1
|
Kelso C, Maccarone AT, de Kroon AIPM, Mitchell TW, Renne MF. Temperature adaptation of yeast phospholipid molecular species at the acyl chain positional level. FEBS Lett 2024. [PMID: 39673166 DOI: 10.1002/1873-3468.15060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 12/16/2024]
Abstract
Yeast is a poikilothermic organism and adapts its lipid composition to the environmental temperature to maintain membrane physical properties. Studies addressing temperature-dependent adaptation of the lipidome have described changes in the phospholipid composition at the level of sum composition (e.g. PC 32:1) and molecular composition (e.g. PC 16:0_16:1). However, there is little information at the level of positional isomers (e.g. PC 16:0/16:1 versus PC 16:1/16:0). Here, we used collision- and ozone-induced dissociation (CID/OzID) mass spectrometry to investigate homeoviscous adaptation of PC, PE and PS to determine the phospholipid acyl chains at the sn-1 and sn-2 position. Our data establish the sn-molecular species composition of PC, PE and PS in the lipidome of yeast cultured at different temperatures.
Collapse
Affiliation(s)
- Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
- Molecular Horizons Institute, University of Wollongong, Australia
| | - Alan T Maccarone
- School of Chemistry and Molecular Bioscience, University of Wollongong, Australia
- Molecular Horizons Institute, University of Wollongong, Australia
| | - Anton I P M de Kroon
- Membrane Biochemistry & Biophysics, Department of Chemistry, Utrecht University, The Netherlands
| | - Todd W Mitchell
- Molecular Horizons Institute, University of Wollongong, Australia
- School of Medical, Indigenous and Health Sciences, University of Wollongong, Australia
| | - Mike F Renne
- Membrane Biochemistry & Biophysics, Department of Chemistry, Utrecht University, The Netherlands
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
- Preclinical Center for Molecular Signalling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
2
|
Tabe S, Hikiji H, Hashidate‐Yoshida T, Shindou H, Shimizu T, Tominaga K. The role of lysophosphatidylcholine acyltransferase 2 in osteoblastic differentiation of C2C12 cells. FEBS Open Bio 2024; 14:1490-1502. [PMID: 39075841 PMCID: PMC11492341 DOI: 10.1002/2211-5463.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 07/31/2024] Open
Abstract
Glycerophospholipids, a primary component of cellular membranes, play important structural and functional roles in cells. In the remodelling pathway (Lands' cycle), the concerted actions of phospholipase As and lysophospholipid acyltransferases (LPLATs) contribute to the incorporation of diverse fatty acids in glycerophospholipids in an asymmetric manner, which differ between cell types. In this study, the role of LPLATs in osteoblastic differentiation of C2C12 cells was investigated. Gene and protein expression levels of lysophosphatidylcholine acyltransferase 2 (LPCAT2), one of the LPLATs, increased during osteoblastic differentiation in C2C12 cells. LPCAT2 knockdown in C2C12 cells downregulated the expression of osteoblastic differentiation markers and the number and size of lipid droplets (LDs) and suppressed the phosphorylation of Smad1/5/9. In addition, LPCAT2 knockdown inhibited Snail1 and the downstream target of Runx2 and vitamin D receptor (VDR). These results suggest that LPCAT2 modulates osteoblastic differentiation in C2C12 cells through the bone morphogenetic protein (BMP)/Smad signalling pathway.
Collapse
Affiliation(s)
- Shirou Tabe
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical FunctionsKyushu Dental UniversityKitakyushu‐shiJapan
| | - Hisako Hikiji
- School of Oral Health SciencesKyushu Dental UniversityKitakyushu‐shiJapan
| | - Tomomi Hashidate‐Yoshida
- Department of Lipid Life Science, Research InstituteNational Center for Global Health and MedicineShinjuku‐kuJapan
| | - Hideo Shindou
- Department of Lipid Life Science, Research InstituteNational Center for Global Health and MedicineShinjuku‐kuJapan
- Agency for Medical Research and Development‐Core Research for Evolutional Medical Science and Technology (AMED‐CREST), AMEDChiyoda‐kuJapan
| | - Takao Shimizu
- Department of Lipid Life Science, Research InstituteNational Center for Global Health and MedicineShinjuku‐kuJapan
- Department of Lipidomics, Graduate School of MedicineThe University of TokyoBunkyo‐kuJapan
| | - Kazuhiro Tominaga
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical FunctionsKyushu Dental UniversityKitakyushu‐shiJapan
| |
Collapse
|
3
|
Suzawa T, Iwama R, Fukuda R, Horiuchi H. Phosphatidylcholine levels regulate hyphal elongation and differentiation in the filamentous fungus Aspergillus oryzae. Sci Rep 2024; 14:11729. [PMID: 38778216 PMCID: PMC11111764 DOI: 10.1038/s41598-024-62580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Filamentous fungi are eukaryotic microorganisms that differentiate into diverse cellular forms. Recent research demonstrated that phospholipid homeostasis is crucial for the morphogenesis of filamentous fungi. However, phospholipids involved in the morphological regulation are yet to be systematically analyzed. In this study, we artificially controlled the amount of phosphatidylcholine (PC), a primary membrane lipid in many eukaryotes, in a filamentous fungus Aspergillus oryzae, by deleting the genes involved in PC synthesis or by repressing their expression. Under the condition where only a small amount of PC was synthesized, A. oryzae hardly formed aerial hyphae, the basic structures for asexual development. In contrast, hyphae were formed on the surface or in the interior of agar media (we collectively called substrate hyphae) under the same conditions. Furthermore, we demonstrated that supplying sufficient choline to the media led to the formation of aerial hyphae from the substrate hyphae. We suggested that acyl chains in PC were shorter in the substrate hyphae than in the aerial hyphae by utilizing the strain in which intracellular PC levels were controlled. Our findings suggested that the PC levels regulate hyphal elongation and differentiation processes in A. oryzae and that phospholipid composition varied depending on the hyphal types.
Collapse
Affiliation(s)
- Tetsuki Suzawa
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Ryo Iwama
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Ryouichi Fukuda
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Hiroyuki Horiuchi
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
4
|
Pradhan SS, Rao KR, Manjunath M, Saiswaroop R, Patnana DP, Phalguna KS, Choudhary B, Sivaramakrishnan V. Vitamin B 6, B 12 and folate modulate deregulated pathways and protein aggregation in yeast model of Huntington disease. 3 Biotech 2023; 13:96. [PMID: 36852176 PMCID: PMC9958225 DOI: 10.1007/s13205-023-03525-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Huntington's disease (HD) is an incurable and progressive neurodegenerative disease affecting the basal ganglia of the brain. HD is caused due to expansion of the polyglutamine tract in the protein Huntingtin resulting in aggregates. The increased PolyQ length results in aggregation of protein Huntingtin leading to neuronal cell death. Vitamin B6, B12 and folate are deficient in many neurodegenerative diseases. We performed an integrated analysis of transcriptomic, metabolomic and cofactor-protein network of vitamin B6, B12 and folate was performed. Our results show considerable overlap of pathways modulated by Vitamin B6, B12 and folate with those obtained from transcriptomic and metabolomic data of HD patients and model systems. Further, in yeast model of HD we showed treatment of B6, B12 or folate either alone or in combination showed impaired aggregate formation. Transcriptomic analysis of yeast model treated with B6, B12 and folate showed upregulation of pathways like ubiquitin mediated proteolysis, autophagy, peroxisome, fatty acid, lipid and nitrogen metabolism. Metabolomic analysis of yeast model shows deregulation of pathways like aminoacyl-tRNA biosynthesis, metabolism of various amino acids, nitrogen metabolism and glutathione metabolism. Integrated transcriptomic and metabolomic analysis of yeast model showed concordance in the pathways obtained. Knockout of Peroxisomal (PXP1 and PEX7) and Autophagy (ATG5) genes in yeast increased aggregates which is mitigated by vitamin B6, B12 and folate treatment. Taken together our results show a role for Vitamin B6, B12 and folate mediated modulation of pathways important for preventing protein aggregation with potential implications for HD. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03525-y.
