1
|
Tsap MI, Yatsenko AS, Hegermann J, Beckmann B, Tsikas D, Shcherbata HR. Unraveling the link between neuropathy target esterase NTE/SWS, lysosomal storage diseases, inflammation, abnormal fatty acid metabolism, and leaky brain barrier. eLife 2024; 13:e98020. [PMID: 38660940 PMCID: PMC11090517 DOI: 10.7554/elife.98020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.
Collapse
Affiliation(s)
- Mariana I Tsap
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Bibiana Beckmann
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, United States
| |
Collapse
|
2
|
The alteration of the expression level of neuropathy target esterase in human neuroblastoma SK-N-SH cells disrupts cellular phospholipids homeostasis. Toxicol In Vitro 2023; 86:105509. [PMID: 36336212 DOI: 10.1016/j.tiv.2022.105509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Neuropathy target esterase (NTE) has been proven to act as a lysophospholipase (LysoPLA) and phospholipase B (PLB) in mammalian cells. In this study, we took human neuroblastoma SK-N-SH cells as the research object and explored the effect of NTE on phospholipid homeostasis. The results showed that phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) levels significantly increased (> 40%), while glycerophosphocholine (GPC) decreased (below 60%) after NTE gene was knockdown in the cells (NTE < 30% of control), which were prepared by gene silencing with dsRNA-NTE. However, in the NTE-overexpressed cells (NTE > 50% of control), which were prepared by expressing recombinant catalytic domain of NTE, LPC remarkably decreased (below 80%) and GPC enhanced (> 40%). Mipafox, a neuropathic organophosphorus compound (OP), significantly inhibited NTE-LysoPLA and NTE-PLB activities (> 95-99% inhibition at 50 μM), which was accompanied with a decreased GPC level (below 40%) although no change of the PC and LPC levels was observed; while paraoxon, a non-neuropathic OP, suppresses neither the activities of NTE-phospholipases nor the levels of PC, LPC, and GPC. Thus, we concluded that both the stable up- or down-regulated expression of NTE gene and the loss of NTE-LysoPLA/PLB activities disrupts phospholipid homeostasis in the cells although the inhibition of NTE activity only decreased GPC content without altering PC and LPC levels.
Collapse
|
3
|
Richardson RJ, Fink JK, Glynn P, Hufnagel RB, Makhaeva GF, Wijeyesakere SJ. Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). ADVANCES IN NEUROTOXICOLOGY 2020; 4:1-78. [PMID: 32518884 PMCID: PMC7271139 DOI: 10.1016/bs.ant.2020.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Systemic inhibition of neuropathy target esterase (NTE) with certain organophosphorus (OP) compounds produces OP compound-induced delayed neurotoxicity (OPIDN), a distal degeneration of axons in the central nervous system (CNS) and peripheral nervous system (PNS), thereby providing a powerful model for studying a spectrum of neurodegenerative diseases. Axonopathies are important medical entities in their own right, but in addition, illnesses once considered primary neuronopathies are now thought to begin with axonal degeneration. These disorders include Alzheimer's disease, Parkinson's disease, and motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Moreover, conditional knockout of NTE in the mouse CNS produces vacuolation and other degenerative changes in large neurons in the hippocampus, thalamus, and cerebellum, along with degeneration and swelling of axons in ascending and descending spinal cord tracts. In humans, NTE mutations cause a variety of neurodegenerative conditions resulting in a range of deficits including spastic paraplegia and blindness. Mutations in the Drosophila NTE orthologue SwissCheese (SWS) produce neurodegeneration characterized by vacuolization that can be partially rescued by expression of wild-type human NTE, suggesting a potential therapeutic approach for certain human neurological disorders. This chapter defines NTE and OPIDN, presents an overview of OP compounds, provides a rationale for NTE research, and traces the history of discovery of NTE and its relationship to OPIDN. It then briefly describes subsequent studies of NTE, including practical applications of the assay; aspects of its domain structure, subcellular localization, and tissue expression; abnormalities associated with NTE mutations, knockdown, and conventional or conditional knockout; and hypothetical models to help guide future research on elucidating the role of NTE in OPIDN.
Collapse
Affiliation(s)
- Rudy J. Richardson
- Molecular Simulations Laboratory, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States,Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI, United States,Corresponding author:
| | - John K. Fink
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States,Ann Arbor Veterans Affairs Medical Center, Ann Arbor, MI, United States
| | - Paul Glynn
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka, Russia
| | - Sanjeeva J. Wijeyesakere
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Sadekuzzaman M, Gautam N, Kim Y. A novel calcium-independent phospholipase A 2 and its physiological roles in development and immunity of a lepidopteran insect, Spodoptera exigua. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 77:210-220. [PMID: 28851514 DOI: 10.1016/j.dci.2017.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
Phospholipase A2 (PLA2) catalyzes hydrolysis of ester linkage at sn-2 position of phospholipids. At least 15 groups (I-XV) of PLA2 gene superfamily are associated with various physiological processes such as digestion, secretion, immunity, and maintenance of membrane integrity. This study suggests that various insects encode putative Group VI PLA2s representing intracellular and calcium-independent PLA2s (iPLA2). These insect iPLA2s are separated into at least two subgroups: iPLA2A (Group VIA-like) and iPLA2B (non-Group VIA). Most insects encode genes of iPLA2B type, although their biological functions are currently unknown. This study predicted a novel iPLA2 from Spodoptera exigua (a lepidopteran insect) (SeiPLA2B) and analyzed its physiological functions by RNA interference (RNAi). SeiPLA2B encodes 336 amino acid sequence with a predicted size of about 36.6 kDa and an isoelectric point at pH 8.61. It possesses a lipase catalytic site, but does not have ankyrin repeats in the amino terminal region. Phylogenetic analysis indicated that SeiPLA2B was clustered with other Group VI iPLA2s, in which SeiPLA2B was closely associated with Group VIF gene while SeiPLA2A was closely related to Group VIA gene. SeiPLA2B was expressed in all developmental stages of S. exigua. In larval stage, SeiPLA2B was expressed in fat body, hemocyte, and epidermis, but not in digestive tract. SeiPLA2B RNAi significantly reduced PLA2 enzyme activities and resulted in developmental retardation and immunosuppression. Though RNAi treatment did not significantly change fatty acid composition in fat body lipids, it significantly increased lipid peroxidation. Taken together, our results suggest that SeiPLA2B plays important roles in the development and immunity of S. exigua.
Collapse
Affiliation(s)
- Md Sadekuzzaman
- Department of Bio-Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Neelam Gautam
- Department of Bio-Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Yonggyun Kim
- Department of Bio-Sciences, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
5
|
Heier C, Kien B, Huang F, Eichmann TO, Xie H, Zechner R, Chang PA. The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain. J Biol Chem 2017; 292:19087-19098. [PMID: 28887301 PMCID: PMC5704489 DOI: 10.1074/jbc.m117.792978] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/31/2017] [Indexed: 01/04/2023] Open
Abstract
Mammalian patatin-like phospholipase domain-containing proteins (PNPLAs) are lipid-metabolizing enzymes with essential roles in energy metabolism, skin barrier development, and brain function. A detailed annotation of enzymatic activities and structure-function relationships remains an important prerequisite to understand PNPLA functions in (patho-)physiology, for example, in disorders such as neutral lipid storage disease, non-alcoholic fatty liver disease, and neurodegenerative syndromes. In this study, we characterized the structural features controlling the subcellular localization and enzymatic activity of PNPLA7, a poorly annotated phospholipase linked to insulin signaling and energy metabolism. We show that PNPLA7 is an endoplasmic reticulum (ER) transmembrane protein that specifically promotes hydrolysis of lysophosphatidylcholine in mammalian cells. We found that transmembrane and regulatory domains in the PNPLA7 N-terminal region cooperate to regulate ER targeting but are dispensable for substrate hydrolysis. Enzymatic activity is instead mediated by the C-terminal domain, which maintains full catalytic competence even in the absence of N-terminal regions. Upon elevated fatty acid flux, the catalytic domain targets cellular lipid droplets and promotes interactions of PNPLA7 with these organelles in response to increased cAMP levels. We conclude that PNPLA7 acts as an ER-anchored lysophosphatidylcholine hydrolase that is composed of specific functional domains mediating catalytic activity, subcellular positioning, and interactions with cellular organelles. Our study provides critical structural insights into an evolutionarily conserved class of phospholipid-metabolizing enzymes.
