1
|
Murray-Nerger LA, Maestri D, Liu X, Li Z, Auld NR, Tempera I, Teng M, Gewurz BE. The DNA loop release factor WAPL suppresses Epstein-Barr virus latent membrane protein expression to maintain the highly restricted latency I program. PLoS Pathog 2024; 20:e1012525. [PMID: 39241017 PMCID: PMC11410233 DOI: 10.1371/journal.ppat.1012525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 08/23/2024] [Indexed: 09/08/2024] Open
Abstract
Epstein-Barr virus (EBV) uses latency programs to colonize the memory B-cell reservoir, and each program is associated with human malignancies. However, knowledge remains incomplete of epigenetic mechanisms that maintain the highly restricted latency I program, present in memory and Burkitt lymphoma cells, in which EBNA1 is the only EBV-encoded protein expressed. Given increasing appreciation that higher order chromatin architecture is an important determinant of viral and host gene expression, we investigated roles of Wings Apart-Like Protein Homolog (WAPL), a host factor that unloads cohesin to control DNA loop size and that was discovered as an EBNA2-associated protein. WAPL knockout (KO) in Burkitt cells de-repressed LMP1 and LMP2A expression, but not other EBV oncogenes, to yield a viral program reminiscent of EBV latency II, which is rarely observed in B-cells. WAPL KO also increased LMP1/2A levels in latency III lymphoblastoid cells. WAPL KO altered EBV genome architecture, triggering formation of DNA loops between the LMP promoter region and the EBV origins of lytic replication (oriLyt). Hi-C analysis further demonstrated that WAPL KO reprogrammed EBV genomic DNA looping. LMP1 and LMP2A de-repression correlated with decreased histone repressive marks at their promoters. We propose that EBV coopts WAPL to negatively regulate latent membrane protein expression to maintain Burkitt latency I.
Collapse
Affiliation(s)
- Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Davide Maestri
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Xiang Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Zhixuan Li
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Nina R. Auld
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
2
|
Murray-Nerger LA, Maestri D, Liu X, Li Z, Tempera I, Teng M, Gewurz BE. The DNA loop release factor WAPL suppresses Epstein-Barr virus latent membrane protein expression to maintain the highly restricted latency I program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593401. [PMID: 38766209 PMCID: PMC11100819 DOI: 10.1101/2024.05.09.593401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Epstein-Barr virus (EBV) uses latency programs to colonize the memory B-cell reservoir, and each program is associated with human malignancies. However, knowledge remains incomplete of epigenetic mechanisms that maintain the highly restricted latency I program, present in memory and Burkitt lymphoma cells, in which EBNA1 is the only EBV-encoded protein expressed. Given increasing appreciation that higher order chromatin architecture is an important determinant of viral and host gene expression, we investigated roles of Wings Apart-Like Protein Homolog (WAPL), a host factor that unloads cohesins to control DNA loop size and that was discovered as an EBNA2-associated protein. WAPL knockout (KO) in Burkitt cells de-repressed LMP1 and LMP2A expression but not other EBV oncogenes to yield a viral program reminiscent of EBV latency II, which is rarely observed in B-cells. WAPL KO also increased LMP1/2A levels in latency III lymphoblastoid cells. WAPL KO altered EBV genome architecture, triggering formation of DNA loops between the LMP promoter region and the EBV origins of lytic replication (oriLyt). Hi-C analysis further demonstrated that WAPL KO reprograms EBV genomic DNA looping. LMP1 and LMP2A de-repression correlated with decreased histone repressive marks at their promoters. We propose that EBV coopts WAPL to negatively regulate latent membrane protein expression to maintain Burkitt latency I. Author Summary EBV is a highly prevalent herpesvirus etiologically linked to multiple lymphomas, gastric and nasopharyngeal carcinomas, and multiple sclerosis. EBV persists in the human host in B-cells that express a series of latency programs, each of which is observed in a distinct type of human lymphoma. The most restricted form of EBV latency, called latency I, is observed in memory cells and in most Burkitt lymphomas. In this state, EBNA1 is the only EBV-encoded protein expressed to facilitate infected cell immunoevasion. However, epigenetic mechanisms that repress expression of the other eight EBV-encoded latency proteins remain to be fully elucidated. We hypothesized that the host factor WAPL might have a role in restriction of EBV genes, as it is a major regulator of long-range DNA interactions by negatively regulating cohesin proteins that stabilize DNA loops, and WAPL was found in a yeast 2-hybrid screen for EBNA2-interacting host factors. Using CRISPR together with Hi-ChIP and Hi-C DNA architecture analyses, we uncovered WAPL roles in suppressing expression of LMP1 and LMP2A, which mimic signaling by CD40 and B-cell immunoglobulin receptors, respectively. These proteins are expressed together with EBNA1 in the latency II program. We demonstrate that WAPL KO changes EBV genomic architecture, including allowing the formation of DNA loops between the oriLyt enhancers and the LMP promoter regions. Collectively, our study suggests that WAPL reinforces Burkitt latency I by preventing the formation of DNA loops that may instead support the latency II program.
Collapse
|
3
|
Caruso LB, Maestri D, Tempera I. Three-Dimensional Chromatin Structure of the EBV Genome: A Crucial Factor in Viral Infection. Viruses 2023; 15:1088. [PMID: 37243174 PMCID: PMC10222312 DOI: 10.3390/v15051088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Epstein-Barr Virus (EBV) is a human gamma-herpesvirus that is widespread worldwide. To this day, about 200,000 cancer cases per year are attributed to EBV infection. EBV is capable of infecting both B cells and epithelial cells. Upon entry, viral DNA reaches the nucleus and undergoes a process of circularization and chromatinization and establishes a latent lifelong infection in host cells. There are different types of latency all characterized by different expressions of latent viral genes correlated with a different three-dimensional architecture of the viral genome. There are multiple factors involved in the regulation and maintenance of this three-dimensional organization, such as CTCF, PARP1, MYC and Nuclear Lamina, emphasizing its central role in latency maintenance.
Collapse
Affiliation(s)
| | - Davide Maestri
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Italo Tempera
- The Wistar Institute, Philadelphia, PA 19104, USA; (L.B.C.); (D.M.)
| |
Collapse
|
4
|
KSHV RTA antagonizes SMC5/6 complex-induced viral chromatin compaction by hijacking the ubiquitin-proteasome system. PLoS Pathog 2022; 18:e1010744. [PMID: 35914008 PMCID: PMC9371351 DOI: 10.1371/journal.ppat.1010744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 08/11/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus with the capacity to establish life-long latent infection. During latent infection, the viral genome persists as a circular episome that associates with cellular histones and exists as a nonintegrated minichromosome in the nucleus of infected cells. Chromatin structure and epigenetic programming are required for the proper control of viral gene expression and stable maintenance of viral DNA. However, there is still limited knowledge regarding how the host regulates the chromatin structure and maintenance of episomal DNA. Here, we found that the cellular protein structural maintenance of chromosome (SMC) complex SMC5/6 recognizes and associates with the KSHV genome to inhibit its replication. The SMC5/6 complex can bind to the KSHV genome and suppress KSHV gene transcription by condensing the viral chromatin and creating a repressive chromatin structure. Correspondingly, KSHV employs an antagonistic strategy by utilizing the viral protein RTA to degrade the SMC5/6 complex and antagonize the inhibitory effect of this complex on viral gene transcription. Interestingly, this antagonistic mechanism of RTA is evolutionarily conserved among γ-herpesviruses. Our work suggests that the SMC5/6 complex is a new host factor that restricts KSHV replication. KSHV can establish life-long latent infection. During latency, the viral genome is maintained as an extrachromosomal episome in the infected cells. We demonstrated that the host protein SMC5/6 complex associates with the KSHV genome and results in direct transcriptional inhibition by creating a transcriptionally repressive chromatin structure of the viral genome. RTA, the master switch protein of KSHV, can hijack the ubiquitin-proteasome system to degrade the SMC5/6 complex to antagonize its inhibitory effect on viral gene transcription. Interestingly, this function of RTA is evolutionarily conserved among γ-herpesviruses.
Collapse
|
5
|
Okabe A, Huang KK, Matsusaka K, Fukuyo M, Xing M, Ong X, Hoshii T, Usui G, Seki M, Mano Y, Rahmutulla B, Kanda T, Suzuki T, Rha SY, Ushiku T, Fukayama M, Tan P, Kaneda A. Cross-species chromatin interactions drive transcriptional rewiring in Epstein-Barr virus-positive gastric adenocarcinoma. Nat Genet 2020; 52:919-930. [PMID: 32719515 DOI: 10.1038/s41588-020-0665-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Epstein-Barr virus (EBV) is associated with several human malignancies including 8-10% of gastric cancers (GCs). Genome-wide analysis of 3D chromatin topologies across GC lines, primary tissue and normal gastric samples revealed chromatin domains specific to EBV-positive GC, exhibiting heterochromatin-to-euchromatin transitions and long-range human-viral interactions with non-integrated EBV episomes. EBV infection in vitro suffices to remodel chromatin topology and function at EBV-interacting host genomic loci, converting H3K9me3+ heterochromatin to H3K4me1+/H3K27ac+ bivalency and unleashing latent enhancers to engage and activate nearby GC-related genes (for example TGFBR2 and MZT1). Higher-order epigenotypes of EBV-positive GC thus signify a novel oncogenic paradigm whereby non-integrative viral genomes can directly alter host epigenetic landscapes ('enhancer infestation'), facilitating proto-oncogene activation and tumorigenesis.
Collapse
Affiliation(s)
- Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manjie Xing
- Genome Institute of Singapore, Singapore, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Takayuki Hoshii
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Genki Usui
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunobu Mano
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Bahityar Rahmutulla
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Teru Kanda
- Division of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takayoshi Suzuki
- Department of Complex Molecular Chemistry, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Sun Young Rha
- Department of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore. .,Genome Institute of Singapore, Singapore, Singapore. .,Cancer Science Institute of Singapore, Singapore, Singapore.
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
6
|
Burley M, Roberts S, Parish JL. Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle. Semin Immunopathol 2020; 42:159-171. [PMID: 31919577 PMCID: PMC7174255 DOI: 10.1007/s00281-019-00773-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPV) are a large family of viruses which contain a circular, double-stranded DNA genome of approximately 8000 base pairs. The viral DNA is chromatinized by the recruitment of cellular histones which are subject to host cell-mediated post-translational epigenetic modification recognized as an important mechanism of virus transcription regulation. The HPV life cycle is dependent on the terminal differentiation of the target cell within epithelia-the keratinocyte. The virus life cycle begins in the undifferentiated basal compartment of epithelia where the viral chromatin is maintained in an epigenetically repressed state, stabilized by distal chromatin interactions between the viral enhancer and early gene region. Migration of the infected keratinocyte towards the surface of the epithelium induces cellular differentiation which disrupts chromatin looping and stimulates epigenetic remodelling of the viral chromatin. These epigenetic changes result in enhanced virus transcription and activation of the virus late promoter facilitating transcription of the viral capsid proteins. In this review article, we discuss the complexity of virus- and host-cell-mediated epigenetic regulation of virus transcription with a specific focus on differentiation-dependent remodelling of viral chromatin during the HPV life cycle.
