1
|
Moriyama H, Endo J. Pathophysiological Involvement of Mast Cells and the Lipid Mediators in Pulmonary Vascular Remodeling. Int J Mol Sci 2023; 24:6619. [PMID: 37047587 PMCID: PMC10094825 DOI: 10.3390/ijms24076619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Mast cells are responsible for IgE-dependent allergic responses, but they also produce various bioactive mediators and contribute to the pathogenesis of various cardiovascular diseases, including pulmonary hypertension (PH). The importance of lipid mediators in the pathogenesis of PH has become evident in recent years, as exemplified by prostaglandin I2, the most central therapeutic target in pulmonary arterial hypertension. New bioactive lipids other than eicosanoids have also been identified that are associated with the pathogenesis of PH. However, it remains largely unknown how mast cell-derived lipid mediators are involved in pulmonary vascular remodeling. Recently, it has been demonstrated that mast cells produce epoxidized n-3 fatty acid (n-3 epoxides) in a degranulation-independent manner, and that n-3 epoxides produced by mast cells regulate the abnormal activation of pulmonary fibroblasts and suppress the progression of pulmonary vascular remodeling. This review summarizes the role of mast cells and bioactive lipids in the pathogenesis of PH. In addition, we introduce the pathophysiological role and therapeutic potential of n-3 epoxides, a mast cell-derived novel lipid mediator, in the pulmonary vascular remodeling in PH. Further knowledge of mast cells and lipid mediators is expected to lead to the development of innovative therapies targeting pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Hidenori Moriyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku 160-8582, Tokyo, Japan
- Department of Cardiology, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa 272-8513, Chiba, Japan
| | - Jin Endo
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku 160-8582, Tokyo, Japan
| |
Collapse
|
2
|
Cunha LC, Barreto LP, Valadares VS, Oliveira CFB, Vuitika L, Vilela MP, Cino EA, Silva AHDM, Nagem RAP, Chávez-Olórtegui C, Dias-Lopes C, Molina F, Felicori L. The C-terminal mutation beyond the catalytic site of brown spider phospholipase D significantly impacts its biological activities. Biochimie 2023; 211:122-130. [PMID: 36963559 DOI: 10.1016/j.biochi.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
Loxosceles spider envenomation results in dermonecrosis, principally due to phospholipases D (PLDs) present in the venom. These enzymes have a strongly conserved sequence, 273ATXXDNPW280, in the C-terminal region (SMD-tail) that make contact with β-sheets of the TIM barrel, in which the amino acids Asp277 and Trp280 establish the energetically strongest contacts. The SMD-tail is conserved in PLDs from different species but absent in the non-toxic PLD ancestral glycerophosphodiester phosphodiesterases (GDPDs). This work aims to understand the role of the C-terminal region in the structural stability and/or function of phospholipases D. Through site-directed mutagenesis of the rLiD1 protein (recombinant Loxosceles intermedia dermonecrotic protein 1), we produced two mutants: rLiD1D277A and rLiD1W280A (both with sphingomyelinase activity), in which Asp277 and Trp280 were replaced by alanine. rLiD1D277A showed similar sphingomyelinase activity but at least 2 times more dermonecrotic activity than rLiD1 (wild-type protein). Conversely, while the rLiD1W280A displayed a slight increase in sphingomyelinase activity, its biological activity was similar or lower compared to rLiD1, potentially due to its decreased thermostability and formation of amyloid aggregates. In conclusion, these new findings provide evidence that SMD-tail mutants impact the structure and function of these proteins and point out that residues outside the active site can even increase the function of these enzymes.
Collapse
Affiliation(s)
- Laís Cardoso Cunha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Passos Barreto
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Veronica Silva Valadares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Franco Batista Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (ICB-IV/USP), São Paulo, Brazil
| | - Maura Páscoa Vilela
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elio A Cino
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ronaldo A P Nagem
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Dias-Lopes
- Colégio Técnico, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Franck Molina
- CNRS, SYS2DIAG-ALCEDIAG, Cap Delta, 1682 Rue de La Valsière, 34184, Montpellier, France
| | - Liza Felicori
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Chabowski DS, Hughes WE, Hockenberry JC, LoGiudice J, Beyer AM, Gutterman DD. Lipid phosphate phosphatase 3 maintains NO-mediated flow-mediated dilatation in human adipose resistance arterioles. J Physiol 2023; 601:469-481. [PMID: 36575638 PMCID: PMC10979460 DOI: 10.1113/jp283923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Microvascular dysfunction predicts adverse cardiovascular events despite absence of large vessel disease. A shift in the mediator of flow-mediated dilatation (FMD) from nitric oxide (NO) to mitochondrial-derived hydrogen peroxide (H2 O2 ) occurs in arterioles from patients with coronary artery disease (CAD). The underlying mechanisms governing this shift are not completely defined. Lipid phosphate phosphatase 3 (LPP3) is a transmembrane protein that dephosphorylates lysophosphatidic acid, a bioactive lipid, causing a receptor-mediated increase in reactive oxygen species. A single nucleotide loss-of-function polymorphism in the gene coding for LPP3 (rs17114036) is associated with elevated risk for CAD, independent of traditional risk factors. LPP3 is suppressed by miR-92a, which is elevated in the circulation of patients with CAD. Repression of LPP3 increases vascular inflammation and atherosclerosis in animal models. We investigated the role of LPP3 and miR-92a as a mechanism for microvascular dysfunction in CAD. We hypothesized that modulation of LPP3 is critically involved in the disease-associated shift in mediator of FMD. LPP3 protein expression was reduced in left ventricle tissue from CAD relative to non-CAD patients (P = 0.004), with mRNA expression unchanged (P = 0.96). Reducing LPP3 expression (non-CAD) caused a shift from NO to H2 O2 (% maximal dilatation: Control 78.1 ± 11.4% vs. Peg-Cat 30.0 ± 11.2%; P < 0.0001). miR-92a is elevated in CAD arterioles (fold change: 1.9 ± 0.01 P = 0.04), while inhibition of miR-92a restored NO-mediated FMD (CAD), and enhancing miR-92a expression (non-CAD) elicited H2 O2 -mediated dilatation (P < 0.0001). Our data suggests LPP3 is crucial in the disease-associated switch in the mediator of FMD. KEY POINTS: Lipid phosphate phosphatase 3 (LPP3) expression is reduced in heart tissue patients with coronary artery disease (CAD). Loss of LPP3 in CAD is associated with an increase in the LPP3 inhibitor, miR-92a. Inhibition of LPP3 in the microvasculature of healthy patients mimics the CAD flow-mediated dilatation (FMD) phenotype. Inhibition of miR-92a restores nitric oxide-mediated FMD in the microvasculature of CAD patients.
Collapse
Affiliation(s)
- Dawid S Chabowski
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William E Hughes
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph C Hockenberry
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John LoGiudice
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Andreas M Beyer
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David D Gutterman
- Department of Medicine, Division of Cardiology, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Classes of Lipid Mediators and Their Effects on Vascular Inflammation in Atherosclerosis. Int J Mol Sci 2023; 24:ijms24021637. [PMID: 36675152 PMCID: PMC9863938 DOI: 10.3390/ijms24021637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
It is commonly believed that the inactivation of inflammation is mainly due to the decay or cessation of inducers. In reality, in connection with the development of atherosclerosis, spontaneous decay of inducers is not observed. It is now known that lipid mediators originating from polyunsaturated fatty acids (PUFAs), which are important constituents of all cell membranes, can act in the inflamed tissue and bring it to resolution. In fact, PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are precursors to both pro-inflammatory and anti-inflammatory compounds. In this review, we describe the lipid mediators of vascular inflammation and resolution, and their biochemical activity. In addition, we highlight data from the literature that often show a worsening of atherosclerotic disease in subjects deficient in lipid mediators of inflammation resolution, and we also report on the anti-proteasic and anti-thrombotic properties of these same lipid mediators. It should be noted that despite promising data observed in both animal and in vitro studies, contradictory clinical results have been observed for omega-3 PUFAs. Many further studies will be required in order to clarify the observed conflicts, although lifestyle habits such as smoking or other biochemical factors may often influence the normal synthesis of lipid mediators of inflammation resolution.
Collapse
|
5
|
Drosouni A, Panagopoulou M, Aidinis V, Chatzaki E. Autotaxin in Breast Cancer: Role, Epigenetic Regulation and Clinical Implications. Cancers (Basel) 2022; 14:5437. [PMID: 36358855 PMCID: PMC9658281 DOI: 10.3390/cancers14215437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 08/02/2023] Open
Abstract
Autotaxin (ATX), the protein product of Ectonucleotide Pyrophosphatase Phosphodiesterase 2 (ENPP2), is a secreted lysophospholipase D (lysoPLD) responsible for the extracellular production of lysophosphatidic acid (LPA). ATX-LPA pathway signaling participates in several normal biological functions, but it has also been connected to cancer progression, metastasis and inflammatory processes. Significant research has established a role in breast cancer and it has been suggested as a therapeutic target and/or a clinically relevant biomarker. Recently, ENPP2 methylation was described, revealing a potential for clinical exploitation in liquid biopsy. The current review aims to gather the latest findings about aberrant signaling through ATX-LPA in breast cancer and discusses the role of ENPP2 expression and epigenetic modification, giving insights with translational value.
Collapse
Affiliation(s)
- Andrianna Drosouni
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Vassilis Aidinis
- Institute of BioInnovation, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| |
Collapse
|
6
|
A Review of Vascular Traits and Assessment Techniques, and Their Heritability. Artery Res 2022. [DOI: 10.1007/s44200-022-00016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
AbstractVarious tools are available to assess atherosclerosis, arterial stiffening, and endothelial function. They offer utility in the assessment of hypertensive phenotypes, in cardiovascular risk prediction, and as surrogate endpoints in clinical trials. We explore the relative influence of participant genetics, with reference to large-scale genomic studies, population-based cohorts, and candidate gene studies. We find heritability estimates highest for carotid intima-media thickness (CIMT 35–65%), followed by pulse wave velocity as a measure of arterial stiffness (26–43%), and flow mediated dilatation as a surrogate for endothelial function (14–39%); data were lacking for peripheral artery tonometry. We furthermore examine genes and polymorphisms relevant to each technique. We conclude that CIMT and pulse wave velocity dominate the existing evidence base, with fewer published genomic linkages for measures of endothelial function. We finally make recommendations regarding planning and reporting of data relating to vascular assessment techniques, particularly when genomic data are also available, to facilitate integration of these tools into cardiovascular disease research.