Collapse
Affiliation(s)
- Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Benedikt Kien
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Feifei Huang
- Key Laboratory of Molecular Biology, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Thomas O Eichmann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Hao Xie
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria, and
| | - Ping-An Chang
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria,
- Key Laboratory of Molecular Biology, School of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
6
|
Xu HY, Wang P, Sun YJ, Jiang L, Xu MY, Wu YJ. Autophagy in Tri-o-cresyl Phosphate-Induced Delayed Neurotoxicity. J Neuropathol Exp Neurol 2017; 76:52-60. [PMID: 28040792 DOI: 10.1093/jnen/nlw108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The widely used organophosphorus compound tri-o-cresyl phosphate (TOCP) elicits delayed neurotoxicity characterized by progressive axonal degeneration in the spinal cord and peripheral nerves. However, the precise mechanisms of TOCP-induced delayed neurotoxicity are not clear. Because autophagy has been linked to the pathogenesis of neurodegenerative diseases, we aimed to characterize autophagy in the progression of TOCP-induced delayed neurotoxicity. In vivo experiments using the adult hen animal model showed that autophagy in spinal cord axons and in sciatic nerves was markedly induced at the early preclinical stage of TOCP-induced delayed neurotoxicity; it was decreased as the delayed neurotoxicity progressed to the overt neuropathy stage. In cultured human neuroblastoma SH-SY5Y cells, TOCP reduced cell growth, and induced prominent autophagy. The autophagy inhibitor 3-methyladenine could attenuate TOCP-induced cytotoxicity, indicating that the autophagy is accountable for TOCP-induced neurotoxicity. In addition, we found that TOCP-induced Parkin translocation to mitochondria in SH-SY5Y cells, suggesting that autophagy may function to degrade mitochondria after TOCP exposure. These results suggest that autophagy may play an important role in the initiation and progression of axonal damage during TOCP-induced neurotoxicity.
Collapse
Affiliation(s)
- Hai-Yang Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Pan Wang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ying-Jian Sun
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,Department of Veterinary Medicine and Animal Science, Beijing University of Agriculture, Beijing, People's Republic of China
| | - Lu Jiang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ming-Yuan Xu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi-Jun Wu
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
7
|
Mohylyak II, Chernyk YI. Functioning of glia and neurodegeneration in Drosophila melanogaster. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717030094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
New insights on molecular interactions of organophosphorus pesticides with esterases. Toxicology 2017; 376:30-43. [DOI: 10.1016/j.tox.2016.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/25/2016] [Accepted: 06/10/2016] [Indexed: 01/01/2023]
|
9
|
Sivachenko A, Gordon HB, Kimball SS, Gavin EJ, Bonkowsky JL, Letsou A. Neurodegeneration in a Drosophila model of adrenoleukodystrophy: the roles of the Bubblegum and Double bubble acyl-CoA synthetases. Dis Model Mech 2016; 9:377-87. [PMID: 26893370 PMCID: PMC4852500 DOI: 10.1242/dmm.022244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/17/2016] [Indexed: 12/21/2022] Open
Abstract
Debilitating neurodegenerative conditions with metabolic origins affect millions of individuals worldwide. Still, for most of these neurometabolic disorders there are neither cures nor disease-modifying therapies, and novel animal models are needed for elucidation of disease pathology and identification of potential therapeutic agents. To date, metabolic neurodegenerative disease has been modeled in animals with only limited success, in part because existing models constitute analyses of single mutants and have thus overlooked potential redundancy within metabolic gene pathways associated with disease. Here, we present the first analysis of a very-long-chain acyl-CoA synthetase (ACS) double mutant. We show that the Drosophila bubblegum(bgm) and double bubble(dbb) genes have overlapping functions, and that the consequences of double knockout of both bubblegum and double bubble in the fly brain are profound, affecting behavior and brain morphology, and providing the best paradigm to date for an animal model of adrenoleukodystrophy (ALD), a fatal childhood neurodegenerative disease associated with the accumulation of very-long-chain fatty acids. Using this more fully penetrant model of disease to interrogate brain morphology at the level of electron microscopy, we show that dysregulation of fatty acid metabolism via disruption of ACS function in vivois causal of neurodegenerative pathologies that are evident in both neuronal cells and their supporting cell populations, and leads ultimately to lytic cell death in affected areas of the brain. Finally, in an extension of our model system to the study of human disease, we describe our identification of an individual with leukodystrophy who harbors a rare mutation in SLC27a6(encoding a very-long-chain ACS), a human homolog of bgm and dbb.
Collapse
Affiliation(s)
- Anna Sivachenko
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hannah B Gordon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Suzanne S Kimball
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin J Gavin
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
10
|
Smani T, Domínguez-Rodriguez A, Callejo-García P, Rosado JA, Avila-Medina J. Phospholipase A2 as a Molecular Determinant of Store-Operated Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:111-31. [PMID: 27161227 DOI: 10.1007/978-3-319-26974-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation of phospholipases A2 (PLA2) leads to the generation of biologically active lipid products that can affect numerous cellular events. Ca(2+)-independent PLA2 (iPLA2), also called group VI phospholipase A2, is one of the main types forming the superfamily of PLA2. Beside of its role in phospholipid remodeling, iPLA2 has been involved in intracellular Ca(2+) homeostasis regulation. Several studies proposed iPLA2 as an essential molecular player of store operated Ca(2+) entry (SOCE) in a large number of excitable and non-excitable cells. iPLA2 activation releases lysophosphatidyl products, which were suggested as agonists of store operated calcium channels (SOCC) and other TRP channels. Herein, we will review the important role of iPLA2 on the intracellular Ca(2+) handling focusing on its role in SOCE regulation and its implication in physiological and/or pathological processes.
Collapse
Affiliation(s)
- Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain.
| | - Alejandro Domínguez-Rodriguez
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Paula Callejo-García
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain
| | - Javier Avila-Medina
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| |
Collapse
|
11
|
Wang P, Wang Q, Yang L, Qin QL, Wu YJ. Characterization of lysophosphatidylcholine-induced changes of intracellular calcium in Drosophila S2 cells. Life Sci 2015; 131:57-62. [DOI: 10.1016/j.lfs.2015.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/30/2022]
|
12
|
Batchu KC, Hokynar K, Jeltsch M, Mattonet K, Somerharju P. Substrate efflux propensity is the key determinant of Ca2+-independent phospholipase A-β (iPLAβ)-mediated glycerophospholipid hydrolysis. J Biol Chem 2015; 290:10093-103. [PMID: 25713085 DOI: 10.1074/jbc.m115.642835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Indexed: 12/13/2022] Open
Abstract
The A-type phospholipases (PLAs) are key players in glycerophospholipid (GPL) homeostasis and in mammalian cells; Ca(2+)-independent PLA-β (iPLAβ) in particular has been implicated in this essential process. However, the regulation of this enzyme, which is necessary to avoid futile competition between synthesis and degradation, is not understood. Recently, we provided evidence that the efflux of the substrate molecules from the bilayer is the rate-limiting step in the hydrolysis of GPLs by some secretory (nonhomeostatic) PLAs. To study whether this is the case with iPLAβ as well, a mass spectrometric assay was employed to determine the rate of hydrolysis of multiple saturated and unsaturated GPL species in parallel using micelles or vesicle bilayers as the macrosubstrate. With micelles, the hydrolysis decreased with increasing acyl chain length independent of unsaturation, and modest discrimination between acyl positional isomers was observed, presumably due to the differences in the structure of the sn-1 and sn-2 acyl-binding sites of the protein. In striking contrast, no significant discrimination between positional isomers was observed with bilayers, and the rate of hydrolysis decreased with the acyl chain length logarithmically and far more than with micelles. These data provide compelling evidence that efflux of the substrate molecule from the bilayer, which also decreases monotonously with acyl chain length, is the rate-determining step in iPLAβ-mediated hydrolysis of GPLs in membranes. This finding is intriguing as it may help to understand how homeostatic PLAs are regulated and how degradation and biosynthesis are coordinated.
Collapse
Affiliation(s)
| | - Kati Hokynar
- From the Departments of Biochemistry and Developmental Biology and
| | - Michael Jeltsch
- Biomedicine, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Kenny Mattonet
- Biomedicine, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | | |
Collapse
|
13
|
Kmoch S, Majewski J, Ramamurthy V, Cao S, Fahiminiya S, Ren H, MacDonald IM, Lopez I, Sun V, Keser V, Khan A, Stránecký V, Hartmannová H, Přistoupilová A, Hodaňová K, Piherová L, Kuchař L, Baxová A, Chen R, Barsottini OGP, Pyle A, Griffin H, Splitt M, Sallum J, Tolmie JL, Sampson JR, Chinnery P, Banin E, Sharon D, Dutta S, Grebler R, Helfrich-Foerster C, Pedroso JL, Kretzschmar D, Cayouette M, Koenekoop RK. Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness. Nat Commun 2015; 6:5614. [PMID: 25574898 DOI: 10.1038/ncomms6614] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 10/21/2014] [Indexed: 11/09/2022] Open
Abstract
Blindness due to retinal degeneration affects millions of people worldwide, but many disease-causing mutations remain unknown. PNPLA6 encodes the patatin-like phospholipase domain containing protein 6, also known as neuropathy target esterase (NTE), which is the target of toxic organophosphates that induce human paralysis due to severe axonopathy of large neurons. Mutations in PNPLA6 also cause human spastic paraplegia characterized by motor neuron degeneration. Here we identify PNPLA6 mutations in childhood blindness in seven families with retinal degeneration, including Leber congenital amaurosis and Oliver McFarlane syndrome. PNPLA6 localizes mostly at the inner segment plasma membrane in photoreceptors and mutations in Drosophila PNPLA6 lead to photoreceptor cell death. We also report that lysophosphatidylcholine and lysophosphatidic acid levels are elevated in mutant Drosophila. These findings show a role for PNPLA6 in photoreceptor survival and identify phospholipid metabolism as a potential therapeutic target for some forms of blindness.