Collapse
Affiliation(s)
- Megan Burley
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Sally Roberts
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - Joanna L Parish
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, University of Birmingham, B152TT, Birmingham, UK.
| |
Collapse
|
7
|
Epigenetic factor siRNA screen during primary KSHV infection identifies novel host restriction factors for the lytic cycle of KSHV. PLoS Pathog 2020; 16:e1008268. [PMID: 31923286 PMCID: PMC6977772 DOI: 10.1371/journal.ppat.1008268] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/23/2020] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Establishment of viral latency is not only essential for lifelong Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, but it is also a prerequisite of viral tumorigenesis. The latent viral DNA has a complex chromatin structure, which is established in a stepwise manner regulated by host epigenetic factors during de novo infection. However, despite the importance of viral latency in KSHV pathogenesis, we still have limited information about the repertoire of epigenetic factors that are critical for the establishment and maintenance of KSHV latency. Therefore, the goal of this study was to identify host epigenetic factors that suppress lytic KSHV genes during primary viral infection, which would indicate their role in latency establishment. We performed an siRNA screen targeting 392 host epigenetic factors during primary infection and analyzed which ones affect the expression of the viral replication and transcription activator (RTA) and/or the latency-associated nuclear antigen (LANA), which are viral genes essential for lytic replication and latency, respectively. As a result, we identified the Nucleosome Remodeling and Deacetylase (NuRD) complex, Tip60 and Tip60-associated co-repressors, and the histone demethylase KDM2B as repressors of KSHV lytic genes during both de novo infection and the maintenance of viral latency. Furthermore, we showed that KDM2B rapidly binds to the incoming viral DNA as early as 8 hpi, and can limit the enrichment of activating histone marks on the RTA promoter favoring the downregulation of RTA expression even prior to the polycomb proteins-regulated heterochromatin establishment on the viral genome. Strikingly, KDM2B can also suppress viral gene expression and replication during lytic infection of primary gingival epithelial cells, revealing that KDM2B can act as a host restriction factor of the lytic cycle of KSHV during both latent and lytic infections in multiple different cell types. Latent viral infection of cancer cells in KSHV-associated tumors is critical for the growth and survival of the cancer. Thus, revealing how lytic viral genes get suppressed through epigenetic regulation following de novo KSHV infection, resulting in the establishment of latency, is central to understanding the pathogenesis of KSHV infection. Importantly, the epigenetic factors that we identified as suppressors of KSHV lytic genes are not only crucial for the establishment and maintenance of KSHV latency in different cell types, but also several of them can block lytic KSHV infection in oral epithelial cells. Since herpesviruses often rely on similar sets of host epigenetic factors, the characterization of these newly identified epigenetic factors in KSHV infection may help to better understand fundamental epigenetic mechanisms that may also be utilized by other herpesviruses to establish latency following primary infection.
Collapse
|
8
|
Saviola AJ, Zimmermann C, Mariani MP, Signorelli SA, Gerrard DL, Boyd JR, Wight DJ, Morissette G, Gravel A, Dubuc I, Flamand L, Kaufer BB, Frietze S. Chromatin Profiles of Chromosomally Integrated Human Herpesvirus-6A. Front Microbiol 2019; 10:1408. [PMID: 31293546 PMCID: PMC6606781 DOI: 10.3389/fmicb.2019.01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023] Open
Abstract
Human herpesvirus-6A (HHV-6A) and 6B (HHV-6B) are two closely related betaherpesviruses that are associated with various diseases including seizures and encephalitis. The HHV-6A/B genomes have been shown to be present in an integrated state in the telomeres of latently infected cells. In addition, integration of HHV-6A/B in germ cells has resulted in individuals harboring this inherited chromosomally integrated HHV-6A/B (iciHHV-6) in every cell of their body. Until now, the viral transcriptome and the epigenetic modifications that contribute to the silencing of the integrated virus genome remain elusive. In the current study, we used a patient-derived iciHHV-6A cell line to assess the global viral gene expression profile by RNA-seq, and the chromatin profiles by MNase-seq and ChIP-seq analyses. In addition, we investigated an in vitro generated cell line (293-HHV-6A) that expresses GFP upon the addition of agents commonly used to induce herpesvirus reactivation such as TPA. No viral gene expression including miRNAs was detected from the HHV-6A genomes, indicating that the integrated virus is transcriptionally silent. Intriguingly, upon stimulation of the 293-HHV-6A cell line with TPA, only foreign promoters in the virus genome were activated, while all HHV-6A promoters remained completely silenced. The transcriptional silencing of latent HHV-6A was further supported by MNase-seq results, which demonstrate that the latent viral genome resides in a highly condensed nucleosome-associated state. We further explored the enrichment profiles of histone modifications via ChIP-seq analysis. Our results indicated that the HHV-6 genome is modestly enriched with the repressive histone marks H3K9me3/H3K27me3 and does not possess the active histone modifications H3K27ac/H3K4me3. Overall, these results indicate that HHV-6 genomes reside in a condensed chromatin state, providing insight into the epigenetic mechanisms associated with the silencing of the integrated HHV-6A genome.
Collapse
Affiliation(s)
- Anthony J. Saviola
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Cosima Zimmermann
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Michael P. Mariani
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Sylvia A. Signorelli
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Diana L. Gerrard
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Joseph R. Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT, United States
| | - Darren J. Wight
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Guillaume Morissette
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Annie Gravel
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Isabelle Dubuc
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Louis Flamand
- Department of Microbiology, Infectious Disease and Immunology, Université Laval and CHU de Quebec Research Center-Université Laval, Quebec, QC, Canada
| | - Benedikt B. Kaufer
- Institute of Virology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| |
Collapse
|
9
|
The CCCTC Binding Factor, CTRL2, Modulates Heterochromatin Deposition and the Establishment of Herpes Simplex Virus 1 Latency In Vivo. J Virol 2019; 93:JVI.00415-19. [PMID: 30996085 DOI: 10.1128/jvi.00415-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/04/2019] [Indexed: 01/02/2023] Open
Abstract
The cellular insulator protein CTCF plays a role in herpes simplex virus 1 (HSV-1) latency through the establishment and regulation of chromatin boundaries. We previously found that the CTRL2 regulatory element downstream from the latency-associated transcript (LAT) enhancer was bound by CTCF during latency and underwent CTCF eviction at early times postreactivation in mice latently infected with 17syn+ virus. We also showed that CTRL2 was a functional enhancer-blocking insulator in both epithelial and neuronal cell lines. We hypothesized that CTRL2 played a direct role in silencing lytic gene expression during the establishment of HSV-1 latency. To test this hypothesis, we used a recombinant virus with a 135-bp deletion spanning only the core CTRL2 insulator domain (ΔCTRL2) in the 17syn+ background. Deletion of CTRL2 resulted in restricted viral replication in epithelial cells but not neuronal cells. Following ocular infection, mouse survival decreased in the ΔCTRL2-infected cohort, and we found a significant decrease in the number of viral genomes in mouse trigeminal ganglia (TG) infected with ΔCTRL2, indicating that the CTRL2 insulator was required for the efficient establishment of latency. Immediate early (IE) gene expression significantly increased in the number of ganglia infected with ΔCTRL2 by 31 days postinfection relative to the level with 17syn+ infection, indicating that deletion of the CTRL2 insulator disrupted the organization of chromatin domains during HSV-1 latency. Finally, chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) analyses of TG from ΔCTRL2-infected mice confirmed that the distribution of the repressive H3K27me3 (histone H3 trimethylated at K27) mark on the ΔCTRL2 recombinant genomes was altered compared to that of the wild type, indicating that the CTRL2 site modulates the repression of IE genes during latency.IMPORTANCE It is becoming increasingly clear that chromatin insulators play a key role in the transcriptional control of DNA viruses. The gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) utilize chromatin insulators to order protein recruitment and dictate the formation of three-dimensional DNA loops that spatially control transcription and latency. The contribution of chromatin insulators in alphaherpesvirus transcriptional control is less well understood. The work presented here begins to bridge that gap in knowledge by showing how one insulator site in HSV-1 modulates lytic gene transcription and heterochromatin deposition as the HSV-1 genome establishes latency.
Collapse
|
10
|
Dugan JP, Coleman CB, Haverkos B. Opportunities to Target the Life Cycle of Epstein-Barr Virus (EBV) in EBV-Associated Lymphoproliferative Disorders. Front Oncol 2019; 9:127. [PMID: 30931253 PMCID: PMC6428703 DOI: 10.3389/fonc.2019.00127] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Many lymphoproliferative disorders (LPDs) are considered "EBV associated" based on detection of the virus in tumor tissue. EBV drives proliferation of LPDs via expression of the viral latent genes and many pre-clinical and clinical studies have shown EBV-associated LPDs can be treated by exploiting the viral life cycle. After a brief review of EBV virology and the natural life cycle within a host we will discuss the importance of the viral gene programs expressed during specific viral phases, as well as within immunocompetent vs. immunocompromised hosts and corresponding EBV-associated LPDs. We will then review established and emerging treatment approaches for EBV-associated LPDs based on EBV gene expression programs. Patients with EBV-associated LPDs can have a poor performance status, multiple comorbidities, and/or are immunocompromised from organ transplantation, autoimmune disease, or other congenital or acquired immunodeficiency making them poor candidates to receive intensive cytotoxic chemotherapy. With the emergence of EBV-directed therapy there is hope that we can devise more effective therapies that confer milder toxicity.
