1
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Larran AS, Pajoro A, Qüesta JI. Is winter coming? Impact of the changing climate on plant responses to cold temperature. PLANT, CELL & ENVIRONMENT 2023; 46:3175-3193. [PMID: 37438895 DOI: 10.1111/pce.14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Climate change is causing alterations in annual temperature regimes worldwide. Important aspects of this include the reduction of winter chilling temperatures as well as the occurrence of unpredicted frosts, both significantly affecting plant growth and yields. Recent studies advanced the knowledge of the mechanisms underlying cold responses and tolerance in the model plant Arabidopsis thaliana. However, how these cold-responsive pathways will readjust to ongoing seasonal temperature variation caused by global warming remains an open question. In this review, we highlight the plant developmental programmes that depend on cold temperature. We focus on the molecular mechanisms that plants have evolved to adjust their development and stress responses upon exposure to cold. Covering both genetic and epigenetic aspects, we present the latest insights into how alternative splicing, noncoding RNAs and the formation of biomolecular condensates play key roles in the regulation of cold responses. We conclude by commenting on attractive targets to accelerate the breeding of increased cold tolerance, bringing up biotechnological tools that might assist in overcoming current limitations. Our aim is to guide the reflection on the current agricultural challenges imposed by a changing climate and to provide useful information for improving plant resilience to unpredictable cold regimes.
Collapse
Affiliation(s)
- Alvaro Santiago Larran
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| | - Alice Pajoro
- National Research Council, Institute of Molecular Biology and Pathology, Rome, Italy
| | - Julia I Qüesta
- Centre for Research in Agricultural Genomics (CRAG) IRTA-CSIC-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
3
|
Bai Y, Zhou Y, Lei Q, Wang Y, Pu G, Liu Z, Chen X, Liu Q. Analysis of the HD-Zip I transcription factor family in Salvia miltiorrhiza and functional research of SmHD-Zip12 in tanshinone synthesis. PeerJ 2023; 11:e15510. [PMID: 37397009 PMCID: PMC10312201 DOI: 10.7717/peerj.15510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Background The homeodomain-leucine zipper I (HD-Zip I) transcription factor is a plant-specific protein that plays an essential role in the abiotic stress response of plants. Research on the HD-Zip I family in Salvia miltiorrhiza is still lacking. Methods and Results In this study, a total of 25 SmHD-Zip I proteins were identified. Their characterizations, phylogenetic relationships, conserved motifs, gene structures, and cis-elements were analyzed comprehensively using bioinformatics methods. Expression profiling revealed that SmHD-Zip I genes exhibited distinctive tissue-specific patterns and divergent responses to ABA, PEG, and NaCl stresses. SmHD-Zip12 responded the most strongly to ABA, PEG, and NaCl, so it was used for transgenic experiments. The overexpression of SmHD-Zip12 significantly increased the content of cryptotanshinone, dihydrotanshinone I, tanshinone I, and tanshinone IIA by 2.89-fold, 1.85-fold, 2.14-fold, and 8.91-fold compared to the wild type, respectively. Moreover, in the tanshinone biosynthetic pathways, the overexpression of SmHD-Zip12 up-regulated the expression levels of SmAACT, SmDXS, SmIDS, SmGGPPS, SmCPS1, SmCPS2, SmCYP76AH1, SmCYP76AH3, and SmCYP76AK1 compared with the wild type. Conclusions This study provides information the possible functions of the HD-Zip I family and lays a theoretical foundation for clarifying the functional mechanism of the SmHD-Zip12 gene in regulating the synthesis of tanshinone in S. miltiorrhiza.
Collapse
Affiliation(s)
- Yanhong Bai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qiaoqi Lei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gaobin Pu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhenhua Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xue Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- LiShizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, Hubei, China
| |
Collapse
|
4
|
Sun X, Li H. Full-length transcriptome combined with RNA sequence analysis of Fraxinus chinensis. Genes Genomics 2023; 45:553-567. [PMID: 36905551 DOI: 10.1007/s13258-023-01374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND The dry root or stem bark of Fraxinus chinensis is a famous herb Qin Pi which is known for its anti-inflammatory, analgesic, anti-tumor, liver protective and diuretic pharmacological effects, the fundamental chemical components are coumarin, phenylethanol glycosides and flavonoids. However, it is difficult to clarify the secondary metabolite synthesis pathway and key genes involved in the pathway because of lack genome information of Fraxinus chinensis. OBJECTIVE To generate a complete transcriptome of Fraxinus chinensis and to clarify the differentially expressed genes (DEGs) in leaves and stem barks. METHODS In this study, full-length transcriptome analysis and RNA-Seq were combined to characterize Fraxinus chinensis transcriptome. RESULTS A total of 69,145 transcripts were acquired and regarded as reference transcriptome, 67,441 transcripts (97.47%) were annotated to NCBI non-redundant protein (Nr), SwissProt, the Kyoto Encyclopedia of Genes and Genomes (KEGG) and eukaryotic orthologous groups (KOG) databases. A total of 18,917 isoforms were annotated to KEGG database and classified to 138 biological pathways. In total, 10,822 simple sequence repeat (SSRs) and 11,319 resistance (R) gene were classified to 18 types, and 3947 transcription factors (TFs) were identified in full-length transcriptome analysis. Additionally, 15,095 DEGs were detected by RNA-seq in leaves and barks, including 4696 significantly up-regulated and 10,399 significantly down-regulated genes. And 254 transcripts were annotated into phenylpropane metabolism pathway containing 86 DEGs and ten of these enzyme genes were verified by qRT-PCR. CONCLUSION It laid the foundation for further exploration of the biosynthetic pathway of phenylpropanoids and related key enzyme genes.
Collapse
Affiliation(s)
- Xiaochun Sun
- Co-construction Collaborative Innovation Center for Chineses Medicine Resources Industrialization by Shaanxi and Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China
| | | |
Collapse
|
5
|
Manosalva Pérez N, Vandepoele K. Prediction of Transcription Factor Regulators and Gene Regulatory Networks in Tomato Using Binding Site Information. Methods Mol Biol 2023; 2698:323-349. [PMID: 37682483 DOI: 10.1007/978-1-0716-3354-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Gene regulatory networks (GRNs) represent the regulatory links between transcription factors (TF) and their target genes. In plants, they are essential to understand transcriptional programs that control important agricultural traits such as yield or (a)biotic stress response. Although several high- and low-throughput experimental methods have been developed to map GRNs in plants, these are sometimes expensive, come with laborious protocols, and are not always optimized for tomato, one of the most important horticultural crops worldwide. In this chapter, we present a computational method that covers two protocols: one protocol to map gene identifiers between two different tomato genome assemblies, and another protocol to predict putative regulators and delineate GRNs given a set of functionally related or coregulated genes by exploiting publicly available TF-binding information. As an example, we applied the motif enrichment protocol on tomato using upregulated genes in response to jasmonate, as well as upregulated and downregulated genes in plants with genotypes OENAM1 and nam1, respectively. We found that our protocol accurately infers the expected TFs as top enriched regulators and identifies GRNs functionally enriched in biological processes related with the experimental context under study.
