1
|
Chen S, Inui S, Aisyah R, Nakashima R, Kawaguchi T, Hinomoto M, Nakagawa Y, Sakuma T, Sotomaru Y, Ohshima N, Kumrungsee T, Ohkubo T, Yamamoto T, Miura Y, Suzuki T, Yanaka N. Role of Gpcpd1 in intestinal alpha-glycerophosphocholine metabolism and trimethylamine N-oxide production. J Biol Chem 2024:107965. [PMID: 39510189 DOI: 10.1016/j.jbc.2024.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
Glycerophosphocholine (GPC) is an intracellular metabolite in phosphatidylcholine metabolism and has been studied for endogenous choline supply in cells. GPC, as a water-soluble supplement, has been expected to play a role in preventing brain disorders; however, recent studies have shown that intake of high levels of choline-containing compounds is related to trimethylamine N-oxide (TMAO) production in the liver, which is reportedly associated with the progression of atherosclerosis. In this study, we aimed to explore the mechanisms underlying the intestinal absorption and metabolism of GPC. Caco-2 cell monolayer experiments showed that exogenously added GPC was hydrolyzed to choline in the apical medium, and the resulting choline was transported into the Caco-2 cells and further to the basolateral medium. Subsequently, we focused on glycerophosphodiesterase 1 (Gpcpd1/GDE5), which hydrolyzes GPC to choline in vitro and is widely expressed in the gastrointestinal epithelium. Our results revealed that the Gpcpd1 protein was located not only in cells but also in the medium in which Caco-2 cells were cultured. Gpcpd1 siRNA decreased the GPC-hydrolyzing activity both inside Caco-2 cells and in conditioned medium, suggesting the involvement of Gpcpd1 in luminal GPC metabolism. Finally, we generated intestinal epithelial-specific Gpcpd1-deficient mice and found that Gpcpd1 deletion in intestinal epithelial cells affected GPC metabolism in intestinal tissues and partially abolished the increase in blood TMAO levels induced by GPC administration. These observations demonstrate that Gpcpd1 triggers choline production from GPC in the intestinal lumen and is a key endogenous enzyme that regulates TMAO levels following GPC supplementation.
Collapse
Affiliation(s)
- Siyi Chen
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Shiho Inui
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Rahmawati Aisyah
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Ryoko Nakashima
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Tatsuya Kawaguchi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Minori Hinomoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Yoshiko Nakagawa
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto 860-0811, Japan
| | - Tetsushi Sakuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8553, Japan
| | - Noriyasu Ohshima
- Graduate School of Medicine, Gunma University, Gunma 371-8511, Japan
| | - Thanutchaporn Kumrungsee
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Takeshi Ohkubo
- Sendai Shirayuri Women's College, Sendai 981-3107, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Yutaka Miura
- Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan.
| |
Collapse
|
2
|
Maekawa Y, Matsui K, Okamoto K, Shimasaki T, Ohtsuka H, Tani M, Ihara K, Aiba H. Identification of plb1 mutation that extends longevity via activating Sty1 MAPK in Schizosaccharomyces pombe. Mol Genet Genomics 2024; 299:20. [PMID: 38424265 DOI: 10.1007/s00438-024-02107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/04/2023] [Indexed: 03/02/2024]
Abstract
To understand the lifespan of higher organisms, including humans, it is important to understand lifespan at the cellular level as a prerequisite. So, fission yeast is a good model organism for the study of lifespan. To identify the novel factors involved in longevity, we are conducting a large-scale screening of long-lived mutant strains that extend chronological lifespan (cell survival in the stationary phase) using fission yeast. One of the newly acquired long-lived mutant strains (No.98 mutant) was selected for analysis and found that the long-lived phenotype was due to a missense mutation (92Phe → Ile) in the plb1+ gene. plb1+ gene in fission yeast is a nonessential gene encoding a homolog of phospholipase B, but its functions under normal growth conditions, as well as phospholipase B activity, remain unresolved. Our analysis of the No.98 mutant revealed that the plb1 mutation reduces the integrity of the cellular membrane and cell wall and activates Sty1 via phosphorylation.
Collapse
Affiliation(s)
- Yasukichi Maekawa
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kotaro Matsui
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Keisuke Okamoto
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
3
|
Bednor L, Sanchez AM, Garg A, Shuman S, Schwer B. Genetic suppressor screen identifies Tgp1 (glycerophosphocholine transporter), Kcs1 (IP 6 kinase), and Plc1 (phospholipase C) as determinants of inositol pyrophosphate toxicosis in fission yeast. mBio 2024; 15:e0306223. [PMID: 38133430 PMCID: PMC10865970 DOI: 10.1128/mbio.03062-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The inositol pyrophosphate signaling molecule 1,5-IP8 is an agonist of RNA 3'-processing and transcription termination in fission yeast that regulates the expression of phosphate acquisition genes pho1, pho84, and tgp1. IP8 is synthesized from 5-IP7 by the Asp1 N-terminal kinase domain and catabolized by the Asp1 C-terminal pyrophosphatase domain. asp1-STF mutations that delete or inactivate the Asp1 pyrophosphatase domain elicit growth defects in yeast extract with supplements (YES) medium ranging from severe sickness to lethality. We now find that the toxicity of asp1-STF mutants is caused by a titratable constituent of yeast extract. Via a genetic screen for spontaneous suppressors, we identified a null mutation of glycerophosphodiester transporter tgp1 that abolishes asp1-STF toxicity in YES medium. This result, and the fact that tgp1 mRNA expression is increased by >40-fold in asp1-STF cells, prompted discovery that: (i) glycerophosphocholine (GPC) recapitulates the toxicity of yeast extract to asp1-STF cells in a Tgp1-dependent manner, and (ii) induced overexpression of tgp1 in asp1+ cells also elicits toxicity dependent on GPC. asp1-STF suppressor screens yielded a suite of single missense mutations in the essential IP6 kinase Kcs1 that generates 5-IP7, the immediate precursor to IP8. Transcription profiling of the kcs1 mutants in an asp1+ background revealed the downregulation of the same phosphate acquisition genes that were upregulated in asp1-STF cells. The suppressor screen also returned single missense mutations in Plc1, the fission yeast phospholipase C enzyme that generates IP3, an upstream precursor for the synthesis of inositol pyrophosphates.IMPORTANCEThe inositol pyrophosphate metabolite 1,5-IP8 governs repression of fission yeast phosphate homeostasis genes pho1, pho84, and tgp1 by lncRNA-mediated transcriptional interference. Asp1 pyrophosphatase mutations that increase IP8 levels elicit precocious lncRNA termination, leading to derepression of the PHO genes. Deletions of the Asp1 pyrophosphatase domain result in growth impairment or lethality via IP8 agonism of transcription termination. It was assumed that IP8 toxicity ensues from dysregulation of essential genes. In this study, a suppressor screen revealed that IP8 toxicosis of Asp1 pyrophosphatase mutants is caused by: (i) a >40-fold increase in the expression of the inessential tgp1 gene encoding a glycerophosphodiester transporter and (ii) the presence of glycerophosphocholine in the growth medium. The suppressor screen yielded missense mutations in two upstream enzymes of inositol polyphosphate metabolism: the phospholipase C enzyme Plc1 that generates IP3 and the essential Kcs1 kinase that converts IP6 to 5-IP7, the immediate precursor of IP8.
Collapse
Affiliation(s)
- Lauren Bednor
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
- Molecular Biology Program, Sloan-Kettering Institute, New York, USA
- Weill Cornell Graduate School of Medical Sciences, New York, USA
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan-Kettering Institute, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, USA
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, USA
| |
Collapse
|
4
|
King WR, Acosta-Zaldívar M, Qi W, Cherico N, Cooke L, Köhler JR, Patton-Vogt J. Glycerophosphocholine provision rescues Candida albicans growth and signaling phenotypes associated with phosphate limitation. mSphere 2023; 8:e0023123. [PMID: 37843297 PMCID: PMC10732039 DOI: 10.1128/msphere.00231-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Candida albicans is the most commonly isolated species from patients suffering from invasive fungal disease. C. albicans is most commonly a commensal organism colonizing a variety of niches in the human host. The fungus must compete for resources with the host flora to acquire essential nutrients such as phosphate. Phosphate acquisition and homeostasis have been shown to play a key role in C. albicans virulence, with several genes involved in these processes being required for normal virulence and several being upregulated during infection. In addition to inorganic phosphate (Pi), C. albicans can utilize the lipid-derived metabolite glycerophosphocholine (GPC) as a phosphate source. As GPC is available within the human host, we examined the role of GPC in phosphate homeostasis in C. albicans. We find that GPC can substitute for Pi by many though not all criteria and is likely a relevant physiological phosphate source for C. albicans.