Collapse
Affiliation(s)
- S Kmoch
- First Faculty of Medicine, Institute for Inherited Metabolic Disorders, Charles University in Prague, 120 00 Prague 2, Czech Republic
| | - J Majewski
- Faculty of Medicine, Department of Human Genetics, McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 0G1
| | - V Ramamurthy
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), 110, Ave des Pins Ouest, Montreal, Quebec, Canada H2W 1R7
| | - S Cao
- 1] McGill University, 845 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0G4 [2] McGill Ocular Genetics Laboratory; Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre, 2300 Tupper, Montreal, Quebec, Canada H3H 1P3
| | - S Fahiminiya
- Faculty of Medicine, Department of Human Genetics, McGill University and Genome Quebec Innovation Center, Montreal, Quebec, Canada H3A 0G1
| | - H Ren
- 1] McGill University, 845 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0G4 [2] McGill Ocular Genetics Laboratory; Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre, 2300 Tupper, Montreal, Quebec, Canada H3H 1P3
| | - I M MacDonald
- Department of Ophthalmology and Visual Sciences, University of Alberta/Royal Alexandra Hospital, 10240 Kingsway Avenue, Edmonton, Alberta, Canada AB T5H 3V9
| | - I Lopez
- 1] McGill University, 845 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0G4 [2] McGill Ocular Genetics Laboratory; Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre, 2300 Tupper, Montreal, Quebec, Canada H3H 1P3
| | - V Sun
- 1] McGill University, 845 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0G4 [2] McGill Ocular Genetics Laboratory; Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre, 2300 Tupper, Montreal, Quebec, Canada H3H 1P3
| | - V Keser
- 1] McGill University, 845 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0G4 [2] McGill Ocular Genetics Laboratory; Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre, 2300 Tupper, Montreal, Quebec, Canada H3H 1P3
| | - A Khan
- 1] McGill University, 845 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0G4 [2] McGill Ocular Genetics Laboratory; Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre, 2300 Tupper, Montreal, Quebec, Canada H3H 1P3
| | - V Stránecký
- First Faculty of Medicine, Institute for Inherited Metabolic Disorders, Charles University in Prague, 120 00 Prague 2, Czech Republic
| | - H Hartmannová
- First Faculty of Medicine, Institute for Inherited Metabolic Disorders, Charles University in Prague, 120 00 Prague 2, Czech Republic
| | - A Přistoupilová
- First Faculty of Medicine, Institute for Inherited Metabolic Disorders, Charles University in Prague, 120 00 Prague 2, Czech Republic
| | - K Hodaňová
- First Faculty of Medicine, Institute for Inherited Metabolic Disorders, Charles University in Prague, 120 00 Prague 2, Czech Republic
| | - L Piherová
- First Faculty of Medicine, Institute for Inherited Metabolic Disorders, Charles University in Prague, 120 00 Prague 2, Czech Republic
| | - L Kuchař
- First Faculty of Medicine, Institute for Inherited Metabolic Disorders, Charles University in Prague, 120 00 Prague 2, Czech Republic
| | - A Baxová
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University in Prague, 120 00 Prague 2, Czech Republic
| | - R Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - O G P Barsottini
- Division of General Neurology and Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, Sao Paulo 04021-001, Brazil
| | - A Pyle
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - H Griffin
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - M Splitt
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - J Sallum
- Department of Ophthalmology, Universidade Federal de São Paulo, Sao Paulo 04021-001, Brazil
| | - J L Tolmie
- Department of Clinical Genetics, Southern General Hospital, Glasgow G51 4TF, UK
| | - J R Sampson
- Institute of Medical Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - P Chinnery
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | | | - E Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - D Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - S Dutta
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - R Grebler
- Lehrstuhl fuer Neurobiology und Genetik, Universitaet Wuerzburg, 97074 Wuerzburg, Germany
| | - C Helfrich-Foerster
- Lehrstuhl fuer Neurobiology und Genetik, Universitaet Wuerzburg, 97074 Wuerzburg, Germany
| | - J L Pedroso
- Division of General Neurology and Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, Sao Paulo 04021-001, Brazil
| | - D Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - M Cayouette
- 1] Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), 110, Ave des Pins Ouest, Montreal, Quebec, Canada H2W 1R7 [2] Departement de Médecine, Université de Montréal, Montreal, Quebec, Canada H3T 1P1 [3] Division of Experimental Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2
| | - R K Koenekoop
- 1] McGill University, 845 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0G4 [2] McGill Ocular Genetics Laboratory; Departments of Paediatric Surgery, Human Genetics and Ophthalmology, Montreal Children's Hospital, McGill University Health Centre, 2300 Tupper, Montreal, Quebec, Canada H3H 1P3
| |
Collapse
|
14
|
|
15
|
Silencing of PNPLA6, the neuropathy target esterase (NTE) codifying gene, alters neurodifferentiation of human embryonal carcinoma stem cells (NT2). Neuroscience 2014; 281:54-67. [DOI: 10.1016/j.neuroscience.2014.08.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/18/2014] [Accepted: 08/19/2014] [Indexed: 12/30/2022]
|
16
|
Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery. BMC Genomics 2013; 14:291. [PMID: 23631360 PMCID: PMC3760450 DOI: 10.1186/1471-2164-14-291] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/20/2013] [Indexed: 01/13/2023] Open
Abstract
Background The principal toxicity of acute organophosphate (OP) pesticide poisoning is the disruption of neurotransmission through inhibition of acetylcholinesterase (AChE). However, other mechanisms leading to persistent effects and neurodegeneration remain controversial and difficult to detect. Because Caenorhabditis elegans is relatively resistant to OP lethality—particularly through the inhibition of AChE—studies in this nematode provide an opportunity to observe alterations in global gene expression following OP exposure that cannot be readily observed in less resistant organisms. Results We exposed cultures of worms in axenic, defined medium to dichlorvos under three exposure protocols. In the first, worms were exposed continuously throughout the experiment. In the second and third, the worms were exposed for either 2 or 8 h, the dichlorvos was washed out of the culture, and the worms were allowed to recover. We then analyzed gene expression using whole genome microarrays from RNA obtained from worms sampled at multiple time points throughout the exposure. The worms showed a time-dependent increase in the expression of genes involved in stress responses. Early in the exposure, the predominant effect was on metabolic processes, while at later times, an immune-like response and cellular repair mechanisms dominated the expression pattern. Following removal of dichlorvos, the gene expression in the worms appeared to relatively rapidly return to steady-state levels. Conclusion The changes in gene expression observed in the worms following exposure to dichlorvos point towards two potential mechanisms of toxicity: inhibition of AChE and mitochondrial disruption.
Collapse
|
17
|
Phosphatidylcholine and the CDP-choline cycle. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:523-32. [PMID: 23010477 DOI: 10.1016/j.bbalip.2012.09.009] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/16/2012] [Indexed: 11/20/2022]
Abstract
The CDP-choline pathway of phosphatidylcholine (PtdCho) biosynthesis was first described more than 50 years ago. Investigation of the CDP-choline pathway in yeast provides a basis for understanding the CDP-choline pathway in mammals. PtdCho is considered as an intermediate in a cycle of synthesis and degradation, and the activity of a CDP-choline cycle is linked to subcellular membrane lipid movement. The components of the mammalian CDP-choline pathway include choline transport, choline kinase, phosphocholine cytidylyltransferase, and choline phosphotransferase activities. The protein isoforms and biochemical mechanisms of regulation of the pathway enzymes are related to their cell- and tissue-specific functions. Regulated PtdCho turnover mediated by phospholipases or neuropathy target esterase participates in the mammalian CDP-choline cycle. Knockout mouse models define the biological functions of the CDP-choline cycle in mammalian cells and tissues. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
|
18
|
Song Y, Wang M, Mao F, Shao M, Zhao B, Song Z, Shao C, Gong Y. Knockdown of Pnpla6 protein results in motor neuron defects in zebrafish. Dis Model Mech 2012; 6:404-13. [PMID: 22996643 PMCID: PMC3597022 DOI: 10.1242/dmm.009688] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations in patatin-like phospholipase domain containing 6 (PNPLA6), also known as neuropathy target esterase (NTE) or SPG39, cause hereditary spastic paraplegia (HSP). Although studies on animal models, including mice and Drosophila, have extended our understanding of PNPLA6, its roles in neural development and in HSP are not clearly understood. Here, we describe the generation of a vertebrate model of PNPLA6 insufficiency using morpholino oligonucleotide knockdown in zebrafish (Danio rerio). Pnpla6 knockdown resulted in developmental abnormalities and motor neuron defects, including axon truncation and branching. The phenotypes in pnpla6 knockdown morphants were rescued by the introduction of wild-type, but not mutant, human PNPLA6 mRNA. Our results also revealed the involvement of BMP signaling in pnpla6 knockdown phenotypes. Taken together, these results demonstrate an important role of PNPLA6 in motor neuron development and implicate overexpression of BMP signaling as a possible mechanism underlying the developmental defects in pnpla6 morphants.