Collapse
Affiliation(s)
- Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - K. Raksha Rao
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka 560100 India
| | - Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka 560100 India
| | - R. Saiswaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Durga Prasad Patnana
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Kanikaram Sai Phalguna
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka 560100 India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh 515134 India
| |
Collapse
|
5
|
Tang F, Yue J, Tian J, Ge F, Li F, Liu Y, Deng S, Zhang D. Microbial induced phosphate precipitation accelerate lead mineralization to alleviate nucleotide metabolism inhibition and alter Penicillium oxalicum's adaptive cellular machinery. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129675. [PMID: 35907285 DOI: 10.1016/j.jhazmat.2022.129675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Microbial-induced phosphate (P) precipitation (MIPP) based on P-solubilizing microorganisms (PSM) is regarded as a promising approach to bioimmobilize environmental lead (Pb). Nevertheless, the underlying changes of Pb2+ biotoxicity in PSM during MIPP process were rarely discussed. The current study explored the Pb2+ immobilization and metabolic changes in PSM Penicillium oxalicum postexposure to Pb2+ and/or tricalcium phosphate (TCP). TCP addition significantly increased soluble P concentrations, accelerated extracellular Pb mineralization, and improved antioxidative enzyme activities in P. oxalicum during MIPP process. Secondary Pb2+ biomineralization products were measured as hydroxypyromorphite [Pb10(PO4)6(OH)2]. Using untargeted metabolomic and transcriptomics, we found that Pb2+ exposure stimulated the membrane integrity deterioration and nucleotide metabolism obstruction of P. oxalicum. Correspondingly, P. oxalicum could produce higher levels of gamma-aminobutyric acid (GABA) to enhance the adaptive cellular machineries under Pb2+ stress. While the MIPP process improved extracellular Pb2+ mineralization, consequently alleviating the nucleotide metabolism inhibition and membrane deterioration. Multi-omics results suggested that GABA degradation pathway was stimulated for arginine biosynthesis and TCA cycle after Pb2+ mineralization. These results provided new biomolecular information underlying the Pb2+ exposure biotoxicities to microorganisms in MIPP before the application of this approach in environmental Pb2+ remediation.
Collapse
Affiliation(s)
- Fei Tang
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jiaru Yue
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China.
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Songqiang Deng
- Research Institute for Environmental Innovation (Tsinghua-Suzhou), Suzhou, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
6
|
Isotope Calculation Gadgets: A Series of Software for Isotope-Tracing Experiments in Garuda Platform. Metabolites 2022; 12:metabo12070646. [PMID: 35888770 PMCID: PMC9318330 DOI: 10.3390/metabo12070646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
Isotope tracing is a powerful technique for elucidating intracellular metabolism. Experiments utilizing this technique involve various processes, such as the correction of natural isotopes. Although some previously developed software are available for these procedures, there are still time-consuming steps in isotope tracing including the creation of an isotope measurement method in mass spectrometry (MS) and the interpretation of obtained labeling data. Additionally, these multi-step tasks often require data format conversion, which is also time-consuming. In this study, the Isotope Calculation Gadgets, a series of software that supports an entire workflow of isotope-tracing experiments, was developed in the Garuda platform, an open community. Garuda is a graphical user interface-based platform that allows individual operations to be sequentially performed, without data format conversion, which significantly reduces the required time and effort. The developed software includes new features that construct channels for isotopomer measurements, as well as conventional functions such as natural isotope correction, the calculation of fractional labeling and split ratio, and data mapping, thus facilitating an overall workflow of isotope-tracing experiments through smooth functional integration.
Collapse
|
7
|
Ishiwata-Kimata Y, Le QG, Kimata Y. Induction and Aggravation of the Endoplasmic-Reticulum Stress by Membrane-Lipid Metabolic Intermediate Phosphatidyl- N-Monomethylethanolamine. Front Cell Dev Biol 2022; 9:743018. [PMID: 35071223 PMCID: PMC8770322 DOI: 10.3389/fcell.2021.743018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylcholine (PC) is produced via two distinct pathways in both hepatocytes and yeast, Saccharomyces cerevisiae. One of these pathways involves the sequential methylation of phosphatidylethanolamine (PE). In yeast cells, the methyltransferase, Cho2, converts PE to phosphatidylmonomethylethanolamine (PMME), which is further modified to PC by another methyltransferase, Opi3. On the other hand, free choline is utilized for PC production via the Kennedy pathway. The blockage of PC production is well known to cause endoplasmic reticulum (ER) stress and activate the ER-stress sensor, Ire1, to induce unfolded protein response (UPR). Here, we demonstrate that even when free choline is sufficiently supplied, the opi3Δ mutation, but not the cho2 Δ mutation, induces the UPR. The UPR was also found to be induced by CHO2 overexpression. Further, monomethylethanolamine, which is converted to PMME probably through the Kennedy pathway, caused or potentiated ER stress in both mammalian and yeast cells. We thus deduce that PMME per se is an ER-stressing molecule. Interestingly, spontaneously accumulated PMME seemed to aggravate ER stress in yeast cells. Collectively, our findings demonstrate the multiple detrimental effects of the low-abundance phospholipid species, PMME.
Collapse
Affiliation(s)
- Yuki Ishiwata-Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Quynh Giang Le
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yukio Kimata
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
8
|
LPEATs Tailor Plant Phospholipid Composition through Adjusting Substrate Preferences to Temperature. Int J Mol Sci 2021; 22:ijms22158137. [PMID: 34360902 PMCID: PMC8348727 DOI: 10.3390/ijms22158137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/10/2023] Open
Abstract
Acyl-CoA:lysophosphatidylethanolamine acyltransferases (LPEATs) are known as enzymes utilizing acyl-CoAs and lysophospholipids to produce phosphatidylethanolamine. Recently, it has been discovered that they are also involved in the growth regulation of Arabidopsis thaliana. In our study we investigated expression of each Camelina sativa LPEAT isoform and their behavior in response to temperature changes. In order to conduct a more extensive biochemical evaluation we focused both on LPEAT enzymes present in microsomal fractions from C. sativa plant tissues, and on cloned CsLPEAT isoforms expressed in yeast system. Phylogenetic analyses revealed that CsLPEAT1c and CsLPEAT2c originated from Camelina hispida, whereas other isoforms originated from Camelina neglecta. The expression ratio of all CsLPEAT1 isoforms to all CsLPEAT2 isoforms was higher in seeds than in other tissues. The isoforms also displayed divergent substrate specificities in utilization of LPE; CsLPEAT1 preferred 18:1-LPE, whereas CsLPEAT2 preferred 18:2-LPE. Unlike CsLPEAT1, CsLPEAT2 isoforms were specific towards very-long-chain fatty acids. Above all, we discovered that temperature strongly regulates LPEATs activity and substrate specificity towards different acyl donors, making LPEATs sort of a sensor of external thermal changes. We observed the presented findings not only for LPEAT activity in plant-derived microsomal fractions, but also for yeast-expressed individual CsLPEAT isoforms.
Collapse
|
9
|
Peetermans A, Foulquié-Moreno MR, Thevelein JM. Mechanisms underlying lactic acid tolerance and its influence on lactic acid production in Saccharomyces cerevisiae. MICROBIAL CELL 2021; 8:111-130. [PMID: 34055965 PMCID: PMC8144909 DOI: 10.15698/mic2021.06.751] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major bottlenecks in lactic acid production using microbial fermentation is the detrimental influence lactic acid accumulation poses on the lactic acid producing cells. The accumulation of lactic acid results in many negative effects on the cell such as intracellular acidification, anion accumulation, membrane perturbation, disturbed amino acid trafficking, increased turgor pressure, ATP depletion, ROS accumulation, metabolic dysregulation and metal chelation. In this review, the manner in which Saccharomyces cerevisiae deals with these issues will be discussed extensively not only for lactic acid as a singular stress factor but also in combination with other stresses. In addition, different methods to improve lactic acid tolerance in S. cerevisiae using targeted and non-targeted engineering methods will be discussed.
Collapse
Affiliation(s)
- Arne Peetermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Flanders, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium.,NovelYeast bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, 1090 Brussels (Jette), Belgium
| |
Collapse
|
10
|
Armitage EG, Barnes A, Patrick K, Bechar J, Harrison MJ, Lavery GG, Rainger GE, Buckley CD, Loftus NJ, Wilson ID, Naylor AJ. Metabolic consequences for mice lacking Endosialin: LC-MS/MS-based metabolic phenotyping of serum from C56Bl/6J Control and CD248 knock-out mice. Metabolomics 2021; 17:14. [PMID: 33462674 PMCID: PMC7813710 DOI: 10.1007/s11306-020-01764-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The Endosialin/CD248/TEM1 protein is expressed in adipose tissue and its expression increases with obesity. Recently, genetic deletion of CD248 has been shown to protect mice against atherosclerosis on a high fat diet. OBJECTIVES We investigated the effect of high fat diet feeding on visceral fat pads and circulating lipid profiles in CD248 knockout mice compared to controls. METHODS From 10 weeks old, CD248-/- and +/+ mice were fed either chow (normal) diet or a high fat diet for 13 weeks. After 13 weeks the metabolic profiles and relative quantities of circulating lipid species were assessed using ultra high performance liquid chromatography-quadrupole time-of flight mass spectrometry (UHPLC-MS) with high resolution accurate mass (HRAM) capability. RESULTS We demonstrate a specific reduction in the size of the perirenal fat pad in CD248-/- mice compared to CD248+/+, despite similar food intake. More strikingly, we identify significant, diet-dependent differences in the serum metabolic phenotypes of CD248 null compared to age and sex-matched wildtype control mice. Generalised protection from HFD-induced lipid accumulation was observed in CD248 null mice compared to wildtype, with particular reduction noted in the lysophosphatidylcholines, phosphatidylcholines, cholesterol and carnitine. CONCLUSIONS Overall these results show a clear and protective metabolic consequence of CD248 deletion in mice, implicating CD248 in lipid metabolism or trafficking and opening new avenues for further investigation using anti-CD248 targeting agents.
