1
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2024. [PMID: 39185567 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | | |
Collapse
|
2
|
Valverde A, Naqvi RA, Naqvi AR. Non-coding RNA LINC01010 regulates macrophage polarization and innate immune functions by modulating NFκB signaling pathway. J Cell Physiol 2024; 239:e31225. [PMID: 38403999 PMCID: PMC11096022 DOI: 10.1002/jcp.31225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Innate immune response is regulated by tissue resident or infiltrating immune cells such as macrophages (Mφ) that play critical role in tissue development, homeostasis, and repair of damaged tissue. However, the epigenetic mechanisms that regulate Mφ plasticity and innate immune functions are not well understood. Long non-coding RNA (lncRNA) are among the most abundant class of transcriptome but their function in myeloid cell biology is less explored. In this study, we deciphered the regulatory role of previously uncharacterized lncRNAs in Mφ polarization and innate immune responses. Two lncRNAs showed notable changes in their levels during M1 and M2 Mφ differentiation. Our findings indicate that LINC01010 expression increased and AC007032 expression decreased significantly. LINC01010 exhibit myeloid cell-specificity, while AC007032.1 is ubiquitous and expressed in both myeloid and lymphoid (T cells, B cells and NK cells) cells. Expression of these lncRNAs is dysregulated in periodontal disease (PD), a microbial biofilm-induced immune disease, and responsive to lipopolysaccharide (LPS) from different oral and non-oral bacteria. Knockdown of LINC01010 but not AC007032.1 reduced the surface expression of Mφ differentiation markers CD206 and CD68, and M1Mφ polarization markers MHCII and CD32. Furthermore, LINC01010 RNAi attenuated bacterial phagocytosis, antigen processing and cytokine secretion suggesting its key function in innate immunity. Mechanistically, LINC01010 knockdown Mφ treated with Escherichia coli LPS exhibit significantly reduced expression of multiple nuclear factor kappa B pathway genes. Together, our data highlight functional role of a PD-associated lncRNA LINC01010 in shaping macrophage differentiation, polarization, and innate immune activation.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, United States
| | - Raza Ali Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, United States
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, United States
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| |
Collapse
|
3
|
Duan Y, Sun L, Li Q. Herpes Simplex Virus 1 MicroRNAs: An Update. Intervirology 2023; 66:97-110. [PMID: 37285807 PMCID: PMC10389796 DOI: 10.1159/000531348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1), an important human pathogen, is capable of latent infection in neurons and productive (lytic) infection in other tissue cells. Once infected with HSV-1, the immune system of the organism cannot eliminate the virus and carries it lifelong. HSV-1 possesses approximately 150 kb of double-stranded linear genomic DNA and can encode at least 70 proteins and 37 mature microRNAs (miRNAs) derived from 18 precursor miRNAs (pre-miRNAs). SUMMARY These HSV-1-encoded miRNAs are widely involved in multiple processes in the life cycle of the virus and the host cell, including viral latent and lytic infection, as well as host cell immune signaling, proliferation, and apoptosis. KEY MESSAGE In this review, we focused primarily on recent advances in HSV-1-encoded miRNA expression, function, and mechanism, which may provide new research ideas and feasible research methods systemically and comprehensively.
Collapse
Affiliation(s)
- Yongzhong Duan
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, China,
| | - Le Sun
- Basic Medical College, Kunming Medical University, Kunming, China
| | - Qihan Li
- Department of Viral Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
4
|
Thakkar P, Banks JM, Rahat R, Brandini DA, Naqvi AR. Viruses of the oral cavity: Prevalence, pathobiology and association with oral diseases. Rev Med Virol 2022; 32:e2311. [PMID: 34854161 PMCID: PMC11646282 DOI: 10.1002/rmv.2311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022]
Abstract
The human oral cavity contains a plethora of habitats and tissue environments, such as teeth, tongue, and gingiva, which are home to a rich microbial flora including bacteria, fungi, and viruses. Given the exposed nature of the mouth, oral tissues constantly encounter infectious agents, forming a complex ecological community. In the past, the discussion of microbiological aspects of oral disease has traditionally focused on bacteria and fungi, but viruses are attracting increasing attention as pathogens in oral inflammatory diseases. Therefore, understanding viral prevalence, pathogenicity, and preference regarding oral tissues is critical to understanding the holistic effects of viruses on oral infections. Recent investigations have demonstrated the abundance of certain viruses in oral inflammatory diseases, suggesting an association between viruses and disease. Human herpesviruses are the most extensively studied viruses in different oral inflammatory diseases. However, challenges in viral detection and the lack of reproducible in vitro and in vivo infection models have limited our progress in understanding viruses and their contribution to oral diseases. This review presents a summary of major mammalian viruses and associated diseases in the human oral cavity. The emergence of a recent pathogen SARS-CoV-2 and its tropism for salivary and periodontal tissues further highlights the relevance of the oral cavity in host-pathogen interaction. Understanding how these different viruses present clinically and influence oral health will advance our understanding of multifactorial oral diseases and their association with viruses.