Collapse
Affiliation(s)
- William R. King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Maikel Acosta-Zaldívar
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Wanjun Qi
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Cherico
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Lauren Cooke
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Julia R. Köhler
- Department of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Hrach VL, King WR, Nelson LD, Conklin S, Pollock JA, Patton-Vogt J. The acyltransferase Gpc1 is both a target and an effector of the unfolded protein response in Saccharomyces cerevisiae. J Biol Chem 2023; 299:104884. [PMID: 37269946 PMCID: PMC10331479 DOI: 10.1016/j.jbc.2023.104884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
The unfolded protein response (UPR) is sensitive to proteotoxic and membrane bilayer stress, both of which are sensed by the ER protein Ire1. When activated, Ire1 splices HAC1 mRNA, producing a transcription factor that targets genes involved in proteostasis and lipid metabolism, among others. The major membrane lipid phosphatidylcholine (PC) is subject to phospholipase-mediated deacylation, producing glycerophosphocholine (GPC), followed by reacylation of GPC through the PC deacylation/reacylation pathway (PC-DRP). The reacylation events occur via a two-step process catalyzed first by the GPC acyltransferase Gpc1, followed by acylation of the lyso-PC molecule by Ale1. However, whether Gpc1 is critical for ER bilayer homeostasis is unclear. Using an improved method for C14-choline-GPC radiolabeling, we first show that loss of Gpc1 results in abrogation of PC synthesis through PC-DRP and that Gpc1 colocalizes with the ER. We then probe the role of Gpc1 as both a target and an effector of the UPR. Exposure to the UPR-inducing compounds tunicamycin, DTT, and canavanine results in a Hac1-dependent increase in GPC1 message. Further, cells lacking Gpc1 exhibit increased sensitivity to those proteotoxic stressors. Inositol limitation, known to induce the UPR via bilayer stress, also induces GPC1 expression. Finally, we show that loss of GPC1 induces the UPR. A gpc1Δ mutant displays upregulation of the UPR in strains expressing a mutant form of Ire1 that is unresponsive to unfolded proteins, indicating that bilayer stress is responsible for the observed upregulation. Collectively, our data indicate an important role for Gpc1 in yeast ER bilayer homeostasis.
Collapse
Affiliation(s)
- Victoria Lee Hrach
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - William R King
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Laura D Nelson
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Shane Conklin
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - John A Pollock
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
6
|
Laqtom NN, Dong W, Medoh UN, Cangelosi AL, Dharamdasani V, Chan SH, Kunchok T, Lewis CA, Heinze I, Tang R, Grimm C, Dang Do AN, Porter FD, Ori A, Sabatini DM, Abu-Remaileh M. CLN3 is required for the clearance of glycerophosphodiesters from lysosomes. Nature 2022; 609:1005-1011. [PMID: 36131016 PMCID: PMC10510443 DOI: 10.1038/s41586-022-05221-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Lysosomes have many roles, including degrading macromolecules and signalling to the nucleus1. Lysosomal dysfunction occurs in various human conditions, such as common neurodegenerative diseases and monogenic lysosomal storage disorders (LSDs)2-4. For most LSDs, the causal genes have been identified but, in some, the function of the implicated gene is unknown, in part because lysosomes occupy a small fraction of the cellular volume so that changes in lysosomal contents are difficult to detect. Here we develop the LysoTag mouse for the tissue-specific isolation of intact lysosomes that are compatible with the multimodal profiling of their contents. We used the LysoTag mouse to study CLN3, a lysosomal transmembrane protein with an unknown function. In children, the loss of CLN3 causes juvenile neuronal ceroid lipofuscinosis (Batten disease), a lethal neurodegenerative LSD. Untargeted metabolite profiling of lysosomes from the brains of mice lacking CLN3 revealed a massive accumulation of glycerophosphodiesters (GPDs)-the end products of glycerophospholipid catabolism. GPDs also accumulate in the lysosomes of CLN3-deficient cultured cells and we show that CLN3 is required for their lysosomal egress. Loss of CLN3 also disrupts glycerophospholipid catabolism in the lysosome. Finally, we found elevated levels of glycerophosphoinositol in the cerebrospinal fluid of patients with Batten disease, suggesting the potential use of glycerophosphoinositol as a disease biomarker. Our results show that CLN3 is required for the lysosomal clearance of GPDs and reveal Batten disease as a neurodegenerative LSD with a defect in glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Nouf N Laqtom
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Uche N Medoh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew L Cangelosi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Ivonne Heinze
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Rachel Tang
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - An N Dang Do
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | | | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Du H, Yu J, Li Q, Zhang M. New Evidence of Tiger Subspecies Differentiation and Environmental Adaptation: Comparison of the Whole Genomes of the Amur Tiger and the South China Tiger. Animals (Basel) 2022; 12:ani12141817. [PMID: 35883364 PMCID: PMC9312029 DOI: 10.3390/ani12141817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tigers are top predators and umbrella protectors, vital to the stability of ecosystems. The South China tiger has been declared extinct in the wild and only exists in captivity. The Chinese government is actively promoting the reintroduction of the South China tiger into the wild. The future of the wild population of the Amur tiger in China is not optimistic, and the recovery of the population is an essential task for the conservation of the Amur tiger. The recovery of the population is not only a macroscopic problem but also a significant study of molecular ecology. We used high-throughput sequencing technology to study the differences in adaptive selection between Amur tigers and South China tigers. Significant genetic differences were found between the Amur tiger and the South China tiger based on a principal component analysis and phylogenetic tree. We identified functional genes and regulatory pathways related to reproduction, disease, predation, and metabolism and characterized functional genes related to survival in the wild, such as smell, vision, muscle, and predatory ability. The data also provide new evidence for the adaptation of Amur tigers to cold environments. PRKG1 is involved in temperature regulation in a cold climate. FOXO1 and TPM4 regulate body temperature to keep it constant. The research also provides a molecular basis for future tiger conservation. Abstract Panthera tigris is a top predator that maintains the integrity of forest ecosystems and is an integral part of biodiversity. No more than 400 Amur tigers (P. t. altaica) are left in the wild, whereas the South China tiger (P. t. amoyensis) is thought to be extinct in the wild, and molecular biology has been widely used in conservation and management. In this study, the genetic information of Amur tigers and South China tigers was studied by whole-genome sequencing (WGS). A total of 647 Gb of high-quality clean data was obtained. There were 6.3 million high-quality single-nucleotide polymorphisms (SNPs), among which most (66.3%) were located in intergenic regions, with an average of 31.72% located in coding sequences. There were 1.73 million insertion-deletions (InDels), among which there were 2438 InDels (0.10%) in the coding region, and 270 thousand copy number variations (CNVs). Significant genetic differences were found between the Amur tiger and the South China tiger based on a principal component analysis and phylogenetic tree. The linkage disequilibrium analysis showed that the linkage disequilibrium attenuation distance of the South China tiger and the Amur tiger was almost the same, whereas the r2 of the South China tiger was 0.6, and the r2 of the Amur tiger was 0.4. We identified functional genes and regulatory pathways related to reproduction, disease, predation, and metabolism and characterized functional genes related to survival in the wild, such as smell, vision, muscle, and predatory ability. The data also provide new evidence for the adaptation of Amur tigers to cold environments. PRKG1 is involved in temperature regulation in a cold climate. FOXO1 and TPM4 regulate body temperature to keep it constant. Our results can provide genetic support for precise interspecies conservation and management planning in the future.
Collapse
Affiliation(s)
- Hairong Du
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (H.D.); (J.Y.)
| | - Jingjing Yu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (H.D.); (J.Y.)
- Resources & Environment College, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Qian Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Correspondence: (Q.L.); (M.Z.)
| | - Minghai Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China; (H.D.); (J.Y.)