Collapse
Affiliation(s)
| | | | - Kieran Patrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Janak Bechar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Matthew J Harrison
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - G Ed Rainger
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Christopher D Buckley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | | | - Ian D Wilson
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK
| | - Amy J Naylor
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
11
|
Walker GA, Henderson CM, Luong P, Block DE, Bisson LF. Downshifting Yeast Dominance: Cell Physiology and Phospholipid Composition Are Altered With Establishment of the [ GAR +] Prion in Saccharomyces cerevisiae. Front Microbiol 2020; 11:2011. [PMID: 32983023 PMCID: PMC7477300 DOI: 10.3389/fmicb.2020.02011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
Establishment of the [GAR +] prion in Saccharomyces cerevisiae reduces both transcriptional expression of the HXT3 hexose transporter gene and fermentation capacity in high sugar conditions. We evaluated the impact of deletion of the HXT3 gene on the expression of [GAR +] prion phenotype in a vineyard isolate, UCD932, and found that changes in fermentation capacity were observable even with complete loss of the Hxt3 transporter, suggesting other cellular functions affecting fermentation rate may be impacted in [GAR +] strains. In a comparison of isogenic [GAR +] and [gar -] strains, localization of the Pma1 plasma membrane ATPase showed differences in distribution within the membrane. In addition, plasma membrane lipid composition varied between the two cell types. Oxygen uptake was decreased in prion induced cells suggesting membrane changes affect plasma membrane functionality beyond glucose transport. Thus, multiple cell surface properties are altered upon induction of the [GAR +] prion in addition to changes in expression of the HXT3 gene. We propose a model wherein [GAR +] prion establishment within a yeast population is associated with modulation of plasma membrane functionality, fermentation capacity, niche dominance, and cell physiology to facilitate growth and mitigate cytotoxicity under certain environmental conditions. Down-regulation of expression of the HXT3 hexose transporter gene is only one component of a suite of physiological differences. Our data show the [GAR +] prion state is accompanied by multiple changes in the yeast cell surface that prioritize population survivability over maximizing metabolic capacity and enable progeny to establish an alternative adaptive state while maintaining reversibility.
Collapse
Affiliation(s)
- Gordon A Walker
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Clark M Henderson
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Peter Luong
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - David E Block
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| | - Linda F Bisson
- Department of Viticulture and Enology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
13
|
Phosphatidic acid: an emerging versatile class of cellular mediators. Essays Biochem 2020; 64:533-546. [DOI: 10.1042/ebc20190089] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
Abstract
Lipids function not only as the major structural components of cell membranes, but also as molecular messengers that transduce signals to trigger downstream signaling events in the cell. Phosphatidic acid (PA), the simplest and a minor class of glycerophospholipids, is a key intermediate for the synthesis of membrane and storage lipids, and also plays important roles in mediating diverse cellular and physiological processes in eukaryotes ranging from microbes to mammals and higher plants. PA comprises different molecular species that can act differently, and is found in virtually all organisms, tissues, and organellar membranes, with variations in total content and molecular species composition. The cellular levels of PA are highly dynamic in response to stimuli and multiple enzymatic reactions can mediate its production and degradation. Moreover, its unique physicochemical properties compared with other glycerophospholipids allow PA to influence membrane structure and dynamics, and interact with various proteins. PA has emerged as a class of new lipid mediators modulating various signaling and cellular processes via its versatile effects, such as membrane tethering, conformational changes, and enzymatic activities of target proteins, and vesicular trafficking.
Collapse
|
14
|
Roca-Domènech G, Poblet M, Rozès N, Cordero-Otero R. Magnesium enhances dehydration tolerance in Schizosaccharomyces pombe by promoting intracellular 5'-methylthioadenosine accumulation. Yeast 2020; 36:449-461. [PMID: 30861598 DOI: 10.1002/yea.3386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Gemma Roca-Domènech
- University Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Montse Poblet
- University Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Nicolas Rozès
- University Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| | - Ricardo Cordero-Otero
- University Rovira i Virgili, Department of Biochemistry and Biotechnology, Tarragona, Spain
| |
Collapse
|
15
|
Bakshi K, Mitra S, Sharma VK, Jayadev MSK, Sakai VG, Mukhopadhyay R, Gupta A, Ghosh SK. Imidazolium-based ionic liquids cause mammalian cell death due to modulated structures and dynamics of cellular membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183103. [DOI: 10.1016/j.bbamem.2019.183103] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
|
16
|
He G, Zhang Z, Sathanantham P, Zhang X, Wu Z, Xie L, Wang X. An engineered mutant of a host phospholipid synthesis gene inhibits viral replication without compromising host fitness. J Biol Chem 2019; 294:13973-13982. [PMID: 31362985 DOI: 10.1074/jbc.ra118.007051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
Viral infections universally rely on numerous hijacked host factors to be successful. It is therefore possible to control viral infections by manipulating host factors that are critical for viral replication. Given that host genes may play essential roles in certain cellular processes, any successful manipulations for virus control should cause no or mild effects on host fitness. We previously showed that a group of positive-strand RNA viruses enrich phosphatidylcholine (PC) at the sites of viral replication. Specifically, brome mosaic virus (BMV) replication protein 1a interacts with and recruits a PC synthesis enzyme, phosphatidylethanolamine methyltransferase, Cho2p, to the viral replication sites that are assembled on the perinuclear endoplasmic reticulum (ER) membrane. Deletion of the CHO2 gene inhibited BMV replication by 5-fold; however, it slowed down host cell growth as well. Here, we show that an engineered Cho2p mutant supports general PC synthesis and normal cell growth but blocks BMV replication. This mutant interacts and colocalizes with BMV 1a but prevents BMV 1a from localizing to the perinuclear ER membrane. The mislocalized BMV 1a fails to induce the formation of viral replication complexes. Our study demonstrates an effective antiviral strategy in which a host lipid synthesis gene is engineered to control viral replication without comprising host growth.
Collapse
Affiliation(s)
- Guijuan He
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Zhenlu Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.,School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061.,National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Preethi Sathanantham
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Xin Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lianhui Xie
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061
| |
Collapse
|
17
|
Ferchaud-Roucher V, Kramer A, Silva E, Pantham P, Weintraub ST, Jansson T, Powell TL. A potential role for lysophosphatidylcholine in the delivery of long chain polyunsaturated fatty acids to the fetal circulation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:394-402. [PMID: 30572119 DOI: 10.1016/j.bbalip.2018.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Véronique Ferchaud-Roucher
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Anita Kramer
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elena Silva
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Priyadarshini Pantham
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center San Antonio, TX, USA
| | - Thomas Jansson
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Theresa L Powell
- Department of Obstetrics & Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
18
|
Aremu MO, Ibrahim H, Andrew C. Comparative Studies on the Lipid Composition of Blood Plum ( Haematostaphis Barteri) Pulp and Seed Oils. Open Biochem J 2018; 11:94-104. [PMID: 29299072 PMCID: PMC5725564 DOI: 10.2174/1874091x01711010094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 11/29/2022] Open
Abstract
Background: Exploring under–utilized plant fruits could be of high significance for food security and nutritional requirements, therefore, it can effectively add to the overall improvement of a nation’s economy. Blood plum (Haematostaphis barteri) is a wild edible vegetable and its fruit contains pulp and oily seed which are edible. Methods: A study was carried out to determine fatty acid profile, phospholipid and phytosterol contents as well as some physicochemical parameters of pulp and seed oils of Haematostaphis barteri (popularly known as blood plum) using standard analytical techniques. Results: The most concentrated fatty acids were palmitic acid (15.34%) < oleic acid (22.31%) < linoleic acid (50.56%) for the pulp oil while that of seed oil were oleic acid (12.34%) < palmitic acid (25.37%) < linoleic acid (38.87%). Arachidic, behenic, lignoceric and palmitoleic acids were all present in small quantities with none of them recording up to 1.0% in either of the samples. Lauric was determined but not detected in the pulp oil. The fatty acid composition of pulp and seed oils contained a healthy mixture of all the types of saturated and unsaturated fatty acids. The value of polyunsaturated/saturated index (P/S) which is associated to the impact on human health was higher in the pulp oil (2.47). Phospatidylinositol had the highest content (17.69 mg/100g) in the pulp oil while the highest content in seed oil was phosphatidylcholine (351.82 mg/100g). The total phytosterols for pulp and seed oils were 17.09 and 436.37 mg/100g, respectively. The results of some physicochemical parameters of pulp and seed oils were colour (light amber yellow and pale yellow), kinematic viscosity (9.15 and 10.62 mm2/s), specific gravity (0.92 and 0.92), unsaponifiable matter (1.63 and 2.54%), flash point 29.00 and 295.00oC), saponification value (189.40 and 190.22 mg KOH/g), peroxide value (8.15 and 9.20 meq O2/kg), iodine value (94.24 and 122.42 mg of I/100 g) and acid value (16.50 and 24.00 mg KOH/g), respectively. Conclusion: Generally, high percentage PUFA and low value of cholesterol may make either of the sample oils, a good food source on health wise basis. It was also revealed that both sample oils may be developed into a commercial product for use in food products.