Collapse
Affiliation(s)
- Pari Thakkar
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jonathan M. Banks
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rani Rahat
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniela A. Brandini
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Afsar R. Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Valverde A, Seal A, Nares S, Shukla D, Naqvi AR. Human herpesvirus-encoded MicroRNA in host-pathogen interaction. Adv Biol Regul 2021; 82:100829. [PMID: 34560402 PMCID: PMC11646283 DOI: 10.1016/j.jbior.2021.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Human herpesviruses (HHV) are ubiquitous, linear dsDNA viruses that establish lifelong latency, disrupted by sporadic reactivation. HHV have evolved diverse ingenious mechanisms to evade robust host defenses. Incorporation of unique stem loop sequences that generate viral microRNAs (v-miRs) exemplifies one such evolutionary adaptation in HHV. These noncoding RNAs can control cellular and viral transcriptomes highlighting their ability in shaping host-HHV interactions. We summarize recent developments in functional characterization of HHV-encoded miRNAs in shaping the outcome of host-pathogen interaction. Non-immunogenic dissemination of v-miRs through exosomes confer added advantage to HHV in incessant modulation of host microenvironment. This review delineates the mechanistic role of v-miRs in facilitating viral persistence and tropism by targeting genes associated with cellular (apoptosis, angiogenesis, cell migration, etc.) and viral life cycle (latency, lytic and reactivation). Burgeoning evidences indicate plausible association of v-miRs in various immune-mediated diseases (nasopharyngeal carcinoma, neurological disorders, periodontal diseases, etc.) and herpesvirus-related malignancies indicating their broad-spectrum impact on host cellular pathways. We propose to exploit tisssue and systemic levels of v-miRs as diagnostic and prognostic markers for cancers and immune-mediated diseases. Therapeutic targeting of v-miRs will advance the promising outcomes of preclinical discoveries to bedside application.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Alexandra Seal
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States; Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, United States
| | - Afsar Raza Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States.
| |
Collapse
|
6
|
Brandini DA, Takamiya AS, Thakkar P, Schaller S, Rahat R, Naqvi AR. Covid-19 and oral diseases: Crosstalk, synergy or association? Rev Med Virol 2021; 31:e2226. [PMID: 33646645 PMCID: PMC8014590 DOI: 10.1002/rmv.2226] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (Covid-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that clinically affects multiple organs of the human body. Cells in the oral cavity express viral entry receptor angiotensin-converting enzyme 2 that allows viral replication and may cause tissue inflammation and destruction. Recent studies have reported that Covid-19 patients present oral manifestations with multiple clinical aspects. In this review, we aim to summarise main signs and symptoms of Covid-19 in the oral cavity, its possible association with oral diseases, and the plausible underlying mechanisms of hyperinflammation reflecting crosstalk between Covid-19 and oral diseases. Ulcers, blisters, necrotising gingivitis, opportunistic coinfections, salivary gland alterations, white and erythematous plaques and gustatory dysfunction were the most reported clinical oral manifestations in patients with Covid-19. In general, the lesions appear concomitant with the loss of smell and taste. Multiple reports show evidences of necrotic/ulcerative gingiva, oral blisters and hypergrowth of opportunistic oral pathogens. SARS-CoV-2 exhibits tropism for endothelial cells and Covid-19-mediated endotheliitis can not only promote inflammation in oral tissues but can also facilitate virus spread. In addition, elevated levels of proinflammatory mediators in patients with Covid-19 and oral infectious disease can impair tissue homeostasis and cause delayed disease resolution. This suggests potential crosstalk of immune-mediated pathways underlying pathogenesis. Interestingly, few reports suggest recurrent herpetic lesions and higher bacterial growth in Covid-19 subjects, indicating SARS-CoV-2 and oral virus/bacteria interaction. Larger cohort studies comparing SARS-CoV-2 negative and positive subjects will reveal oral manifestation of the virus on oral health and its role in exacerbating oral infection.