Collapse
Affiliation(s)
- Nicolás Manosalva Pérez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Limited conservation in cross-species comparison of GLK transcription factor binding suggested wide-spread cistrome divergence. Nat Commun 2022; 13:7632. [PMID: 36494366 PMCID: PMC9734178 DOI: 10.1038/s41467-022-35438-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Non-coding cis-regulatory variants in animal genomes are an important driving force in the evolution of transcription regulation and phenotype diversity. However, cistrome dynamics in plants remain largely underexplored. Here, we compare the binding of GOLDEN2-LIKE (GLK) transcription factors in tomato, tobacco, Arabidopsis, maize and rice. Although the function of GLKs is conserved, most of their binding sites are species-specific. Conserved binding sites are often found near photosynthetic genes dependent on GLK for expression, but sites near non-differentially expressed genes in the glk mutant are nevertheless under purifying selection. The binding sites' regulatory potential can be predicted by machine learning model using quantitative genome features and TF co-binding information. Our study show that genome cis-variation caused wide-spread TF binding divergence, and most of the TF binding sites are genetically redundant. This poses a major challenge for interpreting the effect of individual sites and highlights the importance of quantitatively measuring TF occupancy.
Collapse
|
7
|
Guo H, Sun X, Wang B, Wu D, Sun H, Wang Y. The upstream regulatory mechanism of BplMYB46 and the function of upstream regulatory factors that mediate resistance to stress in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2022; 13:1030459. [PMID: 36388548 PMCID: PMC9640943 DOI: 10.3389/fpls.2022.1030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Previously, we have shown that the transcription factor BplMYB46 in Betula platyphylla can enhance tolerance to salt and osmotic stress and promote secondary cell wall deposition, and we characterized its downstream regulatory mechanism. However, its upstream regulatory mechanism remains unclear. Here, the promoter activity and upstream regulatory factors of BplMYB46 were studied. Analyses of β-glucuronidase (GUS) staining and activity indicated that BplMYB46 promoter was specific temporal and spatial expression, and its expression can be induced by salt and osmotic stress. We identified three upstream regulatory factors of BplMYB46: BpDof1, BpWRKY3, and BpbZIP3. Yeast-one hybrid assays, GUS activity, chromatin immunoprecipitation, and quantitative real-time polymerase chain reaction revealed that BpDof1, BpWRKY3, and BpbZIP3 can directly regulate the expression of BplMYB46 by specifically binding to Dof, W-box, and ABRE elements in the BplMYB46 promoter, respectively. BpDof1, BpWRKY3, and BpbZIP3 were all localized to the nucleus, and their expressions can be induced by stress. Overexpression of BpDof1, BpWRKY3, and BpbZIP3 conferred the resistance of transgenic birch plants to salt and osmotic stress. Our findings provide new insights into the upstream regulatory mechanism of BplMYB46 and reveal new upstream regulatory genes that mediate resistance to adverse environments. The genes identified in our study provide novel targets for the breeding of forest tree species.
Collapse
Affiliation(s)
- Huiyan Guo
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaomeng Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bo Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Di Wu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hu Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China
- The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Grau J, Franco‐Zorrilla JM. TDTHub, a web server tool for the analysis of transcription factor binding sites in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1203-1215. [PMID: 35713985 PMCID: PMC9541588 DOI: 10.1111/tpj.15873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 05/31/2023]
Abstract
Transcriptional regulation underlies most developmental programs and physiological responses to environmental changes in plants. Transcription factors (TFs) play a key role in the regulation of gene expression by binding specifically to short DNA sequences in the regulatory regions of genes: the TF binding sites (TFBSs). In recent years, several bioinformatic tools have been developed to detect TFBSs in candidate genes, either by de novo prediction or by directly mapping experimentally known TFBSs. However, most of these tools contain information for only a few species or require multi-step procedures, and are not always intuitive for non-experienced researchers. Here we present TFBS-Discovery Tool Hub (TDTHub), a web server for quick and intuitive studies of transcriptional regulation in plants. TDTHub uses pre-computed TFBSs in 40 plant species and allows the choice of two mapping algorithms, providing a higher versatility. Besides the main TFBS enrichment tool, TDTHub includes additional tools to assist in the analysis and visualization of data. In order to demonstrate the effectiveness of TDTHub, we analyzed the transcriptional regulation of the anthocyanin biosynthesis pathway. We also analyzed the transcriptional cascades in response to jasmonate and wounding in Arabidopsis and tomato (Solanum lycopersicum), respectively. In these studies, TDTHub helped to verify the most relevant TF nodes and to propose new ones with a prominent role in these pathways. TDTHub is available at http://acrab.cnb.csic.es/TDTHub/, and it will be periodically upgraded and expanded for new species and gene annotations.