Collapse
Affiliation(s)
- Yang Song
- Institute of Medical Genetics and Key Laboratory for Experimental Teratology of Ministry of Education, School of Medicine, Shandong University, Jinan 250012 Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Neurodegenerations Induced by Organophosphorous Compounds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:189-204. [DOI: 10.1007/978-1-4614-0653-2_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
20
|
Hermansson M, Hokynar K, Somerharju P. Mechanisms of glycerophospholipid homeostasis in mammalian cells. Prog Lipid Res 2011; 50:240-57. [DOI: 10.1016/j.plipres.2011.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/21/2011] [Accepted: 02/25/2011] [Indexed: 01/09/2023]
|
21
|
Long JZ, Cravatt BF. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem Rev 2011; 111:6022-63. [PMID: 21696217 DOI: 10.1021/cr200075y] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jonathan Z Long
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|
22
|
Hein ND, Rainier SR, Richardson RJ, Fink JK. Motor neuron disease due to neuropathy target esterase mutation: enzyme analysis of fibroblasts from human subjects yields insights into pathogenesis. Toxicol Lett 2010; 199:1-5. [PMID: 20603202 DOI: 10.1016/j.toxlet.2010.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 11/25/2022]
Abstract
Recently, we identified neuropathy target esterase (NTE) mutation as the cause of an autosomal recessive motor neuron disease (NTE-MND). Subsequently, we showed that NTE-MND mutations reduced specific activity (SA) and altered inhibitory kinetics of NTE catalytic domain constructs. Recent preliminary results showed that NTE is expressed in cultured human skin fibroblasts, and others have used mutant forms of neuronal proteins expressed in fibroblasts as biomarkers of neurogenetic diseases. Therefore, the present study was carried out to test the hypothesis that NTE in cultured skin fibroblasts from NTE-MND subjects also exhibit altered enzymological properties assessed by SA and IC(50) values of mipafox (MIP) and chlorpyrifos oxon (CPO). NTE SA was reduced to 65% of control (wild-type NTE from commercially obtained fibroblasts) in homozygous M1012V fibroblasts and 59-61% of control in compound heterozygous R890H/c2946_2947InsCAGC fibroblasts. MIP IC(50) values were unaffected by the NTE mutations, but the CPO IC(50) increased 4.5-fold in homozygous M1012V fibroblasts. Interestingly, markedly reduced NTE SAs (40-43% of control) were observed in fibroblasts from asymptomatic subjects heterozygous for NTE insertion c2946_2947InsCAGC. This insertion is predicted to produce truncated NTE missing the last 235 residues of its catalytic domain. These observations confirm that NTE-MND mutations reduce NTE SA in vitro. Moreover, to the extent observations made in cultured fibroblasts may be generalized to events in the nervous system, lack of correlation between reduced fibroblast NTE SA and the occurrence of NTE-MND in NTE insertion mutation heterozygotes indicates that reduction of NTE SA alone is insufficient to cause MND.
Collapse
Affiliation(s)
- Nichole D Hein
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
23
|
Lei X, Barbour SE, Ramanadham S. Group VIA Ca2+-independent phospholipase A2 (iPLA2beta) and its role in beta-cell programmed cell death. Biochimie 2010; 92:627-37. [PMID: 20083151 DOI: 10.1016/j.biochi.2010.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/11/2010] [Indexed: 01/09/2023]
Abstract
Activation of phospholipases A(2) (PLA(2)s) leads to the generation of biologically active lipid mediators that can affect numerous cellular events. The Group VIA Ca(2+)-independent PLA(2), designated iPLA(2)beta, is active in the absence of Ca(2+), activated by ATP, and inhibited by the bromoenol lactone suicide inhibitor (BEL). Over the past 10-15 years, studies using BEL have demonstrated that iPLA(2)beta participates in various biological processes and the recent availability of mice in which iPLA(2)beta expression levels have been genetically-modified are extending these findings. Work in our laboratory suggests that iPLA(2)beta activates a unique signaling cascade that promotes beta-cell apoptosis. This pathway involves iPLA(2)beta dependent induction of neutral sphingomyelinase, production of ceramide, and activation of the intrinsic pathway of apoptosis. There is a growing body of literature supporting beta-cell apoptosis as a major contributor to the loss of beta-cell mass associated with the onset and progression of Type 1 and Type 2 diabetes mellitus. This underscores a need to gain a better understanding of the molecular mechanisms underlying beta-cell apoptosis so that improved treatments can be developed to prevent or delay the onset and progression of diabetes mellitus. Herein, we offer a general review of Group VIA Ca(2+)-independent PLA(2) (iPLA(2)beta) followed by a more focused discussion of its participation in beta-cell apoptosis. We suggest that iPLA(2)beta-derived products trigger pathways which can lead to beta-cell apoptosis during the development of diabetes.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Department of Medicine, Mass Spectrometry Resource and Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
24
|
Lorke DE, Hasan MY, Nurulain SM, Kuca K, Schmitt A, Petroianu GA. Efficacy of two new asymmetric bispyridinium oximes (K-27 and K-48) in rats exposed to diisopropylfluorophosphate: comparison with pralidoxime, obidoxime, trimedoxime, methoxime, and HI-6. Toxicol Mech Methods 2009; 19:327-33. [PMID: 19778224 DOI: 10.1080/15376510902798695] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction. The new K-oximes, K-27 [1-(4-hydroxyimino-methylpyridinium)-4-(4-carbamoylpyridinium) propane dibromide] and K-48 [1-(4-hydroxyimino-methylpyridinium)-4-(4-carbamoylpyridinium) butane dibromide], show good in vitro efficacy in protecting acetylcholinesterase from inhibition by different organophosphorus compounds (OPCs), including nerve agents. To assess their efficacy in vivo, the extent of oxime-conferred protection from mortality induced by diisopropylfluorophosphate (DFP) was quantified and compared with that of five established oximes. Materials and Methods. Rats received DFP intraperitoneally in a dosage of 6, 8, or 10 micromol/rat and immediately thereafter intraperitoneal injections of K-27, K-48, pralidoxime, obidoxime, trimedoxime, methoxime, or HI-6. The relative risk (RR) of death over time (48 h) was estimated by Cox survival analysis, comparing results with the no-treatment group. Results. Best protection was observed when K-27 was used, reducing the RR of death to 19% of control RR (p < or = 0.005), whereas obidoxime (RR = 26%, p < or = 0.01), K-48 (RR = 29%, p < or = 0.005) and methoxime (RR = 26%, p < or = 0.005) were comparable. The RR of death was reduced only to about 35% of control by HI-6, to 45% by trimedoxime, and to 59% by 2-PAM (p < or = 0.005). Whereas the differences between the best oximes (K-27, obidoxime, methoxime, and K-48) were not statistically significant; these four oximes were significantly more effective than 2-PAM (p < or = 0.05). The efficacy of K-27 was also significantly higher than that of HI-6, trimedoxime, and 2-PAM (p < or = 0.05). Conclusion. Our data provide further evidence that K-27 is a very promising candidate for the treatment of intoxication with a broad spectrum of OPCs.