Collapse
Affiliation(s)
- Daniela A. Brandini
- Department of Diagnosis and SurgerySchool of DentistrySão Paulo State University (UNESP)AraçatubaSão PauloBrazil
| | - Aline S. Takamiya
- Department of Diagnosis and SurgerySchool of DentistrySão Paulo State University (UNESP)AraçatubaSão PauloBrazil
| | - Pari Thakkar
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Samantha Schaller
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Rani Rahat
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Afsar R. Naqvi
- Mucosal Immunology LabCollege of DentistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
7
|
Naqvi AR, Schwartz J, Brandini DA, Schaller S, Hussein H, Valverde A, Naqvi RA, Shukla D. COVID-19 and oral diseases: Assessing manifestations of a new pathogen in oral infections. Int Rev Immunol 2021; 41:423-437. [PMID: 34525891 DOI: 10.1080/08830185.2021.1967949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a recently identified virus responsible for life-threatening coronavirus disease 19 (COVID-19). The SARS-CoV-2 infected subjects can be asymptomatic or symptomatic; the later may present a wide spectrum of clinical manifestations. However, the impact of SARS-CoV-2 on oral diseases remain poorly studied. Detection of SARS-CoV-2 in saliva indicates existence of virus in the oral cavity. Recent studies demonstrating the expression of ACE-2, a SARS-CoV-2 entry receptor, in oral tissues further strengthens this observation. Cytokine storm in severe COVID-19 patients and copious secretion of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α) in multiple symptomatic oral pathologies including periodontitis and periapical periodontitis suggests that inflammatory microenvironment is a hallmark of both COVID-19 and oral diseases. Hyperinflammation may provide conducive microenvironment for the growth of local oral pathogens or opportunistic microbes and exert detrimental impact on the oral tissue integrity. Multiple case reports have indicated uncharacterized oral lesions, symptomatic irreversible pulpitis, higher plaque index, necrotizing/desquamative gingivitis in COVID-19 patients suggesting that SARS-CoV-2 may worsen the manifestations of oral infections. However, the underlying factors and pathways remain elusive. Here we summarize current literature and suggest mechanisms for viral pathogenesis of oral dental pathology derived from oral microbiome and oral mucosa-dental tissue interactions. Longitudinal studies will reveal how the virus impairs disease progression and resolution post-therapy. Some relationships we suggest provide the basis for novel monitoring and treatment of oral viral disease in the era of SARS-CoV-2 pandemic, promoting evidence-based dentistry guidelines to diagnose virus-infected patients to improve oral health.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joel Schwartz
- Molecular Pathology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniela Atili Brandini
- Department of Diagnosis and Surgery, Araçatuba Dental School, Universidade Estadual Paulista/UNESP, Araçatuba, São Paulo, Brazil
| | - Samantha Schaller
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Heba Hussein
- Department of Oral Medicine, Oral Diagnosis, and Periodontology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Araceli Valverde
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Raza Ali Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, Illinois, USA
| |
Collapse
|
8
|
Prasad H. Protons to Patients: targeting endosomal Na + /H + exchangers against COVID-19 and other viral diseases. FEBS J 2021; 288:5071-5088. [PMID: 34490733 PMCID: PMC8646450 DOI: 10.1111/febs.16163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022]
Abstract
While there is undeniable evidence to link endosomal acid‐base homeostasis to viral pathogenesis, the lack of druggable molecular targets has hindered translation from bench to bedside. The recent identification of variants in the interferon‐inducible endosomal Na+/H+ exchanger 9 associated with severe coronavirus disease‐19 (COVID‐19) has brought a shift in the way we envision aberrant endosomal acidification. Is it linked to an increased susceptibility to viral infection or a propensity to develop critical illness? This review summarizes the genetic and cellular evidence linking endosomal Na+/H+ exchangers and viral diseases to suggest how they can act as a broad‐spectrum modulator of viral infection and downstream pathophysiology. The review also presents novel insights supporting the complex role of endosomal acid‐base homeostasis in viral pathogenesis and discusses the potential causes for negative outcomes of clinical trials utilizing alkalinizing drugs as therapies for COVID‐19. These findings lead to a pathogenic model of viral disease that predicts that nonspecific targeting of endosomal pH might fail, even if administered early on, and suggests that endosomal Na+/H+ exchangers may regulate key host antiviral defence mechanisms and mediators that act to drive inflammatory organ injury.