Collapse
|
7
|
Duflot T, Tu L, Leuillier M, Messaoudi H, Groussard D, Feugray G, Azhar S, Thuillet R, Bauer F, Humbert M, Richard V, Guignabert C, Bellien J. Preventing the Increase in Lysophosphatidic Acids: A New Therapeutic Target in Pulmonary Hypertension? Metabolites 2021; 11:metabo11110784. [PMID: 34822442 PMCID: PMC8621392 DOI: 10.3390/metabo11110784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of premature death and disability in humans that are closely related to lipid metabolism and signaling. This study aimed to assess whether circulating lysophospholipids (LPL), lysophosphatidic acids (LPA) and monoacylglycerols (MAG) may be considered as potential therapeutic targets in CVD. For this objective, plasma levels of 22 compounds (13 LPL, 6 LPA and 3 MAG) were monitored by liquid chromatography coupled with tandem mass spectrometry (HPLC/MS2) in different rat models of CVD, i.e., angiotensin-II-induced hypertension (HTN), ischemic chronic heart failure (CHF) and sugen/hypoxia(SuHx)-induced pulmonary hypertension (PH). On one hand, there were modest changes on the monitored compounds in HTN (LPA 16:0, 18:1 and 20:4, LPC 16:1) and CHF (LPA 16:0, LPC 18:1 and LPE 16:0 and 18:0) models compared to control rats but these changes were no longer significant after multiple testing corrections. On the other hand, PH was associated with important changes in plasma LPA with a significant increase in LPA 16:0, 18:1, 18:2, 20:4 and 22:6 species. A deleterious impact of LPA was confirmed on cultured human pulmonary smooth muscle cells (PA-SMCs) with an increase in their proliferation. Finally, plasma level of LPA(16:0) was positively associated with the increase in pulmonary artery systolic pressure in patients with cardiac dysfunction. This study demonstrates that circulating LPA may contribute to the pathophysiology of PH. Additional experiments are needed to assess whether the modulation of LPA signaling in PH may be of interest.
Collapse
Affiliation(s)
- Thomas Duflot
- UNIROUEN, INSERM U1096, CHU Rouen, Department of Pharmacology, Normandie University, F-76000 Rouen, France; (V.R.); (J.B.)
- Correspondence: ; Tel.: +33-2-32-88-84-91
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France; (L.T.); (R.T.); (M.H.); (C.G.)
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, F-92290 Châtenay-Malabry, France
| | - Matthieu Leuillier
- UNIROUEN, INSERM U1096, Normandie University, F-76000 Rouen, France; (M.L.); (H.M.); (D.G.); (S.A.)
| | - Hind Messaoudi
- UNIROUEN, INSERM U1096, Normandie University, F-76000 Rouen, France; (M.L.); (H.M.); (D.G.); (S.A.)
| | - Déborah Groussard
- UNIROUEN, INSERM U1096, Normandie University, F-76000 Rouen, France; (M.L.); (H.M.); (D.G.); (S.A.)
| | - Guillaume Feugray
- UNIROUEN, INSERM U1096, CHU Rouen, Department of General Biochemistry, Normandie University, F-76000 Rouen, France;
| | - Saïda Azhar
- UNIROUEN, INSERM U1096, Normandie University, F-76000 Rouen, France; (M.L.); (H.M.); (D.G.); (S.A.)
| | - Raphaël Thuillet
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France; (L.T.); (R.T.); (M.H.); (C.G.)
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, F-92290 Châtenay-Malabry, France
| | - Fabrice Bauer
- UNIROUEN, INSERM U1096, CHU Rouen, Department of Cardiology, Normandie University, F-76000 Rouen, France;
| | - Marc Humbert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France; (L.T.); (R.T.); (M.H.); (C.G.)
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, F-92290 Châtenay-Malabry, France
| | - Vincent Richard
- UNIROUEN, INSERM U1096, CHU Rouen, Department of Pharmacology, Normandie University, F-76000 Rouen, France; (V.R.); (J.B.)
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, F-92350 Le Plessis-Robinson, France; (L.T.); (R.T.); (M.H.); (C.G.)
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, F-92290 Châtenay-Malabry, France
| | - Jérémy Bellien
- UNIROUEN, INSERM U1096, CHU Rouen, Department of Pharmacology, Normandie University, F-76000 Rouen, France; (V.R.); (J.B.)
| |
Collapse
|
8
|
Bello SF, Xu H, Guo L, Li K, Zheng M, Xu Y, Zhang S, Bekele EJ, Bahareldin AA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Hypothalamic and ovarian transcriptome profiling reveals potential candidate genes in low and high egg production of white Muscovy ducks (Cairina moschata). Poult Sci 2021; 100:101310. [PMID: 34298381 PMCID: PMC8322464 DOI: 10.1016/j.psj.2021.101310] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023] Open
Abstract
In China, the low egg production rate is a major challenge to Muscovy duck farmers. Hypothalamus and ovary play essential role in egg production of birds. However, there are little or no reports from these tissues to identify potential candidate genes responsible for egg production in White Muscovy ducks. A total of 1,537 laying ducks were raised; the egg production traits which include age at first egg (days), number of eggs at 300 d, and number of eggs at 59 wk were recorded. Moreover, 4 lowest (LP) and 4 highest producing (HP) were selected at 59 wk of age, respectively. To understand the mechanism of egg laying regulation, we sequenced the hypothalamus and ovary transcriptome profiles in LP and HP using RNA-Seq. The results showed that the number of eggs at 300 d and number of eggs at 59 wk in the HP were significantly more (P < 0.001) than the LP ducks. In total, 106.98G clean bases were generated from 16 libraries with an average of 6.68G clean bases for each library. Further analysis showed 569 and 2,259 differentially expressed genes (DEGs) were identified in the hypothalamus and ovary between LP and HP, respectively. The KEGG pathway enrichment analysis revealed 114 and 139 pathways in the hypothalamus and ovary, respectively which includes Calcium signaling pathway, ECM-receptor interaction, Focal adhesion, MAPK signaling pathway, Apoptosis and Apelin signaling pathways that are involved in egg production. Based on the GO terms and KEGG pathways results, 10 potential candidate genes (P2RX1, LPAR2, ADORA1, FN1, AKT3, ADCY5, ADCY8, MAP3K8, PXN, and PTTG1) were identified to be responsible for egg production. Further, protein-protein interaction was analyzed to show the relationship between these candidate genes. Therefore, this study provides useful information on transcriptome of hypothalamus and ovary of LP and HP Muscovy ducks.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ming Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Yibin Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Endashaw Jebessa Bekele
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ali Abdalla Bahareldin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China.
| |
Collapse
|
9
|
Mathew D, Torres RM. Lysophosphatidic Acid Is an Inflammatory Lipid Exploited by Cancers for Immune Evasion via Mechanisms Similar and Distinct From CTLA-4 and PD-1. Front Immunol 2021; 11:531910. [PMID: 33584637 PMCID: PMC7873449 DOI: 10.3389/fimmu.2020.531910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Immunological tolerance has evolved to curtail immune responses against self-antigens and prevent autoimmunity. One mechanism that contributes to immunological tolerance is the expression of inhibitory receptors by lymphocytes that signal to dampen immune responses during the course of an infection and to prevent immune-mediated collateral damage to the host. The understanding that tumors exploit these physiological mechanisms to avoid elimination has led to remarkable, but limited, success in the treatment of cancer through the use of biologics that interfere with the ability of cancers to suppress immune function. This therapy, based on the understanding of how T lymphocytes are normally activated and suppressed, has led to the development of therapeutic blocking antibodies, referred to as immune checkpoint blockade, which either directly or indirectly promote the activation of CD8 T cells to eradicate cancer. Here, we highlight the distinct signaling mechanisms, timing and location of inhibition used by the CTLA-4 and PD-1 inhibitory receptors compared to a novel inhibitory signaling axis comprised of the bioactive lipid, lysophosphatidic acid (LPA), signaling via the LPA5 receptor expressed by CD8 T cells. Importantly, abundant evidence indicates that an LPA-LPA5 signaling axis is also exploited by diverse cancers to suppress T cell activation and function. Clearly, a thorough molecular and biochemical understanding of how diverse T cell inhibitory receptors signal to suppress T cell antigen receptor signaling and function will be important to inform the choice of which complimentary checkpoint blockade modalities might be used for a given cancer.
Collapse
Affiliation(s)
| | - Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
10
|
Yao C, Xu H, Wu Q, Ren B, Xu J. Chronic isolated lightheadedness is a sign of abnormal plasma levels of phospholipids. Exp Gerontol 2021; 146:111249. [PMID: 33486069 DOI: 10.1016/j.exger.2021.111249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 12/31/2020] [Accepted: 01/18/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To evaluate whether Chronic Isolated Light-headedness (CIL) commonly manifested in elderly patients is related with cerebral oxygen insufficiency. METHODS In this case-control study, 462 patients (aged 40-83 years) with CIL and 238 clinical data matched controls were enrolled consecutively from January 2011 to September 2014. The plasma levels of "phospholipids with solubility similar to that of lysophosphatidic acid" (PSS-LPA), a surrogate marker for cerebral oxygen insufficiency, were assayed for all subjects to compare the occurrence and severity of CIL with the values of PSS-LPA. RESULTS Patients with CIL had significantly higher plasma levels of PSS-LPA than controls, regardless of having or having not psychogenic abnormalities, χ2 = 448, odds ratio (95% CI) = 140 (72-260), P < 0.001; the mean plasma levels, 0.573 vs. 0.290 mmol/L respectively (P < 0.001). Receiver operator characteristic (ROC) analyses showed plasma PSS-LPA was both sensitive and specific for CIL. The area under ROC curve (AUC) was as high as 0.953 (0.938-0.968). The changes in severity of CIL between two separate assays of one month apart were correlated closely with the changes in plasma levels of PSS-LPA for the same patients, correlation coefficient (Spearman) = 0.90, p < 0.001. CONCLUSIONS CIL is a manifestation of abnormal plasma levels of phospholipids which suggests cerebral oxygen insufficiency. This new finding shows that cerebral oxygen insufficiency is not rare especially in elderly persons.