Collapse
Affiliation(s)
- D E Lorke
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | | | | | | | | | | |
Collapse
|
25
|
Fernández-Murray JP, Gaspard GJ, Jesch SA, McMaster CR. NTE1-encoded phosphatidylcholine phospholipase b regulates transcription of phospholipid biosynthetic genes. J Biol Chem 2009; 284:36034-36046. [PMID: 19841481 DOI: 10.1074/jbc.m109.063958] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The Saccharomyces cerevisiae NTE1 gene encodes an evolutionarily conserved phospholipase B localized to the endoplasmic reticulum (ER) that degrades phosphatidylcholine (PC) generating glycerophosphocholine and free fatty acids. We show here that the activity of NTE1-encoded phospholipase B (Nte1p) prevents the attenuation of transcription of genes encoding enzymes involved in phospholipid synthesis in response to increased rates of PC synthesis by affecting the nuclear localization of the transcriptional repressor Opi1p. Nte1p activity becomes necessary for cells growing in inositol-free media under conditions of high rates of PC synthesis elicited by the presence of choline at 37 degrees C. The specific choline transporter encoded by the HNM1 gene is necessary for the burst of PC synthesis observed at 37 degrees C as follows: (i) Nte1p is dispensable in an hnm1Delta strain under these conditions, and (ii) there is a 3-fold increase in the rate of choline transport via the Hnm1p choline transporter upon a shift to 37 degrees C. Overexpression of NTE1 alleviated the inositol auxotrophy of a plethora of mutants, including scs2Delta, scs3Delta, ire1Delta, and hac1Delta among others. Overexpression of NTE1 sustained phospholipid synthesis gene transcription under conditions that normally repress transcription. This effect was also observed in a strain defective in the activation of free fatty acids for phosphatidic acid synthesis. No changes in the levels of phosphatidic acid were detected under conditions of altered expression of NTE1. Consistent with a synthetic impairment between challenged ER function and inositol deprivation, increased expression of NTE1 improved the growth of cells exposed to tunicamycin in the absence of inositol. We describe a new role for Nte1p toward membrane homeostasis regulating phospholipid synthesis gene transcription. We propose that Nte1p activity, by controlling PC abundance at the ER, affects lateral membrane packing and that this parameter, in turn, impacts the repressing transcriptional activity of Opi1p, the main regulator of phospholipid synthesis gene transcription.
Collapse
Affiliation(s)
- J Pedro Fernández-Murray
- Department of Pediatrics and Biochemistry and Molecular Biology, Atlantic Research Centre, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | - Gerard J Gaspard
- Department of Pediatrics and Biochemistry and Molecular Biology, Atlantic Research Centre, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | - Stephen A Jesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Christopher R McMaster
- Department of Pediatrics and Biochemistry and Molecular Biology, Atlantic Research Centre, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| |
Collapse
|
26
|
Hou WY, Long DX, Wu YJ. Effect of inhibition of neuropathy target esterase in mouse nervous tissues in vitro on phosphatidylcholine and lysophosphatidylcholine homeostasis. Int J Toxicol 2009; 28:417-24. [PMID: 19620706 DOI: 10.1177/1091581809340704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuropathy target esterase has been shown to be a lysophospholipase in mouse. The authors investigate the effect of neuropathy target esterase inhibition in mouse nervous tissues in vitro on the homeostasis of phosphatidylcholine and lysophosphatidylcholine by treating the homogenates with tri-ortho-cresyl phosphate, paraoxon, paraoxon plus mipafox, and phenylmethylsulfonyl fluoride. The activity of neuropathy target esterase is significantly inhibited by phenylmethylsulfonyl fluoride and paraoxon plus mipafox but not by paraoxon alone. Tri-ortho-cresyl phosphate slightly but significantly inhibits neuropathy target esterase activity in brain. The levels of phosphatidylcholine and lysophosphatidylcholine in all 3 nervous tissues are not obviously altered after treatment with tri-ortho-cresyl phosphate, paraoxon, or paraoxon plus mipafox. However, phosphatidylcholine and lysophosphatidylcholine levels are clearly enhanced by phenylmethylsulfonyl fluoride. It is concluded that inhibition of neuropathy target esterase in mouse nervous tissues is not enough to disrupt the homeostasis of phosphatidylcholine and lysophosphatidylcholine and that the upregulation by phenylmethylsulfonyl fluoride may be the consequence of combined inhibition of neuropathy target esterase and other phospholipases.
Collapse
Affiliation(s)
- Wei-Yuan Hou
- Institute of Zoology, CAS, Beijing 100101, PR China
| | | | | |
Collapse
|
27
|
Lessing D, Bonini NM. Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nat Rev Genet 2009; 10:359-70. [PMID: 19434080 PMCID: PMC2820605 DOI: 10.1038/nrg2563] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The fruitfly Drosophila melanogaster has enabled significant advances in neurodegenerative disease research, notably in the identification of genes that are required to maintain the structural integrity of the brain, defined by recessive mutations that cause adult onset neurodegeneration. Here, we survey these genes in the fly and classify them according to five key cell biological processes. Over half of these genes have counterparts in mice or humans that are also associated with neurodegeneration. Fly genetics continues to be instrumental in the analysis of degenerative disease, with notable recent advances in our understanding of several inherited disorders, Parkinson's disease, and the central role of mitochondria in neuronal maintenance.
Collapse
Affiliation(s)
- Derek Lessing
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Nancy M. Bonini
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA 19104
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
28
|
Hou WY, Long DX, Wu YJ. The homeostasis of phosphatidylcholine and lysophosphatidylcholine in nervous tissues of mice was not disrupted after administration of tri-o-cresyl phosphate. Toxicol Sci 2009; 109:276-85. [PMID: 19349639 DOI: 10.1093/toxsci/kfp068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neuropathy target esterase (NTE) is proven to act as a lysophospholipase (LysoPLA) in mice and phospholipase B (PLB) in cultured mammalian cells. In sensitive species, organophosphate (OP)-induced delayed neurotoxicity is initiated when NTE is inhibited by > 70% and then aged. It is hypothesized that homeostasis of phosphatidylcholine (PC) and/or lysophosphatidylcholine (LPC) in mice might be disrupted by the OPs since NTE and other phospholipases could be inhibited. To test this hypothesis, we treated mice using tri-o-cresyl phosphate (TOCP), which can inhibit and age NTE. Phenylmethylsulfonyl fluoride (PMSF), which inhibits NTE but cannot age, was used as a negative control. Effects on activity of NTE, LysoPLA, and PLB, the levels of PC, LPC, and glycerophosphocholine (GPC), and the aging of NTE in the brain, spinal cord, and sciatic nerve were examined. The results showed that the activities of NTE, NTE-LysoPLA, LysoPLA, NTE-PLB, and PLB were significantly inhibited in both TOCP- and PMSF-treated mice, and the inhibition of NTE and NTE-LysoPLA or NTE-PLB showed a high correlation coefficient. The NTE inhibited by TOCP was of the aged type, while nearly all NTE inhibited by PMSF was of the unaged type. Although the GPC level was remarkedly decreased, no significant change of PC and LPC levels was observed. However, the inhibition of these enzymes in mice by TOCP exhibited different characteristics from the TOCP-treated hens that we previously reported, which indicates that these enzymes were inhibited and then recovered more rapidly in mice than in hens. All results suggest that PC and LPC homeostasis was not disrupted in mice after exposure to TOCP. Differences in inhibition of NTE, LysoPLA, and PLB activities by TOCP between mice and hens may elucidate why these two species display different signs after exposure to the same neuropathic OPs.
Collapse
Affiliation(s)
- Wei-Yuan Hou
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | |
Collapse
|
29
|
Green P, Anyakoha N, Yadid G, Gispan-Herman I, Nicolaou A. Arachidonic acid-containing phosphatidylcholine species are increased in selected brain regions of a depressive animal model: implications for pathophysiology. Prostaglandins Leukot Essent Fatty Acids 2009; 80:213-20. [PMID: 19342208 DOI: 10.1016/j.plefa.2009.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/09/2009] [Accepted: 02/20/2009] [Indexed: 11/21/2022]
Abstract
The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression. Following recent findings that the brain fatty acid composition of FSL is characterised by increased arachidonic acid (AA), we used electrospray tandem mass spectrometry and (1)H-NMR to examine lipid species in different brain areas. Cholesterol and sphingolipids were increased in the hypothalamus of the FSL rats. Furthermore, arachidonic acid-containing phosphatidylcholine (AA-PC) species were elevated with PC16:0/20:4, PC18:1/20:4 and PC18:0/20:4 (p<0.003) increased in the hypothalamus and striatum. In contrast, there was a decrease in some docosahexaenoic acid (DHA)-containing species, specifically PC18:1/22:6 (p<0.003) in the striatum and PE18:1/22:6 (p<0.004) in the prefrontal cortex. Since no significant differences were observed in the erythrocyte fatty acid concentrations, dietary or environmental causes for these observations are unlikely. The increase in AA-PC species which in this animal model may be associated with altered neuropathy target esterase activity, an enzyme involved in membrane PC homeostasis, may contribute to the depressive phenotype of the FSL rats.