Collapse
Affiliation(s)
- Matthew Olaleke Aremu
- Department of Chemical Sciences, Federal University Wukari, PMB 1020, Taraba State, Nigeria
| | - Hashim Ibrahim
- Department of Chemistry, Federal University Lafia, PMB 146, Nasarawa State, Nigeria
| | - Chrysantus Andrew
- Department of Chemical Sciences, Federal University Wukari, PMB 1020, Taraba State, Nigeria.,Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|
19
|
McMaster CR. From yeast to humans - roles of the Kennedy pathway for phosphatidylcholine synthesis. FEBS Lett 2017; 592:1256-1272. [PMID: 29178478 DOI: 10.1002/1873-3468.12919] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022]
Abstract
The major phospholipid present in most eukaryotic membranes is phosphatidylcholine (PC), comprising ~ 50% of phospholipid content. PC metabolic pathways are highly conserved from yeast to humans. The main pathway for the synthesis of PC is the Kennedy (CDP-choline) pathway. In this pathway, choline is converted to phosphocholine by choline kinase, phosphocholine is metabolized to CDP-choline by the rate-determining enzyme for this pathway, CTP:phosphocholine cytidylyltransferase, and cholinephosphotransferase condenses CDP-choline with diacylglycerol to produce PC. This Review discusses how PC synthesis via the Kennedy pathway is regulated, its role in cellular and biological processes, as well as diseases known to be associated with defects in PC synthesis. Finally, we present the first model for the making of a membrane via PC synthesis.
Collapse
|
20
|
Tabe S, Hikiji H, Ariyoshi W, Hashidate-Yoshida T, Shindou H, Shimizu T, Okinaga T, Seta Y, Tominaga K, Nishihara T. Lysophosphatidylcholine acyltransferase 4 is involved in chondrogenic differentiation of ATDC5 cells. Sci Rep 2017; 7:16701. [PMID: 29196633 PMCID: PMC5711957 DOI: 10.1038/s41598-017-16902-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
Glycerophospholipids have important structural and functional roles in cells and are the main components of cellular membranes. Glycerophospholipids are formed via the de novo pathway (Kennedy pathway) and are subsequently matured in the remodeling pathway (Lands’ cycle). Lands’ cycle consists of two steps: deacylation of phospholipids by phospholipases A2 and reacylation of lysophospholipids by lysophospholipid acyltransferases (LPLATs). LPLATs play key roles in the maturation and maintenance of the fatty acid composition of biomembranes, and cell differentiation. We examined whether LPLATs are involved in chondrogenic differentiation of ATDC5 cells, which can differentiate into chondrocytes. Lysophosphatidylcholine acyltransferase 4 (LPCAT4) mRNA expression and LPCAT enzymatic activity towards 18:1-, 18:2-, 20:4-, and 22:6-CoA increased in the late stage of chondrogenic differentiation, when mineralization occurred. LPCAT4 knockdown decreased mRNA and protein levels of chondrogenic markers as well as Alcian blue staining intensity and alkaline phosphatase activity in ATDC5 cells. These results suggest that LPCAT4 plays important roles during the transition of chondrocytes into hypertrophic chondrocytes and/or a mineralized phenotype.
Collapse
Affiliation(s)
- Shirou Tabe
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan.,Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Hisako Hikiji
- School of Oral Health Sciences, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan.
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Tomomi Hashidate-Yoshida
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), AMED, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan.,Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Yuji Seta
- Division of Anatomy, Department of Health Improvement, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Kazuhiro Tominaga
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| |
Collapse
|
21
|
Hänninen S, Somerharju P, Hermansson M. Metabolic Heavy Isotope Labeling to Study Glycerophospholipid Homeostasis of Cultured Cells. Bio Protoc 2017; 7:e2268. [PMID: 34541253 DOI: 10.21769/bioprotoc.2268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/26/2017] [Accepted: 04/04/2017] [Indexed: 11/02/2022] Open
Abstract
Glycerophospholipids consist of a glycerophosphate backbone to which are esterified two acyl chains and a polar head group. The head group (e.g., choline, ethanolamine, serine or inositol) defines the glycerophospholipid class, while the acyl chains together with the head group define the glycerophospholipid molecular species. Stable heavy isotope (e.g., deuterium)-labeled head group precursors added to the culture medium incorporate efficiently into glycerophospholipids of mammalian cells, which allows one to determine the rates of synthesis, acyl chain remodeling or turnover of the individual glycerophospholipids using mass spectrometry. This protocol describes how to study the metabolism of the major mammalian glycerophospholipids i.e., phosphatidylcholines, phosphatidylethanolamines, phosphatidylserines and phosphatidylinositols with this approach.
Collapse
Affiliation(s)
- Satu Hänninen
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, Helsinki, Finland
| | - Martin Hermansson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
22
|
Marani MM, Perez LO, de Araujo AR, Plácido A, Sousa CF, Quelemes PV, Oliveira M, Gomes-Alves AG, Pueta M, Gameiro P, Tomás AM, Delerue-Matos C, Eaton P, Camperi SA, Basso NG, de Souza de Almeida Leite JR. Thaulin-1: The first antimicrobial peptide isolated from the skin of a Patagonian frog Pleurodema thaul (Anura: Leptodactylidae: Leiuperinae) with activity against Escherichia coli. Gene 2017; 605:70-80. [DOI: 10.1016/j.gene.2016.12.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/19/2016] [Accepted: 12/20/2016] [Indexed: 11/16/2022]
|
23
|
Santos FC, Fernandes AS, Antunes CAC, Moreira FP, Videira A, Marinho HS, de Almeida RFM. Reorganization of plasma membrane lipid domains during conidial germination. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:156-166. [PMID: 27815222 DOI: 10.1016/j.bbalip.2016.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/10/2016] [Accepted: 10/28/2016] [Indexed: 01/12/2023]
Abstract
Neurospora crassa, a filamentous fungus, in the unicellular conidial stage has ideal features to study sphingolipid (SL)-enriched domains, which are implicated in fundamental cellular processes ranging from antifungal resistance to apoptosis. Several changes in lipid metabolism and in the membrane composition of N. crassa occur during spore germination. However, the biophysical impact of those changes is unknown. Thus, a biophysical study of N. crassa plasma membrane, particularly SL-enriched domains, and their dynamics along conidial germination is prompted. Two N. crassa strains, wild-type (WT) and slime, which is devoid of cell wall, were studied. Conidial growth of N. crassa WT from a dormancy state to an exponential phase was accompanied by membrane reorganization, namely an increase of membrane fluidity, occurring faster in a supplemented medium than in Vogel's minimal medium. Gel-like domains, likely enriched in SLs, were found in both N. crassa strains, but were particularly compact, rigid and abundant in the case of slime cells, even more than in budding yeast Saccharomyces cerevisiae. In N. crassa, our results suggest that the melting of SL-enriched domains occurs near growth temperature (30°C) for WT, but at higher temperatures for slime. Regarding biophysical properties strongly affected by ergosterol, the plasma membrane of slime conidia lays in between those of N. crassa WT and S. cerevisiae cells. The differences in biophysical properties found in this work, and the relationships established between membrane lipid composition and dynamics, give new insights about the plasma membrane organization and structure of N. crassa strains during conidial growth.