- Correspondence: (Q.L.); (M.Z.)
| |
Collapse
|
8
|
Cleavage-Polyadenylation Factor Cft1 and SPX Domain Proteins Are Agents of Inositol Pyrophosphate Toxicosis in Fission Yeast. mBio 2022; 13:e0347621. [PMID: 35012333 PMCID: PMC8749416 DOI: 10.1128/mbio.03476-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inositol pyrophosphate (IPP) dynamics govern expression of the fission yeast phosphate homeostasis regulon via their effects on lncRNA-mediated transcription interference. The growth defects (ranging from sickness to lethality) elicited by fission yeast mutations that inactivate IPP pyrophosphatase enzymes are exerted via the agonistic effects of too much 1,5-IP8 on RNA 3'-processing and transcription termination. To illuminate determinants of IPP toxicosis, we conducted a genetic screen for spontaneous mutations that suppressed the sickness of Asp1 pyrophosphatase mutants. We identified a missense mutation, C823R, in the essential Cft1 subunit of the cleavage and polyadenylation factor complex that suppresses even lethal Asp1 IPP pyrophosphatase mutations, thereby fortifying the case for 3'-processing/termination as the target of IPP toxicity. The suppressor screen also identified Gde1 and Spx1 (SPAC6B12.07c), both of which have an IPP-binding SPX domain and both of which are required for lethality elicited by Asp1 mutations. A survey of other SPX proteins in the proteome identified the Vtc4 and Vtc2 subunits of the vacuolar polyphosphate polymerase as additional agents of IPP toxicosis. Gde1, Spx1, and Vtc4 contain enzymatic modules (glycerophosphodiesterase, RING finger ubiquitin ligase, and polyphosphate polymerase, respectively) fused to their IPP-sensing SPX domains. Structure-guided mutagenesis of the IPP-binding sites and the catalytic domains of Gde1 and Spx1 indicated that both modules are necessary to elicit IPP toxicity. Whereas Vtc4 polymerase catalytic activity is required for IPP toxicity, its IPP-binding site is not. Epistasis analysis, transcriptome profiling, and assays of Pho1 expression implicate Spx1 as a transducer of IP8 signaling to the 3'-processing/transcription termination machinery. IMPORTANCE Impeding the catabolism of the inositol pyrophosphate (IPP) signaling molecule IP8 is cytotoxic to fission yeast. Here, by performing a genetic suppressor screen, we identified several cellular proteins required for IPP toxicosis. Alleviation of IPP lethality by a missense mutation in the essential Cft1 subunit of the cleavage and polyadenylation factor consolidates previous evidence that toxicity results from IP8 action as an agonist of RNA 3'-processing and transcription termination. Novel findings are that IP8 toxicity depends on IPP-sensing SPX domain proteins with associated enzymatic functions: Gde1 (glycerophosphodiesterase), Spx1 (ubiquitin ligase), and Vtc2/4 (polyphosphate polymerase). The effects of Spx1 deletion on phosphate homeostasis imply a role for Spx1 in communicating an IP8-driven signal to the transcription and RNA processing apparatus.
Collapse
|
9
|
Feng J, Song G, Wu Y, Chen X, Pang J, Xu Y, Shen Q, Guo S, Zhang M. Plasmalogens improve swimming performance by modulating the expression of genes involved in amino acid and lipid metabolism, oxidative stress, and ferroptosis in an Alzheimer's disease zebrafish model. Food Funct 2021; 12:12087-12097. [PMID: 34783821 DOI: 10.1039/d1fo01471d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plasmalogens (PLs) are critical to human health. Studies have reported a link between the downregulation of PLs levels and cognitive impairments in patients with Alzheimer's disease (AD). However, the underlying mechanisms remain to be clarified. In the present study, an AlCl3-induced AD zebrafish model was established, and the model was used to elucidate the neuroprotective effects of PLs on AD by analysing the transcriptional profiles of zebrafish in the control, AD model, AD_PL, and PL groups. Chronic AlCl3 exposure caused swimming performance impairments in the zebrafish, yet PLs supplementation could improve the dyskinesia recovery rate in the AD zebrafish model. Through transcriptional profiling, a total of 5413 statistically significant differentially expressed genes (DEGs) were identified among the groups. In addition to the DEGs involved in amino acid metabolism, we found that the genes related to iron homeostasis, lipid peroxidation, and oxidative stress, all of which contribute to ferroptosis, were dramatically altered among different groups. These results suggest that seafood-derived PLs, in addition to their role in eliminating oxidative stress, can improve the swimming performance in AlCl3-exposed zebrafish partly by suppressing neuronal ferroptosis and accelerating synaptic transmission at the transcriptional level. This study provides evidence for PLs to be developed as a functional food supplement to relieve AD symptoms.
Collapse
Affiliation(s)
- Junli Feng
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Yuanyuan Wu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Xi Chen
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| | - Jie Pang
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| | - Yaxi Xu
- Central Hospital of Haining, Haining 314408, Zhejiang, China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Shunyuan Guo
- Zhejiang Provincial People's Hospital, Hangzhou 310014, China.
| | - Manman Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
10
|
Austin S, Mayer A. Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained Through the INPHORS Signaling Pathway. Front Microbiol 2020; 11:1367. [PMID: 32765429 PMCID: PMC7381174 DOI: 10.3389/fmicb.2020.01367] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cells face major changes in demand for and supply of inorganic phosphate (Pi). Pi is often a limiting nutrient in the environment, particularly for plants and microorganisms. At the same time, the need for phosphate varies, establishing conflicts of goals. Cells experience strong peaks of Pi demand, e.g., during the S-phase, when DNA, a highly abundant and phosphate-rich compound, is duplicated. While cells must satisfy these Pi demands, they must safeguard themselves against an excess of Pi in the cytosol. This is necessary because Pi is a product of all nucleotide-hydrolyzing reactions. An accumulation of Pi shifts the equilibria of these reactions and reduces the free energy that they can provide to drive endergonic metabolic reactions. Thus, while Pi starvation may simply retard growth and division, an elevated cytosolic Pi concentration is potentially dangerous for cells because it might stall metabolism. Accordingly, the consequences of perturbed cellular Pi homeostasis are severe. In eukaryotes, they range from lethality in microorganisms such as yeast (Sethuraman et al., 2001; Hürlimann, 2009), severe growth retardation and dwarfism in plants (Puga et al., 2014; Liu et al., 2015; Wild et al., 2016) to neurodegeneration or renal Fanconi syndrome in humans (Legati et al., 2015; Ansermet et al., 2017). Intracellular Pi homeostasis is thus not only a fundamental topic of cell biology but also of growing interest for medicine and agriculture.
Collapse
Affiliation(s)
- Sisley Austin
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
11
|
Kwiatek JM, Han GS, Carman GM. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158434. [PMID: 30910690 PMCID: PMC6755077 DOI: 10.1016/j.bbalip.2019.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
In yeast and higher eukaryotes, phospholipids and triacylglycerol are derived from phosphatidate at the nuclear/endoplasmic reticulum membrane. In de novo biosynthetic pathways, phosphatidate is channeled into membrane phospholipids via its conversion to CDP-diacylglycerol. Its dephosphorylation to diacylglycerol is required for the synthesis of triacylglycerol as well as for the synthesis of phosphatidylcholine and phosphatidylethanolamine via the Kennedy pathway. In addition to the role of phosphatidate as a precursor, it is a regulatory molecule in the transcriptional control of phospholipid synthesis genes via the Henry regulatory circuit. Pah1 phosphatidate phosphatase and Dgk1 diacylglycerol kinase are key players that function counteractively in the control of the phosphatidate level at the nuclear/endoplasmic reticulum membrane. Loss of Pah1 phosphatidate phosphatase activity not only affects triacylglycerol synthesis but also disturbs the balance of the phosphatidate level, resulting in the alteration of lipid synthesis and related cellular defects. The pah1Δ phenotypes requiring Dgk1 diacylglycerol kinase exemplify the importance of the phosphatidate level in the misregulation of cellular processes. The catalytic function of Pah1 requires its translocation from the cytoplasm to the nuclear/endoplasmic reticulum membrane, which is regulated through its phosphorylation in the cytoplasm by multiple protein kinases as well as through its dephosphorylation by the membrane-associated Nem1-Spo7 protein phosphatase complex. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
12
|
Holič R, Pokorná L, Griač P. Metabolism of phospholipids in the yeast
Schizosaccharomyces pombe. Yeast 2019; 37:73-92. [DOI: 10.1002/yea.3451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Roman Holič
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Peter Griač
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| |
Collapse
|
13
|
William James A, Ravi C, Srinivasan M, Nachiappan V. Crosstalk between protein N-glycosylation and lipid metabolism in Saccharomyces cerevisiae. Sci Rep 2019; 9:14485. [PMID: 31597940 PMCID: PMC6785544 DOI: 10.1038/s41598-019-51054-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/04/2019] [Indexed: 11/09/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi functional organelle and plays a crucial role in protein folding and lipid biosynthesis. The SEC59 gene encodes dolichol kinase, required for protein glycosylation in the ER. The mutation of sec59-1 caused a protein N-glycosylation defect mediated ER stress resulting in increased levels of phospholipid, neutral lipid and sterol, whereas growth was reduced. In the sec59-1∆ cell, the N-glycosylation of vacuolar carboxy peptidase-Y (CPY) was significantly reduced; whereas the ER stress marker Kar2p and unfolded protein response (UPR) were significantly increased. Increased levels of Triacylglycerol (TAG), sterol ester (SE), and lipid droplets (LD) could be attributed to up-regulation of DPP1, LRO1, and ARE2 in the sec 59-1∆ cell. Also, the diacylglycerol (DAG), sterol (STE), and free fatty acids (FFA) levels were significantly increased, whereas the genes involved in peroxisome biogenesis and Pex3-EGFP levels were reduced when compared to the wild-type. The microarray data also revealed increased expression of genes involved in phospholipid, TAG, fatty acid, sterol synthesis, and phospholipid transport resulting in dysregulation of lipid homeostasis in the sec59-1∆ cell. We conclude that SEC59 dependent N-glycosylation is required for lipid homeostasis, peroxisome biogenesis, and ER protein quality control.