Collapse
Affiliation(s)
- Cunshan Yao
- Department of Neurology, The First Medical Center of General Hospital of People's Liberation Army of China, China
| | - Hongxia Xu
- Department of Clinical Laboratory, The Third People's Hospital of LiaoCheng, Shan Dong Province, China.
| | - Qizhuan Wu
- Department of Neurology, Peking University First Hospital, China
| | - Bin Ren
- Sun Palace Clinics of the Community, Chao Yang District, Beijing, China
| | - Jing Xu
- Fu Xing Lu Clinics of the First Affiliated Hospital of Chinese Army General Hospital, China
| |
Collapse
|
11
|
Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction. J Mol Cell Cardiol 2020; 149:95-114. [PMID: 33017574 DOI: 10.1016/j.yjmcc.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Acute myocardial infarction (AMI) initiates pathological inflammation which aggravates tissue damage and causes heart failure. Lysophosphatidic acid (LPA), produced by autotaxin (ATX), promotes inflammation and the development of atherosclerosis. The role of ATX/LPA signaling nexus in cardiac inflammation and resulting adverse cardiac remodeling is poorly understood. APPROACH AND RESULTS We assessed autotaxin activity and LPA levels in relation to cardiac and systemic inflammation in AMI patients and C57BL/6 (WT) mice. Human and murine peripheral blood and cardiac tissue samples showed elevated levels of ATX activity, LPA, and inflammatory cells following AMI and there was strong correlation between LPA levels and circulating inflammatory cells. In a gain of function model, lipid phosphate phosphatase-3 (LPP3) specific inducible knock out (Mx1-Plpp3Δ) showed higher systemic and cardiac inflammation after AMI compared to littermate controls (Mx1-Plpp3fl/fl); and a corresponding increase in bone marrow progenitor cell count and proliferation. Moreover, in Mx1- Plpp3Δ mice, cardiac functional recovery was reduced with corresponding increases in adverse cardiac remodeling and scar size (as assessed by echocardiography and Masson's Trichrome staining). To examine the effect of ATX/LPA nexus inhibition, we treated WT mice with the specific pharmacological inhibitor, PF8380, twice a day for 7 days post AMI. Inhibition of the ATX/LPA signaling nexus resulted in significant reduction in post-AMI inflammatory response, leading to favorable cardiac functional recovery, reduced scar size and enhanced angiogenesis. CONCLUSION ATX/LPA signaling nexus plays an important role in modulating inflammation after AMI and targeting this mechanism represents a novel therapeutic target for patients presenting with acute myocardial injury.
Collapse
|
12
|
Kondo M, Tezuka T, Ogawa H, Koyama K, Bando H, Azuma M, Nishioka Y. Lysophosphatidic Acid Regulates the Differentiation of Th2 Cells and Its Antagonist Suppresses Allergic Airway Inflammation. Int Arch Allergy Immunol 2020; 182:1-13. [PMID: 32846422 DOI: 10.1159/000509804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/30/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA), a prototypic member of a large family of lysophospholipids, has been recently shown to play a role in immune responses to respiratory diseases. The involvement of LPA in allergic airway inflammation has been reported, but the mechanism remains unclear. OBJECT We analyzed the biological activity of LPA in vitro and in vivo and investigated its role in allergic inflammation in mice using an LPA receptor 2 (LPA2) antagonist. METHODS We used a murine model with acute allergic inflammation, in which mice are sensitized and challenged with house dust mite, and analyzed airway hyperresponsiveness (AHR), pathological findings, Th2 cytokines, and IL-33 in bronchoalveolar lavage fluid (BALF) and lung homogenates. The effect of LPA on Th2 differentiation and cytokine production was examined in vitro using naive CD4+ T cells isolated from splenocytes. We also investigated in vivo the effects of LPA on intranasal administration in mice. RESULTS The LPA2 antagonist suppressed the increase of AHR, the number of total cells, and eosinophils in BALF and lung tissue. It also decreased the production of IL-13 in BALF and IL-33 and CCL2 in the lung. LPA promoted Th2 cell differentiation and IL-13 production by Th2 cells in vitro. Nasal administration of LPA significantly increased the number of total cells and IL-13 in BALF via regulating the production of IL-33 and CCL-2-derived infiltrating macrophages. CONCLUSION These findings suggest that LPA plays an important role in allergic airway inflammation and that the blockade of LPA2 might have therapeutic potential for bronchial asthma.
Collapse
Affiliation(s)
- Mayo Kondo
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Toshifumi Tezuka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hirohisa Ogawa
- Department of Pathology and Laboratory Medicine, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kazuya Koyama
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroki Bando
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masahiko Azuma
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan.,Department of Medical Education, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and Rheumatology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan,
| |
Collapse
|
13
|
Roles for lysophosphatidic acid signaling in vascular development and disease. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158734. [PMID: 32376340 DOI: 10.1016/j.bbalip.2020.158734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 01/28/2023]
Abstract
The bioactive lipid lysophosphatidic acid (LPA) is emerging as an important mediator of inflammation in cardiovascular diseases. Produced in large part by the secreted lysophospholipase D autotaxin (ATX), LPA acts on a series of G protein-coupled receptors and may have action on atypical receptors such as RAGE to exert potent effects on vascular cells, including the promotion of foam cell formation and phenotypic modulation of smooth muscle cells. The signaling effects of LPA can be terminated by integral membrane lipid phosphate phosphatases (LPP) that hydrolyze the lipid to receptor inactive products. Human genetic variants in PLPP3, that predict lower levels of LPP3, associate with risk for premature coronary artery disease, and reductions of LPP3 expression in mice promote the development of experimental atherosclerosis and enhance inflammation in the atherosclerotic lesions. Recent evidence also supports a role for ATX, and potentially LPP3, in calcific aortic stenosis. In summary, LPA may be a relevant inflammatory mediator in atherosclerotic cardiovascular disease and heightened LPA signaling may explain the cardiovascular disease risk effect of PLPP3 variants.
Collapse
|
14
|
Synergistic Effect of WTC-Particulate Matter and Lysophosphatidic Acid Exposure and the Role of RAGE: In-Vitro and Translational Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124318. [PMID: 32560330 PMCID: PMC7344461 DOI: 10.3390/ijerph17124318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
World Trade Center particulate matter (WTC-PM)-exposed firefighters with metabolic syndrome (MetSyn) have a higher risk of WTC lung injury (WTC-LI). Since macrophages are crucial innate pulmonary mediators, we investigated WTC-PM/lysophosphatidic acid (LPA) co-exposure in macrophages. LPA, a low-density lipoprotein metabolite, is a ligand of the advanced glycation end-products receptor (AGER or RAGE). LPA and RAGE are biomarkers of WTC-LI. Human and murine macrophages were exposed to WTC-PM, and/or LPA, and compared to controls. Supernatants were assessed for cytokines/chemokines; cell lysate immunoblots were assessed for signaling intermediates after 24 h. To explore the translatability of our in-vitro findings, we assessed serum cytokines/chemokines and metabolites of symptomatic, never-smoking WTC-exposed firefighters. Agglomerative hierarchical clustering identified phenotypes of WTC-PM-induced inflammation. WTC-PM induced GM-CSF, IL-8, IL-10, and MCP-1 in THP-1-derived macrophages and induced IL-1α, IL-10, TNF-α, and NF-κB in RAW264.7 murine macrophage-like cells. Co-exposure induced synergistic elaboration of IL-10 and MCP-1 in THP-1-derived macrophages. Similarly, co-exposure synergistically induced IL-10 in murine macrophages. Synergistic effects were seen in the context of a downregulation of NF-κB, p-Akt, -STAT3, and -STAT5b. RAGE expression after co-exposure increased in murine macrophages compared to controls. In our integrated analysis, the human cytokine/chemokine biomarker profile of WTC-LI was associated with discriminatory metabolites (fatty acids, sphingolipids, and amino acids). LPA synergistically elaborated WTC-PM’s inflammatory effects in vitro and was partly RAGE-mediated. Further research will focus on the intersection of MetSyn/PM exposure.
Collapse
|
15
|
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells 2020; 9:E1391. [PMID: 32503253 PMCID: PMC7349721 DOI: 10.3390/cells9061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death globally. Understanding and characterizing the biochemical context of the cardiovascular system in health and disease is a necessary preliminary step for developing novel therapeutic strategies aimed at restoring cardiovascular function. Bioactive lipids are a class of dietary-dependent, chemically heterogeneous lipids with potent biological signaling functions. They have been intensively studied for their roles in immunity, inflammation, and reproduction, among others. Recent advances in liquid chromatography-mass spectrometry techniques have revealed a staggering number of novel bioactive lipids, most of them unknown or very poorly characterized in a biological context. Some of these new bioactive lipids play important roles in cardiovascular biology, including development, inflammation, regeneration, stem cell differentiation, and regulation of cell proliferation. Identifying the lipid signaling pathways underlying these effects and uncovering their novel biological functions could pave the way for new therapeutic strategies aimed at CVD and cardiovascular regeneration.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Manigandan Venkatesan
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aitor Aguirre
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Udhaya Kumar S, Thirumal Kumar D, Siva R, George Priya Doss C, Younes S, Younes N, Sidenna M, Zayed H. Dysregulation of Signaling Pathways Due to Differentially Expressed Genes From the B-Cell Transcriptomes of Systemic Lupus Erythematosus Patients - A Bioinformatics Approach. Front Bioeng Biotechnol 2020; 8:276. [PMID: 32426333 PMCID: PMC7203449 DOI: 10.3389/fbioe.2020.00276] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disorder that is clinically complex and has increased production of autoantibodies. Via emerging technologies, researchers have identified genetic variants, expression profiling of genes, animal models, and epigenetic findings that have paved the way for a better understanding of the molecular and genetic mechanisms of SLE. Our current study aimed to illustrate the essential genes and molecular pathways that are potentially involved in the pathogenesis of SLE. This study incorporates the gene expression profiling data of the microarray dataset GSE30153 from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) between the B-cell transcriptomes of SLE patients and healthy controls were screened using the GEO2R web tool. The identified DEGs were subjected to STRING analysis and Cytoscape to explore the protein-protein interaction (PPI) networks between them. The MCODE (Molecular Complex Detection) plugin of Cytoscape was used to screen the cluster subnetworks that are highly interlinked between the DEGs. Subsequently, the clustered DEGs were subjected to functional annotation with ClueGO/CluePedia to identify the significant pathways that were enriched. For integrative analysis, we used GeneGo MetacoreTM, a Cortellis Solution software, to exhibit the Gene Ontology (GO) and enriched pathways between the datasets. Our study identified 4 upregulated and 13 downregulated genes. Analysis of GO and functional enrichment using ClueGO revealed the pathways that were statistically significant, including pathways involving T-cell costimulation, lymphocyte costimulation, negative regulation of vascular permeability, and B-cell receptor signaling. The DEGs were mainly enriched in metabolic networks such as the phosphatidylinositol-3,4,5-triphosphate pathway and the carnitine pathway. Additionally, potentially enriched pathways, such as the signaling pathways induced by oxidative stress and reactive oxygen species (ROS), chemotaxis and lysophosphatidic acid signaling induced via G protein-coupled receptors (GPCRs), and the androgen receptor activation pathway, were identified from the DEGs that were mainly associated with the immune system. Four genes (EGR1, CD38, CAV1, and AKT1) were identified to be strongly associated with SLE. Our integrative analysis using a multitude of bioinformatics tools might promote an understanding of the dysregulated pathways that are associated with SLE development and progression. The four DEGs in SLE patients might shed light on the pathogenesis of SLE and might serve as potential biomarkers in early diagnosis and as therapeutic targets for SLE.