Collapse
Affiliation(s)
- Filipa C Santos
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia S Fernandes
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Catarina A C Antunes
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Filipe P Moreira
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Arnaldo Videira
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - H Susana Marinho
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
24
|
Ferru-Clément R, Spanova M, Dhayal S, Morgan NG, Hélye R, Becq F, Hirose H, Antonny B, Vamparys L, Fuchs PFJ, Ferreira T. Targeting surface voids to counter membrane disorders in lipointoxication-related diseases. J Cell Sci 2016; 129:2368-81. [PMID: 27142833 DOI: 10.1242/jcs.183590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
Saturated fatty acids (SFA), which are abundant in the so-called western diet, have been shown to efficiently incorporate within membrane phospholipids and therefore impact on organelle integrity and function in many cell types. In the present study, we have developed a yeast-based two-step assay and a virtual screening strategy to identify new drugs able to counter SFA-mediated lipointoxication. The compounds identified here were effective in relieving lipointoxication in mammalian β-cells, one of the main targets of SFA toxicity in humans. In vitro reconstitutions and molecular dynamics simulations on bilayers revealed that these molecules, albeit according to different mechanisms, can generate voids at the membrane surface. The resulting surface defects correlate with the recruitment of loose lipid packing or void-sensing proteins required for vesicular budding, a central cellular process that is precluded under SFA accumulation. Taken together, the results presented here point at modulation of surface voids as a central parameter to consider in order to counter the impacts of SFA on cell function.
Collapse
Affiliation(s)
- Romain Ferru-Clément
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7368, Université de Poitiers, 1, rue Georges Bonnet, Poitiers Cedex 9 86073, France Société d'Accélération du Transfert de Technologie (SATT) Grand Centre, 8 rue Pablo Picasso, Clermont-Ferrand 63000, France
| | - Miroslava Spanova
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7368, Université de Poitiers, 1, rue Georges Bonnet, Poitiers Cedex 9 86073, France
| | - Shalinee Dhayal
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Reynald Hélye
- Société d'Accélération du Transfert de Technologie (SATT) Grand Centre, 8 rue Pablo Picasso, Clermont-Ferrand 63000, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7368, Université de Poitiers, 1, rue Georges Bonnet, Poitiers Cedex 9 86073, France
| | - Hisaaki Hirose
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université de Nice Sofia-Antipolis, 660 route des Lucioles, Valbonne 06560, France
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université de Nice Sofia-Antipolis, 660 route des Lucioles, Valbonne 06560, France
| | - Lydie Vamparys
- Dynamique des membranes et trafic intracellulaire, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, Paris 75013, France
| | - Patrick F J Fuchs
- Dynamique des membranes et trafic intracellulaire, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, Paris 75013, France
| | - Thierry Ferreira
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7368, Université de Poitiers, 1, rue Georges Bonnet, Poitiers Cedex 9 86073, France
| |
Collapse
|
25
|
Berterame NM, Porro D, Ami D, Branduardi P. Protein aggregation and membrane lipid modifications under lactic acid stress in wild type and OPI1 deleted Saccharomyces cerevisiae strains. Microb Cell Fact 2016; 15:39. [PMID: 26887851 PMCID: PMC4756461 DOI: 10.1186/s12934-016-0438-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/02/2016] [Indexed: 11/12/2022] Open
Abstract
Background Lactic acid is a versatile chemical platform with many different industrial applications. Yeasts have been demonstrated as attractive alternative to natural lactic acid producers since they can grow at low pH, allowing the direct purification of the product in the desired acidic form. However, when very high concentrations of organic acids are reached, the major limitation for a viable production is the toxic effect of the product. The accumulation in the cytosol of H+ and of the weak organic counter-anions triggers a cellular reprogramming. Here, the effects of lactic acid exposure on Saccharomycescerevisiae have been evaluated by Fourier transform infrared (FTIR) microspectroscopy. In addition to -omic techniques, describing these responses in terms of systems and networks, FTIR microspectroscopy allows a rapid acquisition of the cellular biochemical fingerprint, providing information on the major classes of macromolecules. Results FTIR analyses on Saccharomyces cerevisiae cells under lactic acid stress at low pH revealed some still uncharacterized traits: (1) a direct correlation between lactic acid exposure and a rearrangement in lipid hydrocarbon tails, together with a decrease in the signals of phosphatidylcholine (PC), one of the main components of cell membrane; (2) a rearrangement in the cell wall carbohydrates, including glucans and mannans (3) a significant yet transient protein aggregation, possibly responsible for the observed transient decrease of the growth rate. When repeated on the isogenic strain deleted in OPI1, encoding for a transcriptional repressor of genes involved in PC biosynthesis, FTIR analysis revealed that not only the PC levels were affected but also the cell membrane/wall composition and the accumulation of protein aggregates, resulting in higher growth rate in the presence of the stressing agent. Conclusions This work revealed novel effects evoked by lactic acid on cell membrane/wall composition and protein aggregation in S. cerevisiae cells. We consequently demonstrated that the targeted deletion of OPI1 resulted in improved lactic acid tolerance. Considering that stress response involves many and different cellular networks and regulations, most of which are still not implemented in modelling, these findings constitute valuable issues for interpreting cellular rewiring and for tailoring ameliorated cell factories for lactic acid production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0438-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadia Maria Berterame
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan, 20126, Italy.
| | - Danilo Porro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan, 20126, Italy. .,SYSBIO - Centre of Systems Biology, Milano and Roma, Italy.
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan, 20126, Italy. .,Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, Milan, 20126, Italy. .,Consorzio Nazionale Interuniversitario per le Scienze fisiche della Materia (CNISM) UdR Milano-Bicocca, Milan, 20126, Italy.
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan, 20126, Italy.
| |
Collapse
|
26
|
Renne MF, Bao X, De Smet CH, de Kroon AIPM. Lipid Acyl Chain Remodeling in Yeast. Lipid Insights 2016; 8:33-40. [PMID: 26819558 PMCID: PMC4720183 DOI: 10.4137/lpi.s31780] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/21/2015] [Indexed: 11/05/2022] Open
Abstract
Membrane lipid homeostasis is maintained by de novo synthesis, intracellular transport, remodeling, and degradation of lipid molecules. Glycerophospholipids, the most abundant structural component of eukaryotic membranes, are subject to acyl chain remodeling, which is defined as the post-synthetic process in which one or both acyl chains are exchanged. Here, we review studies addressing acyl chain remodeling of membrane glycerophospholipids in Saccharomyces cerevisiae, a model organism that has been successfully used to investigate lipid synthesis and its regulation. Experimental evidence for the occurrence of phospholipid acyl chain exchange in cardiolipin, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine is summarized, including methods and tools that have been used for detecting remodeling. Progress in the identification of the enzymes involved is reported, and putative functions of acyl chain remodeling in yeast are discussed.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Xue Bao
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands.; Present address: Division of Cell Biology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Anton I P M de Kroon
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Institute of Biomembranes, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
27
|
Xu C, Andre C, Fan J, Shanklin J. Cellular Organization of Triacylglycerol Biosynthesis in Microalgae. Subcell Biochem 2016; 86:207-221. [PMID: 27023237 DOI: 10.1007/978-3-319-25979-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Eukaryotic cells are characterized by compartmentalization and specialization of metabolism within membrane-bound organelles. Nevertheless, many fundamental processes extend across multiple subcellular compartments. Here, we describe and assess the pathways and cellular organization of triacylglycerol biosynthesis in microalgae. In particular, we emphases the dynamic interplay among the endoplasmic reticulum, lipid droplets and chloroplasts in acyl remodeling and triacylglycerol accumulation under nitrogen starvation in the model alga Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - Carl Andre
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
28
|
da Silveira Dos Santos AX, Riezman I, Aguilera-Romero MA, David F, Piccolis M, Loewith R, Schaad O, Riezman H. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis. Mol Biol Cell 2014; 25:3234-46. [PMID: 25143408 PMCID: PMC4196872 DOI: 10.1091/mbc.e14-03-0851] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The regulatory pathways required to maintain eukaryotic lipid homeostasis are largely unknown. We developed a systematic approach to uncover new players in the regulation of lipid homeostasis. Through an unbiased mass spectrometry-based lipidomic screening, we quantified hundreds of lipid species, including glycerophospholipids, sphingolipids, and sterols, from a collection of 129 mutants in protein kinase and phosphatase genes of Saccharomyces cerevisiae. Our approach successfully identified known kinases involved in lipid homeostasis and uncovered new ones. By clustering analysis, we found connections between nutrient-sensing pathways and regulation of glycerophospholipids. Deletion of members of glucose- and nitrogen-sensing pathways showed reciprocal changes in glycerophospholipid acyl chain lengths. We also found several new candidates for the regulation of sphingolipid homeostasis, including a connection between inositol pyrophosphate metabolism and complex sphingolipid homeostasis through transcriptional regulation of AUR1 and SUR1. This robust, systematic lipidomic approach constitutes a rich, new source of biological information and can be used to identify novel gene associations and function.