Collapse
Affiliation(s)
- Hari Prasad
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
9
|
Abstract
Periodontitis is a multi-etiologic infection characterized clinically by pathologic loss of the periodontal ligament and alveolar bone. Herpesviruses and specific bacterial species are major periodontal pathogens that cooperate synergistically in producing severe periodontitis. Cellular immunity against herpesviruses and humoral immunity against bacteria are key periodontal host defenses. Genetic, epigenetic, and environmental factors are modifiers of periodontal disease severity. MicroRNAs are a class of noncoding, gene expression-based, posttranscriptional regulatory RNAs of great importance for maintaining tissue homeostasis. Aberrant expression of microRNAs has been associated with several medical diseases. Periodontal tissue cells and herpesviruses elaborate several microRNAs that are of current research interest. This review attempts to conceptualize the role of periodontal microRNAs in the pathogenesis of periodontitis. The diagnostic potential of salivary microRNAs is also addressed. Employment of microRNA technology in periodontics represents an interesting new preventive and therapeutic possibility.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Laboratory, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jørgen Slots
- Department of Periodontology, University of Southern California School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
10
|
Luan X, Zhou X, Fallah P, Pandya M, Lyu H, Foyle D, Burch D, Diekwisch TGH. MicroRNAs: Harbingers and shapers of periodontal inflammation. Semin Cell Dev Biol 2021; 124:85-98. [PMID: 34120836 DOI: 10.1016/j.semcdb.2021.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Periodontal disease is an inflammatory reaction of the periodontal tissues to oral pathogens. In the present review we discuss the intricate effects of a regulatory network of gene expression modulators, microRNAs (miRNAs), as they affect periodontal morphology, function and gene expression during periodontal disease. These miRNAs are small RNAs involved in RNA silencing and post-transcriptional regulation and affect all stages of periodontal disease, from the earliest signs of gingivitis to the regulation of periodontal homeostasis and immunity and to the involvement in periodontal tissue destruction. MiRNAs coordinate periodontal disease progression not only directly but also through long non-coding RNAs (lncRNAs), which have been demonstrated to act as endogenous sponges or decoys that regulate the expression and function of miRNAs, and which in turn suppress the targeting of mRNAs involved in the inflammatory response, cell proliferation, migration and differentiation. While the integrity of miRNA function is essential for periodontal health and immunity, miRNA sequence variations (genetic polymorphisms) contribute toward an enhanced risk for periodontal disease progression and severity. Several polymorphisms in miRNA genes have been linked to an increased risk of periodontitis, and among those, miR-146a, miR-196, and miR-499 polymorphisms have been identified as risk factors for periodontal disease. The role of miRNAs in periodontal disease progression is not limited to the host tissues but also extends to the viruses that reside in periodontal lesions, such as herpesviruses (human herpesvirus, HHV). In advanced periodontal lesions, HHV infections result in the release of cytokines from periodontal tissues and impair antibacterial immune mechanisms that promote bacterial overgrowth. In turn, controlling the exacerbation of periodontal disease by minimizing the effect of periodontal HHV in periodontal lesions may provide novel avenues for therapeutic intervention. In summary, this review highlights multiple levels of miRNA-mediated control of periodontal disease progression, (i) through their role in periodontal inflammation and the dysregulation of homeostasis, (ii) as a regulatory target of lncRNAs, (iii) by contributing toward periodontal disease susceptibility through miRNA polymorphism, and (iv) as periodontal microflora modulators via viral miRNAs.
Collapse
Affiliation(s)
- Xianghong Luan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Xiaofeng Zhou
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | - Pooria Fallah
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Mirali Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Huling Lyu
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Deborah Foyle
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Dan Burch
- Department of Pedodontics, TAMU College of Dentistry, 75246 Dallas, TX, USA
| | - Thomas G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA.