Collapse
Affiliation(s)
- Antonisamy William James
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Chidambaram Ravi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570020, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| |
Collapse
|
14
|
Plassard C, Becquer A, Garcia K. Phosphorus Transport in Mycorrhiza: How Far Are We? TRENDS IN PLANT SCIENCE 2019; 24:794-801. [PMID: 31272899 DOI: 10.1016/j.tplants.2019.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 05/12/2023]
Abstract
Mycorrhizal fungi considerably improve plant nutrition and help them to cope with changing environments. Particularly, these fungi express proteins to transfer inorganic phosphate (Pi) from the soil to colonized roots through symbiotic interfaces. The mechanisms involved in Pi transfer from fungal to plant cells are still largely unknown. Here, we discuss the recent progress made on the description of these mechanisms and we propose the most promising hypotheses and alternative mechanisms for this process. Specifically, we present a phylogenetic survey of candidate Pi transporters of mycorrhizal fungi that might ensure Pi unload into the symbiotic interfaces. Gathering additional knowledge on mycorrhizal Pi transport will improve the Pi-useefficiency in agroecological systems and will guide towards addressing future research challenges.
Collapse
Affiliation(s)
- Claude Plassard
- Eco&Sols, University Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Adeline Becquer
- Eco&Sols, University Montpellier, CIRAD, INRA, IRD, Montpellier SupAgro, Montpellier, France
| | - Kevin Garcia
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC27695-7619, USA.
| |
Collapse
|
15
|
Anaokar S, Kodali R, Jonik B, Renne MF, Brouwers JFHM, Lager I, de Kroon AIPM, Patton-Vogt J. The glycerophosphocholine acyltransferase Gpc1 is part of a phosphatidylcholine (PC)-remodeling pathway that alters PC species in yeast. J Biol Chem 2018; 294:1189-1201. [PMID: 30514764 DOI: 10.1074/jbc.ra118.005232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/27/2018] [Indexed: 12/22/2022] Open
Abstract
Phospholipase B-mediated hydrolysis of phosphatidylcholine (PC) results in the formation of free fatty acids and glycerophosphocholine (GPC) in the yeast Saccharomyces cerevisiae GPC can be reacylated by the glycerophosphocholine acyltransferase Gpc1, which produces lysophosphatidylcholine (LPC), and LPC can be converted to PC by the lysophospholipid acyltransferase Ale1. Here, we further characterized the regulation and function of this distinct PC deacylation/reacylation pathway in yeast. Through in vitro and in vivo experiments, we show that Gpc1 and Ale1 are the major cellular GPC and LPC acyltransferases, respectively. Importantly, we report that Gpc1 activity affects the PC species profile. Loss of Gpc1 decreased the levels of monounsaturated PC species and increased those of diunsaturated PC species, whereas Gpc1 overexpression had the opposite effects. Of note, Gpc1 loss did not significantly affect phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine profiles. Our results indicate that Gpc1 is involved in postsynthetic PC remodeling that produces more saturated PC species. qRT-PCR analyses revealed that GPC1 mRNA abundance is regulated coordinately with PC biosynthetic pathways. Inositol availability, which regulates several phospholipid biosynthetic genes, down-regulated GPC1 expression at the mRNA and protein levels and, as expected, decreased levels of monounsaturated PC species. Finally, loss of GPC1 decreased stationary phase viability in inositol-free medium. These results indicate that Gpc1 is part of a postsynthetic PC deacylation/reacylation remodeling pathway (PC-DRP) that alters the PC species profile, is regulated in coordination with other major lipid biosynthetic pathways, and affects yeast growth.
Collapse
Affiliation(s)
- Sanket Anaokar
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282
| | - Ravindra Kodali
- Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Benjamin Jonik
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282
| | - Mike F Renne
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, 3584 CH Utrecht, The Netherlands
| | - Jos F H M Brouwers
- Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Anton I P M de Kroon
- Department of Membrane Biochemistry & Biophysics, Bijvoet Center and Institute of Biomembranes, 3584 CH Utrecht, The Netherlands
| | - Jana Patton-Vogt
- Departments of Biological Sciences, Pittsburgh, Pennsylvania 15282.
| |
Collapse
|
16
|
Nehls U, Plassard C. Nitrogen and phosphate metabolism in ectomycorrhizas. THE NEW PHYTOLOGIST 2018; 220:1047-1058. [PMID: 29888395 DOI: 10.1111/nph.15257] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 05/23/2023]
Abstract
1047 I. Introduction 1047 II. Mobilization of soil N/P by ECM fungi 1048 III. N/P uptake 1048 IV. N/P assimilation 1049 V. N/P storage and remobilization 1049 VI. Hyphal N/P efflux at the plant-fungus interface 1052 VII. Conclusion and research needs 1054 Acknowledgements 1055 References 1055 SUMMARY: Nutrient homeostasis is essential for fungal cells and thus tightly adapted to the local demand in a mycelium with hyphal specialization. Based on selected ectomycorrhizal (ECM) fungal models, we outlined current concepts of nitrogen and phosphate nutrition and their limitations, and included knowledge from Baker's yeast when major gaps had to be filled. We covered the entire pathway from nutrient mobilization, import and local storage, distribution within the mycelium and export at the plant-fungus interface. Even when nutrient import and assimilation were broad issues for ECM fungi, we focused mainly on nitrate and organic phosphorus uptake, as other nitrogen/phosphorus (N/P) sources have been covered by recent reviews. Vacuolar N/P storage and mobilization represented another focus point of this review. Vacuoles are integrated into cellular homeostasis and central for an ECM mycelium at two locations: soil-growing hyphae and hyphae of the plant-fungus interface. Vacuoles are also involved in long-distance transport. We further discussed potential mechanisms of bidirectional long-distance nutrient transport (distances from millimetres to metres). A final focus of the review was N/P export at the plant-fungus interface, where we compared potential efflux mechanisms and pathways, and discussed their prerequisites.
Collapse
Affiliation(s)
- Uwe Nehls
- Botany, University of Bremen, Bremen, 28359, Germany
| | - Claude Plassard
- Eco & Sols, Université de Montpellier, INRA, CIRAD, IRD, Montpellier SupAgro, Montpellier, 34060, France
| |
Collapse
|
17
|
Ma L, Cissé OH, Kovacs JA. A Molecular Window into the Biology and Epidemiology of Pneumocystis spp. Clin Microbiol Rev 2018; 31:e00009-18. [PMID: 29899010 PMCID: PMC6056843 DOI: 10.1128/cmr.00009-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pneumocystis, a unique atypical fungus with an elusive lifestyle, has had an important medical history. It came to prominence as an opportunistic pathogen that not only can cause life-threatening pneumonia in patients with HIV infection and other immunodeficiencies but also can colonize the lungs of healthy individuals from a very early age. The genus Pneumocystis includes a group of closely related but heterogeneous organisms that have a worldwide distribution, have been detected in multiple mammalian species, are highly host species specific, inhabit the lungs almost exclusively, and have never convincingly been cultured in vitro, making Pneumocystis a fascinating but difficult-to-study organism. Improved molecular biologic methodologies have opened a new window into the biology and epidemiology of Pneumocystis. Advances include an improved taxonomic classification, identification of an extremely reduced genome and concomitant inability to metabolize and grow independent of the host lungs, insights into its transmission mode, recognition of its widespread colonization in both immunocompetent and immunodeficient hosts, and utilization of strain variation to study drug resistance, epidemiology, and outbreaks of infection among transplant patients. This review summarizes these advances and also identifies some major questions and challenges that need to be addressed to better understand Pneumocystis biology and its relevance to clinical care.