Collapse
Affiliation(s)
- Aline Xavier da Silveira Dos Santos
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| | - Isabelle Riezman
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Maria-Auxiliadora Aguilera-Romero
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| | - Fabrice David
- École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Manuele Piccolis
- Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Robbie Loewith
- National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland Department of Molecular Biology, University of Geneva, Geneva CH-1211, Switzerland
| | - Olivier Schaad
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland
| | - Howard Riezman
- Department of Biochemistry, University of Geneva, Geneva CH-1211, Switzerland National Centre of Competence in Research "Chemical Biology,", University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
29
|
Pannkuk EL, McGuire LP, Gilmore DF, Savary BJ, Risch TS. Glycerophospholipid analysis of Eastern red bat (Lasiurus borealis) hair by electrospray ionization tandem mass spectrometry. J Chem Ecol 2014; 40:227-35. [PMID: 24532214 PMCID: PMC4167415 DOI: 10.1007/s10886-014-0388-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/20/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
Pilosebaceous units found in the mammalian integument are composed of a hair follicle, the proximal portion of the hair shaft, a sebaceous gland, and the erector pili muscle. Pilosebaceous units release protective oils, or sebum, by holocrine secretion onto skin and hair through rupturing of sebocytes. Sebum is composed largely of polar and neutral lipids including glycerolipids, free fatty acids, sterols, wax esters, sterol esters, and squalene. In addition to these lipid classes, there is a small proportion of ionic/anionic glycerophospholipids (GPs). Composition of GPs on hair is rarely addressed despite their broad biological activities as signaling molecules and membrane stability. Furthermore, knowledge on GP composition in bats is lacking. Bat GP composition is important to document due to GP roles ranging from decreasing drag during migration to interaction with the integumentary microbiome. In this study, we analyzed GP molecular composition with liquid chromatography electrospray ionization tandem mass spectrometry and compared GP content to previous literature. A total of 152 GPs were detected. Broad GP classes identified include lysophosphatidylcholine, phosphatidylcholine (PC), lysophosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, phosphatidic acid, and phosphatidylglycerol, with PC being the most abundant class. The acyl components were consistent with fatty acid methyl esters and triacylglyceride moieties found in Eastern red bat sebum. Glycerophospholipid proportions of the hair surface were different from a previous study on bat lung surfactants. This study determined the broad class and molecular species of bat sebum GPs that may be used in future ecological studies in vespertilionid bats.
Collapse
Affiliation(s)
- Evan L Pannkuk
- Graduate Program of Environmental Science, Arkansas State University, P.O. Box 847, State University, Jonesboro, AR, 72467, USA,
| | | | | | | | | |
Collapse
|
30
|
Martin SA, Gijón MA, Voelker DR, Murphy RC. Measurement of lysophospholipid acyltransferase activities using substrate competition. J Lipid Res 2014; 55:782-91. [PMID: 24563510 DOI: 10.1194/jlr.d044636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lysophospholipid acyltransferases (LPATs) incorporate fatty acyl chains into phospholipids via a CoA-dependent mechanism and are important in remodeling phospholipids to generate the molecular species of phospholipids found in cells. These enzymes use one lysophospholipid and one acyl-CoA ester as substrates. Traditional enzyme activity assays engage a single substrate pair, whereas in vivo multiple molecular species exist. We describe here an alternative biochemical assay that provides a mixture of substrates presented to the microsomal extracts. Microsomal preparations from RAW 264.7 cells were used to compare traditional LPAT assays with data obtained using a dual substrate choice assay using six different lysophospholipids and eight different acyl-CoA esters. The complex mixture of newly synthesized phospholipid products was analyzed using LC-MS/MS. Both types of assays provided similar results, but the dual choice assay provided information about multiple fatty acyl chain incorporation into various phospholipid classes in a single reaction. Engineered suppression of LPCAT3 activity in RAW 264.7 cells was easily detected by the dual choice method. These findings demonstrate that this assay is both specific and sensitive and that it provides much richer biochemical detail than traditional assays.
Collapse
Affiliation(s)
- Sarah A Martin
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045
| | | | | | | |
Collapse
|
31
|
Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid species. Prog Lipid Res 2014; 54:14-31. [PMID: 24462586 DOI: 10.1016/j.plipres.2014.01.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 12/30/2013] [Accepted: 01/07/2014] [Indexed: 11/22/2022]
Abstract
Nature provides an enormous diversity of lipid molecules that originate from various pathways. To gain insight into the metabolism and dynamics of lipid species, the application of stable isotope-labeled tracers combined with mass spectrometric analysis represents a perfect tool. This review provides an overview of strategies to track fatty acid, glycerophospholipid, and sphingolipid metabolism. In particular, the selection of stable isotope-labeled precursors and their mass spectrometric analysis is discussed. Furthermore, examples of metabolic studies that were performed in cell culture, animal and clinical experiments are presented.
Collapse
|
32
|
Lu S, Wang J, Ma Q, Yang J, Li X, Yuan YJ. Phospholipid metabolism in an industry microalga Chlorella sorokiniana: the impact of inoculum sizes. PLoS One 2013; 8:e70827. [PMID: 23940649 PMCID: PMC3733633 DOI: 10.1371/journal.pone.0070827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/23/2013] [Indexed: 01/05/2023] Open
Abstract
Chlorella sorokiniana is an important industry microalga potential for biofuel production. Inoculum size is one of the important factors in algal large-scale culture, and has great effects on the growth, lipid accumulation and metabolism of microalgae. As the first barrier of cell contents, membrane plays a vital role in algal inoculum-related metabolism. The knowledge of phospholipids, the main membrane component and high accumulation of phospholipids as the major content of total lipids mass in some microalgae, is necessary to understand the role of membrane in cell growth and metabolism under different inoculum density. Profiling of C. sorokiniana phospholipids with LC-MS led to the identification of 119 phospholipid species. To discover the phospholipid molecules most related to change of inoculum sizes, Partial Least Squares Discriminant Analysis (PLS-DA) was employed and the results revealed that inoculum sizes significantly affected phospholipid profiling. Phosphatidylglycerol (PG), phosphatidyl- ethanolamine (PE) and several phosphatidylcholine (PC) species might play an important role under our experimental conditions. Further analysis of these biomarkers indicated that cell membrane status of C. sorokiniana might play an important role in the adaption to the inoculum sizes. And the culture with inoculum size of 1×106 cells mL−1 presented the best membrane status with the highest content of PC and PG, and the lowest content of PE. We discovered that the inoculum size of 1×106 cells mL−1 might provide the best growth condition for C. sorokiniana. Also we proposed that PG, PE and several PC may play an important role in inoculum-related metabolism in C. sorokiniana, which may work through thylakoid membrane and photosynthetic pathway. Thus this study would provide more potential targets for metabolic engineering to improve biofuel production and productivity in microalgae.
Collapse
Affiliation(s)
- Shuhuan Lu
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan, Hubei, P.R. China
| | - Jiangxin Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Qian Ma
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Jie Yang
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Xia Li
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education and Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
- * E-mail:
| |
Collapse
|
33
|
Fernandez DI, Sani MA, Miles AJ, Wallace B, Separovic F. Membrane defects enhance the interaction of antimicrobial peptides, aurein 1.2 versus caerin 1.1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1863-72. [DOI: 10.1016/j.bbamem.2013.03.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
34
|
Aung HW, Henry SA, Walker LP. Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism. Ind Biotechnol (New Rochelle N Y) 2013; 9:215-228. [PMID: 24678285 DOI: 10.1089/ind.2013.0013] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genome-scale metabolic models are built using information from an organism's annotated genome and, correspondingly, information on reactions catalyzed by the set of metabolic enzymes encoded by the genome. These models have been successfully applied to guide metabolic engineering to increase production of metabolites of industrial interest. Congruity between simulated and experimental metabolic behavior is influenced by the accuracy of the representation of the metabolic network in the model. In the interest of applying the consensus model of Saccharomyces cerevisiae metabolism for increased productivity of triglycerides, we manually evaluated the representation of fatty acid, glycerophospholipid, and glycerolipid metabolism in the consensus model (Yeast v6.0). These areas of metabolism were chosen due to their tightly interconnected nature to triglyceride synthesis. Manual curation was facilitated by custom MATLAB functions that return information contained in the model for reactions associated with genes and metabolites within the stated areas of metabolism. Through manual curation, we have identified inconsistencies between information contained in the model and literature knowledge. These inconsistencies include incorrect gene-reaction associations, improper definition of substrates/products in reactions, inappropriate assignments of reaction directionality, nonfunctional β-oxidation pathways, and missing reactions relevant to the synthesis and degradation of triglycerides. Suggestions to amend these inconsistencies in the Yeast v6.0 model can be implemented through a MATLAB script provided in theSupplementary Materials, Supplementary Data S1(Supplementary Data are available online at www.liebertpub.com/ind).