| |
Collapse
|
11
|
Ahmad I, Valverde A, Siddiqui H, Schaller S, Naqvi AR. Viral MicroRNAs: Interfering the Interferon Signaling. Curr Pharm Des 2020; 26:446-454. [PMID: 31924149 DOI: 10.2174/1381612826666200109181238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/22/2019] [Indexed: 12/23/2022]
Abstract
Interferons are secreted cytokines with potent antiviral, antitumor and immunomodulatory functions. As the first line of defense against viruses, this pathway restricts virus infection and spread. On the contrary, viruses have evolved ingenious strategies to evade host immune responses including the interferon pathway. Multiple families of viruses, in particular, DNA viruses, encode microRNA (miR) that are small, non-protein coding, regulatory RNAs. Virus-derived miRNAs (v-miR) function by targeting host and virus-encoded transcripts and are critical in shaping host-pathogen interaction. The role of v-miRs in viral pathogenesis is emerging as demonstrated by their function in subverting host defense mechanisms and regulating fundamental biological processes such as cell survival, proliferation, modulation of viral life-cycle phase. In this review, we will discuss the role of v-miRs in the suppression of host genes involved in the viral nucleic acid detection, JAK-STAT pathway, and cytokine-mediated antiviral gene activation to favor viral replication and persistence. This information has yielded new insights into our understanding of how v-miRs promote viral evasion of host immunity and likely provide novel antiviral therapeutic targets.
Collapse
Affiliation(s)
- Imran Ahmad
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Araceli Valverde
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Hasan Siddiqui
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Samantha Schaller
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| | - Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, IL 60612, United States
| |
Collapse
|
12
|
Li X, Yuan M, Song L, Wang Y. Silencing of microRNA-210 inhibits the progression of liver cancer and hepatitis B virus-associated liver cancer via targeting EGR3. BMC MEDICAL GENETICS 2020; 21:48. [PMID: 32138690 PMCID: PMC7059654 DOI: 10.1186/s12881-020-0974-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND This study was aimed to investigate the regulatory role of microRNA-210 (miRNA-210) on the progression of liver cancer and Hepatitis B virus (HBV)-associated liver cancer. METHODS The expression of miRNA-210 was detected in liver tissues of HBV-associated cirrhosis and liver cancer, and in HepG2 and HepG2.2.15 cells by qRT-PCR. MiRNA-210 was silenced in HepG2 and HepG2.2.15 cells by the transfection of miRNA-210 inhibitor. The cell viability and apoptosis was detected by MTT assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining, respectively. The protein expression of EGR3 was detected by Western blot. The regulatory relationship between EGR3 and miRNA-210 was predicted by TargetScan and identified by Dual luciferase reporter gene assay. RESULTS MiRNA-210 was overexpressed in the liver tissues of HBV-associated cirrhosis and liver cancer, and in HepG2 and HepG2.2.15 cells (P < 0.05). Silencing of miRNA-210 inhibited the viability and promoted the apoptosis of HepG2 and HepG2.2.15 cells (P < 0.05). EGR3 was a target of miRNA-210, which was down-regulated in the liver tissues of HBV-associated cirrhosis and liver cancer, and in HepG2 and HepG2.2.15 cells (P < 0.05). Silencing of miRNA-210 increased the mRNA and protein expression of EGR3 (P < 0.05). Silencing of EGR3 reversed the anti-tumor effect of miRNA-210 inhibitor on HepG2 and HepG2.2.15 cells (P < 0.05). CONCLUSIONS Silencing of miRNA-210 inhibits the progression of liver cancer and HBV-associated liver cancer via up-regulating EGR3.