Collapse
Affiliation(s)
- S. Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - D. Thirumal Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - R. Siva
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - C. George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Nadin Younes
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Mariem Sidenna
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Zhou Y, Little PJ, Ta HT, Xu S, Kamato D. Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease. Pharmacol Ther 2019; 204:107404. [DOI: 10.1016/j.pharmthera.2019.107404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
|
18
|
Mathew D, Kremer KN, Strauch P, Tigyi G, Pelanda R, Torres RM. LPA 5 Is an Inhibitory Receptor That Suppresses CD8 T-Cell Cytotoxic Function via Disruption of Early TCR Signaling. Front Immunol 2019; 10:1159. [PMID: 31231367 PMCID: PMC6558414 DOI: 10.3389/fimmu.2019.01159] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Persistent T cell antigen receptor (TCR) signaling by CD8 T cells is a feature of cancer and chronic infections and results in the sustained expression of, and signaling by, inhibitory receptors, which ultimately impair cytotoxic activity via poorly characterized mechanisms. We have previously determined that the LPA5 GPCR expressed by CD8 T cells, upon engaging the lysophosphatidic acid (LPA) bioactive serum lipid, functions as an inhibitory receptor able to negatively regulate TCR signaling. Notably, the levels of LPA and autotaxin (ATX), the phospholipase D enzyme that produces LPA, are often increased in chronic inflammatory disorders such as chronic infections, autoimmune diseases, obesity, and cancer. In this report, we demonstrate that LPA engagement selectively by LPA5 on human and mouse CD8 T cells leads to the inhibition of several early TCR signaling events including intracellular calcium mobilization and ERK activation. We further show that, as a consequence of LPA5 suppression of TCR signaling, the exocytosis of perforin-containing granules is significantly impaired and reflected by repressed in vitro and in vivo CD8 T cell cytolytic activity. Thus, these data not only document LPA5 as a novel inhibitory receptor but also determine the molecular and biochemical mechanisms by which a naturally occurring serum lipid that is elevated under settings of chronic inflammation signals to suppress CD8 T cell killing activity in both human and murine cells. As diverse tumors have repeatedly been shown to aberrantly produce LPA that acts in an autocrine manner to promote tumorigenesis, our findings further implicate LPA in activating a novel inhibitory receptor whose signaling may be therapeutically silenced to promote CD8 T cell immunity.
Collapse
Affiliation(s)
- Divij Mathew
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kimberly N. Kremer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Pamela Strauch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States,*Correspondence: Raul M. Torres
| |
Collapse
|
19
|
Yang L, Kraemer M, Fang XF, Angel PM, Drake RR, Morris AJ, Smyth SS. LPA receptor 4 deficiency attenuates experimental atherosclerosis. J Lipid Res 2019; 60:972-980. [PMID: 30796085 PMCID: PMC6495174 DOI: 10.1194/jlr.m091066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
The widely expressed lysophosphatidic acid (LPA) selective receptor 4 (LPAR4) contributes to vascular development in mice and zebrafish. LPAR4 regulates endothelial permeability, lymphocyte migration, and hematopoiesis, which could contribute to atherosclerosis. We investigated the role of LPAR4 in experimental atherosclerosis elicited by adeno-associated virus expressing PCSK9 to lower LDL receptor levels. After 20 weeks on a Western diet, cholesterol levels and lipoprotein distribution were similar in WT male and Lpar4Y/- mice (P = 0.94). The atherosclerotic lesion area in the proximal aorta and arch was ∼25% smaller in Lpar4Y/- mice (P = 0.009), and less atherosclerosis was detected in Lpar4Y/- mice at any given plasma cholesterol. Neutral lipid accumulation in aortic root sections occupied ∼40% less area in Lpar4Y/- mice (P = 0.001), and CD68 expression was ∼25% lower (P = 0.045). No difference in α-smooth muscle actin staining was observed. Bone marrow-derived macrophages isolated from Lpar4Y/- mice displayed significantly increased upregulation of the M2 marker Arg1 in response to LPA compared with WT cells. In aortic root sections from Lpar4Y/- mice, heightened M2 "repair" macrophage marker expression was detected by CD206 staining (P = 0.03). These results suggest that LPAR4 may regulate the recruitment of specific sets of macrophages or their phenotypic switching in a manner that could influence the development of atherosclerosis.
Collapse
Affiliation(s)
- Liping Yang
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536
| | - Maria Kraemer
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536
| | - Xianjun Frank Fang
- Department of Biochemistry and Molecular Biology VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0614
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC 29425
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology MUSC Proteomics Center, Medical University of South Carolina, Charleston, SC 29425
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536; Veterans Affairs Medical Center, Lexington, KY 40511
| | - Susan S Smyth
- Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY 40536; Veterans Affairs Medical Center, Lexington, KY 40511.
| |
Collapse
|
20
|
Yang F, Chen GX. Production of extracellular lysophosphatidic acid in the regulation of adipocyte functions and liver fibrosis. World J Gastroenterol 2018; 24:4132-4151. [PMID: 30271079 PMCID: PMC6158478 DOI: 10.3748/wjg.v24.i36.4132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 02/06/2023] Open
Abstract
Lysophosphatidic acid (LPA), a glycerophospholipid, consists of a glycerol backbone connected to a phosphate head group and an acyl chain linked to sn-1 or sn-2 position. In the circulation, LPA is in sub-millimolar range and mainly derived from hydrolysis of lysophosphatidylcholine, a process mediated by lysophospholipase D activity in proteins such as autotaxin (ATX). Intracellular and extracellular LPAs act as bioactive lipid mediators with diverse functions in almost every mammalian cell type. The binding of LPA to its receptors LPA1-6 activates multiple cellular processes such as migration, proliferation and survival. The production of LPA and activation of LPA receptor signaling pathways in the events of physiology and pathophysiology have attracted the interest of researchers. Results from studies using transgenic and gene knockout animals with alterations of ATX and LPA receptors genes, have revealed the roles of LPA signaling pathways in metabolic active tissues and organs. The present review was aimed to summarize recent progresses in the studies of extracellular and intracellular LPA production pathways. This includes the functional, structural and biochemical properties of ATX and LPA receptors. The potential roles of LPA production and LPA receptor signaling pathways in obesity, insulin resistance and liver fibrosis are also discussed.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Guo-Xun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, United States
| |
Collapse
|
21
|
Shen X, Zou J, Li F, Zhang T, Guo T. Lysophosphatidic acid enhances neointimal hyperplasia following vascular injury through modulating proliferation, autophagy, inflammation and oxidative stress. Mol Med Rep 2018; 18:87-96. [PMID: 29749484 PMCID: PMC6059717 DOI: 10.3892/mmr.2018.8937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/21/2018] [Indexed: 01/15/2023] Open
Abstract
Lysophosphatidic acid (LPA), which is one of the intermediate products of membrane phospholipid metabolism, is a bioactive phospholipid that possesses diverse activities. In the present study, the effects of LPA on neointimal formation following vascular injury were investigated. A carotid artery balloon injury model was employed in the present study, and following vascular injury, rats received an intraperitoneal injection of 1 mg/kg LPA. Subsequently, histopathological alterations were assessed by hematoxylin and eosin staining, the expression levels of proliferating cell nuclear antigen (PCNA) were detected by immunohistochemistry, apoptosis was assessed via a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and the expression levels of apoptosis-associated and autophagy-associated proteins were detected by western blotting. In addition, inflammatory and oxidative stress-associated factors were assessed by reverse transcription-quantitative polymerase chain reaction or corresponding kits. The results of the present study demonstrated that LPA enhanced vascular injury-induced neointimal hyperplasia. LPA further elevated the expression levels of PCNA in the injured carotid artery tissues. LPA exhibited no effect on apoptosis in carotid artery tissues, whereas it modulated autophagy in the injured carotid artery tissues. Furthermore, LPA enhanced vascular injury-induced inflammation and oxidative stress. The present study demonstrated that LPA may enhance neointimal hyperplasia following vascular injury by modulating proliferation, autophagy, inflammation and oxidative stress, but not apoptosis. Furthermore LPA may contribute to the pathology of atherosclerosis and may be considered a promising therapeutic target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xuhui Shen
- Third Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Jianjun Zou
- Third Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Fuyong Li
- Third Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Tianhe Zhang
- Third Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Tongqi Guo
- Third Department of Neurosurgery, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
22
|
Chen L, Zhang J, Deng X, Liu Y, Yang X, Wu Q, Yu C. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI. Biochem Biophys Res Commun 2017; 491:587-594. [PMID: 28765047 DOI: 10.1016/j.bbrc.2017.07.159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/29/2023]
Abstract
The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA1/3 -AKT activation and subsequent SRBI expression.
Collapse
Affiliation(s)
- Linmu Chen
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Jun Zhang
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xiao Deng
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yan Liu
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xi Yang
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China; College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, PR China
| | - Qiong Wu
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chao Yu
- Institute of Life Science, Chongqing Medical University, Chongqing, 400016, PR China; College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
23
|
Taddeo EP, Hargett SR, Lahiri S, Nelson ME, Liao JA, Li C, Slack-Davis JK, Tomsig JL, Lynch KR, Yan Z, Harris TE, Hoehn KL. Lysophosphatidic acid counteracts glucagon-induced hepatocyte glucose production via STAT3. Sci Rep 2017; 7:127. [PMID: 28273928 PMCID: PMC5428006 DOI: 10.1038/s41598-017-00210-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/14/2017] [Indexed: 01/25/2023] Open
Abstract
Hepatic glucose production (HGP) is required to maintain normoglycemia during fasting. Glucagon is the primary hormone responsible for increasing HGP; however, there are many additional hormone and metabolic factors that influence glucagon sensitivity. In this study we report that the bioactive lipid lysophosphatidic acid (LPA) regulates hepatocyte glucose production by antagonizing glucagon-induced expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK). Treatment of primary hepatocytes with exogenous LPA blunted glucagon-induced PEPCK expression and glucose production. Similarly, knockout mice lacking the LPA-degrading enzyme phospholipid phosphate phosphatase type 1 (PLPP1) had a 2-fold increase in endogenous LPA levels, reduced PEPCK levels during fasting, and decreased hepatic gluconeogenesis in response to a pyruvate challenge. Mechanistically, LPA antagonized glucagon-mediated inhibition of STAT3, a transcriptional repressor of PEPCK. Importantly, LPA did not blunt glucagon-stimulated glucose production or PEPCK expression in hepatocytes lacking STAT3. These data identify a novel role for PLPP1 activity and hepatocyte LPA levels in glucagon sensitivity via a mechanism involving STAT3.