Collapse
Affiliation(s)
- Hnin W Aung
- Department of Biological & Environmental Engineering, Cornell University , Ithaca, NY
| | - Susan A Henry
- Department of Molecular Biology & Genetics, Cornell University , Ithaca, NY
| | - Larry P Walker
- Department of Biological & Environmental Engineering, Cornell University , Ithaca, NY
| |
Collapse
|
35
|
Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 2013; 52:374-94. [PMID: 23631861 DOI: 10.1016/j.plipres.2013.04.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/28/2013] [Accepted: 04/16/2013] [Indexed: 11/24/2022]
Abstract
Glycerophospholipids are the most abundant membrane lipid constituents in most eukaryotic cells. As a consequence, phospholipid class and acyl chain homeostasis are crucial for maintaining optimal physical properties of membranes that in turn are crucial for membrane function. The topic of this review is our current understanding of membrane phospholipid homeostasis in the reference eukaryote Saccharomyces cerevisiae. After introducing the physical parameters of the membrane that are kept in optimal range, the properties of the major membrane phospholipids and their contributions to membrane structure and dynamics are summarized. Phospholipid metabolism and known mechanisms of regulation are discussed, including potential sensors for monitoring membrane physical properties. Special attention is paid to processes that maintain the phospholipid class specific molecular species profiles, and to the interplay between phospholipid class and acyl chain composition when yeast membrane lipid homeostasis is challenged. Based on the reviewed studies, molecular species selectivity of the lipid metabolic enzymes, and mass action in acyl-CoA metabolism are put forward as important intrinsic contributors to membrane lipid homeostasis.
Collapse
|
36
|
Fernandez D, Lee TH, Sani MA, Aguilar MI, Separovic F. Proline facilitates membrane insertion of the antimicrobial peptide maculatin 1.1 via surface indentation and subsequent lipid disordering. Biophys J 2013; 104:1495-507. [PMID: 23561526 PMCID: PMC3617439 DOI: 10.1016/j.bpj.2013.01.059] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 01/08/2023] Open
Abstract
The role of proline in the disruption of membrane bilayer structure upon antimicrobial peptide (AMP) binding was studied. Specifically, (31)P and (2)H solid-state NMR and dual polarization interferometry (DPI) were used to analyze the membrane interactions of three AMPs: maculatin 1.1 and two analogs in which Pro-15 is replaced by Gly and Ala. For NMR, deuterated dimyristoylphosphatidylcholine (d54-DMPC) and d54-DMPC/dimyristoylphosphatidylglycerol (DMPG) were used to mimic eukaryotic and prokaryotic membranes, respectively. In fluid-phase DMPC bilayer systems, the peptides interacted primarily with the bilayer surface, with the native peptide having the strongest interaction. In the mixed DMPC/DMPG bilayers, maculatin 1.1 induced DMPG phase separation, whereas the analogs promoted the formation of isotropic and lipid-enriched phases with an enhanced effect relative to the neutral DMPC bilayers. In gel-phase DMPC vesicles, the native peptide disrupted the bilayer via a surface mechanism, and the effect of the analogs was similar to that observed in the fluid phase. Real-time changes in bilayer order were examined via DPI, with changes in bilayer birefringence analyzed as a function of the peptide mass bound to the bilayer. Although all three peptides decreased the bilayer order as a function of bound concentration, maculatin 1.1 caused the largest change in bilayer structure. The NMR data indicate that maculatin 1.1 binds predominantly at the surface regions of the bilayer, and both NMR and DPI results indicate that this binding leads to a drop in bilayer order. Overall, the results demonstrate that the proline at residue 15 plays a central role in the membrane interaction of maculatin 1.1 by inducing a significant change in membrane order and affecting the ability of the bilayer to recover from structural changes induced by the binding and insertion of the peptide.
Collapse
Affiliation(s)
- David I. Fernandez
- School of Chemistry, Bio21 Institute, University of Melbourne, Victoria, Australia
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Victoria, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Victoria, Australia
| |
Collapse
|
37
|
De Smet CH, Cox R, Brouwers JF, de Kroon AIPM. Yeast cells accumulate excess endogenous palmitate in phosphatidylcholine by acyl chain remodeling involving the phospholipase B Plb1p. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1167-76. [PMID: 23501167 DOI: 10.1016/j.bbalip.2013.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 11/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the molecular species profile of the major membrane glycerophospholipid phosphatidylcholine (PC) is determined by the molecular species-selectivity of the biosynthesis routes and by acyl chain remodeling. Overexpression of the glycerol-3-phosphate acyltransferase Sct1p was recently shown to induce a strong increase in the cellular content of palmitate (C16:0). Using stable isotope labeling and mass spectrometry, the present study shows that wild type yeast overexpressing Sct1p incorporates excess C16:0 into PC via the methylation of PE, the CDP-choline route, and post-synthetic acyl chain remodeling. Overexpression of Sct1p increased the extent of remodeling of PE-derived PC, providing a novel tool to perform mechanistic studies on PC acyl chain exchange. The exchange of acyl chains occurred at both the sn-1 and sn-2 positions of the glycerol backbone of PC, and required the phospholipase B Plb1p for optimal efficiency. Sct1p-catalyzed acyl chain exchange, the acyl-CoA binding protein Acb1p, the Plb1p homologue Plb2p, and the glycerophospholipid:triacylglycerol transacylase Lro1p were not required for PC remodeling. The results indicate that PC serves as a buffer for excess cellular C16:0.
Collapse
|
38
|
Korchowiec B, Gorczyca M, Salem AB, Vains JBRD, Rogalska E. Interaction of a β-lactam calixarene derivative with a model eukaryotic membrane affects the activity of PLA2. Colloids Surf B Biointerfaces 2013. [DOI: 10.1016/j.colsurfb.2012.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Zhang L, Díaz–Díaz N, Zarringhalam K, Hermansson M, Somerharju P, Chuang J. Dynamics of the ethanolamine glycerophospholipid remodeling network. PLoS One 2012; 7:e50858. [PMID: 23251394 PMCID: PMC3519547 DOI: 10.1371/journal.pone.0050858] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/29/2012] [Indexed: 12/18/2022] Open
Abstract
Acyl chain remodeling in lipids is a critical biochemical process that plays a central role in disease. However, remodeling remains poorly understood, despite massive increases in lipidomic data. In this work, we determine the dynamic network of ethanolamine glycerophospholipid (PE) remodeling, using data from pulse-chase experiments and a novel bioinformatic network inference approach. The model uses a set of ordinary differential equations based on the assumptions that (1) sn1 and sn2 acyl positions are independently remodeled; (2) remodeling reaction rates are constant over time; and (3) acyl donor concentrations are constant. We use a novel fast and accurate two-step algorithm to automatically infer model parameters and their values. This is the first such method applicable to dynamic phospholipid lipidomic data. Our inference procedure closely fits experimental measurements and shows strong cross-validation across six independent experiments with distinct deuterium-labeled PE precursors, demonstrating the validity of our assumptions. In constrast, fits of randomized data or fits using random model parameters are worse. A key outcome is that we are able to robustly distinguish deacylation and reacylation kinetics of individual acyl chain types at the sn1 and sn2 positions, explaining the established prevalence of saturated and unsaturated chains in the respective positions. The present study thus demonstrates that dynamic acyl chain remodeling processes can be reliably determined from dynamic lipidomic data.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | | | - Kourosh Zarringhalam
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Martin Hermansson
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Pentti Somerharju
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Jeffrey Chuang
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Mora G, Scharnewski M, Fulda M. Neutral lipid metabolism influences phospholipid synthesis and deacylation in Saccharomyces cerevisiae. PLoS One 2012; 7:e49269. [PMID: 23139841 PMCID: PMC3489728 DOI: 10.1371/journal.pone.0049269] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/07/2012] [Indexed: 12/29/2022] Open
Abstract
Establishment and maintenance of equilibrium in the fatty acid (FA) composition of phospholipids (PL) requires both regulation of the substrate available for PL synthesis (the acyl-CoA pool) and extensive PL turnover and acyl editing. In the present study, we utilize acyl-CoA synthetase (ACS) deficient cells, unable to recycle FA derived from lipid deacylation, to evaluate the role of several enzymatic activities in FA trafficking and PL homeostasis in Saccharomyces cerevisiae. The data presented show that phospholipases B are not contributing to constitutive PL deacylation and are therefore unlikely to be involved in PL remodeling. In contrast, the enzymes of neutral lipid (NL) synthesis and mobilization are central mediators of FA trafficking. The phospholipid:DAG acyltransferase (PDAT) Lro1p has a substantial effect on FA release and on PL equilibrium, emerging as an important mediator in PL remodeling. The acyl-CoA dependent biosynthetic activities of NL metabolism are also involved in PL homeostasis through active modulation of the substrate available for PL synthesis. In addition TAG mobilization makes an important contribution, especially in cells from stationary phase, to FA availability. Beyond its well-established role in the formation of a storage pool, NL metabolism could play a crucial role as a mechanism to uncouple the pools of PL and acyl-CoAs from each other and thereby to allow independent regulation of each one.