Collapse
Affiliation(s)
- Xiaojie Li
- The seventh Inpatient Area, Qingdao Sixth People’s Hospital, No. 9, Fushun Road, Shibei District, Qingdao City, 266033 Shandong Province China
| | - Mei Yuan
- Department of Inspection, Qingdao Sixth People’s Hospital, No. 9, Fushun Road, Shibei District, Qingdao City, 266033 Shandong Province China
| | - Lu Song
- Department of Inspection, Qingdao Sixth People’s Hospital, No. 9, Fushun Road, Shibei District, Qingdao City, 266033 Shandong Province China
| | - Yan Wang
- Chronic Disease Management Center, Qingdao Sixth People’s Hospital, No. 9, Fushun Road, Shibei District, Qingdao, 266033 Shandong Province China
| |
Collapse
|
13
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
14
|
Naqvi AR. Immunomodulatory roles of human herpesvirus-encoded microRNA in host-virus interaction. Rev Med Virol 2020; 30:e2081. [PMID: 31432608 PMCID: PMC7398577 DOI: 10.1002/rmv.2081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Human herpesviruses (HHV) are large, double stranded, DNA viruses with high seroprevalence across the globe. Clinical manifestation of primary HHV infection resolve shortly, however, this period is prolonged in immunocompromised patients or individuals with suppressed immunity. Examining molecular mechanisms of HHV-encoded virulence factors can provide finer details of HHV-host interaction. A unique genetic feature of most members of HHV is that they encode multiple microRNAs (miR). In this review, I will provide mechanistic insights into the immunomodulatory functions of herpesvirus-encoded viral miR (v-miR) that favor viral persistence and spread by ingenious immune evasion schemes. Similar to host miR, v-miR can simultaneously regulate expression of multiple transcripts including host- and virus-derived. V-miRs, by virtue of their direct interaction with various transcripts, can regulate expression of critical components of host innate and adaptive immune system. V-miRs are also exported through exosomal route and gain entry into various cells even at distant sites, thereby allowing HHV to manipulate cellular and tissue immunity. Targeting v-miR may serve as a novel and promising therapeutic candidate to mitigate HHV-mediated clinical manifestations.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
15
|
Armitage GC. A brief history of periodontics in the United States of America: Pioneers and thought-leaders of the past, and current challenges. Periodontol 2000 2019; 82:12-25. [PMID: 31850629 DOI: 10.1111/prd.12303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper summarizes historical events in periodontology in the United States over the past 200 years. The contributions of some of the key thought-leaders of the past are highlighted. Throughout the 20th century, the evolution of thought, leading to the views currently held regarding the pathogenesis and treatment of periodontal diseases, was significantly influenced by: (1) major changes in health-care education; (2) the emergence of periodontics as a specialty of dentistry; (3) the publication of peer-reviewed journals with an emphasis on periodontology; (4) formation of the National Institute of Dental and Craniofacial Research (NIDCR); and (5) expansion of periodontal research programs by the NIDCR. The two major future challenges facing periodontal research are development of a better understanding of the ecological complexities of host-microbial interactions in periodontal health and disease, and identification of the relevant mechanisms involved in the predictable regeneration of damaged periodontal tissues.
Collapse
Affiliation(s)
- Gary C Armitage
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
16
|
Petti S, Lodi G. The controversial natural history of oral herpes simplex virus type 1 infection. Oral Dis 2019; 25:1850-1865. [PMID: 31733122 DOI: 10.1111/odi.13234] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
Abstract
The natural history of oral herpes simplex virus type 1 (HSV-1) infection in the immunocompetent host is complex and rich in controversial phenomena, namely the role of unapparent transmission in primary infection acquisition, the high frequency of asymptomatic primary and recurrent infections, the lack of immunogenicity of HSV-1 internalized in the soma (cell body) of the sensory neurons of the trigeminal ganglion, the lytic activity of HSV-1 in the soma of neurons that is inhibited in the sensory neurons of the trigeminal ganglion and often uncontrolled in the other neurons, the role of keratin in promoting the development of recurrence episodes in immunocompetent hosts, the virus-host Nash equilibrium, the paradoxical HSV-1-seronegative individuals who shed HSV-1 through saliva, the limited efficacy of anti-HSV vaccines, and why the oral route of infection is the least likely to produce severe complications. The natural history of oral HSV-1 infection is also a history of symbiosis between humans and virus that may switch from mutualism to parasitism and vice versa. This balance is typical of microorganisms that are highly coevolved with humans, and its knowledge is essential to oral healthcare providers to perform adequate diagnosis and provide proper individual-based HSV-1 infection therapy.