Collapse
Affiliation(s)
- Joaquín Grau
- Department of Plant Molecular GeneticsCentro Nacional de BiotecnologíaCNB‐CSIC, C/Darwin 328049MadridSpain
| | - José M. Franco‐Zorrilla
- Department of Plant Molecular GeneticsCentro Nacional de BiotecnologíaCNB‐CSIC, C/Darwin 328049MadridSpain
| |
Collapse
|
9
|
Wang ZQ, Meng FZ, Yin LF, Yin WX, Lv L, Yang XL, Chang XQ, Zhang S, Luo CX. Transcriptomic Analysis of Resistant and Wild-Type Isolates Revealed Fludioxonil as a Candidate for Controlling the Emerging Isoprothiolane Resistant Populations of Magnaporthe oryzae. Front Microbiol 2022; 13:874497. [PMID: 35464942 PMCID: PMC9024399 DOI: 10.3389/fmicb.2022.874497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
The point mutation R343W in MoIRR, a putative Zn2Cys6 transcription factor, introduces isoprothiolane (IPT) resistance in Magnaporthe oryzae. However, the function of MoIRR has not been characterized. In this study, the function of MoIRR was investigated by subcellular localization observation, transcriptional autoactivation test, and transcriptomic analysis. As expected, GFP-tagged MoIRR was translocated in the nucleus, and its C-terminal could autonomously activate the expression of reporter genes HIS3 and α-galactosidase in absence of any prey proteins in Y2HGold, suggesting that MoIRR was a typical transcription factor. Transcriptomic analysis was then performed for resistant mutant 1a_mut (R343W), knockout transformant ΔMoIRR-1, and their parental wild-type isolate H08-1a. Upregulated genes in both 1a_mut and ΔMoIRR-1 were involved in fungicide resistance-related KEGG pathways, including the glycerophospholipid metabolism and Hog1 MAPK pathways. All MoIRR deficiency-related IPT-resistant strains exhibited increased susceptibility to fludioxonil (FLU) that was due to the upregulation of Hog1 MAPK pathway genes. The results indicated a correlation between FLU susceptibility and MoIRR deficiency-related IPT resistance in M. oryzae. Thus, using a mixture of IPT and FLU could be a strategy to manage the IPT-resistant populations of M. oryzae in rice fields.
Collapse
Affiliation(s)
- Zuo-Qian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Fan-Zhu Meng
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Liang-Fen Yin
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Liang Lv
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Xiao-Lin Yang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Xiang-Qian Chang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
| | - Shu Zhang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, Wuhan, China
- *Correspondence: Shu Zhang,
| | - Chao-Xi Luo
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Chao-Xi Luo,
| |
Collapse
|
10
|
Arce RC, Carrillo N, Pierella Karlusich JJ. The chloroplast redox-responsive transcriptome of solanaceous plants reveals significant nuclear gene regulatory motifs associated to stress acclimation. PLANT MOLECULAR BIOLOGY 2022; 108:513-530. [PMID: 35044587 DOI: 10.1007/s11103-022-01240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Transcriptomes of solanaceous plants expressing a plastid-targeted antioxidant protein were analysed to identify chloroplast redox networks modulating the expression of nuclear genes associated with stress acclimation. Plastid functions depend on the coordinated expression of nuclear genes, many of them associated to developmental and stress response pathways. Plastid-generated signals mediate this coordination via retrograde signaling, which includes sensing of chloroplast redox state and levels of reactive oxygen species (ROS), although it remains a poorly understood process. Chloroplast redox poise and ROS build-up can be modified by recombinant expression of a plastid-targeted antioxidant protein, i.e., cyanobacterial flavodoxin, with the resulting plants displaying increased tolerance to multiple environmental challenges. Here we analysed the transcriptomes of these flavodoxin-expressing plants to study the coordinated transcriptional responses of the nucleus to the chloroplast redox status and ROS levels during normal growth and stress responses (drought or biotic stress) in tobacco and potato, members of the economically important Solanaceae family. We compared their transcriptomes against those from stressed and mutant plants accumulating ROS in different subcellular compartments and found distinct ROS-related imprints modulated by flavodoxin expression and/or stress. By introducing our datasets in a large-scale interaction network, we identified transcriptional factors related to ROS and stress responses potentially involved in flavodoxin-associated signaling. Finally, we discovered identical cis elements in the promoters of many genes that respond to flavodoxin in the same direction as in wild-type plants under stress, suggesting a priming effect of flavodoxin before stress manifestation. The results provide a genome-wide picture illustrating the relevance of chloroplast redox status on biotic and abiotic stress responses and suggest new cis and trans targets to generate stress-tolerant solanaceous crops.
Collapse
Affiliation(s)
- Rocío C Arce
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), 2000, Rosario, Argentina
| | - Juan J Pierella Karlusich
- Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
11
|
Genome-Wide Prediction of Transcription Start Sites in Conifers. Int J Mol Sci 2022; 23:ijms23031735. [PMID: 35163661 PMCID: PMC8836283 DOI: 10.3390/ijms23031735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The identification of promoters is an essential step in the genome annotation process, providing a framework for gene regulatory networks and their role in transcription regulation. Despite considerable advances in the high-throughput determination of transcription start sites (TSSs) and transcription factor binding sites (TFBSs), experimental methods are still time-consuming and expensive. Instead, several computational approaches have been developed to provide fast and reliable means for predicting the location of TSSs and regulatory motifs on a genome-wide scale. Numerous studies have been carried out on the regulatory elements of mammalian genomes, but plant promoters, especially in gymnosperms, have been left out of the limelight and, therefore, have been poorly investigated. The aim of this study was to enhance and expand the existing genome annotations using computational approaches for genome-wide prediction of TSSs in the four conifer species: loblolly pine, white spruce, Norway spruce, and Siberian larch. Our pipeline will be useful for TSS predictions in other genomes, especially for draft assemblies, where reliable TSS predictions are not usually available. We also explored some of the features of the nucleotide composition of the predicted promoters and compared the GC properties of conifer genes with model monocot and dicot plants. Here, we demonstrate that even incomplete genome assemblies and partial annotations can be a reliable starting point for TSS annotation. The results of the TSS prediction in four conifer species have been deposited in the Persephone genome browser, which allows smooth visualization and is optimized for large data sets. This work provides the initial basis for future experimental validation and the study of the regulatory regions to understand gene regulation in gymnosperms.
Collapse
|
12
|
Liu L, Wang D, Zhang C, Liu H, Guo H, Cheng H, Liu E, Su X. The heat shock factor GhHSFA4a positively regulates cotton resistance to Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2022; 13:1050216. [PMID: 36407619 PMCID: PMC9669655 DOI: 10.3389/fpls.2022.1050216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 05/16/2023]
Abstract
Heat shock factors (HSFs) play a crucial role in the environmental stress responses of numerous plant species, including defense responses to pathogens; however, their role in cotton resistance to Verticillium dahliae remains unclear. We have previously identified several differentially expressed genes (DEGs) in Arabidopsis thaliana after inoculation with V. dahliae. Here, we discovered that GhHSFA4a in Gossypium hirsutum (cotton) after inoculation with V. dahliae shares a high identity with a DEG in A. thaliana in response to V. dahliae infection. Quantitative real-time PCR (qRT-PCR) analysis indicated that GhHSFA4a expression was rapidly induced by V. dahliae and ubiquitous in cotton roots, stems, and leaves. In a localization analysis using transient expression, GhHSFA4a was shown to be localized to the nucleus. Virus-induced gene silencing (VIGS) revealed that downregulation of GhHSFA4a significantly increased cotton susceptibility to V. dahliae. To investigate GhHSFA4a-mediated defense, 814 DEGs were identified between GhHSFA4a-silenced plants and controls using comparative RNA-seq analysis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEGs were enriched in "flavonoid biosynthesis", "sesquiterpenoid and triterpenoid biosynthesis", "linoleic acid metabolism" and "alpha-linolenic acid metabolism". The expression levels of marker genes for these four pathways were triggered after inoculation with V. dahliae. Moreover, GhHSFA4a-overexpressing lines of A. thaliana displayed enhanced resistance against V. dahliae compared to that of the wild type. These results indicate that GhHSFA4a is involved in the synthesis of secondary metabolites and signal transduction, which are indispensable for innate immunity against V. dahliae in cotton.