Collapse
Affiliation(s)
- Liang Ma
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Ousmane H Cissé
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Gsell M, Fankl A, Klug L, Mascher G, Schmidt C, Hrastnik C, Zellnig G, Daum G. A Yeast Mutant Deleted of GPH1 Bears Defects in Lipid Metabolism. PLoS One 2015; 10:e0136957. [PMID: 26327557 PMCID: PMC4556709 DOI: 10.1371/journal.pone.0136957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
In a previous study we demonstrated up-regulation of the yeast GPH1 gene under conditions of phosphatidylethanolamine (PE) depletion caused by deletion of the mitochondrial (M) phosphatidylserine decarboxylase 1 (PSD1) (Gsell et al., 2013, PLoS One. 8(10):e77380. doi: 10.1371/journal.pone.0077380). Gph1p has originally been identified as a glycogen phosphorylase catalyzing degradation of glycogen to glucose in the stationary growth phase of the yeast. Here we show that deletion of this gene also causes decreased levels of phosphatidylcholine (PC), triacylglycerols and steryl esters. Depletion of the two non-polar lipids in a Δgph1 strain leads to lack of lipid droplets, and decrease of the PC level results in instability of the plasma membrane. In vivo labeling experiments revealed that formation of PC via both pathways of biosynthesis, the cytidine diphosphate (CDP)-choline and the methylation route, is negatively affected by a Δgph1 mutation, although expression of genes involved is not down regulated. Altogether, Gph1p besides its function as a glycogen mobilizing enzyme appears to play a regulatory role in yeast lipid metabolism.
Collapse
Affiliation(s)
- Martina Gsell
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Ariane Fankl
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Lisa Klug
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Gerald Mascher
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Claudia Schmidt
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Claudia Hrastnik
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
| | - Günther Zellnig
- Institute of Plant Sciences, Karl Franzens University Graz, NaWi Graz, Austria
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, NaWi Graz, Petersgasse 12/2, 8010, Graz, Austria
- * E-mail:
| |
Collapse
|
19
|
Surlow BA, Cooley BM, Needham PG, Brodsky JL, Patton-Vogt J. Loss of Ypk1, the yeast homolog to the human serum- and glucocorticoid-induced protein kinase, accelerates phospholipase B1-mediated phosphatidylcholine deacylation. J Biol Chem 2014; 289:31591-604. [PMID: 25258318 DOI: 10.1074/jbc.m114.581157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ypk1, the yeast homolog of the human serum- and glucocorticoid-induced kinase (Sgk1), affects diverse cellular activities, including sphingolipid homeostasis. We now report that Ypk1 also impacts the turnover of the major phospholipid, phosphatidylcholine (PC). Pulse-chase radiolabeling reveals that a ypk1Δ mutant exhibits increased PC deacylation and glycerophosphocholine production compared with wild type yeast. Deletion of PLB1, a gene encoding a B-type phospholipase that hydrolyzes PC, in a ypk1Δ mutant curtails the increased PC deacylation. In contrast to previous data, we find that Plb1 resides in the ER and in the medium. Consistent with a link between Ypk1 and Plb1, the levels of both Plb1 protein and PLB1 message are elevated in a ypk1Δ strain compared with wild type yeast. Furthermore, deletion of PLB1 in a ypk1Δ mutant exacerbates phenotypes associated with loss of YPK1, including slowed growth and sensitivity to cell wall perturbation, suggesting that increased Plb1 activity buffers against the loss of Ypk1. Because Plb1 lacks a consensus phosphorylation site for Ypk1, we probed other processes under the control of Ypk1 that might be linked to PC turnover. Inhibition of sphingolipid biosynthesis by the drug myriocin or through utilization of a lcb1-100 mutant results in increased PLB1 expression. Furthermore, we discovered that the increase in PLB1 expression observed upon inhibition of sphingolipid synthesis or loss of Ypk1 is under the control of the Crz1 transcription factor. Taken together, these results suggest a functional interaction between Ypk1 and Plb1 in which altered sphingolipid metabolism up-regulates PLB1 expression via Crz1.
Collapse
Affiliation(s)
- Beth A Surlow
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282 and
| | - Benjamin M Cooley
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282 and
| | - Patrick G Needham
- the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jeffrey L Brodsky
- the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jana Patton-Vogt
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282 and
| |
Collapse
|
20
|
Abstract
Bacterial glycerophosphodiester phosphodiesterases (GP-PDEs), GlpQ and UgpQ, are well-characterized periplasmic and cytosolic proteins that play critical roles in the hydrolysis of deacylated glycerophospholipids to glycerol phosphate and alcohol, which are utilized as major sources of carbon and phosphate. In contrast, two novel mammalian GP-PDEs, GDE1/MIR16 and GDE3, were recently identified, and were shown to be involved in several physiological functions. GDE1/MIR16 was identified as a membrane protein interacting with RGS16, a regulator of G protein signaling, and found to hydrolyze glycerophosphoinositol preferentially. We have found that expression of GDE3 is significantly up-regulated during osteoblast differentiation and is involved in morphological changes of cells. Furthermore, five mammalian GP-PDEs were virtually identified, and very recent studies indicate that retinoic acid-induced expression of GDE2 plays essential roles in neuronal differentiation and neurite outgrowth. Thus mammalian GP-PDEs are likely to be important in controlling numerous cellular events, indicating that the GP-PDE superfamily in mammals might be a pharmacological target in the future.
Collapse
Affiliation(s)
- Noriyuki Yanaka
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
21
|
Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res 2014; 14:369-88. [DOI: 10.1111/1567-1364.12141] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Lisa Klug
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| | - Günther Daum
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| |
Collapse
|
22
|
Bishop AC, Ganguly S, Solis NV, Cooley BM, Jensen-Seaman MI, Filler SG, Mitchell AP, Patton-Vogt J. Glycerophosphocholine utilization by Candida albicans: role of the Git3 transporter in virulence. J Biol Chem 2013; 288:33939-33952. [PMID: 24114876 DOI: 10.1074/jbc.m113.505735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Candida albicans contains four ORFs (GIT1,2,3,4) predicted to encode proteins involved in the transport of glycerophosphodiester metabolites. Previously, we reported that Git1, encoded by ORF 19.34, is responsible for the transport of intact glycerophosphoinositol but not glycerophosphocholine (GroPCho). Here, we report that a strain lacking both GIT3 (ORF 19.1979) and GIT4 (ORF 19.1980) is unable to transport [(3)H]GroPCho into the cell. In the absence of a GroPCho transporter, C. albicans can utilize GroPCho via a mechanism involving extracellular hydrolysis. Upon reintegration of either GIT3 or GIT4 into the genome, measurable uptake of [(3)H]GroPCho is observed. Transport assays and kinetic analyses indicate that Git3 has the greater transport velocity. We present evidence that GDE1 (ORF 19.3936) codes for an enzyme with glycerophosphodiesterase activity against GroPCho. Homozygous deletion of GDE1 results in a buildup of internal GroPCho that is restored to wild type levels by reintegration of GDE1 into the genome. The transcriptional regulator, Pho4, is shown to regulate the expression of GIT3, GIT4, and GDE1. Finally, Git3 is shown to be required for full virulence in a mouse model of disseminated candidiasis, and Git3 sequence orthologs are present in other pathogenic Candida species. In summary, we have characterized multiple aspects of GroPCho utilization by C. albicans and have demonstrated that GroPCho transport plays a key role in the growth of the organism in the host.