Collapse
Affiliation(s)
- Evan P Taddeo
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Stefan R Hargett
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Sujoy Lahiri
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Marin E Nelson
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jason A Liao
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Chien Li
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jill K Slack-Davis
- Department of Microbiology, Immunology and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jose L Tomsig
- Department of Toxicology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kevin R Lynch
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Zhen Yan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.,Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Thurl E Harris
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kyle L Hoehn
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA. .,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia.
| |
Collapse
|
24
|
Ding BS, Liu CH, Sun Y, Chen Y, Swendeman SL, Jung B, Chavez D, Cao Z, Christoffersen C, Nielsen LB, Schwab SR, Rafii S, Hla T. HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P 1) promotes regeneration and suppresses fibrosis in the liver. JCI Insight 2016; 1:e87058. [PMID: 28018969 PMCID: PMC5161208 DOI: 10.1172/jci.insight.87058] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regeneration of hepatic sinusoidal vasculature is essential for non-fibrotic liver regrowth and restoration of its metabolic capacity. However, little is known about how this specialized vascular niche is regenerated. Here we show that activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) by its natural ligand bound to HDL (HDL-S1P) induces liver regeneration and curtails fibrosis. In mice lacking HDL-S1P, liver regeneration after partial hepatectomy was impeded and associated with aberrant vascular remodeling, thrombosis and peri-sinusoidal fibrosis. Notably, this "maladaptive repair" phenotype was recapitulated in mice that lack S1P1 in the endothelium. Reciprocally, enhanced plasma levels of HDL-S1P or administration of SEW2871, a pharmacological agonist specific for S1P1 enhanced regeneration of metabolically functional vasculature and alleviated fibrosis in mouse chronic injury and cholestasis models. This study shows that natural and pharmacological ligands modulate endothelial S1P1 to stimulate liver regeneration and inhibit fibrosis, suggesting that activation of this pathway may be a novel therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Bi-Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Catherine H Liu
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Yue Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yutian Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Steven L Swendeman
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA.,Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Bongnam Jung
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Deebly Chavez
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Zhongwei Cao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences
| | - Lars Bo Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Biomedical Sciences.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Susan R Schwab
- Department of Pathology, Skirball Institute, New York University School of Medicine, New York, New York, USA
| | - Shahin Rafii
- Ansary Stem Cell Institute, Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Timothy Hla
- Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA.,Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Kurano M, Kano K, Dohi T, Matsumoto H, Igarashi K, Nishikawa M, Ohkawa R, Ikeda H, Miyauchi K, Daida H, Aoki J, Yatomi Y. Different origins of lysophospholipid mediators between coronary and peripheral arteries in acute coronary syndrome. J Lipid Res 2016; 58:433-442. [PMID: 28007846 DOI: 10.1194/jlr.p071803] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/05/2016] [Indexed: 12/22/2022] Open
Abstract
Lysophosphatidic acids (LysoPAs) and lysophosphatidylserine (LysoPS) are emerging lipid mediators proposed to be involved in the pathogenesis of acute coronary syndrome (ACS). In this study, we attempted to elucidate how LysoPA and LysoPS become elevated in ACS using human blood samples collected simultaneously from culprit coronary arteries and peripheral arteries in ACS subjects. We found that: 1) the plasma LysoPA, LysoPS, and lysophosphatidylglycerol levels were not different, while the lysophosphatidylcholine (LysoPC), lysophosphatidylinositol, and lysophosphatidylethanolamine (LysoPE) levels were significantly lower in the culprit coronary arteries; 2) the serum autotaxin (ATX) level was lower and the serum phosphatidylserine-specific phospholipase A1 (PS-PLA1) level was higher in the culprit coronary arteries; 3) the LysoPE and ATX levels were significant explanatory factors for the mainly elevated species of LysoPA, except for 22:6 LysoPA, in the peripheral arteries, while the LysoPC and LysoPE levels, but not the ATX level, were explanatory factors in the culprit coronary arteries; and 4) 18:0 and 18:1 LysoPS were significantly correlated with PS-PLA1 only in the culprit coronary arteries. In conclusion, the origins of LysoPA and LysoPS might differ between culprit coronary arteries and peripheral arteries, and substrates for ATX, such as LysoPC and LysoPE, might be important for the generation of LysoPA in ACS.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Corporation (JST)
| | - Kuniyuki Kano
- CREST, Japan Science and Technology Corporation (JST).,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Tomotaka Dohi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirotaka Matsumoto
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Koji Igarashi
- Bioscience Division, Reagent Development Department, AIA Research Group, TOSOH Corporation, Kanagawa, Japan
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Corporation (JST)
| | - Ryunosuke Ohkawa
- Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,CREST, Japan Science and Technology Corporation (JST).,Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan
| | - Katsumi Miyauchi
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Junken Aoki
- CREST, Japan Science and Technology Corporation (JST).,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan .,CREST, Japan Science and Technology Corporation (JST).,Department of Clinical Laboratory, University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
26
|
Sharma S, Ruffenach G, Umar S, Motayagheni N, Reddy ST, Eghbali M. Role of oxidized lipids in pulmonary arterial hypertension. Pulm Circ 2016; 6:261-73. [PMID: 27683603 DOI: 10.1086/687293] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial disease characterized by interplay of many cellular, molecular, and genetic events that lead to excessive proliferation of pulmonary cells, including smooth muscle and endothelial cells; inflammation; and extracellular matrix remodeling. Abnormal vascular changes and structural remodeling associated with PAH culminate in vasoconstriction and obstruction of pulmonary arteries, contributing to increased pulmonary vascular resistance, pulmonary hypertension, and right ventricular failure. The complex molecular mechanisms involved in the pathobiology of PAH are the limiting factors in the development of potential therapeutic interventions for PAH. Over the years, our group and others have demonstrated the critical implication of lipids in the pathogenesis of PAH. This review specifically focuses on the current understanding of the role of oxidized lipids, lipid metabolism, peroxidation, and oxidative stress in the progression of PAH. This review also discusses the relevance of apolipoprotein A-I mimetic peptides and microRNA-193, which are known to regulate the levels of oxidized lipids, as potential therapeutics in PAH.
Collapse
Affiliation(s)
- Salil Sharma
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Grégoire Ruffenach
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Negar Motayagheni
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mansoureh Eghbali
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
27
|
Ren B, Best B, Ramakrishnan DP, Walcott BP, Storz P, Silverstein RL. LPA/PKD-1-FoxO1 Signaling Axis Mediates Endothelial Cell CD36 Transcriptional Repression and Proangiogenic and Proarteriogenic Reprogramming. Arterioscler Thromb Vasc Biol 2016; 36:1197-208. [PMID: 27013613 DOI: 10.1161/atvbaha.116.307421] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 03/10/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE CD36 is a scavenger and antiangiogenic receptor that is important in atherothrombotic diseases, diabetes mellitus, cancer, and obesity. Lysophosphatidic acid, a phospholipid signaling mediator, abolishes endothelial cell responses to antiangiogenic proteins containing thrombospondin type 1 homology domains by downregulating endothelial CD36 transcription via protein kinase D1 (PKD-1) signaling. We aimed to understand mechanisms by which lysophosphatidic acid-mediated angiogenic signaling is integrated to regulate CD36 transcription and endothelial cell function via a nuclear transcriptional complex. APPROACH AND RESULTS Microvascular endothelial cells expressing CD36 were used for studying angiogenic signaling and CD36 transcription. Gene transfection and transduction, RT-qPCR, avidin-biotin-conjugated DNA-binding assay, chromatin immunoprecipitation assay, co-immunoprecipitation, proximal ligation assay, and immunofluorescence microscopy showed that lysophosphatidic acid-mediated CD36 transcriptional repression involved PKD-1 signaling mediated formation of forkhead box protein O1-histone deacetylase 7 complex in the nucleus. Unexpectedly, turning off CD36 transcription initiated reprogramming microvascular endothelial cells to express ephrin B2, a critical molecular signature involved in angiogenesis and arteriogenesis. Spheroid-based angiogenesis and in vivo Matrigel angiogenesis assays indicated that angiogenic branching morphogenesis and in vivo angiogenesis were dependent on PKD-1 signaling. A mouse tumor angiogenesis model revealed enhanced PKD-1 signaling and expression of ephrin B2 and smooth muscle actin in neovessels of Lewis Lung Carcinomas, along with low-CD36 expression or CD36 deficiency. CONCLUSIONS Lysophosphatidic acid/PKD-1 signaling leads to nuclear accumulation of histone deacetylase 7, where it interacts with forkhead box protein O1 to suppress endothelial CD36 transcription and mediates silencing of antiangiogenic switch, resulting in proangiogenic and proarteriogenic reprogramming. Targeting this signaling cascade could be a novel approach for ischemic cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Bin Ren
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.)
| | - Brad Best
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.)
| | - Devi Prasadh Ramakrishnan
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.)
| | - Brian P Walcott
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.)
| | - Peter Storz
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.)
| | - Roy L Silverstein
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee (B.R., R.L.S.); Blood Research Institute, Blood Center of Wisconsin, Milwaukee (B.R., B.B., D.P.R., R.L.S.); Department of Neurological Surgery, Cardiovascular Research Center, Massachusetts General Hospital & Harvard Medical School, Boston (B.P.W.); and Department of Cancer Biology, Mayo Clinic, Jacksonville, FL (P.S.).
| |
Collapse
|
28
|
Reprint of: “Synthetic lipids and their role in defining macromolecular assemblies”. Chem Phys Lipids 2016; 194:149-57. [DOI: 10.1016/j.chemphyslip.2015.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 11/23/2022]
|
29
|
Li YF, Li RS, Samuel SB, Cueto R, Li XY, Wang H, Yang XF. Lysophospholipids and their G protein-coupled receptors in atherosclerosis. Front Biosci (Landmark Ed) 2016; 21:70-88. [PMID: 26594106 DOI: 10.2741/4377] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lysophospholipids (LPLs) are bioactive lipid-derived signaling molecules generated by the enzymatic and chemical processes of regiospecific phospholipases on substrates such as membrane phospholipids (PLs) and sphingolipids (SLs). They play a major role as extracellular mediators by activating G-protein coupled receptors (GPCRs) and stimulating diverse cellular responses from their signaling pathways. LPLs are involved in various pathologies of the vasculature system including coronary heart disease and hypertension. Many studies suggest the importance of LPLs in their association with the development of atherosclerosis, a chronic and severe vascular disease. This paper focuses on the pathophysiological effects of different lysophospholipids on atherosclerosis, which may promote the pathogenesis of myocardial infarction and strokes. Their atherogenic biological activities take place in vascular endothelial cells, vascular smooth muscle cells, fibroblasts, monocytes and macrophages, dendritic cells, T-lymphocytes, platelets, etc.