Collapse
Affiliation(s)
- Pnina Green
- Laboratory for the Study of Fatty Acids, Felsenstein Medical Research Centre, Beilinson Campus, Sackler School of Medicine, Tel Aviv University, Petah Tiqwa 49100, Israel
| | | | | | | | | |
Collapse
|
30
|
Chang PA, Long DX, Wu YJ, Sun Q, Song FZ. Identification and characterization of chicken neuropathy target esterase. Gene 2009; 435:45-52. [PMID: 19393187 DOI: 10.1016/j.gene.2009.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/06/2009] [Accepted: 01/10/2009] [Indexed: 10/21/2022]
Abstract
Neuropathy target esterase (NTE) was proposed as the initial target during the process of organophosphate-induced delayed neuropathy (OPIDN) and adult hens are the animal model of OPIDN. However, little has been known about the sequence and characteristics of chicken NTE. Here, we firstly identified the full length cDNA of chicken NTE (cNTE), which contained an open reading frame of 3966 nucleotides encoding 1321 amino acids. Chicken NTE had two distinct regions, one was the regulatory domain (cNTER) and the other was the catalytic domain (cNEST). Over-expression of cNTER in mammalian cells did not show any NTE activity, whereas cNEST had NTE activity. Cells expressing cNTER tagged with green fluorescent protein (GFP) showed accumulation of cNTER-GFP in an endoplasmic reticulum-like localization pattern. In addition, macroautophagy and the proteasome pathways were found to be involved in the degradation of cNTER, but not cNEST. These results first showed that cNTE was an ER-anchored protein and degraded by macroautophagy as well as the proteasome.
Collapse
Affiliation(s)
- Ping-An Chang
- Chongqing University of Posts and Telecommunications, Nan'an District, PR China.
| | | | | | | | | |
Collapse
|
31
|
Hooks SB, Cummings BS. Role of Ca2+-independent phospholipase A2 in cell growth and signaling. Biochem Pharmacol 2008; 76:1059-67. [PMID: 18775417 DOI: 10.1016/j.bcp.2008.07.044] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/15/2008] [Accepted: 07/15/2008] [Indexed: 01/25/2023]
Abstract
Phospholipase A(2) (PLA(2)) are esterases that cleave glycerophospholipids to release fatty acids and lysophospholipids. Several studies demonstrate that PLA(2) regulate growth and signaling in several cell types. However, few of these studies have focused on Ca2+-independent phospholipase A(2) (iPLA(2) or Group VI PLA(2)). This class of PLA(2) was originally suggested to mediate phospholipid remodeling in several cell types including macrophages. As such, it was labeled as a housekeeping protein and thought not to play as significant of roles in cell growth as its older counterparts cytosolic PLA(2) (cPLA(2) or Group IV PLA(2)) and secretory PLA(2) (sPLA(2) or Groups I-III, V and IX-XIV PLA(2)). However, several recent studies demonstrate that iPLA(2) mediate cell growth, and do so by participating in signal transduction pathways that include epidermal growth factor receptors (EGFR), mitogen activated protein kinases (MAPK), mdm2, and even the tumor suppressor protein p53 and the cell cycle regulator p21. The exact mechanism by which iPLA(2) mediates these pathways are not known, but likely involve the generation of lipid signals such as arachidonic acid, lysophosphatidic acid (LPA) and lysophosphocholines (LPC). This review discusses the role of iPLA(2) in cell growth with special emphasis placed on their role in cell signaling. The putative lipid signals involved are also discussed.
Collapse
Affiliation(s)
- Shelley B Hooks
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
32
|
Organophosphate-sensitive lipases modulate brain lysophospholipids, ether lipids and endocannabinoids. Chem Biol Interact 2008; 175:355-64. [PMID: 18495101 DOI: 10.1016/j.cbi.2008.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 12/28/2022]
Abstract
Lipases play key roles in nearly all cells and organisms. Potent and selective inhibitors help to elucidate their physiological functions and associated metabolic pathways. Organophosphorus (OP) compounds are best known for their anticholinesterase properties but selectivity for lipases and other targets can also be achieved through structural optimization. This review considers several lipid systems in brain modulated by highly OP-sensitive lipases. Neuropathy target esterase (NTE) hydrolyzes lysophosphatidylcholine (lysoPC) as a preferred substrate. Gene deletion of NTE in mice is embryo lethal and the heterozygotes are hyperactive. NTE is very sensitive in vitro and in vivo to direct-acting OP delayed neurotoxicants and the related NTE-related esterase (NTE-R) is also inhibited in vivo. KIAA1363 hydrolyzes acetyl monoalkylglycerol ether (AcMAGE) of the platelet-activating factor (PAF) de novo biosynthetic pathway and is a marker of cancer cell invasiveness. It is also a detoxifying enzyme that hydrolyzes chlorpyrifos oxon (CPO) and some other potent insecticide metabolites. Monoacylglycerol lipase and fatty acid amide hydrolase regulate endocannabinoid levels with roles in motility, pain and memory. Inhibition of these enzymes in mice by OPs, such as isopropyl dodecylfluorophosphonate (IDFP), leads to dramatic elevation of brain endocannabinoids and distinct cannabinoid-dependent behavior. Hormone-sensitive lipase that hydrolyzes cholesteryl esters and diacylglycerols is a newly recognized in vivo CPO- and IDFP-target in brain. The OP chemotype can therefore be used in proteomic and metabolomic studies to further elucidate the biological function and toxicological significance of lipases in lipid metabolism. Only the first steps have been taken to achieve appropriate selective action for OP therapeutic agents.
Collapse
|
33
|
Oboh OT, Lamango NS. Liver prenylated methylated protein methyl esterase is the same enzyme as Sus scrofa carboxylesterase. J Biochem Mol Toxicol 2008; 22:51-62. [PMID: 18273909 DOI: 10.1002/jbt.20214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The C-terminal --COOH of prenylated proteins is methylated to --COOCH3. The --COOCH3 ester forms are hydrolyzed by prenylated methylated protein methyl esterase (PMPMEase) to the original acid forms. This is the only reversible step of the prenylation pathway. PMPMEase has not been purified and identified and is therefore understudied. Using a prenylated-L-cysteine methyl ester as substrate, PMPMEase was purified to apparent homogeneity from porcine liver supernatant. SDS-PAGE analysis revealed an apparent mass of 57 kDa. Proteomics analyses identified 17 peptides (242 amino acids). A Mascot database search revealed these as portions of the Sus scrofa carboxylesterase, a 62-kDa serine hydrolase with the C-terminal HAEL endoplasmic reticulum-retention signal. It is at least 71% identical to such mammalian carboxylesterases as human carboxylesterase 1 with affinities toward hydrophobic substrates and known to activate prodrugs, metabolize active drugs, as well as detoxify various substances such as cocaine and food-derived esters. The purified enzyme hydrolyzed benzoyl-Gly-farnesyl-L-cysteine methyl ester and hydrocinamoyl farnesyl-L-cysteine methyl ester with Michaelis-Menten constant (K(m)) values of 33 +/- 4 and 25 +/- 4 microM and V(max) values of 4.51 +/- 0.28 and 6.80 +/- 0.51 nmol/min/mg of protein, respectively. It was inhibited by organophosphates, chloromethyl ketones, ebelactone A and B, and phenylmethylsulfonyl fluoride.
Collapse
Affiliation(s)
- Onovughode T Oboh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | |
Collapse
|
34
|
Wijeyesakere SJ, Richardson RJ, Stuckey JA. Modeling the tertiary structure of the patatin domain of neuropathy target esterase. Protein J 2007; 26:165-72. [PMID: 17216363 PMCID: PMC6643263 DOI: 10.1007/s10930-006-9058-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neuropathy target esterase (NTE) is a transmembrane protein of unknown function whose specific chemical modification by certain organophosphorus (OP) compounds leads to distal axonopathy. Therefore, solving the 3D structure of NTE would advance the understanding of its pathogenic and physiologic roles. In this study, the tertiary structures of the patatin (catalytic) domain and the N-terminal transmembrane domain of NTE were modeled using the crystal structures of patatin (PDB ID 1oxw) and moricin (PDB ID 1kv4) as templates. Sequence alignments and secondary structure predictions were obtained from the INUB server (Buffalo, NY). O and PyMol were used to build the PNTE and NTE TMD chains from these sequence alignments. The PNTE model was refined in the presence of water using the crystallography and NMR system, while the NTE TMD model was refined in vacuo using the GROMOS implementation in the Swiss PDB viewer. The modeled active site of NTE was found to consist of a Ser966-Asp1086 catalytic dyad, which is characteristic of phospholipase A2 enzymes. The Ser966 Ogamma was located 2.93 A from the Odelta2 of Asp1086. In addition, our NTE model was found to contain a single N-terminal transmembrane domain. This modeling effort provided structural and mechanistic predictions about the catalytic domain of NTE that are being verified via experimental techniques.