Collapse
Affiliation(s)
- Andrew C Bishop
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Shantanu Ganguly
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Norma V Solis
- Division of Infectious Disease, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Benjamin M Cooley
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | | | - Scott G Filler
- Division of Infectious Disease, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502; David Geffen School of Medicine at UCLA, Los Angeles, California 90024
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282.
| |
Collapse
|
23
|
Implication of glycerol and phospholipid transporters in Mycoplasma pneumoniae growth and virulence. Infect Immun 2013; 81:896-904. [PMID: 23297388 DOI: 10.1128/iai.01212-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae, the causative agent of atypical pneumonia, is one of the bacteria with the smallest genomes that are nonetheless capable of independent life. Because of their longstanding close association with their human host, the bacteria have undergone reductive evolution and lost most biosynthetic abilities. Therefore, they depend on nutrients provided by the host that have to be taken up by the cell. Indeed, M. pneumoniae has a large set of hitherto unexplored transporters and lipoproteins that may be implicated in transport processes. Together, these proteins account for about 17% of the protein complement of M. pneumoniae. In the natural habitat of M. pneumoniae, human lung epithelial surfaces, phospholipids are the major available carbon source. Thus, the uptake and utilization of glycerol and glycerophosphodiesters that are generated by the activity of lipases are important for the nutrition of M. pneumoniae in its common habitat. In this study, we have investigated the roles of several potential transport proteins and lipoproteins in the utilization of glycerol and glycerophosphodiesters. On the basis of experiments with the corresponding mutant strains, our results demonstrate that the newly identified GlpU transport protein (MPN421) is responsible for the uptake of the glycerophosphodiester glycerophosphocholine, which is then intracellularly cleaved to glycerol-3-phosphate and choline. In addition, the proteins MPN076 and MPN077 are accessory factors in glycerophosphocholine uptake. Moreover, the lipoproteins MPN133 and MPN284 are essential for the uptake of glycerol. Our data suggest that they may act as binding proteins for glycerol and deliver glycerol molecules to the glycerol facilitator GlpF.
Collapse
|
24
|
Gsell M, Daum G. Analysis of membrane lipid biogenesis pathways using yeast genetics. Methods Mol Biol 2013; 1033:29-44. [PMID: 23996169 DOI: 10.1007/978-1-62703-487-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The yeast Saccharomyces cerevisiae has become a valuable eukaryotic model organism to study biochemical and cellular processes at a molecular basis. A common strategy for such studies is the use of single and multiple mutants constructed by genetic manipulation which are compromised in individual enzymatic steps or certain metabolic pathways. Here, we describe selected examples of yeast research on phospholipid metabolism with emphasis on our own work dealing with investigations of phosphatidylethanolamine synthesis. Such studies start with the selection and construction of appropriate mutants and lead to phenotype analysis, lipid profiling, enzymatic analysis, and in vivo experiments. Comparing results obtained with wild-type and mutant strains allows us to understand the role of gene products and metabolic processes in more detail. Such studies are valuable not only for contributing to our knowledge of the complex network of lipid metabolism, but also of effects of lipids on structure and function of cellular membranes.
Collapse
Affiliation(s)
- Martina Gsell
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
25
|
Mora G, Scharnewski M, Fulda M. Neutral lipid metabolism influences phospholipid synthesis and deacylation in Saccharomyces cerevisiae. PLoS One 2012; 7:e49269. [PMID: 23139841 PMCID: PMC3489728 DOI: 10.1371/journal.pone.0049269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/07/2012] [Indexed: 12/29/2022] Open
Abstract
Establishment and maintenance of equilibrium in the fatty acid (FA) composition of phospholipids (PL) requires both regulation of the substrate available for PL synthesis (the acyl-CoA pool) and extensive PL turnover and acyl editing. In the present study, we utilize acyl-CoA synthetase (ACS) deficient cells, unable to recycle FA derived from lipid deacylation, to evaluate the role of several enzymatic activities in FA trafficking and PL homeostasis in Saccharomyces cerevisiae. The data presented show that phospholipases B are not contributing to constitutive PL deacylation and are therefore unlikely to be involved in PL remodeling. In contrast, the enzymes of neutral lipid (NL) synthesis and mobilization are central mediators of FA trafficking. The phospholipid:DAG acyltransferase (PDAT) Lro1p has a substantial effect on FA release and on PL equilibrium, emerging as an important mediator in PL remodeling. The acyl-CoA dependent biosynthetic activities of NL metabolism are also involved in PL homeostasis through active modulation of the substrate available for PL synthesis. In addition TAG mobilization makes an important contribution, especially in cells from stationary phase, to FA availability. Beyond its well-established role in the formation of a storage pool, NL metabolism could play a crucial role as a mechanism to uncouple the pools of PL and acyl-CoAs from each other and thereby to allow independent regulation of each one.
Collapse
Affiliation(s)
- Gabriel Mora
- Department of Plant Biochemistry, Albrecht-von-Haller Institute, Georg-August University Goettingen, Goettingen, Germany
| | | | | |
Collapse
|
26
|
Abstract
Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways.
Collapse
|
27
|
Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits. Mol Biochem Parasitol 2012; 184:90-8. [PMID: 22569586 DOI: 10.1016/j.molbiopara.2012.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 10/28/2022]
Abstract
The Trypanosoma brucei cytochrome c oxidase (respiratory complex IV) is a very divergent complex containing a surprisingly high number of trypanosomatid-specific subunits with unknown function. To gain insight into the functional organization of this large protein complex, the expression of three novel subunits (TbCOX VII, TbCOX X and TbCOX 6080) were down-regulated by RNA interference. We demonstrate that all three subunits are important for the proper function of complex IV and the growth of the procyclic stage of T. brucei. These phenotypes were manifested by the structural instability of the complex when these indispensible subunits were repressed. Furthermore, the impairment of cytochrome c oxidase resulted in other severe mitochondrial phenotypes, such as a decreased mitochondrial membrane potential, reduced ATP production via oxidative phoshorylation and redirection of oxygen consumption to the trypanosome-specific alternative oxidase, TAO. Interestingly, the inspected subunits revealed some disparate phenotypes, particularly regarding the activity of cytochrome c reductase (respiratory complex III). While the activity of complex III was down-regulated in RNAi induced cells for TbCOX X and TbCOX 6080, the TbCOX VII silenced cell line actually exhibited higher levels of complex III activity and elevated levels of ROS formation. This result suggests that the examined subunits may have different functional roles within complex IV of T. brucei, perhaps involving the ability to communicate between sequential enzymes in the respiratory chain. In summary, by characterizing the function of three hypothetical components of complex IV, we are able to assign these proteins as genuine and indispensable subunits of the procyclic T. brucei cytochrome c oxidase, an essential component of the respiratory chain in these evolutionary ancestral and medically important parasites.
Collapse
|
28
|
Sun T, Wetzel SJ, Johnson ME, Surlow BA, Patton-Vogt J. Development and validation of a hydrophilic interaction liquid chromatography–tandem mass spectrometry method for the quantification of lipid-related extracellular metabolites in Saccharomyces cerevisiae. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 897:1-9. [DOI: 10.1016/j.jchromb.2012.03.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/16/2012] [Accepted: 03/25/2012] [Indexed: 01/24/2023]
|
29
|
He Y, Swaminathan A, Lopes JM. Transcription regulation of the Saccharomyces cerevisiae PHO5 gene by the Ino2p and Ino4p basic helix-loop-helix proteins. Mol Microbiol 2011; 83:395-407. [PMID: 22182244 DOI: 10.1111/j.1365-2958.2011.07941.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Saccharomyces cerevisiae PHO5 gene product accounts for a majority of the acid phosphatase activity. Its expression is induced by the basic helix-loop-helix (bHLH) protein, Pho4p, in response to phosphate depletion. Pho4p binds predominantly to two UAS elements (UASp1 at -356 and UASp2 at -247) in the PHO5 promoter. Previous studies from our lab have shown cross-regulation of different biological processes by bHLH proteins. This study tested the ability of all yeast bHLH proteins to regulate PHO5 expression and identified inositol-mediated regulation via the Ino2p/Ino4p bHLH proteins. Ino2p/Ino4p are known regulators of phospholipid biosynthetic genes. Genetic epistasis experiments showed that regulation by inositol required a third UAS site (UASp3 at -194). ChIP assays showed that Ino2p:Ino4p bind the PHO5 promoter and that this binding is dependent on Pho4p binding. These results demonstrate that phospholipid biosynthesis is co-ordinated with phosphate utilization via the bHLH proteins.