Collapse
Affiliation(s)
- James P. Dugan
- Division of Hematology, University of Colorado, Aurora, CO, United States
| | - Carrie B. Coleman
- Division of Immunology, University of Colorado, Aurora, CO, United States
| | - Bradley Haverkos
- Division of Hematology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
11
|
Zhang F, Liang D, Lin X, Zou Z, Sun R, Wang X, Liang X, Kaye KM, Lan K. NDRG1 facilitates the replication and persistence of Kaposi's sarcoma-associated herpesvirus by interacting with the DNA polymerase clamp PCNA. PLoS Pathog 2019; 15:e1007628. [PMID: 30811506 PMCID: PMC6411202 DOI: 10.1371/journal.ppat.1007628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/11/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) latently infects host cells and establishes lifelong persistence as an extra-chromosomal episome in the nucleus. To persist in proliferating cells, the viral genome typically replicates once per cell cycle and is distributed into daughter cells. This process involves host machinery utilized by KSHV, however the underlying mechanisms are not fully elucidated. In present study, we found that N-Myc downstream regulated gene 1 (NDRG1), a cellular gene known to be non-detectable in primary B cells and endothelial cells which are the major cell types for KSHV infection in vivo, was highly upregulated by KSHV in these cells. We further demonstrated that the high expression of NDRG1 was regulated by latency-associated nuclear antigen (LANA), the major viral latent protein which tethers the viral genome to host chromosome and plays an essential role in viral genome maintenance. Surprisingly, knockdown of NDRG1 in KSHV latently infected cells resulted in a significant decrease of viral genome copy number in these cells. Interestingly, NDRG1 can directly interact with proliferating cell nuclear antigen (PCNA), a cellular protein which functions as a DNA polymerase clamp during DNA replication. Intriguingly, we found that NDRG1 forms a complex with LANA and PCNA and serves as a scaffold protein bridging these two proteins. We further demonstrated that NDRG1 is critical for mediating LANA to recruit PCNA onto terminal repeat (TR) of KSHV genome, and facilitates viral DNA replication and episome persistence. Taken together, our findings suggest that NDRG1 plays an important role in KSHV viral genome replication, and provide new clues for understanding of KSHV persistence.
Collapse
Affiliation(s)
- Fang Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Deguang Liang
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxi Lin
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhe Zou
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Rui Sun
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xing Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaozhen Liang
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kenneth M. Kaye
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
12
|
CTCF Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific CTCF Occupation, Protein Recruitment, and Insulator Function. J Virol 2018; 92:JVI.00156-18. [PMID: 29437965 DOI: 10.1128/jvi.00156-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/20/2022] Open
Abstract
There are seven conserved CTCF binding domains in the herpes simplex virus 1 (HSV-1) genome. These binding sites individually flank the latency-associated transcript (LAT) and the immediate early (IE) gene regions, suggesting that CTCF insulators differentially control transcriptional domains in HSV-1 latency. In this work, we show that two CTCF binding motifs in HSV-1 display enhancer blocking in a cell-type-specific manner. We found that CTCF binding to the latent HSV-1 genome was LAT dependent and that the quantity of bound CTCF was site specific. Following reactivation, CTCF eviction was dynamic, suggesting that each CTCF site was independently regulated. We explored whether CTCF sites recruit the polycomb-repressive complex 2 (PRC2) to establish repressive domains through a CTCF-Suz12 interaction and found that Suz12 colocalized to the CTCF insulators flanking the ICP0 and ICP4 regions and, conversely, was removed at early times postreactivation. Collectively, these data support the idea that CTCF sites in HSV-1 are independently regulated and may contribute to lytic-latent HSV-1 control in a site-specific manner.IMPORTANCE The role of chromatin insulators in DNA viruses is an area of interest. It has been shown in several beta- and gammaherpesviruses that insulators likely control the lytic transcriptional profile through protein recruitment and through the formation of three-dimensional (3D) chromatin loops. The ability of insulators to regulate alphaherpesviruses has been understudied to date. The alphaherpesvirus HSV-1 has seven conserved insulator binding motifs that flank regions of the genome known to contribute to the establishment of latency. Our work presented here contributes to the understanding of how insulators control transcription of HSV-1.
Collapse
|
13
|
Toth Z, Smindak RJ, Papp B. Inhibition of the lytic cycle of Kaposi's sarcoma-associated herpesvirus by cohesin factors following de novo infection. Virology 2017; 512:25-33. [PMID: 28898712 PMCID: PMC5653454 DOI: 10.1016/j.virol.2017.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 01/03/2023]
Abstract
Establishment of Kaposi's sarcoma-associated herpesvirus (KSHV) latency following infection is a multistep process, during which polycomb proteins are recruited onto the KSHV genome, which is crucial for the genome-wide repression of lytic genes during latency. Strikingly, only a subset of lytic genes are expressed transiently in the early phase of infection prior to the binding of polycomb proteins onto the KSHV genome, which raises the question what restricts lytic gene expression in the first hours of infection. Here, we demonstrate that both CTCF and cohesin chromatin organizing factors are rapidly recruited to the viral genome prior to the binding of polycombs during de novo infection, but only cohesin is required for the genome-wide inhibition of lytic genes. We propose that cohesin is required for the establishment of KSHV latency by initiating the repression of lytic genes following infection, which is an essential step in persistent infection of humans.
Collapse
Affiliation(s)
- Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA; UF Genetics Institute, USA; UF Health Cancer Center, USA.
| | - Richard J Smindak
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA; UF Genetics Institute, USA; UF Health Cancer Center, USA
| |
Collapse
|
14
|
Moriyama K, Lai MS, Masai H. Interaction of Rif1 Protein with G-Quadruplex in Control of Chromosome Transactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:287-310. [PMID: 29357064 DOI: 10.1007/978-981-10-6955-0_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies on G-quadruplex (G4) revealed crucial and conserved functions of G4 in various biological systems. We recently showed that Rif1, a conserved nuclear factor, binds to G4 present in the intergenic regions and plays a major role in spatiotemporal regulation of DNA replication. Rif1 may tether chromatin fibers through binding to G4, generating specific chromatin domains that dictate the replication timing. G4 and its various binding partners are now implicated in many other chromosome regulations, including transcription, replication initiation, recombination, gene rearrangement, and transposition.
Collapse
Affiliation(s)
- Kenji Moriyama
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Mong Sing Lai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
15
|
Strahan R, Uppal T, Verma SC. Next-Generation Sequencing in the Understanding of Kaposi's Sarcoma-Associated Herpesvirus (KSHV) Biology. Viruses 2016; 8:92. [PMID: 27043613 PMCID: PMC4848587 DOI: 10.3390/v8040092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 12/16/2022] Open
Abstract
Non-Sanger-based novel nucleic acid sequencing techniques, referred to as Next-Generation Sequencing (NGS), provide a rapid, reliable, high-throughput, and massively parallel sequencing methodology that has improved our understanding of human cancers and cancer-related viruses. NGS has become a quintessential research tool for more effective characterization of complex viral and host genomes through its ever-expanding repertoire, which consists of whole-genome sequencing, whole-transcriptome sequencing, and whole-epigenome sequencing. These new NGS platforms provide a comprehensive and systematic genome-wide analysis of genomic sequences and a full transcriptional profile at a single nucleotide resolution. When combined, these techniques help unlock the function of novel genes and the related pathways that contribute to the overall viral pathogenesis. Ongoing research in the field of virology endeavors to identify the role of various underlying mechanisms that control the regulation of the herpesvirus biphasic lifecycle in order to discover potential therapeutic targets and treatment strategies. In this review, we have complied the most recent findings about the application of NGS in Kaposi’s sarcoma-associated herpesvirus (KSHV) biology, including identification of novel genomic features and whole-genome KSHV diversities, global gene regulatory network profiling for intricate transcriptome analyses, and surveying of epigenetic marks (DNA methylation, modified histones, and chromatin remodelers) during de novo, latent, and productive KSHV infections.
Collapse
Affiliation(s)
- Roxanne Strahan
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N, Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|
16
|
Conrad RJ, Ott M. Therapeutics Targeting Protein Acetylation Perturb Latency of Human Viruses. ACS Chem Biol 2016; 11:669-80. [PMID: 26845514 DOI: 10.1021/acschembio.5b00999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Persistent viral infections are widespread and represent significant public health burdens. Some viruses endure in a latent state by co-opting the host epigenetic machinery to manipulate viral gene expression. Small molecules targeting epigenetic pathways are now in the clinic for certain cancers and are considered as potential treatment strategies to reverse latency in HIV-infected individuals. In this review, we discuss how drugs interfering with one epigenetic pathway, protein acetylation, perturb latency of three families of pathogenic human viruses-retroviruses, herpesviruses, and papillomaviruses.
Collapse
Affiliation(s)
- Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- Graduate
Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California 94158, United States
- Department
of Medicine, University of California, San Francisco, California 94158, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- Graduate
Program in Pharmaceutical Sciences and Pharmacogenomics, University of California, San Francisco, California 94158, United States
- Department
of Medicine, University of California, San Francisco, California 94158, United States
| |
Collapse
|
17
|
Suppression of lytic replication of Kaposi’s sarcoma-associated herpesvirus by autophagy during initial infection in NIH 3T3 fibroblasts. Arch Virol 2015; 161:595-604. [DOI: 10.1007/s00705-015-2698-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
|
18
|
Abstract
DNA tumor viruses including members of the polyomavirus, adenovirus, papillomavirus, and herpes virus families are presently the subject of intense interest with respect to the role that epigenetics plays in control of the virus life cycle and the transformation of a normal cell to a cancer cell. To date, these studies have primarily focused on the role of histone modification, nucleosome location, and DNA methylation in regulating the biological consequences of infection. Using a wide variety of strategies and techniques ranging from simple ChIP to ChIP-chip and ChIP-seq to identify histone modifications, nuclease digestion to genome wide next generation sequencing to identify nucleosome location, and bisulfite treatment to MeDIP to identify DNA methylation sites, the epigenetic regulation of these viruses is slowly becoming better understood. While the viruses may differ in significant ways from each other and cellular chromatin, the role of epigenetics appears to be relatively similar. Within the viral genome nucleosomes are organized for the expression of appropriate genes with relevant histone modifications particularly histone acetylation. DNA methylation occurs as part of the typical gene silencing during latent infection by herpesviruses. In the simple tumor viruses like the polyomaviruses, adenoviruses, and papillomaviruses, transformation of the cell occurs via integration of the virus genome such that the virus's normal regulation is disrupted. This results in the unregulated expression of critical viral genes capable of redirecting cellular gene expression. The redirected cellular expression is a consequence of either indirect epigenetic regulation where cellular signaling or transcriptional dysregulation occurs or direct epigenetic regulation where epigenetic cofactors such as histone deacetylases are targeted. In the more complex herpersviruses transformation is a consequence of the expression of the viral latency proteins and RNAs which again can have either a direct or indirect effect on epigenetic regulation of cellular expression. Nevertheless, many questions still remain with respect to the specific mechanisms underlying epigenetic regulation of the viruses and transformation.