Collapse
Affiliation(s)
- Lu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Di Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Chao Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Life Science, Hebei Agricultural University, Baoding, China
| | - Haiyang Liu
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Enliang Liu
- Institute of Grain Crops, Xinjiang Academy of Agricultural ScienceS, Urumqi, China
- *Correspondence: Xiaofeng Su, ; Enliang Liu,
| | - Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
- *Correspondence: Xiaofeng Su, ; Enliang Liu,
| |
Collapse
|
13
|
López-Vidriero I, Godoy M, Grau J, Peñuelas M, Solano R, Franco-Zorrilla JM. DNA features beyond the transcription factor binding site specify target recognition by plant MYC2-related bHLH proteins. PLANT COMMUNICATIONS 2021; 2:100232. [PMID: 34778747 PMCID: PMC8577090 DOI: 10.1016/j.xplc.2021.100232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/09/2021] [Accepted: 08/10/2021] [Indexed: 05/22/2023]
Abstract
Transcription factors (TFs) regulate gene expression by binding to cis-regulatory sequences in the promoters of target genes. Recent research is helping to decipher in part the cis-regulatory code in eukaryotes, including plants, but it is not yet fully understood how paralogous TFs select their targets. Here we addressed this question by studying several proteins of the basic helix-loop-helix (bHLH) family of plant TFs, all of which recognize the same DNA motif. We focused on the MYC-related group of bHLHs, that redundantly regulate the jasmonate (JA) signaling pathway, and we observed a high correspondence between DNA-binding profiles in vitro and MYC function in vivo. We demonstrated that A/T-rich modules flanking the MYC-binding motif, conserved from bryophytes to higher plants, are essential for TF recognition. We observed particular DNA-shape features associated with A/T modules, indicating that the DNA shape may contribute to MYC DNA binding. We extended this analysis to 20 additional bHLHs and observed correspondence between in vitro binding and protein function, but it could not be attributed to A/T modules as in MYCs. We conclude that different bHLHs may have their own codes for DNA binding and specific selection of targets that, at least in the case of MYCs, depend on the TF-DNA interplay.
Collapse
Affiliation(s)
- Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - Marta Godoy
- Genomics Unit, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - Joaquín Grau
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - María Peñuelas
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
| | - José M. Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, C/Darwin 3, 28049 Madrid, Spain
- Corresponding author
| |
Collapse
|
14
|
DAP-Seq Identification of Transcription Factor-Binding Sites in Potato. Methods Mol Biol 2021. [PMID: 34448158 DOI: 10.1007/978-1-0716-1609-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Plant growth and adaptation to environmental fluctuations involve a tight control of cellular processes which, to a great extent, are mediated by changes at the transcriptional level. This regulation is exerted by transcription factors (TFs), a group of regulatory proteins that control gene expression by directly binding to the gene promoter regions via their cognate TF-binding sites (TFBS). The nature of TFBS defines the pattern of expression of the various plant loci, the precise combinatorial assembly of these elements being key in conferring plant's adaptation ability and in domestication. As such, TFs are main potential targets for biotechnological interventions, prompting in the last decade notable protein-DNA interaction efforts toward definition of their TFBS. Distinct methods based on in vivo or in vitro approaches defined the TFBS for many TFs, mainly in Arabidopsis, but comprehensive information on the transcriptional networks for many regulators is still lacking, especially in crops. In this chapter, detailed protocols for DAP-seq studies to unbiased identification of TFBS in potato are provided. This methodology relies on the affinity purification of genomic DNA-protein complexes in vitro, and high-throughput sequencing of the eluted DNA fragments. DAP-seq outperforms other in vitro DNA-motif definition strategies, such as protein-binding microarrays and SELEX-seq, since the protein of interest is directly bound to the genomic DNA extracted from plants yielding all the potential sites bound by the TF in the genome. Actually, data generated from DAP-seq experiments are highly similar to those out of ChIP-seq methods, but are generated much faster. We also provide a standard procedure to the analysis of the DAP-seq data, addressed to non-experienced users, that involves two consecutive steps: (1) processing of raw data (trimming, filtering, and read alignment) and (2) peak calling and identification of enriched motifs. This method allows identification of the binding profiles of dozens of TFs in crops, in a timely manner.
Collapse
|
15
|
Savadel SD, Hartwig T, Turpin ZM, Vera DL, Lung PY, Sui X, Blank M, Frommer WB, Dennis JH, Zhang J, Bass HW. The native cistrome and sequence motif families of the maize ear. PLoS Genet 2021; 17:e1009689. [PMID: 34383745 PMCID: PMC8360572 DOI: 10.1371/journal.pgen.1009689] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/30/2021] [Indexed: 01/22/2023] Open
Abstract
Elucidating the transcriptional regulatory networks that underlie growth and development requires robust ways to define the complete set of transcription factor (TF) binding sites. Although TF-binding sites are known to be generally located within accessible chromatin regions (ACRs), pinpointing these DNA regulatory elements globally remains challenging. Current approaches primarily identify binding sites for a single TF (e.g. ChIP-seq), or globally detect ACRs but lack the resolution to consistently define TF-binding sites (e.g. DNAse-seq, ATAC-seq). To address this challenge, we developed MNase-defined cistrome-Occupancy Analysis (MOA-seq), a high-resolution (< 30 bp), high-throughput, and genome-wide strategy to globally identify putative TF-binding sites within ACRs. We used MOA-seq on developing maize ears as a proof of concept, able to define a cistrome of 145,000 MOA footprints (MFs). While a substantial majority (76%) of the known ATAC-seq ACRs intersected with the MFs, only a minority of MFs overlapped with the ATAC peaks, indicating that the majority of MFs were novel and not detected by ATAC-seq. MFs were associated with promoters and significantly enriched for TF-binding and long-range chromatin interaction sites, including for the well-characterized FASCIATED EAR4, KNOTTED1, and TEOSINTE BRANCHED1. Importantly, the MOA-seq strategy improved the spatial resolution of TF-binding prediction and allowed us to identify 215 motif families collectively distributed over more than 100,000 non-overlapping, putatively-occupied binding sites across the genome. Our study presents a simple, efficient, and high-resolution approach to identify putative TF footprints and binding motifs genome-wide, to ultimately define a native cistrome atlas. Understanding gene regulation remains a central goal of modern biology. Delineating the full set of regulatory DNA elements that orchestrate this regulation requires information at two scales; the broad landscape of accessible chromatin, and the site-specific binding of transcription factors (TFs) at discrete cis-regulatory DNA elements. Here we describe a single assay that uses micrococcal nuclease (MNase) as a structural probe to simultaneously reveal regions of accessible chromatin in addition to high-resolution footprints with signatures of TF-occupied cis-elements. We have used maize developing ear tissue as proof of concept, showing the method detects known TF-binding sites. This genome-wide assay not only defines chromatin landscapes, but crucially enables global discovery and mapping of sequence motifs underlying small footprints of ~30 bp to produce an atlas of candidate TF occupancy.