Collapse
Affiliation(s)
- Ying He
- Department of Microbiology, and Molecular Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
30
|
Abstract
The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
31
|
Robust utilization of phospholipase-generated metabolites, glycerophosphodiesters, by Candida albicans: role of the CaGit1 permease. EUKARYOTIC CELL 2011; 10:1618-27. [PMID: 21984707 DOI: 10.1128/ec.05160-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycerophosphodiesters are the products of phospholipase-mediated deacylation of phospholipids. In Saccharomyces cerevisiae, a single gene, GIT1, encodes a permease responsible for importing glycerophosphodiesters, such as glycerophosphoinositol and glycerophosphocholine, into the cell. In contrast, the Candida albicans genome contains four open reading frames (ORFs) with a high degree of similarity to S. cerevisiae GIT1 (ScGIT1) Here, we report that C. albicans utilizes glycerophosphoinositol (GroPIns) and glycerophosphocholine (GroPCho) as sources of phosphate at both mildly acidic and physiological pHs. Insertional mutagenesis of C. albicans GIT1 (CaGIT1) (orf19.34), the ORF most similar to ScGit1, abolished the ability of cells to use GroPIns as a phosphate source at acidic pH and to transport [(3)H]GroPIns at acidic and physiological pHs, while reintegration of a GIT1 allele into the genome restored those functions. Several lines of evidence, including the detection of internal [(3)H]GroPIns, indicated that GroPIns is transported intact through CaGit1. GroPIns transport was shown to conform to Michaelis-Menten kinetics, with an apparent K(m) of 28 ± 6 μM. Notably, uptake of label from [(3)H]GroPCho was found to be roughly 50-fold greater than uptake of label from [(3)H]GroPIns and roughly 500-fold greater than the equivalent activity in S. cerevisiae. Insertional mutagenesis of CaGIT1 had no effect on the utilization of GroPCho as a phosphate source or on the uptake of label from [(3)H]GroPCho. Growth under low-phosphate conditions was shown to increase label uptake from both [(3)H]GroPIns and [(3)H]GroPCho. Screening of a transcription factor deletion set identified CaPHO4 as required for the utilization of GroPIns, but not GroPCho, as a phosphate source.
Collapse
|
32
|
Dippe M, Ulbrich-Hofmann R. Phospholipid acylhydrolases trigger membrane degradation during fungal sporogenesis. Fungal Genet Biol 2011; 48:921-7. [DOI: 10.1016/j.fgb.2011.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/06/2011] [Accepted: 05/28/2011] [Indexed: 11/27/2022]
|
33
|
Cheng Y, Zhou W, El Sheery NI, Peters C, Li M, Wang X, Huang J. Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastid-localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:781-95. [PMID: 21323773 DOI: 10.1111/j.1365-313x.2011.04538.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glycerophosphodiester phosphodiesterase (GDPD), which hydrolyzes glycerophosphodiesters into sn-glycerol-3-phosphate (G-3-P) and the corresponding alcohols, plays an important role in various physiological processes in both prokaryotes and eukaryotes. However, little is known about the physiological significance of GDPD in plants. Here, we characterized the Arabidopsis GDPD family that can be classified into canonical GDPD (AtGDPD1-6) and GDPD-like (AtGDPDL1-7) subfamilies. In vitro analysis of enzymatic activities showed that AtGDPD1 and AtGDPDL1 hydrolyzed glycerolphosphoglycerol, glycerophosphocholine and glycerophosphoethanolamine, but the maximum activity of AtGDPD1 was much higher than that of AtGDPDL1 under our assay conditions. Analyses of gene expression patterns revealed that all AtGDPD genes except for AtGDPD4 were transcriptionally active in flowers and siliques. In addition, the gene family displayed overlapping and yet distinguishable patterns of expression in roots, leaves and stems, indicating functional redundancy as well as specificity of GDPD genes. AtGDPDs but not AtGDPDLs are up-regulated by inorganic phosphate (P(i) ) starvation. Loss-of-function of the plastid-localized AtGDPD1 leads to a significant decrease in GDPD activity, G-3-P content, P(i) content and seedling growth rate only under P(i) starvation compared with the wild type (WT). However, membrane lipid compositions in the P(i) -deprived seedlings remain unaltered between the AtGDPD1 knockout mutant and WT. Thus, we suggest that the GDPD-mediated lipid metabolic pathway may be involved in release of P(i) from phospholipids during P(i) starvation.
Collapse
Affiliation(s)
- Yuxiang Cheng
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Kopp F, Komatsu T, Nomura DK, Trauger SA, Thomas JR, Siuzdak G, Simon GM, Cravatt BF. The glycerophospho metabolome and its influence on amino acid homeostasis revealed by brain metabolomics of GDE1(-/-) mice. ACTA ACUST UNITED AC 2011; 17:831-40. [PMID: 20797612 DOI: 10.1016/j.chembiol.2010.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 12/25/2022]
Abstract
GDE1 is a mammalian glycerophosphodiesterase (GDE) implicated by in vitro studies in the regulation of glycerophophoinositol (GroPIns) and possibly other glycerophospho (GroP) metabolites. Here, we show using untargeted metabolomics that GroPIns is profoundly (>20-fold) elevated in brain tissue from GDE1(-/-) mice. Furthermore, two additional GroP metabolites not previously identified in eukaryotic cells, glycerophosphoserine (GroPSer) and glycerophosphoglycerate (GroPGate), were also highly elevated in GDE1(-/-) brains. Enzyme assays with synthetic GroP metabolites confirmed that GroPSer and GroPGate are direct substrates of GDE1. Interestingly, our metabolomic profiles also revealed that serine (both L-and D-) levels were significantly reduced in brains of GDE1(-/-) mice. These findings designate GroPSer as a previously unappreciated reservoir for free serine in the nervous system and suggest that GDE1, through recycling serine from GroPSer, may impact D-serine-dependent neural signaling processes in vivo.
Collapse
Affiliation(s)
- Florian Kopp
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gonzalez M, Sealls W, Jesch ED, Brosnan MJ, Ladunga I, Ding X, Black PN, DiRusso CC. Defining a relationship between dietary fatty acids and the cytochrome P450 system in a mouse model of fatty liver disease. Physiol Genomics 2010; 43:121-35. [PMID: 21098682 DOI: 10.1152/physiolgenomics.00209.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Liver-specific ablation of cytochrome P450 reductase in mice (LCN) results in hepatic steatosis that can progress to steatohepatitis characterized by inflammation and fibrosis. The specific cause of the fatty liver phenotype is poorly understood but is hypothesized to result from elevated expression of genes encoding fatty acid synthetic genes. Since expression of these genes is known to be suppressed by polyunsaturated fatty acids, we performed physiological and genomics studies to evaluate the effects of dietary linoleic and linolenic fatty acids (PUFA) or arachidonic and decosahexaenoic acids (HUFA) on the hepatic phenotypes of control and LCN mice by comparison with a diet enriched in saturated fatty acids. The dietary interventions with HUFA reduced the fatty liver phenotype in livers of LCN mice and altered the gene expression patterns in these livers to more closely resemble those of control mice. Importantly, the expression of genes encoding lipid pathway enzymes were not different between controls and LCN livers, indicating a strong influence of diet over POR genotype. These analyses highlighted the impact of POR ablation on expression of genes encoding P450 enzymes and proteins involved in stress and inflammation. We also found that livers from animals of both genotypes fed diets enriched in PUFA had gene expression patterns more closely resembling those fed diets enriched in saturated fatty acids. These results strongly suggest only HUFA supplied from an exogenous source can suppress hepatic lipogenesis.
Collapse
Affiliation(s)
- Monika Gonzalez
- Center for Metabolic Disease, Ordway Research Institute and Center for Cardiovascular Science, Albany Medical College, Albany, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Corda D, Zizza P, Varone A, Filippi BM, Mariggiò S. The glycerophosphoinositols: cellular metabolism and biological functions. Cell Mol Life Sci 2009; 66:3449-67. [PMID: 19669618 PMCID: PMC11115907 DOI: 10.1007/s00018-009-0113-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/26/2009] [Accepted: 07/16/2009] [Indexed: 12/25/2022]
Abstract
The glycerophosphoinositols are cellular products of phospholipase A(2) and lysolipase activities on the membrane phosphoinositides. Their intracellular concentrations can vary upon oncogenic transformation, cell differentiation and hormonal stimulation. Specific glycerophosphodiester phosphodiesterases are involved in their catabolism, which, as with their formation, is under hormonal regulation. With their mechanisms of action including modulation of adenylyl cyclase, intracellular calcium levels, and Rho-GTPases, the glycerophosphoinositols have diverse effects in multiple cell types: induction of cell proliferation in thyroid cells; modulation of actin cytoskeleton organisation in fibroblasts; and reduction of the invasive potential of tumour cell lines. More recent investigations include their effects in inflammatory and immune responses. Indeed, the glycerophosphoinositols enhance cytokine-dependent chemotaxis in T-lymphocytes induced by SDF-1alpha-receptor activation, indicating roles for these compounds as modulators of T-cell signalling and T-cell responses.