Collapse
|
19
|
Wagenknecht N, Reuter N, Scherer M, Reichel A, Müller R, Stamminger T. Contribution of the Major ND10 Proteins PML, hDaxx and Sp100 to the Regulation of Human Cytomegalovirus Latency and Lytic Replication in the Monocytic Cell Line THP-1. Viruses 2015; 7:2884-907. [PMID: 26057166 PMCID: PMC4488718 DOI: 10.3390/v7062751] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/01/2015] [Indexed: 01/16/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies, also termed nuclear domain 10 (ND10), have emerged as nuclear protein accumulations mediating an intrinsic cellular defense against viral infections via chromatin-based mechanisms, however, their contribution to the control of herpesviral latency is still controversial. In this study, we utilized the monocytic cell line THP-1 as an in vitro latency model for human cytomegalovirus infection (HCMV). Characterization of THP-1 cells by immunofluorescence andWestern blot analysis confirmed the expression of all major ND10 components. THP-1 cells with a stable, individual knockdown of PML, hDaxx or Sp100 were generated. Importantly, depletion of the major ND10 proteins did not prevent the terminal cellular differentiation of THP-1 monocytes. After construction of a recombinant, endotheliotropic human cytomegalovirus expressing IE2-EYFP, we investigated whether the depletion of ND10 proteins affects the onset of viral IE gene expression. While after infection of differentiated, THP-1-derived macrophages as well as during differentiation-induced reactivation from latency an increase in the number of IE-expressing cells was readily detectable in the absence of the major ND10 proteins, no effect was observed in non-differentiated monocytes. We conclude that PML, hDaxx and Sp100 primarily act as cellular restriction factors during lytic HCMV replication and during the dynamic process of reactivation but do not serve as key determinants for the establishment of HCMV latency.
Collapse
Affiliation(s)
- Nadine Wagenknecht
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Nina Reuter
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Myriam Scherer
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Anna Reichel
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Regina Müller
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | - Thomas Stamminger
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| |
Collapse
|
20
|
Uppal T, Jha HC, Verma SC, Robertson ES. Chromatinization of the KSHV Genome During the KSHV Life Cycle. Cancers (Basel) 2015; 7:112-42. [PMID: 25594667 PMCID: PMC4381254 DOI: 10.3390/cancers7010112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.
Collapse
Affiliation(s)
- Timsy Uppal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Hem C Jha
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Abstract
EBV latent infection is characterized by a highly restricted pattern of viral gene expression. EBV can establish latent infections in multiple different tissue types with remarkable variation and plasticity in viral transcription and replication. During latency, the viral genome persists as a multi-copy episome, a non-integrated-closed circular DNA with nucleosome structure similar to cellular chromosomes. Chromatin assembly and histone modifications contribute to the regulation of viral gene expression, DNA replication, and episome persistence during latency. This review focuses on how EBV latency is regulated by chromatin and its associated processes.
Collapse
|
22
|
Hau PM, Deng W, Jia L, Yang J, Tsurumi T, Chiang AKS, Huen MSY, Tsao SW. Role of ATM in the formation of the replication compartment during lytic replication of Epstein-Barr virus in nasopharyngeal epithelial cells. J Virol 2015; 89:652-68. [PMID: 25355892 PMCID: PMC4301132 DOI: 10.1128/jvi.01437-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/10/2014] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV), a type of oncogenic herpesvirus, is associated with human malignancies. Previous studies have shown that lytic reactivation of EBV in latently infected cells induces an ATM-dependent DNA damage response (DDR). The involvement of ATM activation has been implicated in inducing viral lytic gene transcription to promote lytic reactivation. Its contribution to the formation of a replication compartment during lytic reactivation of EBV remains poorly defined. In this study, the role of ATM in viral DNA replication was investigated in EBV-infected nasopharyngeal epithelial cells. We observed that induction of lytic infection of EBV triggers ATM activation and localization of DDR proteins at the viral replication compartments. Suppression of ATM activity using a small interfering RNA (siRNA) approach or a specific chemical inhibitor profoundly suppressed replication of EBV DNA and production of infectious virions in EBV-infected cells induced to undergo lytic reactivation. We further showed that phosphorylation of Sp1 at the serine-101 residue is essential in promoting the accretion of EBV replication proteins at the replication compartment, which is crucial for replication of viral DNA. Knockdown of Sp1 expression by siRNA effectively suppressed the replication of viral DNA and localization of EBV replication proteins to the replication compartments. Our study supports an important role of ATM activation in lytic reactivation of EBV in epithelial cells, and phosphorylation of Sp1 is an essential process downstream of ATM activation involved in the formation of viral replication compartments. Our study revealed an essential role of the ATM-dependent DDR pathway in lytic reactivation of EBV, suggesting a potential antiviral replication strategy using specific DDR inhibitors. IMPORTANCE Epstein-Barr virus (EBV) is closely associated with human malignancies, including undifferentiated nasopharyngeal carcinoma (NPC), which has a high prevalence in southern China. EBV can establish either latent or lytic infection depending on the cellular context of infected host cells. Recent studies have highlighted the importance of the DNA damage response (DDR), a surveillance mechanism that evolves to maintain genome integrity, in regulating lytic EBV replication. However, the underlying molecular events are largely undefined. ATM is consistently activated in EBV-infected epithelial cells when they are induced to undergo lytic reactivation. Suppression of ATM inhibits replication of viral DNA. Furthermore, we observed that phosphorylation of Sp1 at the serine-101 residue, a downstream event of ATM activation, plays an essential role in the formation of viral replication compartments for replication of virus DNA. Our study provides new insights into the mechanism through which EBV utilizes the host cell machinery to promote replication of viral DNA upon lytic reactivation.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Wen Deng
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Lin Jia
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Jie Yang
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Tatsuya Tsurumi
- Division of Virology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Alan Kwok Shing Chiang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Michael Shing-Yan Huen
- Genome Stability Research Laboratory, Department of Anatomy and Centre for Cancer Research, The University of Hong Kong, Hong Kong SAR
| | - Sai Wah Tsao
- Department of Anatomy and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
23
|
Hu J, Yang Y, Turner PC, Jain V, McIntyre LM, Renne R. LANA binds to multiple active viral and cellular promoters and associates with the H3K4methyltransferase hSET1 complex. PLoS Pathog 2014; 10:e1004240. [PMID: 25033463 PMCID: PMC4102568 DOI: 10.1371/journal.ppat.1004240] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/27/2014] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus associated with KS and two lymphoproliferative diseases. Recent studies characterized epigenetic modification of KSHV episomes during latency and determined that latency-associated genes are associated with H3K4me3 while most lytic genes are associated with the silencing mark H3K27me3. Since the latency-associated nuclear antigen (LANA) (i) is expressed very early after de novo infection, (ii) interacts with transcriptional regulators and chromatin remodelers, and (iii) regulates the LANA and RTA promoters, we hypothesized that LANA may contribute to the establishment of latency through epigenetic control. We performed a detailed ChIP-seq analysis in cells of lymphoid and endothelial origin and compared H3K4me3, H3K27me3, polII, and LANA occupancy. On viral episomes LANA binding was detected at numerous lytic and latent promoters, which were transactivated by LANA using reporter assays. LANA binding was highly enriched at H3K4me3 peaks and this co-occupancy was also detected on many host gene promoters. Bioinformatic analysis of enriched LANA binding sites in combination with biochemical binding studies revealed three distinct binding patterns. A small subset of LANA binding sites showed sequence homology to the characterized LBS1/2 sequence in the viral terminal repeat. A large number of sites contained a novel LANA binding motif (TCCAT)3 which was confirmed by gel shift analysis. Third, some viral and cellular promoters did not contain LANA binding sites and are likely enriched through protein/protein interaction. LANA was associated with H3K4me3 marks and in PEL cells 86% of all LANA bound promoters were transcriptionally active, leading to the hypothesis that LANA interacts with the machinery that methylates H3K4. Co-immunoprecipitation demonstrated LANA association with endogenous hSET1 complexes in both lymphoid and endothelial cells suggesting that LANA may contribute to the epigenetic profile of KSHV episomes. KSHV is a DNA tumor virus which is associated with Kaposi's sarcoma and some lymphoproliferative diseases. During latent infection, the viral genome persists as circular extrachromosomal DNA in the nucleus and expresses a very limited number of viral proteins, including LANA, a multi-functional protein. KSHV viral episomes, like host genomic DNA, are subject to chromatin formation and histone modifications which contribute to tightly controlled gene expression during latency. We determined where LANA binds on the KSHV and human genomes, and mapped activating and repressing histone marks and RNA polymerase II binding. We found that LANA bound near transcription start sites, and binding correlated with the transcription active mark H3K4me3, but not silencing mark H3K27me3. Binding sites for transcription factors including znf143, CTCF, and Stat1 are enriched at regions where LANA is bound. We identified some LANA binding sites near human gene promoters that resembled KSHV sequences known to bind LANA. We also found a novel motif that occurs frequently in the human genome and that binds LANA directly despite being different from known LANA-binding sequences. Furthermore, we demonstrate that LANA associates with the H3K4 methyltransferase hSET1 which creates activating histone marks.
Collapse
Affiliation(s)
- Jianhong Hu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Yajie Yang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Peter C. Turner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lauren M. McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
Chen HS, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, Tempera I. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site. J Virol 2014; 88:1703-13. [PMID: 24257606 PMCID: PMC3911611 DOI: 10.1128/jvi.02209-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/12/2013] [Indexed: 01/31/2023] Open
Abstract
The chromatin regulatory factors CTCF and cohesin have been implicated in the coordinated control of multiple gene loci in Epstein-Barr virus (EBV) latency. We have found that CTCF and cohesin are highly enriched at the convergent and partially overlapping transcripts for the LMP1 and LMP2A genes, but it is not yet known how CTCF and cohesin may coordinately regulate these transcripts. We now show that genetic disruption of this CTCF binding site (EBVΔCTCF166) leads to a deregulation of LMP1, LMP2A, and LMP2B transcription in EBV-immortalized B lymphocytes. EBVΔCTCF166 virus-immortalized primary B lymphocytes showed a decrease in LMP1 and LMP2A mRNA and a corresponding increase in LMP2B mRNA. The reduction of LMP1 and LMP2A correlated with a loss of euchromatic histone modification H3K9ac and a corresponding increase in heterochromatic histone modification H3K9me3 at the LMP2A promoter region in EBVΔCTCF166. Chromosome conformation capture (3C) revealed that DNA loop formation with the origin of plasmid replication (OriP) enhancer was eliminated in EBVΔCTCF166. We also observed that the EBV episome copy number was elevated in EBVΔCTCF166 and that this was not due to increased lytic cycle activity. These findings suggest that a single CTCF binding site controls LMP2A and LMP1 promoter selection, chromatin boundary function, DNA loop formation, and episome copy number control during EBV latency.