Collapse
Affiliation(s)
- Ya-Feng Li
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA ; Department of Nephrology and Hemodialysis Center, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Rong-Shan Li
- Department of Nephrology and Hemodialysis Center, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Sonia B Samuel
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ramon Cueto
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xin-Yuan Li
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
30
|
Parrill AL. Synthetic lipids and their role in defining macromolecular assemblies. Chem Phys Lipids 2015; 191:38-47. [DOI: 10.1016/j.chemphyslip.2015.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
31
|
Patients with risk factors have higher plasma levels of lysophosphatidic acid: a promising surrogate marker for blood platelet activation. Blood Coagul Fibrinolysis 2015; 25:322-5. [PMID: 24346355 DOI: 10.1097/mbc.0000000000000034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although basic medical studies have shown that lysophosphatidic acid (LPA) has an important relationship to activated blood platelets, we know little about this from clinical experience. This pilot study examined plasma LPA levels in patients with a risk of thrombotic events and evaluated the effects of aspirin on plasma LPA levels. In this basically cross-sectional study, we recruited 1352 patients with either hypertension or hyperlipidemia and 670 controls without any risk factors. Patients with risk factors had significantly higher plasma LPA levels than controls, the mean of LPA = 3.12 ± 2.24 vs. 2.57 ± 1.96 μmol/l, P < 0.001. The patients who had been taking aspirin had relatively lower plasma LPA levels compared with those who did not take aspirin, χ = 43.8, odds ratio (OR) [95% confidence interval (CI)] = 2.76 (2.03-3.75). For the hypertension group, χ = 23.1, OR (95% CI) = 3.44 (2.03-5.82), P < 0.001; for the hyperlipidemia group, χ = 22.9, OR (95% CI) = 2.53 (1.72-3.74), P < 0.001. Patients with a risk factor had higher plasma LPA levels compared with controls. Administration of aspirin may decrease elevated plasma LPA levels. This pilot clinical observation indicates that plasma LPA is worth to be studied further.
Collapse
|
32
|
Oda SK, Strauch P, Fujiwara Y, Al-Shami A, Oravecz T, Tigyi G, Pelanda R, Torres RM. Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression. Cancer Immunol Res 2015; 1:245-55. [PMID: 24455753 DOI: 10.1158/2326-6066.cir-13-0043-t] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CD8 T lymphocytes are able to eliminate nascent tumor cells through a process referred to as immune surveillance. However, multiple inhibitory mechanisms within the tumor microenvironment have been described that impede tumor rejection by CD8 T cells, including increased signaling by inhibitory receptors. Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that has been shown repeatedly to promote diverse cellular processes benefiting tumorigenesis. Accordingly, the increased expression of LPA and LPA receptors is a common feature of diverse tumor cell lineages and can result in elevated systemic LPA levels. LPA is recognized by at least 6 distinct G-protein-coupled receptors and several of which are expressed by T cells, although the precise role of LPA signaling in CD8 T cell activation and function has not been defined. Here, we demonstrate that LPA signaling via the LPA5 receptor expressed by CD8 T cells suppresses antigen receptor signaling, cell activation and proliferation in vitro and in vivo. Importantly, in a mouse melanoma model tumor-specific CD8 T cells that are LPA5-deficient are able to control tumor growth significantly better than wild-type tumor-specific CD8 T cells. Together, these data suggest that the production of LPA by tumors serves not only in an autocrine manner to promote tumorigenesis but also as a mechanism to suppress adaptive immunity and highlights a potential novel target for cancer treatment.
Collapse
Affiliation(s)
- Shannon K Oda
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado
| | - Pamela Strauch
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado
| | - Yuko Fujiwara
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, Tennessee
| | | | | | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Memphis, Tennessee
| | - Roberta Pelanda
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado
| | - Raul M Torres
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado
| |
Collapse
|
33
|
Xu K, Ma L, Li Y, Wang F, Zheng GY, Sun Z, Jiang F, Chen Y, Liu H, Dang A, Chen X, Chun J, Tian XL. Genetic and Functional Evidence Supports LPAR1 as a Susceptibility Gene for Hypertension. Hypertension 2015; 66:641-6. [PMID: 26123684 DOI: 10.1161/hypertensionaha.115.05515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/08/2015] [Indexed: 01/11/2023]
Abstract
Essential hypertension is a complex disease affected by genetic and environmental factors and serves as a major risk factor for cardiovascular diseases. Serum lysophosphatidic acid correlates with an elevated blood pressure in rats, and lysophosphatidic acid interacts with 6 subtypes of receptors. In this study, we assessed the genetic association of lysophosphatidic acid receptors with essential hypertension by genotyping 28 single-nucleotide polymorphisms from genes encoding for lysophosphatidic acid receptors, LPAR1, LPAR2, LPAR3, LPAR4, LPAR5, and LPAR6 and their flanking sequences, in 3 Han Chinese cohorts consisting of 2630 patients and 3171 controls in total. We identified a single-nucleotide polymorphism, rs531003 in the 3'-flanking genomic region of LPAR1, associated with hypertension (the Bonferroni corrected P=1.09×10(-5), odds ratio [95% confidence interval]=1.23 [1.13-1.33]). The risk allele C of rs531003 is associated with the increased expression of LPAR1 and the susceptibility of hypertension, particularly in those with a shortage of sleep (P=4.73×10(-5), odds ratio [95% confidence interval]=1.75 [1.34-2.28]). We further demonstrated that blood pressure elevation caused by sleep deprivation and phenylephrine-induced vasoconstriction was both diminished in LPAR1-deficient mice. Together, we show that LPAR1 is a novel susceptibility gene for human essential hypertension and that stress, such as shortage of sleep, increases the susceptibility of patients with risk allele to essential hypertension.
Collapse
Affiliation(s)
- Ke Xu
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Lu Ma
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Yang Li
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Fang Wang
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Gu-Yan Zheng
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Zhijun Sun
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Feng Jiang
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Yundai Chen
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Huirong Liu
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Aimin Dang
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Xi Chen
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Jerold Chun
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.)
| | - Xiao-Li Tian
- From the Department of Human Population Genetics, Institute of Molecular Medicine, Peking University, Beijing, PR China (K.X., Y.L., G.Y.Z., X.L.T.); Department of Physiology and Pathophysiology, School of Basic Medical Sciences (L.M., H.L.) and Department of Cardiology, Beijing Chaoyang Hospital (F.J.), Capital Medical University, Beijing, PR China; State Key Laboratory of Cardiovascular Diseases (F.W., X.C.) and Department of Cardiology (A.D.), Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, PR China; Cardiovascular Department, PLA General Hospital, Beijing, PR China (Z.S., Y.C.); and Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA (J.C.).
| |
Collapse
|
34
|
Althoff TF, Offermanns S. G-protein-mediated signaling in vascular smooth muscle cells — implications for vascular disease. J Mol Med (Berl) 2015; 93:973-81. [DOI: 10.1007/s00109-015-1305-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 06/02/2015] [Indexed: 10/24/2022]
|
35
|
Weiden MD, Kwon S, Caraher E, Berger KI, Reibman J, Rom WN, Prezant DJ, Nolan A. Biomarkers of World Trade Center Particulate Matter Exposure: Physiology of Distal Airway and Blood Biomarkers that Predict FEV₁ Decline. Semin Respir Crit Care Med 2015; 36:323-33. [PMID: 26024341 DOI: 10.1055/s-0035-1547349] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biomarkers can be important predictors of disease severity and progression. The intense exposure to particulates and other toxins from the destruction of the World Trade Center (WTC) overwhelmed the lung's normal protective barriers. The Fire Department of New York (FDNY) cohort not only had baseline pre-exposure lung function measures but also had serum samples banked soon after their WTC exposure. This well-phenotyped group of highly exposed first responders is an ideal cohort for biomarker discovery and eventual validation. Disease progression was heterogeneous in this group in that some individuals subsequently developed abnormal lung function while others recovered. Airflow obstruction predominated in WTC-exposed patients who were symptomatic. Multiple independent disease pathways may cause this abnormal FEV1 after irritant exposure. WTC exposure activates one or more of these pathways causing abnormal FEV1 in an individual. Our hypothesis was that serum biomarkers expressed within 6 months after WTC exposure reflect active disease pathways and predict subsequent development or protection from abnormal FEV1 below the lower limit of normal known as WTC-Lung Injury (WTC-LI). We utilized a nested case-cohort control design of previously healthy never smokers who sought subspecialty pulmonary evaluation to explore predictive biomarkers of WTC-LI. We have identified biomarkers of inflammation, metabolic derangement, protease/antiprotease balance, and vascular injury expressed in serum within 6 months of WTC exposure that were predictive of their FEV1 up to 7 years after their WTC exposure. Predicting future risk of airway injury after particulate exposures can focus monitoring and early treatment on a subset of patients in greatest need of these services.
Collapse
Affiliation(s)
- Michael D Weiden
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - Sophia Kwon
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - Erin Caraher
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - Kenneth I Berger
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - Joan Reibman
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - William N Rom
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| | - David J Prezant
- Bureau of Health Services and Office of Medical Affairs, Fire Department of New York, Brooklyn, New York
| | - Anna Nolan
- Division of Pulmonary, Critical Care and Sleep, New York University School of Medicine, New York, New York
| |
Collapse
|
36
|
Yukiura H, Kano K, Kise R, Inoue A, Aoki J. Autotaxin overexpression causes embryonic lethality and vascular defects. PLoS One 2015; 10:e0126734. [PMID: 25992708 PMCID: PMC4438000 DOI: 10.1371/journal.pone.0126734] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022] Open
Abstract
Autotaxin (ATX) is a secretory protein, which converts lysophospholipids to lysophosphatidic acid (LPA), and is essential for embryonic vascular formation. ATX is abundantly detected in various biological fluids and its level is elevated in some pathophysiological conditions. However, the roles of elevated ATX levels remain to be elucidated. In this study, we generated conditional transgenic (Tg) mice overexpressing ATX and examined the effects of excess LPA signalling. We found that ATX overexpression in the embryonic period caused severe vascular defects and was lethal around E9.5. ATX was conditionally overexpressed in the neonatal period using the Cre/loxP system, which resulted in a marked increase in the plasma LPA level. This resulted in retinal vascular defects including abnormal vascular plexus and increased vascular regression. Our findings indicate that the ATX level must be carefully regulated to ensure coordinated vascular formation
Collapse
Affiliation(s)
- Hiroshi Yukiura
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6–3, Aoba, Aramaki, Aoba-ku, Sendai, 980–8578, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6–3, Aoba, Aramaki, Aoba-ku, Sendai, 980–8578, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6–3, Aoba, Aramaki, Aoba-ku, Sendai, 980–8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6–3, Aoba, Aramaki, Aoba-ku, Sendai, 980–8578, Japan
- PREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6–3, Aoba, Aramaki, Aoba-ku, Sendai, 980–8578, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
37
|
Block RC, Abdolahi A, Tu X, Georas SN, Brenna JT, Phipps RP, Lawrence P, Mousa SA. The effects of aspirin on platelet function and lysophosphatidic acids depend on plasma concentrations of EPA and DHA. Prostaglandins Leukot Essent Fatty Acids 2015; 96:17-24. [PMID: 25555354 PMCID: PMC4395522 DOI: 10.1016/j.plefa.2014.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 12/21/2022]
Abstract
Aspirin's prevention of cardiovascular disease (CVD) events in individuals with type 2 diabetes mellitus is controversial. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and aspirin all affect the cyclooxygenase enzyme. The relationship between plasma EPA and DHA and aspirin's effects has not been determined. Thirty adults with type 2 diabetes mellitus ingested aspirin (81 mg/day) for 7 days, then EPA+DHA (2.6g/day) for 28 days, then both for another 7 days. Lysophosphatidic acid (LPA) species and more classic platelet function outcomes were determined. Plasma concentrations of total EPA+DHA were associated with 7-day aspirin reduction effects on these outcomes in a "V"-shaped manner for all 11 LPA species and ADP-induced platelet aggregation. This EPA+DHA concentration was quite consistent for each of the LPA species and ADP. These results support aspirin effects on lysolipid metabolism and platelet aggregation depending on plasma EPA+DHA concentrations in individuals with a disturbed lipid milieu.