Collapse
Affiliation(s)
- Sanjeeva J. Wijeyesakere
- Toxicology Program, Department of Environmental Health Sciences, The University of Michigan, Ann Arbor, Michigan
| | - Rudy J. Richardson
- Toxicology Program, Department of Environmental Health Sciences, The University of Michigan, Ann Arbor, Michigan
- Neurology Department, The University of Michigan, Ann Arbor, Michigan
| | - Jeanne A. Stuckey
- Department of Biological Chemistry, University of Michigan School of Medicine and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
35
|
Chen R, Chang PA, Long DX, Yang L, Wu YJ. Down-regulation of neuropathy target esterase by protein kinase C activation with PMA stimulation. Mol Cell Biochem 2007; 302:179-85. [PMID: 17385009 DOI: 10.1007/s11010-007-9439-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/28/2007] [Indexed: 12/01/2022]
Abstract
Neuropathy target esterase (NTE) was originally identified as the primary target site of those organophosphorus compounds that induce delayed neuropathy in human and some animals. Here we examined the role of protein kinase C (PKC) in the regulation of the NTE activity in mammalian cells. Six-hour exposure of human neuroblastoma SK-N-SH cell to a PKC activator phorbol 12-myristate 13-acetate (PMA) decreased the activity of NTE, and this effect was blocked by the PKC inhibitor staurosporine. These results suggest that PKC down-regulates the activity of NTE. NTE protein levels were down-regulated by PMA-stimulation as detected by Western blot analysis using the NTE-specific antibody, which resulted from down-regulation of NTE mRNA level as verified by real-time reverse transcription polymerase chain reaction (RT-PCR). However, there were no changes in the activity or protein levels of stable expression of NTE esterase activity domain (NEST) in SK-N-SH cells and transient expression of full-length NTE construct in COS7 cells driven by cytomegalovirus (CMV) promoter rather than by the cell's own one, despite the absence or presence of PMA stimulation. Together, these findings suggest that stimulation with PMA reduces the expression of NTE mRNA levels but does not affect the exogenous promoter-driven NTE expression in mammalian cells.
Collapse
Affiliation(s)
- Rui Chen
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Beisihuanxilu Road, Beijing 100080, P.R. China
| | | | | | | | | |
Collapse
|
36
|
Fernández-Murray JP, McMaster CR. Phosphatidylcholine synthesis and its catabolism by yeast neuropathy target esterase 1. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:331-6. [PMID: 16731034 DOI: 10.1016/j.bbalip.2006.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/06/2006] [Accepted: 04/11/2006] [Indexed: 11/22/2022]
Abstract
Phosphatidylcholine (PtdCho) is the major phospholipid component of eukaryotic membranes and deciphering the molecular mechanisms regulating PtdCho homeostasis is necessary to fully understand many pathophysiological situations where PtdCho metabolism is altered. This concept is illustrated in this review by summarizing recent evidence on Nte1p, a yeast endoplasmic reticulum resident phospholipase B that deacylates PtdCho producing intracellular glycerophosphocholine. The mammalian and Drosophila homologues, neuropathy target esterase and swiss cheese, respectively, have been implicated in normal brain development with increased intracytoplasmic vesicularization and multilayered membrane stacks as cytological signatures of their absence. Consistent with a role in lipid and membrane homeostasis, Nte1p-mediated PtdCho deacylation is strongly affected by Sec14p, a component of the yeast secretory machinery characterized by its ability to interface between lipid metabolism and vesicular trafficking. The preference of Nte1p toward PtdCho produced through the CDP-choline pathway and the downstream production of choline by the Gde1p glycerophosphodiesterase for resynthesis of PtdCho by the CDP-choline pathway are also highlighted.
Collapse
Affiliation(s)
- J Pedro Fernández-Murray
- Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | |
Collapse
|
37
|
Quesada E, Sabater E, Sogorb MA, Vilanova E, Carrera V. Recovery of neuropathy target esterase activity after inhibition with mipafox and O-hexyl O-2,5-dichlorophenyl phosphoramidate in bovine chromaffin cell cultures. Chem Biol Interact 2007; 165:99-105. [PMID: 17184757 DOI: 10.1016/j.cbi.2006.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 11/06/2006] [Accepted: 11/07/2006] [Indexed: 11/15/2022]
Abstract
Neuropathy target esterase (NTE) is a membrane protein present in various tissues whose physiological function has been recently suggested to be the maintenance of phosphatidylcholine homeostasis. Inhibition and further modification of NTE by certain organophosphorus compounds (OPs) were related to the induction of the "organophosphorus induced delayed neuropathy". Bovine chromaffin cells were cultured at 75,000cells/well in 96-well plates and exposed to 25microM mipafox or 3microM O-hexyl O-2,5-dichlorophenyl phosphoramidate (HDCP) for 60min. Inhibitors were removed by washing cells three times with Krebs solution. Then NTE activity was assayed at 0, 24, 48 and 120h after exposure using the Biomek 1000 workstation. Immediately after mipafox treatment NTE activity represented 3% of the control (6.7+/-1.9mU/10(6) cells). At 24, 48 and 120h after removing inhibitor, recorded activities were 33%, 42% and 111% of their respective controls (5.7+/-3.1; 5.7+/-1.9; 5.4+/-0.0mU/10(6) cells, respectively). Treatment with HDCP also displayed a time-dependent pattern of NTE recovery. As NTE inhibited by phosphoramidates is not reactivated in homogenized tissues, these results confirm a time-dependent regeneration of NTE after inhibition by neuropathic OPs.
Collapse
Affiliation(s)
- Encarna Quesada
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad, s/n E-03202 Elche (Alicante), Spain.
| | | | | | | | | |
Collapse
|
38
|
Chang PA, Liu CY, Chen R, Wu YJ. Effect of over-expression of neuropathy target esterase on mammalian cell proliferation. Cell Prolif 2006; 39:429-40. [PMID: 16987144 PMCID: PMC6496609 DOI: 10.1111/j.1365-2184.2006.00399.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neuropathy target esterase (NTE), the human homologue of a protein required for brain development in Drosophila, is expressed primarily in neural cells but is also detected in non-neural cells. Although NTE has been proposed to play a role in neurite outgrowth and process elongation during neurodifferentiation, the function of NTE has not been defined in neural cells. In this study we have investigated the possible role of NTE in neuroblastoma cells and non-neural cells using an over-expression strategy. Over-expression of NTE in human neuroblastoma SH-SY5Y cells and monkey kidney COS7 cells led to an accumulation of NTE on the cytoplasmic surface of the endoplasmic reticulum and inhibition of cell proliferation. In particular, high levels of NTE arrested COS7 cells at G2/M stage yet was not associated with arrest at a particular phase of the cell cycle in SH-SY5Y cells. Moreover, over-expression of NTE did not induce apoptosis in two kinds of cell lines as assessed by flow cytometry. These results suggest that the role of NTE over-expression in cell proliferation is associated with different mechanisms in different cells.
Collapse
Affiliation(s)
- P-A Chang
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
39
|
Romero D, Quesada E, Sogorb MA, García-Fernández AJ, Vilanova E, Carrera V. Comparison of chromaffin cells from several animal sources for their use as an in vitro model to study the mechanism of organophosphorous toxicity. Toxicol Lett 2006; 165:221-9. [PMID: 16797889 DOI: 10.1016/j.toxlet.2006.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/11/2006] [Accepted: 04/20/2006] [Indexed: 11/25/2022]
Abstract
It had been observed that the chromaffin cells of bovine adrenal medulla contain high levels of neuropathy target esterase (NTE), the esterase whose inhibition and aging is associated with induction of the organophosphorous induced delayed neuropathy. In this study, total esterase and NTE activities, and their inhibition kinetics by OPs are characterized in adrenal medulla of several species in order to find the best source for chromaffin cells. Total esterase activity in membrane fraction of bovine, equine, porcine, ovine and caprine were 6100+/-840, 4200+/-270, 5000+/-120, 28800+/-3000, and 10800+/-2400mU/gtissue, respectively (mean+/-S.D., n=3-4). NTE represented around 70%, 24%, 58%, 10% and 24% of the total esterases in the same tissues, respectively. It was deduced that NTE represents between 69% and 89% of the "B-activity" (activity resistant to 40microM paraoxon) in the membrane fraction of all species. The mipafox I(50) calculated for 30-min inhibition of NTE at 37 degrees Celsius ranged between 7.4 and 12microM. These values are in the range of that for brain NTE in hen (the usual model for testing OP delayed neurotoxicity). Considering that bovine adrenal medulla contains high NTE activity, that it represents a high proportion of total activity, it is easier to dissect than adrenal medulla from equine, caprine or ovine, and is more readily available than species cited previously, and that its inhibitory properties are similar to the classical hen brain model, it is deduced that bovine adrenal medulla is the most appropriate source of chromaffin cells to study OP toxicity, with porcine as the second alternative. The kinetic properties of chromaffin cell cultures from bovine and porcine were in accordance with their properties in homogenate and subcellular fractions, and they displayed an appropriate stability and viability of the primary culture to be used in in vitro toxicological studies for both mechanistic and testing purposes.