Collapse
Affiliation(s)
| | - Kayla A. Martin
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Fang Lu
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Lena N. Lupey
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | - Italo Tempera
- The Fels Institute, Department of Microbiology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
25
|
Tempera I, Lieberman PM. Epigenetic regulation of EBV persistence and oncogenesis. Semin Cancer Biol 2014; 26:22-9. [PMID: 24468737 DOI: 10.1016/j.semcancer.2014.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 12/29/2022]
Abstract
Epigenetic mechanisms play a fundamental role in generating diverse and heritable patterns of viral and cellular gene expression. Epstein-Barr virus (EBV) can adopt a variety of gene expression programs that are necessary for long-term viral persistence and latency in multiple host-cell types and conditions. The latent viral genomes assemble into chromatin structures with different histone and DNA modifications patterns that control viral gene expression. Variations in nucleosome organization and chromatin conformations can also influence gene expression by coordinating physical interactions between different regulatory elements. The viral-encoded and host-cell factors that control these epigenetic features are beginning to be understood at the genome-wide level. These epigenetic regulators can also influence viral pathogenesis by expanding tissue tropism, evading immune detection, and driving host-cell carcinogenesis. Here, we review some of the recent findings and perspectives on how the EBV epigenome plays a central role in viral latency and viral-associated carcinogenesis.
Collapse
Affiliation(s)
- Italo Tempera
- The Fels Institute, Department of Microbiology and Immunology, Temple School of Medicine, Philadelphia, PA 19140, United States.
| | | |
Collapse
|
26
|
CTCF and Rad21 act as host cell restriction factors for Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication by modulating viral gene transcription. PLoS Pathog 2014; 10:e1003880. [PMID: 24415941 PMCID: PMC3887114 DOI: 10.1371/journal.ppat.1003880] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/26/2013] [Indexed: 11/19/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human herpesvirus that causes Kaposi's sarcoma and is associated with the development of lymphoproliferative diseases. KSHV reactivation from latency and virion production is dependent on efficient transcription of over eighty lytic cycle genes and viral DNA replication. CTCF and cohesin, cellular proteins that cooperatively regulate gene expression and mediate long-range DNA interactions, have been shown to bind at specific sites in herpesvirus genomes. CTCF and cohesin regulate KSHV gene expression during latency and may also control lytic reactivation, although their role in lytic gene expression remains incompletely characterized. Here, we analyze the dynamic changes in CTCF and cohesin binding that occur during the process of KSHV viral reactivation and virion production by high resolution chromatin immunoprecipitation and deep sequencing (ChIP-Seq) and show that both proteins dissociate from viral genomes in kinetically and spatially distinct patterns. By utilizing siRNAs to specifically deplete CTCF and Rad21, a cohesin component, we demonstrate that both proteins are potent restriction factors for KSHV replication, with cohesin knockdown leading to hundred-fold increases in viral yield. High-throughput RNA sequencing was used to characterize the transcriptional effects of CTCF and cohesin depletion, and demonstrated that both proteins have complex and global effects on KSHV lytic transcription. Specifically, both proteins act as positive factors for viral transcription initially but subsequently inhibit KSHV lytic transcription, such that their net effect is to limit KSHV RNA accumulation. Cohesin is a more potent inhibitor of KSHV transcription than CTCF but both proteins are also required for efficient transcription of a subset of KSHV genes. These data reveal novel effects of CTCF and cohesin on transcription from a relatively small genome that resemble their effects on the cellular genome by acting as gene-specific activators of some promoters, but differ in acting as global negative regulators of transcription.
Collapse
|
27
|
Sinclair JH, Reeves MB. Human cytomegalovirus manipulation of latently infected cells. Viruses 2013; 5:2803-24. [PMID: 24284875 PMCID: PMC3856416 DOI: 10.3390/v5112803] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/28/2022] Open
Abstract
Primary infection with human cytomegalovirus (HCMV) results in the establishment of a lifelong infection of the host which is aided by the ability of HCMV to undergo a latent infection. One site of HCMV latency in vivo is in haematopoietic progenitor cells, resident in the bone marrow, with genome carriage and reactivation being restricted to the cells of the myeloid lineage. Until recently, HCMV latency has been considered to be relatively quiescent with the virus being maintained essentially as a “silent partner” until conditions are met that trigger reactivation. However, advances in techniques to study global changes in gene expression have begun to show that HCMV latency is a highly active process which involves expression of specific latency-associated viral gene products which orchestrate major changes in the latently infected cell. These changes are argued to help maintain latent infection and to modulate the cellular environment to the benefit of latent virus. In this review, we will discuss these new findings and how they impact not only on our understanding of the biology of HCMV latency but also how they could provide tantalising glimpses into mechanisms that could become targets for the clearance of latent HCMV.
Collapse
Affiliation(s)
- John H. Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0QQ, UK; E-Mail:
| | - Matthew B. Reeves
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-(0)207-794-0500 (ext. 33109)
| |
Collapse
|
28
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus which establishes latent infection in endothelial and B cells, as well as in primary effusion lymphoma (PEL). During latency, the viral genome exists as a circular DNA minichromosome (episome) and is packaged into chromatin analogous to human chromosomes. Only a small subset of promoters, those which drive latent RNAs, are active in latent episomes. In general, nucleosome depletion ("open chromatin") is a hallmark of eukaryotic regulatory elements such as promoters and transcriptional enhancers or insulators. We applied formaldehyde-assisted isolation of regulatory elements (FAIRE) followed by next-generation sequencing to identify regulatory elements in the KSHV genome and integrated these data with previously identified locations of histone modifications, RNA polymerase II occupancy, and CTCF binding sites. We found that (i) regions of open chromatin were not restricted to the transcriptionally defined latent loci; (ii) open chromatin was adjacent to regions harboring activating histone modifications, even at transcriptionally inactive loci; and (iii) CTCF binding sites fell within regions of open chromatin with few exceptions, including the constitutive LANA promoter and the vIL6 promoter. FAIRE-identified nucleosome depletion was similar among B and endothelial cell lineages, suggesting a common viral genome architecture in all forms of latency.
Collapse
|
29
|
Bronkhorst AW, Miesen P, van Rij RP. Small RNAs tackle large viruses: RNA interference-based antiviral defense against DNA viruses in insects. Fly (Austin) 2013; 7:216-23. [PMID: 23974177 DOI: 10.4161/fly.25708] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The antiviral RNA interference (RNAi) pathway processes viral double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNA) that guide the recognition and cleavage of complementary viral target RNAs. In RNA virus infections, viral replication intermediates, dsRNA genomes or viral structured RNAs have been implicated as Dicer-2 substrates. In a recent publication, we demonstrated that a double-stranded DNA virus, Invertebrate iridescent virus 6, is a target of the Drosophila RNAi machinery, and we proposed that overlapping converging transcripts base pair to form the dsRNA substrates for vsiRNA biogenesis. Here, we discuss the role of RNAi in antiviral defense to DNA viruses in Drosophila and other invertebrate model systems.
Collapse
Affiliation(s)
- Alfred W Bronkhorst
- Department of Medical Microbiology; Radboud University Nijmegen Medical Centre; Nijmegen Centre for Molecular Life Sciences; Nijmegen Institute for Infection, Inflammation and Immunity; Nijmegen, The Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology; Radboud University Nijmegen Medical Centre; Nijmegen Centre for Molecular Life Sciences; Nijmegen Institute for Infection, Inflammation and Immunity; Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology; Radboud University Nijmegen Medical Centre; Nijmegen Centre for Molecular Life Sciences; Nijmegen Institute for Infection, Inflammation and Immunity; Nijmegen, The Netherlands
| |
Collapse
|
30
|
Liang Y, Vogel JL, Arbuckle JH, Rai G, Jadhav A, Simeonov A, Maloney DJ, Kristie TM. Targeting the JMJD2 histone demethylases to epigenetically control herpesvirus infection and reactivation from latency. Sci Transl Med 2013; 5:167ra5. [PMID: 23303604 DOI: 10.1126/scitranslmed.3005145] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chromatin and the chromatin modulation machinery not only provide a regulatory matrix for enabling cellular functions such as DNA replication and transcription but also regulate the infectious cycles of many DNA viruses. Elucidation of the components and mechanisms involved in this regulation is providing targets for the development of new antiviral therapies. Initiation of infection by herpes simplex virus (HSV) requires the activity of several cellular chromatin modification enzymes including the histone demethylases LSD1 and the family of JMJD2 proteins that promote transcriptional activation of the initial set of viral genes. Depletion of the JMJD2 members or inhibition of their activity with a new drug results in repression of expression of viral immediate early genes and abrogation of infection. This inhibitor also represses the reactivation of HSV from the latent state in sensory neurons. Like HSV, the β-herpesvirus human cytomegalovirus also requires the activity of LSD1 and the JMJD2s to initiate infection, thus demonstrating the potential of this chromatin-based inhibitor to be useful against a variety of different viruses.
Collapse
Affiliation(s)
- Yu Liang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cis and trans acting factors involved in human cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) cells. PLoS Pathog 2013; 9:e1003366. [PMID: 23717203 PMCID: PMC3662700 DOI: 10.1371/journal.ppat.1003366] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/02/2013] [Indexed: 12/15/2022] Open
Abstract
The parameters involved in human cytomegalovirus (HCMV) latent infection in CD14 (+) and CD34 (+) cells remain poorly identified. Using next generation sequencing we deduced the transcriptome of HCMV latently infected CD14 (+) and CD34 (+) cells in experimental as well as natural latency settings. The gene expression profile from natural infection in HCMV seropositive donors closely matched experimental latency models, and included two long non-coding RNAs (lncRNAs), RNA4.9 and RNA2.7 as well as the mRNAs encoding replication factors UL84 and UL44. Chromatin immunoprecipitation assays on experimentally infected CD14 (+) monocytes followed by next generation sequencing (ChIP-Seq) were employed to demonstrate both UL84 and UL44 proteins interacted with the latent viral genome and overlapped at 5 of the 8 loci identified. RNA4.9 interacts with components of the polycomb repression complex (PRC) as well as with the MIE promoter region where the enrichment of the repressive H3K27me3 mark suggests that this lncRNA represses transcription. Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE), which identifies nucleosome-depleted viral DNA, was used to confirm that latent mRNAs were associated with actively transcribed, FAIRE analysis also showed that the terminal repeat (TR) region of the latent viral genome is depleted of nucleosomes suggesting that this region may contain an element mediating viral genome maintenance. ChIP assays show that the viral TR region interacts with factors associated with the pre replication complex and a plasmid subclone containing the HCMV TR element persisted in latently infected CD14 (+) monocytes, strongly suggesting that the TR region mediates viral chromosome maintenance. Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus where infection is usually subclinical. HCMV initial infection is followed by the establishment of latency in CD34 (+) myeloid cells and CD14 (+) monocytes. Primary infection or reactivation from latency can be associated with significant morbidity and mortality can occur in immune compromised patients. Latency is marked by the persistence of the viral genome, lack of production of infectious virus and the expression of only a few previously recognized latency associated transcripts. Despite the significant interest in HCMV latent infection, little is known regarding the mechanism involved in establishment or maintenance of the viral chromosome. We have now identified the transacting factors present in latently infected CD14 (+) monocytes and CD34 (+) progenitor cells as well as identification of a region of the HCMV genome, the terminal repeat locus that mediates viral DNA maintenance. This is a major step toward understanding the mechanism of HCMV latent infection.