Collapse
Affiliation(s)
- Savannah D. Savadel
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Thomas Hartwig
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Zachary M. Turpin
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Daniel L. Vera
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Pei-Yau Lung
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Xin Sui
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Max Blank
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wolf B. Frommer
- Institute for Molecular Physiologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Independent research groups, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jonathan H. Dennis
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Jinfeng Zhang
- Department of Statistics, Florida State University, Tallahassee, Florida, United States of America
| | - Hank W. Bass
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Dai JH, Hu AQ, Zhang JS, Liao WH, Ma HY, Wu JZ, Yu Y, Cao SJ. NF-YB-Mediated Active Responses of Plant Growth under Salt and Temperature Stress in Eucalyptus grandis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1107. [PMID: 34072675 PMCID: PMC8227622 DOI: 10.3390/plants10061107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor NF-YB (nuclear factor-YB) family is a subfamily of the nuclear factor Y (NF-Y), which plays an important role in regulating plant growth, development and participates in various stress responses. Although the NF-Y family has been studied in many species, it is still obscure in Eucalyptus grandis. In this study, 23 EgNF-YB genes in eucalyptus were identified and unevenly distributed on 11 chromosomes. Phylogenetic analysis showed the EgNF-YB genes were divided into two clades, LEC-1 type and non-LEC1 type. The evolution of distinct clades was relatively conservative, the gene structures were analogous, and the differences of genetic structures among clades were small. The expression profiles showed that the distinct EgNF-YB genes were highly expressed in diverse tissues, and EgNF-YB4/6/13/19/23 functioned in response to salinity, heat and cold stresses. Our study characterized the phylogenetic relationship, gene structures and expression patterns of EgNF-YB gene family and investigated their potential roles in abiotic stress responses, which provides solid foundations for further functional analysis of NF-YB genes in eucalyptus.
Collapse
Affiliation(s)
- Jia-Hao Dai
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - An-Qi Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Jia-Shuo Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Hai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Hua-Yan Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Jin-Zhang Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| | - Yuan Yu
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-Jiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.-H.D.); (A.-Q.H.); (W.-H.L.); (H.-Y.M.); (J.-Z.W.)
| |
Collapse
|
17
|
Zhao P, Qin T, Chen W, Sang X, Zhao Y, Wang H. Genome-Wide Study of NOT2_3_5 Protein Subfamily in Cotton and Their Necessity in Resistance to Verticillium wilt. Int J Mol Sci 2021; 22:ijms22115634. [PMID: 34073210 PMCID: PMC8198034 DOI: 10.3390/ijms22115634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The Negative on TATA-less (NOT) 2_3_5 domain proteins play key roles in mRNA metabolism and transcription regulation, but few comprehensive studies have focused on this protein family in plants. In our study, a total of 30 NOT2_3_5 genes were identified in four cotton genomes: Gossypium. arboretum, G. raimondii, G. hirsutum and G. barbadense. Phylogenetic analysis showed that all the NOT2_3_5 domain proteins were divided into two classes. The NOT2_3_5 genes were expanded frequently, and segmental duplication had significant effects in their expansion process. The cis-regulatory elements analysis of NOT2_3_5 promoter regions indicated that NOT2_3_5 domain proteins might participate in plant growth and development processes and responds to exogenous stimuli. Expression patterns demonstrated that all of the GhNOT2_3_5 genes were expressed in the majority of tissues and fiber development stages, and that these genes were induced by multiple stresses. Quantitative real-time PCR showed that GbNOT2_3_5 genes were up-regulated in response to verticillium wilt and the silencing of GbNOT2_3_5-3/8 and GbNOT2_3_5-4/9 led to more susceptibility to verticillium wilt than controls. Identification and analysis of the NOT2_3_5 protein family will be beneficial for further research on their biological functions.
Collapse
Affiliation(s)
- Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (P.Z.); (W.C.); (X.S.)
| | - Tengfei Qin
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Sciences and Technology, Xinxiang 453003, China;
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (P.Z.); (W.C.); (X.S.)
| | - Xiaohui Sang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (P.Z.); (W.C.); (X.S.)
| | - Yunlei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (P.Z.); (W.C.); (X.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (Y.Z.); (H.W.)
| | - Hongmei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (P.Z.); (W.C.); (X.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (Y.Z.); (H.W.)
| |
Collapse
|
18
|
Innovation, conservation, and repurposing of gene function in root cell type development. Cell 2021; 184:3333-3348.e19. [PMID: 34010619 DOI: 10.1016/j.cell.2021.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/19/2021] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
Plant species have evolved myriads of solutions, including complex cell type development and regulation, to adapt to dynamic environments. To understand this cellular diversity, we profiled tomato root cell type translatomes. Using xylem differentiation in tomato, examples of functional innovation, repurposing, and conservation of transcription factors are described, relative to the model plant Arabidopsis. Repurposing and innovation of genes are further observed within an exodermis regulatory network and illustrate its function. Comparative translatome analyses of rice, tomato, and Arabidopsis cell populations suggest increased expression conservation of root meristems compared with other homologous populations. In addition, the functions of constitutively expressed genes are more conserved than those of cell type/tissue-enriched genes. These observations suggest that higher order properties of cell type and pan-cell type regulation are evolutionarily conserved between plants and animals.