Collapse
Affiliation(s)
- Stefano Petti
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Giovanni Lodi
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Naqvi AR, Brambila MF, Martínez G, Chapa G, Nares S. Dysregulation of human miRNAs and increased prevalence of HHV miRNAs in obese periodontitis subjects. J Clin Periodontol 2019; 46:51-61. [PMID: 30499589 DOI: 10.1111/jcpe.13040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023]
Abstract
AIM To evaluate human and herpesvirus-encoded microRNA (miRNA) expression in healthy and diseased gingiva of obese and non-obese subjects and compare the impact of localized and systemic inflammation on human miRNA profiles. MATERIAL AND METHODS Healthy and inflamed gingival biopsies were collected from obese and non-obese subjects. Human and herpesvirus miRNA expression was quantified using quantitative PCR. Predicted targets of dysregulated miRNAs were identified using bioinformatics analysis, validated by dual luciferase assays and their expression assessed in healthy and diseased tissues. RESULTS Our results show differential expression of miRNAs in both diseased groups compared to healthy counterparts. MMP-16 is identified as a novel target of miRNAs altered in disease. Expression analysis of genes predicted as target of differentially expressed miRNAs show significant changes in disease compared with healthy tissues. Finally, quantitation of four herpesvirus-derived viral miRNAs show that the expression and prevalence of herpesvirus miRNAs in diseased gingiva of obese subjects. CONCLUSION Our findings show that miRNA (both cellular and virus) expression is differentially responsive to local and systemic inflammation. Some of these miRNAs can modulate key cellular genes with direct consequences on inflammatory pathways suggesting their impact on oral tissue transcriptome and functions.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Department of Periodontics, University of Illinois at Chicago, Chicago, Illinois
| | - Maria F Brambila
- Posgrado de Periodoncia, Facultad de Odontologia, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Gloria Martínez
- Posgrado de Periodoncia, Facultad de Odontologia, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Gabriela Chapa
- Posgrado de Periodoncia, Facultad de Odontologia, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Salvador Nares
- Department of Periodontics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Herpes Simplex Virus 1 Lytic Infection Blocks MicroRNA (miRNA) Biogenesis at the Stage of Nuclear Export of Pre-miRNAs. mBio 2019; 10:mBio.02856-18. [PMID: 30755517 PMCID: PMC6372804 DOI: 10.1128/mbio.02856-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Various mechanisms have been identified by which viruses target host small RNA biogenesis pathways to achieve optimal infection outcomes. Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen whose successful persistence in the host entails both productive (“lytic”) and latent infection. Although many HSV-1 miRNAs have been discovered and some are thought to help control the lytic/latent switch, little is known about regulation of their biogenesis. By characterizing expression of both pre-miRNAs and mature miRNAs under various conditions, this study revealed striking differences in miRNA biogenesis between lytic and latent infection and uncovered a regulatory mechanism that blocks pre-miRNA nuclear export and is dependent on viral protein ICP27 and viral DNA synthesis. This mechanism represents a new virus-host interaction that could limit the repressive effects of HSV-1 miRNAs hypothesized to promote latency and may shed light on the regulation of miRNA nuclear export, which has been relatively unexplored. Herpes simplex virus 1 (HSV-1) switches between two infection programs, productive (“lytic”) and latent infection. Some HSV-1 microRNAs (miRNAs) have been hypothesized to help control this switch, and yet little is known about regulation of their expression. Using Northern blot analyses, we found that, despite inherent differences in biogenesis efficiency among six HSV-1 miRNAs, all six exhibited high pre-miRNA/miRNA ratios during lytic infection of different cell lines and, when detectable, in acutely infected mouse trigeminal ganglia. In contrast, considerably lower ratios were observed in latently infected ganglia and in cells transduced with lentiviral vectors expressing the miRNAs, suggesting that HSV-1 lytic infection blocks miRNA biogenesis. This phenomenon is not specific to viral miRNAs, as a host miRNA expressed from recombinant HSV-1 also exhibited high pre-miRNA/miRNA ratios late during lytic infection. The levels of most of the mature miRNAs remained stable during infection in the presence of actinomycin D, indicating that the high ratios are due to inefficient pre-miRNA conversion to miRNA. Cellular fractionation experiments showed that late (but not early) during infection, pre-miRNAs were enriched in the nucleus and depleted in the cytoplasm, indicating that nuclear export was blocked. A mutation eliminating ICP27 expression or addition of acyclovir reduced pre-miRNA/miRNA ratios, but mutations drastically reducing Us11 expression did not. Thus, HSV-1 lytic infection inhibits miRNA biogenesis at the step of nuclear export and does so in an ICP27- and viral DNA synthesis-dependent manner. This mechanism may benefit the virus by reducing expression of repressive miRNAs during lytic infection while permitting elevated expression during latency.