Collapse
|
32
|
Epigenetic control of cytomegalovirus latency and reactivation. Viruses 2013; 5:1325-45. [PMID: 23698401 PMCID: PMC3712310 DOI: 10.3390/v5051325] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/19/2013] [Accepted: 05/07/2013] [Indexed: 12/17/2022] Open
Abstract
Cytomegalovirus (CMV) gene expression is repressed in latency due to heterochromatinization of viral genomes. In murine CMV (MCMV) latently infected mice, viral genomes are bound to histones with heterochromatic modifications, to enzymes that mediate these modifications, and to adaptor proteins that may recruit co-repressor complexes. Kinetic analyses of repressor binding show that these repressors are recruited at the earliest time of infection, suggesting that latency may be the default state. Kidney transplantation leads to epigenetic reprogramming of latent viral chromatin and reactivation of immediate early gene expression. Inflammatory signaling pathways, which activate transcription factors that regulate the major immediate early promoter (MIEP), likely mediate the switch in viral chromatin.
Collapse
|
33
|
Queen KJ, Shi M, Zhang F, Cvek U, Scott RS. Epstein-Barr virus-induced epigenetic alterations following transient infection. Int J Cancer 2013; 132:2076-86. [PMID: 23047626 PMCID: PMC3578144 DOI: 10.1002/ijc.27893] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/14/2012] [Indexed: 12/29/2022]
Abstract
Epstein-Barr virus (EBV) is a known tumor virus associated with an increasing array of malignancies; however, the association of the virus with certain malignancies is often erratic. To determine EBV's contributions to tumorigenesis in a setting of incomplete association, a transient model of infection was established where a clonal CCL185 carcinoma cell line infected with recombinant EBV was allowed to lose viral genomes by withdrawal of selection pressure. Global gene expression comparing EBV-negative, transiently infected clones to uninfected controls identified expression changes in more than 1,000 genes. Among downregulated genes, several genes known to be deoxyribonucleic acid (DNA) methylated in cancer were identified including E-cadherin and PYCARD. A cadherin switch, increased motility and enhanced cellular invasiveness present in EBV-positive cells were retained after viral loss, indicating an epigenetic effect. Repression of PYCARD expression was a result of increased promoter CpG methylation, whereas loss of E-cadherin expression after transient EBV infection did not correlate with increased DNA methylation of the E-cadherin promoter. Rather, repression of E-cadherin was consistent with the formation of a repressive chromatin state. Decreased histone 3 or 4 acetylation at the promoter and 5' end of the E-cadherin gene was observed in an EBV-negative, transiently infected clone relative to the uninfected controls. These results suggest that EBV can stably alter gene expression in a heritable fashion in formerly infected cells, whereas its own contribution to the oncogenic process is masked.
Collapse
Affiliation(s)
- Krista J. Queen
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Mingxia Shi
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Fangfang Zhang
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
| | - Urska Cvek
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA
- Computer Science Department, Louisiana State University, Shreveport, LA
| | - Rona S. Scott
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA
| |
Collapse
|
34
|
A novel selective LSD1/KDM1A inhibitor epigenetically blocks herpes simplex virus lytic replication and reactivation from latency. mBio 2013; 4:e00558-12. [PMID: 23386436 PMCID: PMC3565832 DOI: 10.1128/mbio.00558-12] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Cellular processes requiring access to the DNA genome are regulated by an overlay of epigenetic modifications, including histone modification and chromatin remodeling. Similar to the cellular host, many nuclear DNA viruses that depend upon the host cell’s transcriptional machinery are also subject to the regulatory impact of chromatin assembly and modification. Infection of cells with alphaherpesviruses (herpes simplex virus [HSV] and varicella-zoster virus [VZV]) results in the deposition of nucleosomes bearing repressive histone H3K9 methylation on the viral genome. This repressive state is modulated by the recruitment of a cellular coactivator complex containing the histone H3K9 demethylase LSD1 to the viral immediate-early (IE) gene promoters. Inhibition of the activity of this enzyme results in increased repressive chromatin assembly and suppression of viral gene expression during lytic infection as well as reactivation from latency in a mouse ganglion explant model. However, available small-molecule LSD1 inhibitors are not originally designed to inhibit LSD1, but rather monoamine oxidases (MAO) in general. Thus, their specificity for and potency to LSD1 is low. In this study, a novel specific LSD1 inhibitor was identified that potently repressed HSV IE gene expression, genome replication, and reactivation from latency. Importantly, the inhibitor also suppressed primary infection of HSV in vivo in a mouse model. Based on common control of a number of DNA viruses by epigenetic modulation, it was also demonstrated that this LSD1 inhibitor blocks initial gene expression of the human cytomegalovirus and adenovirus type 5. IMPORTANCE Epigenetic mechanisms, including histone modification and chromatin remodeling, play important regulatory roles in all cellular processes requiring access to the genome. These mechanisms are often altered in disease conditions, including various cancers, and thus represent novel targets for drugs. Similarly, many viral pathogens are regulated by an epigenetic overlay that determines the outcome of infection. Therefore, these epigenetic targets also represent novel antiviral targets. Here, a novel inhibitor was identified with high specificity and potency for the histone demethylase LSD1, a critical component of the herpes simplex virus (HSV) gene expression paradigm. This inhibitor was demonstrated to have potent antiviral potential in both cultured cells and animal models. Thus, in addition to clearly demonstrating the critical role of LSD1 in regulation of HSV infection, as well as other DNA viruses, the data extends the therapeutic potential of chromatin modulation inhibitors from the focused field of oncology to the arena of antiviral agents. Epigenetic mechanisms, including histone modification and chromatin remodeling, play important regulatory roles in all cellular processes requiring access to the genome. These mechanisms are often altered in disease conditions, including various cancers, and thus represent novel targets for drugs. Similarly, many viral pathogens are regulated by an epigenetic overlay that determines the outcome of infection. Therefore, these epigenetic targets also represent novel antiviral targets. Here, a novel inhibitor was identified with high specificity and potency for the histone demethylase LSD1, a critical component of the herpes simplex virus (HSV) gene expression paradigm. This inhibitor was demonstrated to have potent antiviral potential in both cultured cells and animal models. Thus, in addition to clearly demonstrating the critical role of LSD1 in regulation of HSV infection, as well as other DNA viruses, the data extends the therapeutic potential of chromatin modulation inhibitors from the focused field of oncology to the arena of antiviral agents.
Collapse
|
35
|
Darst RP, Haecker I, Pardo CE, Renne R, Kladde MP. Epigenetic diversity of Kaposi's sarcoma-associated herpesvirus. Nucleic Acids Res 2013; 41:2993-3009. [PMID: 23361465 PMCID: PMC3597696 DOI: 10.1093/nar/gkt033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spontaneous lytic reactivation of Kaposi’s sarcoma–associated herpesvirus (KSHV) occurs at a low rate in latently infected cells in disease and culture. This suggests imperfect epigenetic maintenance of viral transcription programs, perhaps due to variability in chromatin structure at specific loci across the population of KSHV episomal genomes. To characterize this locus-specific chromatin structural diversity, we used MAPit single-molecule footprinting, which simultaneously maps endogenous CG methylation and accessibility to M.CviPI at GC sites. Diverse chromatin structures were detected at the LANA, RTA and vIL6 promoters. At each locus, chromatin ranged from fully closed to fully open across the population. This diversity has not previously been reported in a virus. Phorbol ester and RTA transgene induction were used to identify chromatin conformations associated with reactivation of lytic transcription, which only a fraction of episomes had. Moreover, certain chromatin conformations correlated with CG methylation patterns at the RTA and vIL6 promoters. This indicated that some of the diverse chromatin conformations at these loci were epigenetically distinct. Finally, by comparing chromatin structures from a cell line infected with constitutively latent virus, we identified products of lytic replication. Our findings show that epigenetic drift can restrict viral propagation by chromatin compaction at latent and lytic promoters.
Collapse
Affiliation(s)
- Russell P Darst
- Department of Biochemistry and Molecular Biology, 2033 Mowry Road, Box 103633, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Epstein-Barr virus (EBV) is a paradigm for human tumor viruses: it is the first virus recognized to cause cancer in people; it causes both lymphomas and carcinomas; yet these tumors arise infrequently given that most people in the world are infected with the virus. EBV is maintained extrachromosomally in infected normal and tumor cells. Eighty-four percent of these viral plasmids replicate each S phase, are licensed, require a single viral protein for their synthesis, and can use two functionally distinct origins of DNA replication, oriP, and Raji ori. Eighty-eight percent of newly synthesized plasmids are segregated faithfully to the daughter cells. Infectious viral particles are not synthesized under these conditions of latent infection. This plasmid replication is consistent with survival of EBV's host cells. Rare cells in an infected population either spontaneously or following exogenous induction support EBV's lytic cycle, which is lethal for the cell. In this case, the viral DNA replicates 100-fold or more, uses a third kind of viral origin of DNA replication, oriLyt, and many viral proteins. Here we shall describe the three modes of EBV's replication as a function of the viral origins used and the viral and cellular proteins that mediate the DNA synthesis from these origins focusing, where practical, on recent advances in our understanding.
Collapse
Affiliation(s)
- Wolfgang Hammerschmidt
- Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Marchioninistr. 25, D-81377 Munich, Germany
| | | |
Collapse
|
37
|
CTCF occupation of the herpes simplex virus 1 genome is disrupted at early times postreactivation in a transcription-dependent manner. J Virol 2012; 86:12741-59. [PMID: 22973047 DOI: 10.1128/jvi.01655-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In herpes simplex virus 1 (HSV-1), binding clusters enriched in CTCF during latency have been previously identified. We hypothesized that CTCF binding to CTCF clusters in HSV-1 would be disrupted in a reactivation event. To investigate, CTCF occupation of three CTCF binding clusters in HSV-1 was analyzed following sodium butyrate (NaB)- and explant-induced reactivation in the mouse. Our data show that the CTCF domains positioned within the HSV-1 genome, specifically around the latency-associated transcript (LAT) and ICP0 and ICP4 regions of the genome, lose CTCF occupancy following the application of reactivation stimuli in wild-type virus. We also found that CTCF binding clusters upstream of the ICP0 and ICP4 promoters both function as classical insulators capable of acting as enhancer blockers of the LAT enhancer. Finally, our results suggest that CTCF occupation of domains in HSV-1 may be differentially regulated both during latency and at early times following reactivation by the presence of lytic transcripts and further implicate epigenetic regulation of HSV-1 as a critical component of the latency-reactivation transition.
