [PMID: 28779331 DOI: 10.1007/978-3-319-60855-6_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian early embryogenesis is supported by maternal factors, such as messenger RNA (mRNA) and proteins, produced and accumulated during oogenesis at least up to the stage when zygotic activation commences. These maternal factors are involved in biologically important events such as epigenetic activation, reprogramming, and mitochondrial growth. Most of these maternal mRNAs are degraded by the 2-cell to 4 ~ 8-cell stages. Maternal proteins, which are produced during oogenesis or by the maternal mRNAs, are degraded by the 4 ~ 8-cell stage. In other words, the maternal factors exist during specific stages of early embryogenesis. In this chapter, we will briefly summarize the property of these maternal factors and mention possible applications of these factors for developing new reproduction engineering-related technologies and producing genetically modified animals. More specifically, we will show the usefulness of maternally accumulated Cas9 protein as a promising tool for CRISPR-/Cas9-based simultaneous genetic modification of multiple loci in mammals.
Collapse
Affiliation(s)
- Takayuki Sakurai
- Department of Cardiovascular Research, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan. .,Basic Research Division for Next-Generation Disease Models and Fundamental Technology, Research Center for Next Generation Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Takayuki Shindo
- Department of Cardiovascular Research, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Basic Research Division for Next-Generation Disease Models and Fundamental Technology, Research Center for Next Generation Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Kagoshima, 890-8544, Japan
| |
Collapse
|
50
|
Abstract
Fully grown oocytes arrest meiosis at prophase I and deposit maternal RNAs. A subset of maternal transcripts is stored in a dormant state in the oocyte, and the timely driven translation of specific mRNAs guides meiotic progression, the oocyte-embryo transition, and early embryo development. In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization and at the level of protein synthesis.This chapter focuses on the recent findings on RNA distribution related to the temporal and spatial translational control of the meiotic cycle progression in mammalian oocytes. We discuss the most relevant mechanisms involved in the organization of the oocyte's maternal transcriptome storage and localization, and the regulation of translation, in correlation with the regulation of oocyte meiotic progression.
Collapse
|