Collapse
Affiliation(s)
- Robert C Block
- Department of Public Health Sciences, University of Rochester, School of Medicine and Dentistry, 265 Crittenden Boulevard, Box CU 420644, Rochester, NY 14642, USA.
| | - Amir Abdolahi
- Department of Public Health Sciences, University of Rochester, School of Medicine and Dentistry, 265 Crittenden Boulevard, Box CU 420644, Rochester, NY 14642, USA
| | - Xin Tu
- Department of Biostatistics and Computational Biology, University of Rochester, School of Medicine and Dentistry, 265 Crittenden Boulevard, Box CU 420644, Rochester, NY 14642 USA
| | - Steve N Georas
- Pulmonary and Critical Care Division, Department of Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, USA
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA
| |
Collapse
|
38
|
Kurano M, Suzuki A, Inoue A, Tokuhara Y, Kano K, Matsumoto H, Igarashi K, Ohkawa R, Nakamura K, Dohi T, Miyauchi K, Daida H, Tsukamoto K, Ikeda H, Aoki J, Yatomi Y. Possible Involvement of Minor Lysophospholipids in the Increase in Plasma Lysophosphatidic Acid in Acute Coronary Syndrome. Arterioscler Thromb Vasc Biol 2015; 35:463-70. [DOI: 10.1161/atvbaha.114.304748] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Makoto Kurano
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Akiko Suzuki
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Asuka Inoue
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Yasunori Tokuhara
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Kuniyuki Kano
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Hirotaka Matsumoto
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Koji Igarashi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Ryunosuke Ohkawa
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Kazuhiro Nakamura
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Tomotaka Dohi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Katsumi Miyauchi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Hiroyuki Daida
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Kazuhisa Tsukamoto
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Hitoshi Ikeda
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Junken Aoki
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| | - Yutaka Yatomi
- From the Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (M.K., A.S., H.I., Y.Y.); Core Research for Evolutional Science and Technology (CREST) (M.K., H.I., J.A., Y.Y.) and Precursory Research for Embryonic Science and Technology (PRESTO) (A.I.), Japan Science and Technology Agency (JST), Saitama, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan (A.I.,
| |
Collapse
|
39
|
Wang L, Sibrian-Vazquez M, Escobedo JO, Wang J, Moore RG, Strongin RM. Spiroguanidine rhodamines as fluorogenic probes for lysophosphatidic acid. Chem Commun (Camb) 2015; 51:1697-700. [PMID: 25516957 PMCID: PMC4320994 DOI: 10.1039/c4cc08818b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Direct determination of total lysophosphatidic acid (LPA) was accomplished using newly developed spiroguanidines derived from rhodamine B as universal fluorogenic probes. Optimum conditions for the quantitative analysis of total LPA were investigated. The linear range for the determination of total LPA is up to 5 μM with a limit of detection of 0.512 μM.
Collapse
Affiliation(s)
- Lei Wang
- Department of Chemistry, Portland State University, Portland, OR 97201, USA. Tel: +1-503-725-9724
| | - Martha Sibrian-Vazquez
- Department of Chemistry, Portland State University, Portland, OR 97201, USA. Tel: +1-503-725-9724
| | - Jorge O. Escobedo
- Department of Chemistry, Portland State University, Portland, OR 97201, USA. Tel: +1-503-725-9724
| | - Jialu Wang
- Department of Chemistry, Portland State University, Portland, OR 97201, USA. Tel: +1-503-725-9724
| | - Richard G. Moore
- Women and Infants Hospital, Brown University, 101 Dudley Street, Providence, RI 02905, USA; Tel: +1-401-453-7520
| | - Robert M. Strongin
- Department of Chemistry, Portland State University, Portland, OR 97201, USA. Tel: +1-503-725-9724
| |
Collapse
|
40
|
Shlyonsky V, Naeije R, Mies F. Possible role of lysophosphatidic acid in rat model of hypoxic pulmonary vascular remodeling. Pulm Circ 2015; 4:471-81. [PMID: 25621161 DOI: 10.1086/677362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/20/2014] [Indexed: 01/12/2023] Open
Abstract
Pulmonary hypertension is characterized by cellular and structural changes in the vascular wall of pulmonary arteries. We hypothesized that lysophosphatidic acid (LPA), a bioactive lipid, is implicated in this vascular remodeling in a rat model of hypoxic pulmonary hypertension. Exposure of Wistar rats to 10% O2 for 3 weeks induced an increase in the mean serum levels of LPA, to 40.9 (log-detransformed standard deviations: 23.4-71.7) μM versus 21.6 (11.0-42.3) μM in a matched control animal group (P = 0.037). We also observed perivascular LPA immunohistochemical staining in lungs of hypoxic rats colocalized with the secreted lysophospholipase D autotaxin (ATX). Moreover, ATX colocalized with mast cell tryptase, suggesting implication of these cells in perivascular LPA production. Hypoxic rat lungs expressed more ATX transcripts (2.4-fold) and more transcripts of proteins implicated in cell migration: β2 integrin (1.74-fold), intracellular adhesion molecule 1 (ICAM-1; 1.84-fold), and αM integrin (2.70-fold). Serum from the hypoxic group of animals had significantly higher chemoattractant properties toward rat primary lung fibroblasts, and this increase in cell migration could be prevented by the LPA receptor 1 and 3 antagonists. LPA also increased adhesive properties of human pulmonary artery endothelial cells as well as those of human peripheral blood mononuclear cells, via the activation of LPA receptor 1 or 3 followed by the stimulation of gene expression of ICAM-1, β-1, E-selectin, and vascular cell adhesion molecule integrins. In conclusion, chronic hypoxia increases circulating and tissue levels of LPA, which might induce fibroblast migration and recruitment of mononuclear cells in pulmonary vasculature, both of which contribute to pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Vadim Shlyonsky
- Department of Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Naeije
- Department of Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Frédérique Mies
- Department of Physiology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
41
|
Zhang CC, Li R, Jiang H, Lin S, Rogalski JC, Liu K, Kast J. Development and application of a quantitative multiplexed small GTPase activity assay using targeted proteomics. J Proteome Res 2015; 14:967-76. [PMID: 25569337 DOI: 10.1021/pr501010v] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Small GTPases are a family of key signaling molecules that are ubiquitously expressed in various types of cells. Their activity is often analyzed by western blot, which is limited by its multiplexing capability, the quality of isoform-specific antibodies, and the accuracy of quantification. To overcome these issues, a quantitative multiplexed small GTPase activity assay has been developed. Using four different binding domains, this assay allows the binding of up to 12 active small GTPase isoforms simultaneously in a single experiment. To accurately quantify the closely related small GTPase isoforms, a targeted proteomic approach, i.e., selected/multiple reaction monitoring, was developed, and its functionality and reproducibility were validated. This assay was successfully applied to human platelets and revealed time-resolved coactivation of multiple small GTPase isoforms in response to agonists and differential activation of these isoforms in response to inhibitor treatment. This widely applicable approach can be used for signaling pathway studies and inhibitor screening in many cellular systems.
Collapse
Affiliation(s)
- Cheng-Cheng Zhang
- The Biomedical Research Centre, ∥The Centre for Blood Research, University of British Columbia , Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Kazlauskas A. Lysophosphatidic acid contributes to angiogenic homeostasis. Exp Cell Res 2014; 333:166-170. [PMID: 25433269 DOI: 10.1016/j.yexcr.2014.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/05/2014] [Indexed: 01/06/2023]
Affiliation(s)
- Andrius Kazlauskas
- Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary/Harvard Medical School, 20 Staniford St., Boston, MA 02114, USA.
| |
Collapse
|
43
|
Staiculescu MC, Ramirez-Perez FI, Castorena-Gonzalez JA, Hong Z, Sun Z, Meininger GA, Martinez-Lemus LA. Lysophosphatidic acid induces integrin activation in vascular smooth muscle and alters arteriolar myogenic vasoconstriction. Front Physiol 2014; 5:413. [PMID: 25400583 PMCID: PMC4215695 DOI: 10.3389/fphys.2014.00413] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/06/2014] [Indexed: 01/16/2023] Open
Abstract
In vascular smooth muscle cells (VSMC) increased integrin adhesion to extracellular matrix (ECM) proteins, as well as the production of reactive oxygen species (ROS) are strongly stimulated by lysophosphatidic acid (LPA). We hypothesized that LPA-induced generation of ROS increases integrin adhesion to the ECM. Using atomic force microscopy (AFM) we determined the effects of LPA on integrin adhesion to fibronectin (FN) in VSMC isolated from rat (Sprague-Dawley) skeletal muscle arterioles. In VSMC, exposure to LPA (2 μM) doubled integrin-FN adhesion compared to control cells (P < 0.05). LPA-induced integrin-FN adhesion was reduced by pre-incubation with antibodies against β1 and β3 integrins (50 μg/ml) by 66% (P < 0.05). Inhibition of LPA signaling via blockade of the LPA G-protein coupled receptors LPAR1 and LPAR3 with 10 μM Ki16425 reduced the LPA-enhanced adhesion of VSCM to FN by 40% (P < 0.05). Suppression of ROS with tempol (250 μM) or apocynin (300 μM) also reduced the LPA-induced FN adhesion by 47% (P < 0.05) and 59% (P < 0.05), respectively. Using confocal microscopy, we observed that blockade of LPA signaling, with Ki16425, reduced ROS by 45% (P < 0.05), to levels similar to control VSMC unexposed to LPA. In intact isolated arterioles, LPA (2 μM) exposure augmented the myogenic constriction response to step increases in intraluminal pressure (between 40 and 100 mm Hg) by 71% (P < 0.05). The blockade of LPA signaling, with Ki16425, decreased the LPA-enhanced myogenic constriction by 58% (P < 0.05). Similarly, blockade of LPA-induced ROS release with tempol or gp91 ds-tat decreased the LPA-enhanced myogenic constriction by 56% (P < 0.05) and 55% (P < 0.05), respectively. These results indicate that, in VSMC, LPA-induced integrin activation involves the G-protein coupled receptors LPAR1 and LPAR3, and the production of ROS, and that LPA may play an important role in the control of myogenic behavior in resistance vessels through ROS modulation of integrin activity.