Collapse
|
38
|
Wilson AC, Mohr I. A cultured affair: HSV latency and reactivation in neurons. Trends Microbiol 2012; 20:604-11. [PMID: 22963857 DOI: 10.1016/j.tim.2012.08.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
Abstract
After replicating in surface epithelia, herpes simplex virus type-1 (HSV-1) enters the axonal terminals of peripheral neurons. The viral genome translocates to the nucleus, where it establishes a specialized infection known as latency, re-emerging periodically to seed new infections. Studies using cultured neuron models that faithfully recapitulate the molecular hallmarks of latency and reactivation defined in live animal models have provided fresh insight into the control of latency and connections to neuronal physiology. With this comes a growing appreciation for how the life cycles of HSV-1 and other herpesviruses are governed by key host pathways controlling metabolic homeostasis and cell identity.
Collapse
Affiliation(s)
- Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
39
|
Chen HS, Wikramasinghe P, Showe L, Lieberman PM. Cohesins repress Kaposi's sarcoma-associated herpesvirus immediate early gene transcription during latency. J Virol 2012; 86:9454-64. [PMID: 22740398 PMCID: PMC3416178 DOI: 10.1128/jvi.00787-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/14/2012] [Indexed: 12/14/2022] Open
Abstract
Chromatin-organizing factors such as CTCF and cohesins have been implicated in the control of complex viral regulatory programs. We investigated the role of CTCF and cohesins in the control of the switch from latency to the lytic cycle for Kaposi's sarcoma-associated herpesvirus (KSHV). We found that cohesin subunits but not CTCF are required for the repression of KSHV immediate early gene transcription. Depletion of the cohesin subunits Rad21, SMC1, and SMC3 resulted in lytic cycle gene transcription and viral DNA replication. In contrast, depletion of CTCF failed to induce lytic transcription or DNA replication. Chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq) revealed that cohesins and CTCF bound to several sites within the immediate early control region for ORF50 and to more distal 5' sites that also regulate the divergently transcribed ORF45-ORF46-ORF47 gene cluster. Rad21 depletion led to a robust increase in ORF45, ORF46, ORF47, and ORF50 transcripts, with similar kinetics to that observed with chemical induction by sodium butyrate. During latency, the chromatin between the ORF45 and ORF50 transcription start sites was enriched in histone H3K4me3, with elevated H3K9ac at the ORF45 promoter and elevated H3K27me3 at the ORF50 promoter. A paused form of RNA polymerase II (Pol II) was loosely associated with the ORF45 promoter region during latency but was converted to an active elongating form upon reactivation induced by Rad21 depletion. Butyrate treatment caused a rapid dissociation of cohesins and loss of CTCF binding at the immediate early gene locus, suggesting that cohesins may be a direct target of butyrate-mediated lytic induction. Our findings implicate cohesins as a major repressor of KSHV lytic gene activation and show that they function coordinately with CTCF to regulate the switch between latent and lytic gene activity.
Collapse
|
40
|
Moriyama K, Yoshizawa-Sugata N, Obuse C, Tsurimoto T, Masai H. Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1. J Biol Chem 2012; 287:23977-94. [PMID: 22589552 DOI: 10.1074/jbc.m112.368456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Origin recognition complex (Orc) plays an essential role in directing assembly of prereplicative complex at selective sites on chromosomes. However, Orc from vertebrates is reported to bind to DNA in a sequence-nonspecific manner, and it is still unclear how it selects specific genomic loci and how Cdc6, another conserved AAA(+) factor known to interact with Orc, participates in this process. Replication from oriP, the latent origin of Epstein-Barr virus, provides an excellent model system for the study of initiation on the host chromosomes because it is known to depend on prereplicative complex factors, including Orc and Mcm. Here, we show that Orc is recruited selectively at the essential dyad symmetry element in nuclear extracts in a manner dependent on EBNA1, which specifically binds to dyad symmetry. With purified proteins, EBNA1 can recruit both Cdc6 and Orc independently on a DNA containing EBNA1 binding sites, and Cdc6 facilitates the Orc recruitment by EBNA1. Purified Cdc6 directly binds to EBNA1, whereas association of Orc with EBNA1 requires the presence of the oriP DNA. Nuclease protection assays suggest that Orc associates with DNA segments on both sides adjacent to the EBNA1 binding sites and that this process is stimulated by the presence of Cdc6. Thus, EBNA1 can direct localized assembly of Orc in a process that is facilitated by Cdc6. The possibility of similar modes of recruitment of Orc/Cdc6 at the human chromosomal origins will be discussed.
Collapse
Affiliation(s)
- Kenji Moriyama
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | | | | | | | | |
Collapse
|
41
|
Van Opdenbosch N, Favoreel H, Van de Walle GR. Histone modifications in herpesvirus infections. Biol Cell 2012; 104:139-64. [PMID: 22188068 DOI: 10.1111/boc.201100067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 12/02/2011] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, gene expression is not only regulated by transcription factors but also by several epigenetic mechanisms including post-translational modifications of histone proteins. There are numerous histone modifications described to date and methylation, acetylation, ubiquitination and phosphorylation are amongst the best studied. In parallel, certain viruses interact with the very same regulatory mechanisms, hereby manipulating the normal epigenetic landscape of the host cell, to fit their own replication needs. This review concentrates on herpesviruses specifically and how they interfere with the histone-modifying enzymes to regulate their replication cycles. Herpesviruses vary greatly with respect to the cell types they infect and the clinical diseases they cause, yet they share various common features including their capacity to encode viral proteins which affect and interfere with the normal functions of histone-modifying enzymes. Studying the epigenetic manipulation/dysregulation of herpesvirus-host interactions not only generates novel insights into the pathogenesis of these viruses but may also have important therapeutic implications.
Collapse
Affiliation(s)
- Nina Van Opdenbosch
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | | | | |
Collapse
|
42
|
Niller HH, Banati F, Ay E, Minarovits J. Epigenetic Changes in Virus-Associated Neoplasms. PATHO-EPIGENETICS OF DISEASE 2012:179-225. [DOI: 10.1007/978-1-4614-3345-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
43
|
The insulator protein CTCF binding sites in the orf73/LANA promoter region of herpesvirus saimiri are involved in conferring episomal stability in latently infected human T cells. J Virol 2011; 86:1862-73. [PMID: 22130528 DOI: 10.1128/jvi.06295-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Herpesviruses establish latency in suitable cells of the host organism after a primary lytic infection. Subgroup C strains of herpesvirus saimiri (HVS), a primate gamma-2 herpesvirus, are able to transform human and other primate T lymphocytes to stable growth in vitro. The viral genomes persist as nonintegrated, circular, and histone-associated episomes in the nuclei of those latently infected T cells. Epigenetic modifications of episomes are essential to restrict the transcription during latency to selected viral genes, such as the viral oncogenes stpC/tip and the orf73/LANA. In this study, we describe a genome-wide chromatin immunoprecipitation-on-chip (ChIP-on-chip) analysis to profile the occupancy of CTCF on the latent HVS genome. We then focused on two distinct, conserved CTCF binding sites (CBS) within the orf73/LANA promoter region. Analysis of recombinant viruses harboring deletions or mutations within the CBS indicated that the lytic replication of such viruses is not substantially influenced by CTCF. However, T cells latently infected with CBS mutants were impaired in their proliferation abilities and showed a significantly reduced episomal maintenance. We detected a reduced transcription of the orf73/LANA gene in the T cells, corresponding to the reduced viral genomes; this might contribute to the loss of HVS episomes, as LANA is central in the maintenance of viral episomes in the dividing T cell populations. These data demonstrate that the episomal stability of HVS genomes in latently infected human T cells is dependent on CTCF.
Collapse
|
44
|
Szpara ML, Tafuri YR, Parsons L, Shamim SR, Verstrepen KJ, Legendre M, Enquist LW. A wide extent of inter-strain diversity in virulent and vaccine strains of alphaherpesviruses. PLoS Pathog 2011; 7:e1002282. [PMID: 22022263 PMCID: PMC3192842 DOI: 10.1371/journal.ppat.1002282] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/10/2011] [Indexed: 12/17/2022] Open
Abstract
Alphaherpesviruses are widespread in the human population, and include herpes simplex virus 1 (HSV-1) and 2, and varicella zoster virus (VZV). These viral pathogens cause epithelial lesions, and then infect the nervous system to cause lifelong latency, reactivation, and spread. A related veterinary herpesvirus, pseudorabies (PRV), causes similar disease in livestock that result in significant economic losses. Vaccines developed for VZV and PRV serve as useful models for the development of an HSV-1 vaccine. We present full genome sequence comparisons of the PRV vaccine strain Bartha, and two virulent PRV isolates, Kaplan and Becker. These genome sequences were determined by high-throughput sequencing and assembly, and present new insights into the attenuation of a mammalian alphaherpesvirus vaccine strain. We find many previously unknown coding differences between PRV Bartha and the virulent strains, including changes to the fusion proteins gH and gB, and over forty other viral proteins. Inter-strain variation in PRV protein sequences is much closer to levels previously observed for HSV-1 than for the highly stable VZV proteome. Almost 20% of the PRV genome contains tandem short sequence repeats (SSRs), a class of nucleic acids motifs whose length-variation has been associated with changes in DNA binding site efficiency, transcriptional regulation, and protein interactions. We find SSRs throughout the herpesvirus family, and provide the first global characterization of SSRs in viruses, both within and between strains. We find SSR length variation between different isolates of PRV and HSV-1, which may provide a new mechanism for phenotypic variation between strains. Finally, we detected a small number of polymorphic bases within each plaque-purified PRV strain, and we characterize the effect of passage and plaque-purification on these polymorphisms. These data add to growing evidence that even plaque-purified stocks of stable DNA viruses exhibit limited sequence heterogeneity, which likely seeds future strain evolution. Alphaherpesviruses such as herpes simplex virus (HSV) are ubiquitous in the human population. HSV causes oral and genital lesions, and has co-morbidities in acquisition and spread of human immunodeficiency virus (HIV). The lack of a vaccine for HSV hinders medical progress for both of these infections. A related veterinary alphaherpesvirus, pseudorabies virus (PRV), has long served as a model for HSV vaccine development, because of their similar pathogenesis, neuronal spread, and infectious cycle. We present here the first full genome characterization of a live PRV vaccine strain, Bartha, and reveal a spectrum of unique mutations that are absent from two divergent wild-type PRV strains. These mutations can now be examined individually for their contribution to vaccine strain attenuation and for potential use in HSV vaccine development. These inter-strain comparisons also revealed an abundance of short repetitive elements in the PRV genome, a pattern which is repeated in other herpesvirus genomes and even the unrelated Mimivirus. We provide the first global characterization of repeats in viruses, comparing both their presence and their variation among different viral strains and species. Repetitive elements such as these have been shown to serve as hotspots of variation between individuals or strains of other organisms, generating adaptations or even disease states through changes in length of DNA-binding sites, protein folding motifs, and other structural elements. These data suggest for the first time that similar mechanisms could be widely distributed in viral biology as well.