Collapse
|
19
|
Naqvi AR, Shango J, Seal A, Shukla D, Nares S. Herpesviruses and MicroRNAs: New Pathogenesis Factors in Oral Infection and Disease? Front Immunol 2018; 9:2099. [PMID: 30319604 PMCID: PMC6170608 DOI: 10.3389/fimmu.2018.02099] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/24/2018] [Indexed: 12/28/2022] Open
Abstract
The oral cavity incessantly encounters a plethora of microorganisms. Effective and efficient oral innate and adaptive immune responses are incumbent to maintain healthy mucosa. A higher prevalence of Human Herpesviruses (HHV), a family of large enveloped DNA viruses, has been reported in multiple oral inflammatory diseases suggesting their involvement in disease progression. However, the viral components contributing to oral disease remain obscure. MicroRNAs (miRNA) are non-protein coding, single stranded ribonucleic acid (RNA) molecules that post-transcriptionally regulate diverse messenger RNAs. Thus, miRNAs can control large repertoire of biological processes. Changes in miRNA expression are associated with various oral infections and diseases. Cellular miRNAs can act as pro- or anti-viral factors and dysregulation of host miRNA expression occurs during herpesviruses infection. This strongly suggest a critical role of cellular miRNAs in host-herpesvirus interaction. Interestingly, HHV also encode multiple miRNAs (called viral miRNAs) that may play key role in host-pathogen interaction by modulating both host biological pathways and controlling viral life cycle. Recent studies from our laboratory have identified viral miRNAs (v-miRs) in diseased oral tissue biopsies and demonstrate their immunomodulatory roles. This review discusses the association of miRNAs (both host and viral) and herpesviruses in the pathogenesis of oral inflammatory diseases.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Jennifer Shango
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Alexandra Seal
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, United States
| | - Salvador Nares
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Human Cytomegalovirus Productively Replicates In Vitro in Undifferentiated Oral Epithelial Cells. J Virol 2018; 92:JVI.00903-18. [PMID: 29848590 DOI: 10.1128/jvi.00903-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) productive replication in vitro is most often studied in fibroblasts. In vivo, fibroblasts amplify viral titers, but transmission and pathogenesis require the infection of other cell types, most notably epithelial cells. In vitro, the study of HCMV infection of epithelial cells has been almost exclusively restricted to ocular epithelial cells. Here we present oral epithelial cells with relevance for viral interhost transmission as an in vitro model system to study HCMV infection. We discovered that HCMV productively replicates in normal oral keratinocytes (NOKs) and telomerase-immortalized gingival cells (hGETs). Our work introduces oral epithelial cells for the study of HCMV productive infection, drug screening, and vaccine development.IMPORTANCE The ocular epithelial cells currently used to study HCMV infections in vitro have historical significance based upon their role in retinitis, an HCMV disease most often seen in AIDS patients. However, with the successful implementation of highly active antiretroviral therapy (HAART) regimens, the incidence of HCMV retinitis has rapidly declined, and therefore, the relevance of studying ocular epithelial cell HCMV infection has decreased as well. Our introduction here of oral epithelial cells provides two alternative in vitro models for the study of HCMV infection that complement and extend the physiologic relevance of the ocular system currently in use.
Collapse
|
21
|
Naqvi AR, Seal A, Shango J, Shukla D, Nares S. In silico prediction of cellular gene targets of herpesvirus encoded microRNAs. Data Brief 2018; 19:249-255. [PMID: 29892642 PMCID: PMC5993014 DOI: 10.1016/j.dib.2018.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/19/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
Herpesviruses have evolved to encode multiple microRNAs [viral miRNAs (v-miRs)], a unique feature of this family of double stranded DNA (dsDNA) viruses. However, functional role of these v-miRs in host-pathogen interaction remains poorly studied. In this data, we examined the impact of oral disease associated v-miRs viz., miR-H1 [encoded by herpes simplex virus 1 (HSV1)] and miR-K12-3 [encoded by Kaposi sarcoma-associated herpesvirus (KSHV)] by identifying putative targets of viral miRNAs. We used our published microarray data (GSE107005) to identify the transcripts downregulated by the v-miRs. The 3′ untranslated region (UTR) of these genes were extracted using BioMart tool on Ensembl and subjected to RNA:RNA interaction employing RNA Hybrid. We obtained hundreds of potential and novel miR-H1 and miR-K12-3 binding sites on the 3′UTR of the genes downregulated by these v-miRs. The information can provide likely regulatory mechanisms of the candidate v-miRs through which they can exert biological impact during herpesvirus infection and pathogenesis.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago IL 60612 USA
| | - Alexandra Seal
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago IL 60612 USA
| | - Jennifer Shango
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago IL 60612 USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, 60612, USA
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago IL 60612 USA
| |
Collapse
|