Collapse
Affiliation(s)
| | - Francisco I Ramirez-Perez
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA
| | - Jorge A Castorena-Gonzalez
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA
| | - Zhongkui Hong
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA ; Department of Medical Pharmacology and Physiology, University of Missouri Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri Columbia, MO, USA ; Department of Bioengineering, University of Missouri Columbia, MO, USA ; Department of Medical Pharmacology and Physiology, University of Missouri Columbia, MO, USA
| |
Collapse
|
44
|
Hu J, Oda SK, Shotts K, Donovan EE, Strauch P, Pujanauski LM, Victorino F, Al-Shami A, Fujiwara Y, Tigyi G, Oravecz T, Pelanda R, Torres RM. Lysophosphatidic acid receptor 5 inhibits B cell antigen receptor signaling and antibody response. THE JOURNAL OF IMMUNOLOGY 2014; 193:85-95. [PMID: 24890721 DOI: 10.4049/jimmunol.1300429] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lysophospholipids have emerged as biologically important chemoattractants capable of directing lymphocyte development, trafficking, and localization. Lysophosphatidic acid (LPA) is a major lysophospholipid found systemically, and its levels are elevated in certain pathological settings, such as cancer and infections. In this study, we demonstrate that BCR signal transduction by mature murine B cells is inhibited upon LPA engagement of the LPA5 (GPR92) receptor via a Gα12/13-Arhgef1 pathway. The inhibition of BCR signaling by LPA5 manifests by impaired intracellular calcium store release and most likely by interfering with inositol 1,4,5-triphosphate receptor activity. We further show that LPA5 also limits Ag-specific induction of CD69 and CD86 expression and that LPA5-deficient B cells display enhanced Ab responses. Thus, these data show that LPA5 negatively regulates BCR signaling, B cell activation, and immune response. Our findings extend the influence of lysophospholipids on immune function and suggest that alterations in LPA levels likely influence adaptive humoral immunity.
Collapse
Affiliation(s)
- Jiancheng Hu
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Shannon K Oda
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Kristin Shotts
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Erin E Donovan
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Pamela Strauch
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Lindsey M Pujanauski
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Francisco Victorino
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Amin Al-Shami
- Lexicon Pharmaceuticals, Inc, The Woodlands, TX, 77381 USA.,Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yuko Fujiwara
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Tamas Oravecz
- Lexicon Pharmaceuticals, Inc, The Woodlands, TX, 77381 USA
| | - Roberta Pelanda
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| | - Raul M Torres
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
45
|
Onorato JM, Shipkova P, Minnich A, Aubry AF, Easter J, Tymiak A. Challenges in accurate quantitation of lysophosphatidic acids in human biofluids. J Lipid Res 2014; 55:1784-96. [PMID: 24872406 DOI: 10.1194/jlr.d050070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 01/30/2023] Open
Abstract
Lysophosphatidic acids (LPAs) are biologically active signaling molecules involved in the regulation of many cellular processes and have been implicated as potential mediators of fibroblast recruitment to the pulmonary airspace, pointing to possible involvement of LPA in the pathology of pulmonary fibrosis. LPAs have been measured in various biological matrices and many challenges involved with their analyses have been documented. However, little published information is available describing LPA levels in human bronchoalveolar lavage fluid (BALF). We therefore conducted detailed investigations into the effects of extensive sample handling and sample preparation conditions on LPA levels in human BALF. Further, targeted lipid profiling of human BALF and plasma identified the most abundant lysophospholipids likely to interfere with LPA measurements. We present the findings from these investigations, highlighting the importance of well-controlled sample handling for the accurate quantitation of LPA. Further, we show that chromatographic separation of individual LPA species from their corresponding lysophospholipid species is critical to avoid reporting artificially elevated levels. The optimized sample preparation and LC/MS/MS method was qualified using a stable isotope-labeled LPA as a surrogate calibrant and used to determine LPA levels in human BALF and plasma from a Phase 0 clinical study comparing idiopathic pulmonary fibrosis patients to healthy controls.
Collapse
Affiliation(s)
- Joelle M Onorato
- Departments of Bioanalytical and Discovery Analytical Science, Bristol-Myers Squibb Co., Princeton, NJ
| | - Petia Shipkova
- Departments of Bioanalytical and Discovery Analytical Science, Bristol-Myers Squibb Co., Princeton, NJ
| | - Anne Minnich
- Exploratory Clinical and Translational Research, Bristol-Myers Squibb Co., Princeton, NJ
| | - Anne-Françoise Aubry
- Analytical and Bioanalytical Development, Bristol-Myers Squibb Co., Princeton, NJ
| | - John Easter
- Discovery Chemistry, Bristol-Myers Squibb Co., Princeton, NJ
| | - Adrienne Tymiak
- Departments of Bioanalytical and Discovery Analytical Science, Bristol-Myers Squibb Co., Princeton, NJ
| |
Collapse
|
46
|
Motiejūnaitė R, Aranda J, Kazlauskas A. Pericytes prevent regression of endothelial cell tubes by accelerating metabolism of lysophosphatidic acid. Microvasc Res 2014; 93:62-71. [DOI: 10.1016/j.mvr.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/16/2014] [Accepted: 03/19/2014] [Indexed: 01/10/2023]
|
47
|
Yung YC, Stoddard NC, Chun J. LPA receptor signaling: pharmacology, physiology, and pathophysiology. J Lipid Res 2014; 55:1192-214. [PMID: 24643338 DOI: 10.1194/jlr.r046458] [Citation(s) in RCA: 530] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Indexed: 12/18/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a small ubiquitous lipid found in vertebrate and nonvertebrate organisms that mediates diverse biological actions and demonstrates medicinal relevance. LPA's functional roles are driven by extracellular signaling through at least six 7-transmembrane G protein-coupled receptors. These receptors are named LPA1-6 and signal through numerous effector pathways activated by heterotrimeric G proteins, including Gi/o, G12/13, Gq, and Gs LPA receptor-mediated effects have been described in numerous cell types and model systems, both in vitro and in vivo, through gain- and loss-of-function studies. These studies have revealed physiological and pathophysiological influences on virtually every organ system and developmental stage of an organism. These include the nervous, cardiovascular, reproductive, and pulmonary systems. Disturbances in normal LPA signaling may contribute to a range of diseases, including neurodevelopmental and neuropsychiatric disorders, pain, cardiovascular disease, bone disorders, fibrosis, cancer, infertility, and obesity. These studies underscore the potential of LPA receptor subtypes and related signaling mechanisms to provide novel therapeutic targets.
Collapse
Affiliation(s)
- Yun C Yung
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicole C Stoddard
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037 Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
48
|
Rao PV. Bioactive lysophospholipids: role in regulation of aqueous humor outflow and intraocular pressure in the context of pathobiology and therapy of glaucoma. J Ocul Pharmacol Ther 2014; 30:181-90. [PMID: 24283588 PMCID: PMC3991961 DOI: 10.1089/jop.2013.0194] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 10/23/2013] [Indexed: 01/21/2023] Open
Abstract
Homeostasis of aqueous humor (AH) outflow and intraocular pressure (IOP) is essential for normal vision. Impaired AH outflow through the trabecular meshwork (TM) and a resultant elevation in IOP are common changes in primary open-angle glaucoma (POAG), which is the most prevalent form of glaucoma. Although elevated IOP has been recognized as a definitive risk factor for POAG and lowering elevated IOP remains a mainstay for glaucoma treatment, little is known about the molecular mechanisms, especially external cues and intracellular pathways, involved in the regulation of AH outflow in both normal and glaucomatous eyes. In addition, despite the recognition that increased resistance to AH outflow via the conventional pathway consisting of TM and Schlemm's canal is the main cause for elevated IOP, there are no clinically approved drugs that target the conventional pathway to lower IOP in glaucoma patients. The aim of this article is to briefly review published work on the importance of bioactive lysophospholipids (eg, lysophosphatidic acid and sphingosine-1-phosphate), their receptors, metabolism, signaling, and role in the regulation of AH outflow via the TM and IOP, and to discuss pharmacological targeting of key proteins in the lysophospholipid signaling pathways to lower IOP in glaucoma patients.
Collapse
Affiliation(s)
- Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
49
|
Tsukiji J, Cho SJ, Echevarria GC, Kwon S, Joseph P, Schenck EJ, Naveed B, Prezant DJ, Rom WN, Schmidt AM, Weiden MD, Nolan A. Lysophosphatidic acid and apolipoprotein A1 predict increased risk of developing World Trade Center-lung injury: a nested case-control study. Biomarkers 2014; 19:159-65. [PMID: 24548082 DOI: 10.3109/1354750x.2014.891047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RATIONALE Metabolic syndrome, inflammatory and vascular injury markers measured in serum after World Trade Center (WTC) exposures predict abnormal FEV1. We hypothesized that elevated LPA levels predict FEV₁ < LLN. METHODS Nested case-control study of WTC-exposed firefighters. Cases had FEV₁ < LLN. Controls derived from the baseline cohort. Demographics, pulmonary function, serum lipids, LPA and ApoA1 were measured. RESULTS LPA and ApoA1 levels were higher in cases than controls and predictive of case status. LPA increased the odds by 13% while ApoA1 increased the odds by 29% of an FEV₁ < LLN in a multivariable model. CONCLUSIONS Elevated LPA and ApoA1 are predictive of a significantly increased risk of developing an FEV₁ < LLN.
Collapse
Affiliation(s)
- Jun Tsukiji
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, New York University , New York, NY , USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abdolahi A, Georas SN, Brenna JT, Cai X, Thevenet-Morrison K, Phipps RP, Lawrence P, Mousa SA, Block RC. The effects of aspirin and fish oil consumption on lysophosphatidylcholines and lysophosphatidic acids and their correlates with platelet aggregation in adults with diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2014; 90:61-8. [PMID: 24373610 PMCID: PMC3939709 DOI: 10.1016/j.plefa.2013.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 12/29/2022]
Abstract
Many diabetics are insensitive to aspirin's platelet anti-aggregation effects. The influence of co-administration of aspirin and fish oil (FO) on plasma lysophospholipids in subjects with diabetes is poorly characterized. Thirty adults with type 2 diabetes mellitus were treated with aspirin (81mg/day) for seven days, then with FO (4g/day) for 28 days, then in combination for another seven days. Lysophospholipids and platelet measures were determined after acute (4h) and chronic (7 days) ingestion of aspirin, FO, or both in combination. FO ingestion reduced all lysophosphatidic acid (LPA) concentrations, while EPA (20:5n-3) and DHA (22:6n-3) lysophosphatidylcholine (LPC) concentrations significantly increased after FO alone and in combination with aspirin. In vitro arachidonic acid-induced platelet aggregation was most strongly correlated with palmitoleic (16:1) and oleic (18:1) LPA and LPC concentrations at all time points. The ingestion of these agents may reduce cardiovascular disease risk in diabetic adults, with a disrupted lipid milieu, via lysolipid mediated mechanisms.
Collapse
Affiliation(s)
- Amir Abdolahi
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Steve N Georas
- Pulmonary and Critical Care Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Xueya Cai
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States; Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Kelly Thevenet-Morrison
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Richard P Phipps
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - Peter Lawrence
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, United States
| | - Robert C Block
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States.
| |
Collapse
|