Collapse
Affiliation(s)
- Daniela Corda
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Pasquale Zizza
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Alessia Varone
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Beatrice Maria Filippi
- Present Address: MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Stefania Mariggiò
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| |
Collapse
|
37
|
Santos-Beneit F, Rodríguez-García A, Apel AK, Martín JF. Phosphate and carbon source regulation of two PhoP-dependent glycerophosphodiester phosphodiesterase genes of Streptomyces coelicolor. MICROBIOLOGY-SGM 2009; 155:1800-1811. [PMID: 19383699 DOI: 10.1099/mic.0.026799-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glycerophosphodiesters are formed by deacylation of phospholipids. Streptomyces coelicolor and other soil-dwelling actinomycetes utilize glycerophosphodiesters as phosphate and carbon sources by the action of glycerophosphodiester phosphodiesterases (GDPDs). Seven genes encoding putative GDPDs occur in the S. coelicolor genome. Two of these genes, glpQ1 and glpQ2, encoding extracellular GDPDs, showed a PhoP-dependent upregulated profile in response to phosphate shiftdown. Expression studies using the luxAB genes as reporter confirmed the PhoP dependence of both glpQ1 and glpQ2. Footprinting analyses with pure GST-PhoP of the glpQ1 promoter revealed four protected direct repeat units (DRu). PhoP binding affinity to the glpQ2 promoter was lower and revealed a protected region containing five DRu. As expected for pho regulon genes, inorganic phosphate, and also glycerol 3-phosphate, inhibited the expression from both glpQ1 and glpQ2. The expression of glpQ1 was also repressed by serine and inositol but expression of glpQ2 was not. In contrast, glucose, fructose and glycerol increased expression of glpQ2 but not that of glpQ1. In summary, our results suggest an interaction of phosphate control mediated by PhoP and carbon source regulation of the glpQ1 and glpQ2 genes involving complex operator structures.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real 1, 24006 León, Spain
| | - Antonio Rodríguez-García
- Área de Microbiología, Fac. CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain.,Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real 1, 24006 León, Spain
| | - Alexander K Apel
- Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real 1, 24006 León, Spain
| | - Juan F Martín
- Área de Microbiología, Fac. CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain.,Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real 1, 24006 León, Spain
| |
Collapse
|
38
|
Chang PA, Shao HB, Long DX, Sun Q, Wu YJ. Isolation, characterization and molecular 3D model of human GDE4, a novel membrane protein containing glycerophosphodiester phosphodiesterase domain. Mol Membr Biol 2009; 25:557-66. [PMID: 18991142 DOI: 10.1080/09687680802537605] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As a transmembrane protein family, glycerophosphodiester phosphodiesterase (GDPD/GDE) catalyzes the hydrolysis of deacylated glycerophospholipids to glycerol phosphate and alcohol. To date, seven mammalian GDEs have been virtually cloned or predicted by bioinformatics analysis, however, GDE4 has not been molecular isolated and characterized in mammal. Here we report molecular cloning of human GDE4 encoding cDNA sequence, which is 945 base pairs long encoding a 314-amino acid protein with 2 transmembrane regions and a GDE motif. The human GDE1 gene is located on chromosome 19q22 and contains ten exons and nine introns. A molecular 3-D model provides the first structural information of human GDE4 and suggests a triose-phosphate-isomerase barrel core as typically found in bacterial GDPDs. Furthermore, a model of the putative catalytic residues highlights that the individual core residues Glu72, Asp74, and His87 are crucial to maintaining GDE4 catalytic activity. Western blotting shows that human GDE4 is a 36 kDa protein. Subcellular localization of GDE4 tagged with enhanced green fluorescence protein is in the cytoplasm, especially accumulated in the perinuclear region and the cell periphery. Moreover, over-expression of GDE4 did not induce neurite formation or change cell morphology. These results indicate GDE4 protein is a member of the GDE family and suggest it may play different roles from other members of GDE family.
Collapse
Affiliation(s)
- Ping A Chang
- Key Laboratory of Molecular Biology, College of Bio-information, Chongqing University of Posts and Telecommunications, Chongqing, PR China.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Phospholipid synthesis in the yeast Saccharomyces cerevisiae is a complex process that involves regulation by both genetic and biochemical mechanisms. The activity levels of phospholipid synthesis enzymes are controlled by gene expression (e.g., transcription) and by factors (lipids, water-soluble phospholipid precursors and products, and covalent modification of phosphorylation) that modulate catalysis. Phosphatidic acid, whose levels are controlled by the biochemical regulation of key phospholipid synthesis enzymes, plays a central role in the regulation of phospholipid synthesis gene expression.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
40
|
Stålberg K, Neal AC, Ronne H, Ståhl U. Identification of a novel GPCAT activity and a new pathway for phosphatidylcholine biosynthesis in S. cerevisiae. J Lipid Res 2008; 49:1794-806. [DOI: 10.1194/jlr.m800129-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Tauch A, Schneider J, Szczepanowski R, Tilker A, Viehoever P, Gartemann KH, Arnold W, Blom J, Brinkrolf K, Brune I, Götker S, Weisshaar B, Goesmann A, Dröge M, Pühler A. Ultrafast pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights into the physiology of a lipophilic corynebacterium that lacks mycolic acids. J Biotechnol 2008; 136:22-30. [PMID: 18430482 DOI: 10.1016/j.jbiotec.2008.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/20/2008] [Accepted: 03/11/2008] [Indexed: 10/22/2022]
Abstract
Corynebacterium kroppenstedtii is a lipophilic corynebacterial species that lacks in the cell envelope the characteristic alpha-alkyl-beta-hydroxy long-chain fatty acids, designated mycolic acids. We report here the bioinformatic analysis of genome data obtained by pyrosequencing of the type strain C. kroppenstedtii DSM44385 that was initially isolated from human sputum. A single run with the Genome Sequencer FLX system revealed 560,248 shotgun reads with 110,018,974 detected bases that were assembled into a contiguous genomic sequence with a total size of 2,446,804bp. Automatic annotation of the complete genome sequence resulted in the prediction of 2122 coding sequences, of which 29% were considered as specific for C. kroppenstedtii when compared with predicted proteins from hitherto sequenced pathogenic corynebacteria. This comparative content analysis of the genome data revealed a large repertoire of genes involved in sugar uptake and central carbohydrate metabolism and the presence of the mevalonate route for isoprenoid biosynthesis. The lack of mycolic acids and the lipophilic lifestyle of C. kroppenstedtii are apparently caused by gene loss, including a condensase gene cluster, a mycolate reductase gene, and a microbial type I fatty acid synthase gene. A complete beta-oxidation pathway involved in the degradation of fatty acids is present in the genome. Evaluation of the genomic data indicated that lipophilism is the dominant feature involved in pathogenicity of C. kroppenstedtii.
Collapse
Affiliation(s)
- Andreas Tauch
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Simon GM, Cravatt BF. Anandamide biosynthesis catalyzed by the phosphodiesterase GDE1 and detection of glycerophospho-N-acyl ethanolamine precursors in mouse brain. J Biol Chem 2008; 283:9341-9. [PMID: 18227059 DOI: 10.1074/jbc.m707807200] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anandamide (AEA) is an endogenous ligand of cannabinoid receptors and a well characterized mediator of many physiological processes including inflammation, pain, and appetite. The biosynthetic pathway(s) for anandamide and its N-acyl ethanolamine (NAE) congeners remain enigmatic. Previously, we proposed an enzymatic route for producing NAEs that involves the double-O-deacylation of N-acyl phosphatidylethanolamines (NAPEs) by alpha/beta-hydrolase 4 (ABDH4 or Abh4) to form glycerophospho (GP)-NAEs, followed by conversion of these intermediates to NAEs by an unidentified phosphodiesterase. Here, we report the detection and measurement of GP-NAEs, including the anandamide precursor glycerophospho-N-arachidonoylethanolamine (GP-NArE), as endogenous constituents of mouse brain tissue. Inhibition of the phosphodiesterase-mediated degradation of GP-NAEs ex vivo resulted in a striking accumulation of these lipids in brain extracts, suggesting a rapid endogenous flux through this pathway. Furthermore, we identify the glycerophosphodiesterase GDE1, also known as MIR16, as a broadly expressed membrane enzyme with robust GP-NAE phosphodiesterase activity. Together, these data provide evidence for a multistep pathway for the production of anandamide in the nervous system by the sequential actions of Abh4 and GDE1.
Collapse
Affiliation(s)
- Gabriel M Simon
- Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
43
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|