Collapse
|
19
|
De Clercq I, Van de Velde J, Luo X, Liu L, Storme V, Van Bel M, Pottie R, Vaneechoutte D, Van Breusegem F, Vandepoele K. Integrative inference of transcriptional networks in Arabidopsis yields novel ROS signalling regulators. NATURE PLANTS 2021; 7:500-513. [PMID: 33846597 DOI: 10.1038/s41477-021-00894-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Gene regulation is a dynamic process in which transcription factors (TFs) play an important role in controlling spatiotemporal gene expression. To enhance our global understanding of regulatory interactions in Arabidopsis thaliana, different regulatory input networks capturing complementary information about DNA motifs, open chromatin, TF-binding and expression-based regulatory interactions were combined using a supervised learning approach, resulting in an integrated gene regulatory network (iGRN) covering 1,491 TFs and 31,393 target genes (1.7 million interactions). This iGRN outperforms the different input networks to predict known regulatory interactions and has a similar performance to recover functional interactions compared to state-of-the-art experimental methods. The iGRN correctly inferred known functions for 681 TFs and predicted new gene functions for hundreds of unknown TFs. For regulators predicted to be involved in reactive oxygen species (ROS) stress regulation, we confirmed in total 75% of TFs with a function in ROS and/or physiological stress responses. This includes 13 ROS regulators, previously not connected to any ROS or stress function, that were experimentally validated in our ROS-specific phenotypic assays of loss- or gain-of-function lines. In conclusion, the presented iGRN offers a high-quality starting point to enhance our understanding of gene regulation in plants by integrating different experimental data types.
Collapse
Affiliation(s)
- Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Jan Van de Velde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Xiaopeng Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Li Liu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Veronique Storme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dries Vaneechoutte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
20
|
Ko DK, Brandizzi F. Network-based approaches for understanding gene regulation and function in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:302-317. [PMID: 32717108 PMCID: PMC8922287 DOI: 10.1111/tpj.14940] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/14/2020] [Indexed: 05/03/2023]
Abstract
Expression reprogramming directed by transcription factors is a primary gene regulation underlying most aspects of the biology of any organism. Our views of how gene regulation is coordinated are dramatically changing thanks to the advent and constant improvement of high-throughput profiling and transcriptional network inference methods: from activities of individual genes to functional interactions across genes. These technical and analytical advances can reveal the topology of transcriptional networks in which hundreds of genes are hierarchically regulated by multiple transcription factors at systems level. Here we review the state of the art of experimental and computational methods used in plant biology research to obtain large-scale datasets and model transcriptional networks. Examples of direct use of these network models and perspectives on their limitations and future directions are also discussed.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- For correspondence ()
| |
Collapse
|
21
|
Ritonga FN, Chen S. Physiological and Molecular Mechanism Involved in Cold Stress Tolerance in Plants. PLANTS (BASEL, SWITZERLAND) 2020; 9:E560. [PMID: 32353940 PMCID: PMC7284489 DOI: 10.3390/plants9050560] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 01/26/2023]
Abstract
Previous studies have reported that low temperature (LT) constrains plant growth and restricts productivity in temperate regions. However, the underlying mechanisms are complex and not well understood. Over the past ten years, research on the process of adaptation and tolerance of plants during cold stress has been carried out. In molecular terms, researchers prioritize research into the field of the ICE-CBF-COR signaling pathway which is believed to be the important key to the cold acclimation process. Inducer of CBF Expression (ICE) is a pioneer of cold acclimation and plays a central role in C-repeat binding (CBF) cold induction. CBFs activate the expression of COR genes via binding to cis-elements in the promoter of COR genes. An ICE-CBF-COR signaling pathway activates the appropriate expression of downstream genes, which encodes osmoregulation substances. In this review, we summarize the recent progress of cold stress tolerance in plants from molecular and physiological perspectives and other factors, such as hormones, light, and circadian clock. Understanding the process of cold stress tolerance and the genes involved in the signaling network for cold stress is essential for improving plants, especially crops.
Collapse
Affiliation(s)
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China;
| |
Collapse
|
22
|
Inference of plant gene regulatory networks using data-driven methods: A practical overview. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194447. [PMID: 31678628 DOI: 10.1016/j.bbagrm.2019.194447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/08/2019] [Accepted: 10/31/2019] [Indexed: 11/20/2022]
Abstract
Transcriptional regulation is a complex and dynamic process that plays a vital role in plant growth and development. A key component in the regulation of genes is transcription factors (TFs), which coordinate the transcriptional control of gene activity. A gene regulatory network (GRN) is a collection of regulatory interactions between TFs and their target genes. The accurate delineation of GRNs offers a significant contribution to our understanding about how plant cells are organized and function, and how individual genes are regulated in various conditions, organs or cell types. During the past decade, important progress has been made in the identification of GRNs using experimental and computational approaches. However, a detailed overview of available platforms supporting the analysis of GRNs in plants is missing. Here, we review current databases, platforms and tools that perform data-driven analyses of gene regulation in Arabidopsis. The platforms are categorized into two sections, 1) promoter motif analysis tools that use motif mapping approaches to find TF motifs in the regulatory sequences of genes of interest and 2) network analysis tools that identify potential regulators for a set of input genes using a range of data types in order to generate GRNs. We discuss the diverse datasets integrated and highlight the strengths and caveats of different platforms. Finally, we shed light on the limitations of the above approaches and discuss future perspectives, including the need for integrative approaches to unravel complex GRNs in plants.
Collapse
|
23
|
Tan QW, Mutwil M. Inferring biosynthetic and gene regulatory networks from Artemisia annua RNA sequencing data on a credit card-sized ARM computer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194429. [PMID: 31634636 DOI: 10.1016/j.bbagrm.2019.194429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 02/05/2023]
Abstract
Prediction of gene function and gene regulatory networks is one of the most active topics in bioinformatics. The accumulation of publicly available gene expression data for hundreds of plant species, together with advances in bioinformatical methods and affordable computing, sets ingenuity as one of the major bottlenecks in understanding gene function and regulation. Here, we show how a credit card-sized computer retailing for <50 USD can be used to rapidly predict gene function and infer regulatory networks from RNA sequencing data. To achieve this, we constructed a bioinformatical pipeline that downloads and allows quality-control of RNA sequencing data; and generates a gene co-expression network that can reveal enzymes and transcription factors participating and controlling a given biosynthetic pathway. We exemplify this by first identifying genes and transcription factors involved in the biosynthesis of secondary cell wall in the plant Artemisia annua, the main natural source of the anti-malarial drug artemisinin. Networks were then used to dissect the artemisinin biosynthesis pathway, which suggest potential transcription factors regulating artemisinin biosynthesis. We provide the source code of our pipeline (https://github.com/mutwil/LSTrAP-Lite) and envision that the ubiquity of affordable computing, availability of biological data and increased bioinformatical training of biologists will transform the field of bioinformatics. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.