Collapse
Affiliation(s)
- Moriah L. Szpara
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Yolanda R. Tafuri
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Lance Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - S. Rafi Shamim
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Kevin J. Verstrepen
- VIB lab for Systems Biology and CMPG Lab for Genetics and Genomics, KULeuven, Gaston Geenslaan 1, Leuven, Belgium
| | - Matthieu Legendre
- Structural & Genomic Information Laboratory (CNRS, UPR2589), Mediterranean Institute of Microbiology, Aix-Marseille Université, Marseille, France
| | - L. W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
45
|
Nevels M, Nitzsche A, Paulus C. How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin. Rev Med Virol 2011; 21:154-80. [PMID: 21538665 DOI: 10.1002/rmv.690] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpesvirus infections of humans can cause a broad variety of symptoms ranging from mild afflictions to life-threatening disease. During infection, the large double-stranded DNA genomes of all herpesviruses are transcribed, replicated and encapsidated in the host cell nucleus, where DNA is typically structured and manoeuvred through nucleosomes. Nucleosomes individually assemble DNA around core histone octamers to form 'beads-on-a-string' chromatin fibres. Herpesviruses have responded to the advantages and challenges of chromatin formation in biologically unique ways. Although herpesvirus DNA is devoid of histones within nucleocapsids, nuclear viral genomes most likely form irregularly arranged or unstable nucleosomes during productive infection, and regular nucleosomal arrays resembling host cell chromatin in latently infected cells. Besides variations in nucleosome density, herpesvirus chromatin 'bead strings' undergo dynamic changes in histone composition and modification during the different stages of productive replication, latent infection and reactivation from latency, raising the likely possibility that epigenetic processes may dictate, at least in part, the outcome of infection and ensuing pathogenesis. Here, we summarise and discuss several new and important aspects regarding the nucleosome-based mechanisms that regulate herpesvirus chromatin structure and function in infected cells. Special emphasis is given to processes of histone deposition, histone variant exchange and covalent histone modification in relation to the transcription from the viral genome during productive and latent infections by human cytomegalovirus and herpes simplex virus type 1. We also present an overview on emerging histone-directed antiviral strategies that may be developed into 'epigenetic therapies' to improve current prevention and treatment options targeting herpesvirus infection and disease.
Collapse
Affiliation(s)
- Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Germany.
| | | | | |
Collapse
|
46
|
Tempera I, Klichinsky M, Lieberman PM. EBV latency types adopt alternative chromatin conformations. PLoS Pathog 2011; 7:e1002180. [PMID: 21829357 PMCID: PMC3145795 DOI: 10.1371/journal.ppat.1002180] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 06/09/2011] [Indexed: 12/18/2022] Open
Abstract
Epstein-Barr Virus (EBV) can establish latent infections with distinct gene expression patterns referred to as latency types. These different latency types are epigenetically stable and correspond to different promoter utilization. Here we explore the three-dimensional conformations of the EBV genome in different latency types. We employed Chromosome Conformation Capture (3C) assay to investigate chromatin loop formation between the OriP enhancer and the promoters that determine type I (Qp) or type III (Cp) gene expression. We show that OriP is in close physical proximity to Qp in type I latency, and to Cp in type III latency. The cellular chromatin insulator and boundary factor CTCF was implicated in EBV chromatin loop formation. Combining 3C and ChIP assays we found that CTCF is physically associated with OriP-Qp loop formation in type I and OriP-Cp loop formation in type III latency. Mutations in the CTCF binding site located at Qp disrupt loop formation between Qp and OriP, and lead to the activation of Cp transcription. Mutation of the CTCF binding site at Cp, as well as siRNA depletion of CTCF eliminates both OriP-associated loops, indicating that CTCF plays an integral role in loop formation. These data indicate that epigenetically stable EBV latency types adopt distinct chromatin architectures that depend on CTCF and mediate alternative promoter targeting by the OriP enhancer. Epstein-Barr Virus (EBV) latent infection is associated with several human malignancies. The viral genes expressed during latent infection can vary depending on host cell or tumor type. The different gene expression programs, referred to as latency types, are determined by alternative viral promoter usage. In this work, we investigate how differential DNA loop formation regulates viral promoter selection in different latency types. We use chromatin conformation capture methods to demonstrate that the transcriptional enhancer at OriP forms a stable loop with one of two different promoters, depending on the latency type. In type I latency, OriP forms a loop with the active Q promoter (Qp). In type III latency, OriP forms a loop with the active C promoter (Cp). Loop formation was mediated, in part, by CTCF binding sites located within the loops. Mutation in the CTCF binding site located at Qp caused a loss of OriP-Qp loop formation, a loss of Qp transcription, and a reactivation of Cp transcription from an alternative loop formed with OriP-Cp. These findings indicate that OriP loop formation is an integral component of promoter selection, and that chromatin conformation may determine EBV latency type.
Collapse
Affiliation(s)
- Italo Tempera
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Michael Klichinsky
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
47
|
Penkert RR, Kalejta RF. Tegument protein control of latent herpesvirus establishment and animation. HERPESVIRIDAE 2011; 2:3. [PMID: 21429246 PMCID: PMC3063196 DOI: 10.1186/2042-4280-2-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/08/2011] [Indexed: 12/18/2022]
Abstract
Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated and postulated molecular mechanisms leading to the establishment of latency for representative members of each human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should be separated, both molecularly and theoretically, from reactivation.
Collapse
Affiliation(s)
- Rhiannon R Penkert
- Institute for Molecular Virology, McArdle Laboratory for Cancer Research, and Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| | | |
Collapse
|
48
|
Abstract
The life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV) consists of latent and lytic replication phases. During latent infection, only a limited number of KSHV genes are expressed. However, this phase of replication is essential for persistent infection, evasion of host immune response, and induction of KSHV-related malignancies. KSHV reactivation from latency produces a wide range of viral products and infectious virions. The resulting de novo infection and viral lytic products modulate diverse cellular pathways and stromal microenvironment, which promote the development of Kaposi's sarcoma (KS). The mechanisms controlling KSHV latency and reactivation are complex, involving both viral and host factors, and are modulated by diverse environmental factors. Here, we review the cellular and molecular basis of KSHV latency and reactivation with a focus on the most recent advancements in the field.
Collapse
|
49
|
Reeves MB. Chromatin-mediated regulation of cytomegalovirus gene expression. Virus Res 2010; 157:134-43. [PMID: 20875471 DOI: 10.1016/j.virusres.2010.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/17/2010] [Accepted: 09/17/2010] [Indexed: 02/03/2023]
Abstract
Following primary infection, whether Human cytomegalovirus (HCMV) enters either the latent or lytic lifecycle is dependent on the phenotype of the cell type infected. Multiple cell types are permissive for lytic infection with HCMV whereas, in contrast, well characterized sites of latency are restricted to a very specific population of CD34+ cells resident in the bone marrow and the immature myeloid cells they give rise to. It is becoming increasingly clear that one of the mechanisms that promote HCMV latency involves the recruitment of histone proteins to the major immediate early promoter (MIEP) which are subject to post-translational modifications that promote a transcriptionally inactive state. Integral to this, is the role of cellular transcriptional repressors that interact with histone modifying enzymes that promote and maintain this repressed state during latency. Crucially, the chromatin associated with the MIEP is dynamically regulated-myeloid cell differentiation triggers the acetylation of histones bound to the MIEP which is concomitant with the reactivation of IE gene expression and re-entry into lytic infection. Interestingly, this dynamic regulation of the MIEP by chromatin structure in latency extends not only into lytic infection but also for the regulation of multiple viral promoters in all phases of infection. HCMV lytic infection is characterised by a timely and co-ordinated pattern of gene expression that now has been shown to correlate with active post-translational modification of the histones associated with early and late promoters. These effects are mediated by the major IE products (IE72 and IE86) which physically and functionally interact with histone modifying enzymes resulting in the efficient activation of viral gene expression. Thus chromatin appears to play an important role in gene regulation in all phases of infection. Furthermore, these studies are highly suggestive that an intrinsic cellular anti-viral response to incoming viral genomes is to promote chromatinisation into a transcriptionally repressed state which the virus must overcome to establish a lytic infection. What is becoming evident is that chromatin structure is becoming as increasingly important for the regulation of viral gene expression as it is for cellular gene expression and thus understanding the mechanisms employed by HCMV to modulate chromatin function could have broader implications on our understanding of the control of gene expression in general.
Collapse
Affiliation(s)
- Matthew B Reeves
- Department of Medicine, University of Cambridge, Box 157, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
50
|
Mechelli R, Annibali V, Ristori G, Vittori D, Coarelli G, Salvetti M. Multiple sclerosis etiology: beyond genes and environment. Expert Rev Clin Immunol 2010; 6:481-90. [PMID: 20441432 DOI: 10.1586/eci.10.11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is a disorder of the CNS with inflammatory and neurodegenerative components. The etiology is unknown, but there is evidence for a role of both genetic and environmental factors. Among the heritable factors, MHC class II genes are strongly involved, as well as genes coding for others molecules of immunological relevance, genes controlling neurobiological pathways and genes of unknown function. Among nonheritable factors, many infectious agents (mainly viruses) and environmental factors (e.g., smoke, sun exposition and diet) seem to be of etiologic importance. Here, we report and discuss recent findings in MS on largely unexplored fields: the alternative splicing of mRNAs and regulatory noncoding RNAs, the major sources of transcriptome diversity; and epigenetic changes with special attention paid to DNA methylation and histone acetylation, the main regulators of gene expression.
Collapse
Affiliation(s)
- Rosella Mechelli
- Neurology and Center for Experimental Neurological Therapies, S. Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy
| | | | | | | | | | | |
Collapse
|