Collapse
Affiliation(s)
- D Romero
- Area de Toxicología, Facultad de Veterinaria, Universidad de Murcia, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Chen R, Chang PA, Long DX, Liu CY, Yang L, Wu YJ. G protein beta2 subunit interacts directly with neuropathy target esterase and regulates its activity. Int J Biochem Cell Biol 2006; 39:124-32. [PMID: 16978909 DOI: 10.1016/j.biocel.2006.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/09/2006] [Accepted: 08/10/2006] [Indexed: 11/26/2022]
Abstract
Neuropathy target esterase (NTE) was identified as the primary target of organophosphate compounds that cause a delayed neuropathy with degeneration of nerve axons. NTE is a novel phospholipase B anchored to the cytoplasmic face of endoplasmic reticulum and essential for embryonic and nervous development. However, little is known about the regulation of NTE. A human fetal brain cDNA library was screened for proteins that interact with NTE, Gbeta2 and Gbeta2-like I subunits were found to be able to bind the C-terminal of NTE in yeast. The interaction of Gbeta2 and NTE was confirmed by in vivo co-immunoprecipitation analysis in COS7 cells. Furthermore, depletion of Gbeta2 by RNA interference down regulated the activity of NTE but not its expression level. In addition, the activity of NTE was down regulated by the G protein signal pathway influencing factor, pertussis toxin, treatment in vivo. These findings suggest that Gbeta2 may play a significant role in maintaining the activity of NTE.
Collapse
Affiliation(s)
- Rui Chen
- Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Read DJ, Langford L, Barbour HR, Forshaw PJ, Glynn P. Phospholipase B activity and organophosphorus compound toxicity in cultured neural cells. Toxicol Appl Pharmacol 2006; 219:190-5. [PMID: 16963094 DOI: 10.1016/j.taap.2006.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/28/2006] [Accepted: 08/04/2006] [Indexed: 11/22/2022]
Abstract
Organophosphorus compounds (OP) such as phenyl saligenin phosphate (PSP) and mipafox (MPX) which cause delayed neuropathy, inhibit neuropathy target esterase (NTE), while OPs such as paraoxon (PXN) react more readily with acetylcholinesterase. In yeast and mammalian cell lines, NTE has been shown to have phospholipase B (PLB) activity which deacylates intracellular phosphatidylcholine to glycerophosphocholine (GroPCho) and can be detected by metabolic labeling with [(14)C]choline. Here we investigated PLB activity in primary cultures of mouse neural cells. In cortical and cerebellar granule neurons and astrocytes, [(14)C]GroPCho labeling was inhibited by PSP and MPX: phenyl dipentylphosphinate (PDPP), a non-neuropathic NTE inhibitor, was more potent, while PXN, was substantially less so. In all three cell types, conversion of [(14)C]phosphatidylcholine to [(14)C]GroPCho over 24 h was relatively small (2.3-14%). Consequently, even with >80% inhibition of [(14)C]GroPCho production, increased [(14)C]phosphatidylcholine was not detected. At concentrations of 1-10 microM, only PSP was cytotoxic to cortical and cerebellar granule neurons after 24-h exposure. Moreover, dramatic changes in glial cell morphology were induced by PSP, but not PDPP or MPX, with rapid (2-3 h) rounding up of astrocytes and of Schwann cells in cultures of dissociated mouse dorsal root ganglia. We conclude that PLB activity is present in a variety of cultured mouse neural cell types but that acute loss of this activity is not cytotoxic. Conversely, the rapid toxic effects of PSP in vitro suggest that a serine hydrolase distinct from NTE is required continuously by neurons and glia.
Collapse
Affiliation(s)
- David J Read
- MRC Toxicology Unit, University of Leicester, LE1 9HN, UK
| | | | | | | | | |
Collapse
|
42
|
Balsinde J, Pérez R, Balboa MA. Calcium-independent phospholipase A2 and apoptosis. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1344-50. [PMID: 16962822 DOI: 10.1016/j.bbalip.2006.07.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 06/30/2006] [Accepted: 07/29/2006] [Indexed: 02/02/2023]
Abstract
Apoptosis or programmed cell death is associated with changes in glycerophospholipid metabolism. Cells undergoing apoptosis generally release free fatty acids including arachidonic acid, which parallels the reduction in cell viability. The involvement of cytosolic group IVA phospholipase A(2)alpha (cPLA(2)alpha) in apoptosis has been the subject of numerous studies but a clear picture of the role(s) played by this enzyme is yet to emerge. More recently, the importance of lipid products generated by the action of a second phospholipase A(2), the group VIA calcium-independent phospholipase A(2) (iPLA(2)-VIA) in apoptosis has begun to be unveiled. Current evidence suggests that iPLA(2)-VIA-derived lysophosphatidylcholine may play a prominent role in mediating the chemoattractant and recognition/engulfment signals that accompany the process of apoptotic cell death, and gives possibility to the efficient clearance of dying cells by circulating phagocytes. Other lines of evidence suggest that perturbations in the control of free arachidonic acid levels within the cells, a process that may implicate iPLA(2)-VIA as well, may provide important cellular signals for the onset of apoptosis.
Collapse
Affiliation(s)
- Jesús Balsinde
- Institute of Molecular Biology and Genetics, Spanish Research Council and University of Valladolid School of Medicine, Calle Sanz y Forés s/n, 47003 Valladolid, Spain.
| | | | | |
Collapse
|
43
|
Gaspar ML, Aregullin MA, Jesch SA, Henry SA. Inositol Induces a Profound Alteration in the Pattern and Rate of Synthesis and Turnover of Membrane Lipids in Saccharomyces cerevisiae. J Biol Chem 2006; 281:22773-85. [PMID: 16777854 DOI: 10.1074/jbc.m603548200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The addition of inositol to actively growing yeast cultures causes a rapid increase in the rate of synthesis of phosphatidylinositol and, simultaneously, triggers changes in the expression of hundreds of genes. We now demonstrate that the addition of inositol to yeast cells growing in the presence of choline leads to a dramatic reprogramming of cellular lipid synthesis and turnover. The response to inositol includes a 5-6-fold increase in cellular phosphatidylinositol content within a period of 30 min. The increase in phosphatidylinositol content appears to be dependent upon fatty acid synthesis. Phosphatidylcholine turnover increased rapidly following inositol addition, a response that requires the participation of Nte1p, an endoplasmic reticulum-localized phospholipase B. Mass spectrometry revealed that the acyl species composition of phosphatidylinositol is relatively constant regardless of supplementation with inositol or choline, whereas phosphatidylcholine acyl species composition is influenced by both inositol and choline. In medium containing inositol, but lacking choline, high levels of dimyristoylphosphatidylcholine were detected. Within 60 min following the addition of inositol, dimyristoylphosphatidylcholine levels had decreased from approximately 40% of total phosphatidylcholine to a basal level of less than 5%. nte1Delta cells grown in the absence of inositol and in the presence of choline exhibited lower levels of dimyristoylphosphatidylcholine than wild type cells grown under these same conditions, but these levels remained largely constant after the addition of inositol. These results are discussed in relationship to transcriptional regulation known to be linked to lipid metabolism in yeast.
Collapse
Affiliation(s)
- Maria L Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, NY 14853, USA
| | | | | | | |
Collapse
|
44
|
Gaspar ML, Aregullin MA, Jesch SA, Nunez LR, Villa-García M, Henry SA. The emergence of yeast lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:241-54. [PMID: 16920401 DOI: 10.1016/j.bbalip.2006.06.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 06/16/2006] [Accepted: 06/19/2006] [Indexed: 11/30/2022]
Abstract
The emerging field of lipidomics, driven by technological advances in lipid analysis, provides greatly enhanced opportunities to characterize, on a quantitative or semi-quantitative level, the entire spectrum of lipids, or lipidome, in specific cell types. When combined with advances in other high throughput technologies in genomics and proteomics, lipidomics offers the opportunity to analyze the unique roles of specific lipids in complex cellular processes such as signaling and membrane trafficking. The yeast system offers many advantages for such studies, including the relative simplicity of its lipidome as compared to mammalian cells, the relatively high proportion of structural and regulatory genes of lipid metabolism which have been assigned and the excellent tools for molecular genetic analysis that yeast affords. The current state of application of lipidomic approaches in yeast and the advantages and disadvantages of yeast for such studies are discussed in this report.
Collapse
Affiliation(s)
- Maria L Gaspar
- Department of Molecular Biology and Genetics, Cornell University, 260 Roberts Hall, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|