Collapse
Affiliation(s)
- Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
24
|
Li Y, Bai B, Wen F, Zhao M, Xia Q, Yang DH, Wang G. Genome-Wide Identification and Expression Analysis of HD-ZIP I Gene Subfamily in Nicotiana tabacum. Genes (Basel) 2019; 10:E575. [PMID: 31366162 PMCID: PMC6723700 DOI: 10.3390/genes10080575] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 01/30/2023] Open
Abstract
The homeodomain-leucine zipper (HD-Zip) gene family, whose members play vital roles in plant growth and development, and participate in responding to various stresses, is an important class of transcription factors currently only found in plants. Although the HD-Zip gene family, especially the HD-Zip I subfamily, has been extensively studied in many plant species, the systematic report on HD-Zip I subfamily in cultivated tobacco (Nicotiana tabacum) is lacking. In this study, 39 HD-Zip I genes were systematically identified in N. tabacum (Nt). Interestingly, that 64.5% of the 31 genes with definite chromosome location information were found to originate from N. tomentosoformis, one of the two ancestral species of allotetraploid N. tabacum. Phylogenetic analysis divided the NtHD-Zip I subfamily into eight clades. Analysis of gene structures showed that NtHD-Zip I proteins contained conserved homeodomain and leucine-zipper domains. Three-dimensional structure analysis revealed that most NtHD-Zip I proteins in each clade, except for those in clade η, share a similar structure to their counterparts in Arabidopsis. Prediction of cis-regulatory elements showed that a number of elements responding to abscisic acid and different abiotic stresses, including low temperature, drought, and salinity, existed in the promoter region of NtHD-Zip I genes. The prediction of Arabidopsis ortholog-based protein-protein interaction network implied that NtHD-Zip I proteins have complex connections. The expression profile of these genes showed that different NtHD-Zip I genes were highly expressed in different tissues and could respond to abscisic acid and low-temperature treatments. Our study provides insights into the evolution and expression patterns of NtHD-Zip I genes in N. tabacum and will be useful for further functional characterization of NtHD-Zip I genes in the future.
Collapse
Affiliation(s)
- Yueyue Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Bingchuan Bai
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Feng Wen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Min Zhao
- Chongqing Institute of Tobacco Science, Chongqing 400716, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400716, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Da-Hai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming 650021, China.
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China.
- Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
25
|
Kulkarni SR, Vaneechoutte D, Van de Velde J, Vandepoele K. TF2Network: predicting transcription factor regulators and gene regulatory networks in Arabidopsis using publicly available binding site information. Nucleic Acids Res 2019; 46:e31. [PMID: 29272447 PMCID: PMC5888541 DOI: 10.1093/nar/gkx1279] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
A gene regulatory network (GRN) is a collection of regulatory interactions between transcription factors (TFs) and their target genes. GRNs control different biological processes and have been instrumental to understand the organization and complexity of gene regulation. Although various experimental methods have been used to map GRNs in Arabidopsis thaliana, their limited throughput combined with the large number of TFs makes that for many genes our knowledge about regulating TFs is incomplete. We introduce TF2Network, a tool that exploits the vast amount of TF binding site information and enables the delineation of GRNs by detecting potential regulators for a set of co-expressed or functionally related genes. Validation using two experimental benchmarks reveals that TF2Network predicts the correct regulator in 75–92% of the test sets. Furthermore, our tool is robust to noise in the input gene sets, has a low false discovery rate, and shows a better performance to recover correct regulators compared to other plant tools. TF2Network is accessible through a web interface where GRNs are interactively visualized and annotated with various types of experimental functional information. TF2Network was used to perform systematic functional and regulatory gene annotations, identifying new TFs involved in circadian rhythm and stress response.
Collapse
Affiliation(s)
- Shubhada R Kulkarni
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Dries Vaneechoutte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Jan Van de Velde
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 927, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
- To whom correspondence should be addressed. Tel: +32 9 3313822; Fax: +32 9 3313809;
| |
Collapse
|
26
|
Wang T, Yang B, Guan Q, Chen X, Zhong Z, Huang W, Zhu W, Tian J. Transcriptional regulation of Lonicera japonica Thunb. during flower development as revealed by comprehensive analysis of transcription factors. BMC PLANT BIOLOGY 2019; 19:198. [PMID: 31088368 PMCID: PMC6518806 DOI: 10.1186/s12870-019-1803-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/26/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Lonicera japonica Thunb. flower has been used for the treatment of various diseases for a long time and attracted many studies on its potential effects. Transcription factors (TFs) regulate extensive biological processes during plant development. As the restricted reports of L. japonica on TFs, our work was carried out to better understand the TFs' regulatory roles under different developmental stages in L. japonica. RESULTS In this study, 1316 TFs belonging to 52 families were identified from the transcriptomic data, and corresponding expression profiles during the L. japonica flower development were comprehensively analyzed. 917 (69.68%) TFs were differentially expressed. TFs in bHLH, ERF, MYB, bZIP, and NAC families exhibited obviously altered expression during flower growth. Based on the analysis of differentially expressed TFs (DETFs), TFs in MYB, WRKY, NAC and LSD families that involved in phenylpropanoids biosynthesis, senescence processes and antioxidant activity were detected. The expression of MYB114 exhibited a positive correlation with the contents of luteoloside; Positive correlation was observed among the expression of MYC12, chalcone synthase (CHS) and flavonol synthase (FLS), while negative correlation was observed between the expression of MYB44 and the synthases; The expression of LSD1 was highly correlated with the expression of SOD and the total antioxidant capacity, while the expression of LOL1 and LOL2 exhibited a negative correlation with them; Many TFs in NAC and WRKY families may be potentially involved in the senescence process regulated by hormones and reactive oxygen species (ROS). The expression of NAC19, NAC29, and NAC53 exhibited a positive correlation with the contents of ABA and H2O2, while the expression of WRKY53, WRKY54, and WRKY70 exhibited a negative correlation with the contents of JA, SA and ABA. CONCLUSIONS Our study provided a comprehensive characterization of the expression profiles of TFs during the developmental stages of L. japonica. In addition, we detected the key TFs that may play significant roles in controlling active components biosynthesis, antioxidant activity and flower senescence in L. japonica, thereby providing valuable insights into the molecular networks underlying L. japonica flower development.