Collapse
Affiliation(s)
- Gabriel Mora
- Department of Plant Biochemistry, Albrecht-von-Haller Institute, Georg-August University Goettingen, Goettingen, Germany
| | | | | |
Collapse
|
41
|
Fernandez DI, Le Brun AP, Whitwell TC, Sani MA, James M, Separovic F. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys Chem Chem Phys 2012; 14:15739-51. [PMID: 23093307 DOI: 10.1039/c2cp43099a] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The membrane interactions of the antimicrobial peptide aurein 1.2 were studied using a range of biophysical techniques to determine the location and the mechanism of action in DMPC (dimyristoylphosphatidylcholine) and DMPC/DMPG (dimyristoylphosphatidylglycerol) model membranes that mimic characteristics of eukaryotic and prokaryotic membranes, respectively. Neutron reflectometry and solid-state NMR revealed subtle changes in membrane structure caused by the peptide. Quartz crystal microbalance with dissipation, vesicle dye leakage and atomic force microscopy measurements were used to investigate the global mode of peptide interaction. Aurein 1.2 displayed an enhanced interaction with the anionic DMPC/DMPG membrane while exhibiting primarily a surface interaction with both types of model membranes, which led to bilayer disruption and membrane lysis. The antimicrobial peptide interaction is consistent with the carpet mechanism for aurein 1.2 with discrete structural changes depending on the type of phospholipid membrane.
Collapse
Affiliation(s)
- David I Fernandez
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Moir RD, Gross DA, Silver DL, Willis IM. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR. PLoS Genet 2012; 8:e1002890. [PMID: 22927826 PMCID: PMC3426550 DOI: 10.1371/journal.pgen.1002890] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/19/2012] [Indexed: 11/21/2022] Open
Abstract
The ability to store nutrients in lipid droplets (LDs) is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT) proteins are conserved ER–resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2) and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol) to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER stress. The ability to form lipid droplets is a conserved property of eukaryotic cells that allows the storage of excess metabolic energy in a form that can be readily accessed. In adipose tissue, the storage of excess calories in lipid droplets normally protects other tissues from lipotoxicity and insulin resistance, but this protection is lost with chronic over-nutrition. The FAT storage-inducing transmembrane (FIT) proteins were recently identified as a conserved family of proteins that reside in the lipid bilayer of the endoplasmic reticulum and are implicated in lipid droplet formation. In this work we show that specific functions of the FIT proteins are conserved between yeast and humans and that SCS3 and YFT2, the yeast homologs of mammalian FIT2, are part of a large genetic interaction network connecting lipid metabolism, vesicle trafficking, transcription, and protein synthesis. From these interactions we determined that yeast strains lacking SCS3 and YFT2 are defective in their response to chronic ER stress and cannot induce the unfolded protein response pathway or transcription of phospholipid biosynthetic genes in low inositol. Our findings suggest that the mammalian FIT genes may play an important role in ER stress pathways, which are linked to obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Robyn D. Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David A. Gross
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke–NUS Graduate Medical School Singapore, Singapore, Singapore
| | - David L. Silver
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke–NUS Graduate Medical School Singapore, Singapore, Singapore
- * E-mail: (IMW); (DLS)
| | - Ian M. Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (IMW); (DLS)
| |
Collapse
|
43
|
Yang J, Ding MZ, Li BZ, Liu ZL, Wang X, Yuan YJ. Integrated Phospholipidomics and Transcriptomics Analysis ofSaccharomyces cerevisiaewith Enhanced Tolerance to a Mixture of Acetic Acid, Furfural, and Phenol. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:374-86. [DOI: 10.1089/omi.2011.0127] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jie Yang
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Z. Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, U.S. Department of Agriculture-Agricultural Research Service, Peoria, Illinois
| | - Xin Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering, Ministry of Education; Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
44
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|
45
|
Structural effects of the antimicrobial peptide maculatin 1.1 on supported lipid bilayers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:47-59. [DOI: 10.1007/s00249-012-0796-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/25/2012] [Accepted: 02/02/2012] [Indexed: 01/23/2023]
|
46
|
Quantitative profiling of PE, MMPE, DMPE, and PC lipid species by multiple precursor ion scanning: A tool for monitoring PE metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1081-9. [DOI: 10.1016/j.bbalip.2011.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/17/2011] [Accepted: 09/29/2011] [Indexed: 11/23/2022]
|
47
|
Abstract
The yeast Saccharomyces cerevisiae, with its full complement of organelles, synthesizes membrane phospholipids by pathways that are generally common to those found in higher eukaryotes. Phospholipid synthesis in yeast is regulated in response to a variety of growth conditions (e.g., inositol supplementation, zinc depletion, and growth stage) by a coordination of genetic (e.g., transcriptional activation and repression) and biochemical (e.g., activity modulation and localization) mechanisms. Phosphatidate (PA), whose cellular levels are controlled by the activities of key phospholipid synthesis enzymes, plays a central role in the transcriptional regulation of phospholipid synthesis genes. In addition to the regulation of gene expression, phosphorylation of key phospholipid synthesis catalytic and regulatory proteins controls the metabolism of phospholipid precursors and products.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
48
|
Fei W, Li H, Shui G, Kapterian TS, Bielby C, Du X, Brown AJ, Li P, Wenk MR, Liu P, Yang H. Molecular characterization of seipin and its mutants: implications for seipin in triacylglycerol synthesis. J Lipid Res 2011; 52:2136-2147. [PMID: 21957196 DOI: 10.1194/jlr.m017566] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin has been implicated in adipocyte differentiation, lipid droplet (LD) formation, and motor neuron development. However, the molecular function of seipin and its disease-causing mutants remains to be elucidated. Here, we characterize seipin and its mis-sense mutants: N88S/S90L (both linked to motoneuron disorders) and A212P (linked to lipodystrophy) in cultured mammalian cells. Knocking down seipin significantly increases oleate incorporation into triacylglycerol (TAG) and the steady state level of TAG, and induces the proliferation and clustering of small LDs. By contrast, overexpression of seipin reduces TAG synthesis, leading to decreased formation of LDs. Expression of the A212P mutant, however, had little effect on LD biogenesis. Surprisingly, expression of N88S or S90L causes the formation of many small LDs reminiscent of seipin deficient cells. This dominant-negative effect may be due to the N88S/S90L-induced formation of inclusions where wild-type seipin can be trapped. Importantly, coexpression of wild-type seipin and the N88S or S90L mutant can significantly reduce the formation of inclusions. Finally, we demonstrate that seipin can interact with itself and its mutant forms. Our results provide important insights into the biochemical characteristics of seipin and its mis-sense mutants, and suggest that seipin may function to inhibit lipogenesis.
Collapse
Affiliation(s)
- Weihua Fei
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hui Li
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Guanghou Shui
- Department of Biochemistry, National University of Singapore, Singapore, 117597 Republic of Singapore
| | - Tamar S Kapterian
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Christopher Bielby
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peng Li
- School of Life Sciences, Tsing-Hua University, Beijing, People's Republic of China; and
| | - Markus R Wenk
- Department of Biochemistry, National University of Singapore, Singapore, 117597 Republic of Singapore; Department of Biological Sciences, National University of Singapore, Singapore, 117597 Republic of Singapore
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Beijing, People's Republic of China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia;.
| |
Collapse
|
49
|
Hermansson M, Hokynar K, Somerharju P. Mechanisms of glycerophospholipid homeostasis in mammalian cells. Prog Lipid Res 2011; 50:240-57. [DOI: 10.1016/j.plipres.2011.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/21/2011] [Accepted: 02/25/2011] [Indexed: 01/09/2023]
|
50
|
Fei W, Du X, Yang H. Seipin, adipogenesis and lipid droplets. Trends Endocrinol Metab 2011; 22:204-10. [PMID: 21497513 DOI: 10.1016/j.tem.2011.02.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/05/2011] [Accepted: 02/13/2011] [Indexed: 11/18/2022]
Abstract
Seipin, the human Berardinelli-Seip congenital lipodystrophy 2 gene product, regulates adipocyte differentiation and lipid droplet (LD) formation. The molecular function of seipin, however, remains to be elucidated. Here we summarize recent advances in the investigation of congenital generalized lipodystrophies (CGLs) and the cellular dynamics of LDs. Increasing evidence suggests that phospholipids play a crucial role in some key forms of CGL and also in determining the size and distribution of LDs. We explore the hypothesis that seipin functions in the metabolism of phospholipids, and that seipin deficiency causes accumulation of lipid intermediates and/or alters membrane phospholipid profiles. These changes could lead to tissue-specific abnormalities upon seipin dysfunction, such as defective adipocyte development and clustered LDs in fibroblasts.
Collapse
Affiliation(s)
- Weihua Fei
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|