Collapse
Affiliation(s)
- Tantan Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Bingxian Yang
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018 People’s Republic of China
| | - Qijie Guan
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Xi Chen
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Zhuoheng Zhong
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Wei Huang
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Wei Zhu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Jingkui Tian
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 People’s Republic of China
- Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| |
Collapse
|
27
|
Anwar A, She M, Wang K, Riaz B, Ye X. Biological Roles of Ornithine Aminotransferase (OAT) in Plant Stress Tolerance: Present Progress and Future Perspectives. Int J Mol Sci 2018; 19:ijms19113681. [PMID: 30469329 PMCID: PMC6274847 DOI: 10.3390/ijms19113681] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Plant tolerance to biotic and abiotic stresses is complicated by interactions between different stresses. Maintaining crop yield under abiotic stresses is the most daunting challenge for breeding resilient crop varieties. In response to environmental stresses, plants produce several metabolites, such as proline (Pro), polyamines (PAs), asparagine, serine, carbohydrates including glucose and fructose, and pools of antioxidant reactive oxygen species. Among these metabolites, Pro has long been known to accumulate in cells and to be closely related to drought, salt, and pathogen resistance. Pyrroline-5-carboxylate (P5C) is a common intermediate of Pro synthesis and metabolism that is produced by ornithine aminotransferase (OAT), an enzyme that functions in an alternative Pro metabolic pathway in the mitochondria under stress conditions. OAT is highly conserved and, to date, has been found in all prokaryotic and eukaryotic organisms. In addition, ornithine (Orn) and arginine (Arg) are both precursors of PAs, which confer plant resistance to drought and salt stresses. OAT is localized in the cytosol in prokaryotes and fungi, while OAT is localized in the mitochondria in higher plants. We have comprehensively reviewed the research on Orn, Arg, and Pro metabolism in plants, as all these compounds allow plants to tolerate different kinds of stresses.
Collapse
Affiliation(s)
- Alia Anwar
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Maoyun She
- School of Veterinary and Life Sciences, Murdoch University, WA 6150, Australia.
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bisma Riaz
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
28
|
Cherenkov P, Novikova D, Omelyanchuk N, Levitsky V, Grosse I, Weijers D, Mironova V. Diversity of cis-regulatory elements associated with auxin response in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:329-339. [PMID: 28992117 PMCID: PMC5853796 DOI: 10.1093/jxb/erx254] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/06/2017] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin regulates virtually every developmental process in land plants. This regulation is mediated via de-repression of DNA-binding auxin response factors (ARFs). ARFs bind TGTC-containing auxin response cis-elements (AuxREs), but there is growing evidence that additional cis-elements occur in auxin-responsive regulatory regions. The repertoire of auxin-related cis-elements and their involvement in different modes of auxin response are not yet known. Here we analyze the enrichment of nucleotide hexamers in upstream regions of auxin-responsive genes associated with auxin up- or down-regulation, with early or late response, ARF-binding domains, and with different chromatin states. Intriguingly, hexamers potentially bound by basic helix-loop-helix (bHLH) and basic leucine zipper (bZIP) factors as well as a family of A/T-rich hexamers are more highly enriched in auxin-responsive regions than canonical TGTC-containing AuxREs. We classify and annotate the whole spectrum of enriched hexamers and discuss their patterns of enrichment related to different modes of auxin response.
Collapse
Affiliation(s)
| | - Daria Novikova
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
- Department of Agrotechnology and Food Sciences, Subdivision Biochemistry, Wageningen University and Research Center, The Netherlands
| | - Nadya Omelyanchuk
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
| | - Victor Levitsky
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
| | - Ivo Grosse
- Novosibirsk State University, Russian Federation
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
| | - Dolf Weijers
- Department of Agrotechnology and Food Sciences, Subdivision Biochemistry, Wageningen University and Research Center, The Netherlands
- Correspondence: or
| | - Victoria Mironova
- Novosibirsk State University, Russian Federation
- Institute of Cytology and Genetics, Russian Federation
- Correspondence: or
| |
Collapse
|
29
|
Hehl R. From experiment-driven database analyses to database-driven experiments in Arabidopsis thaliana transcription factor research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:141-147. [PMID: 28716409 DOI: 10.1016/j.plantsci.2017.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
Experiment-driven database analysis is employed in forward genetics to predict the function of genes assocíated with a mutant phenotype. These analyses subsequently lead to database-driven experiments involving reverse genetics to verify functional predictions based on bioinformatic analyses. Genomic transcription factors (TFs) are key regulators of gene expression by binding to short regulatory sequences and by interacting with other TFs. Currently more than 2400 TFs are predicted for A. thaliana. As DNA-binding proteins they are particularly amenable to database-driven experiments, especially when their binding site specificities are known. Databases are available for predicting binding sites for specific TFs in regulatory sequences. Since most of these bioinformatically identified binding sites may not be functional, additional experiments for identifying the actual in vivo binding sites for TFs are required. Recently, large scale approaches were employed to determine binding sites for many A. thaliana TFs. With these approaches binding sites for 984 unique TFs were determined experimentally. An area deserving further research is proposed for interacting TFs. Most of the A. thaliana genes are under combinatorial control, and in vivo interacting TFs, similar to mammalian TFs, may bind to combinatorial elements in which the binding sites vary from those detected with the single TFs.
Collapse
Affiliation(s)
- Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| |
Collapse
|
30
|
Zarattini M, Forlani G. Toward Unveiling the Mechanisms for Transcriptional Regulation of Proline Biosynthesis in the Plant Cell Response to Biotic and Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:927. [PMID: 28626464 PMCID: PMC5454058 DOI: 10.3389/fpls.2017.00927] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/17/2017] [Indexed: 05/18/2023]
Abstract
Proline accumulation occurs in plants following the exposure to a wide array of stress conditions, as well as during numerous physiological and adaptive processes. Increasing evidence also supports the involvement of proline metabolism in the plant response to pathogen attack. This requires that the biosynthetic pathway is triggered by components of numerous and different signal transduction chains. Indeed, several reports recently described activation of genes coding for enzymes of the glutamate pathway by transcription factors (TFs) belonging to various families. Here, we summarize some of these findings with special emphasis on rice, and show the occurrence of a plethora of putative TF binding sites in the promoter of such genes.
Collapse
|