1
|
Chitkara S, Atilla-Gokcumen GE. Decoding ceramide function: how localization shapes cellular fate and how to study it. Trends Biochem Sci 2025; 50:356-367. [PMID: 40000311 DOI: 10.1016/j.tibs.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Recent studies emphasize that lipid synthesis, metabolism, and transport are crucial in modulating lipid function, underscoring the significance of lipid localization within the cell, in addition to their chemical structure. Ceramides stand out in this context because of their multifaceted roles in cellular processes. Here, we focus on the role of ceramides in apoptosis, senescence, and autophagy as these processes offer unique and contrasting perspectives on how ceramides function and can be intricately linked to their subcellular localization, providing critical insights into their complex biological interactions. Additionally, we highlight recent advancements in tools and techniques that have boosted our understanding of ceramide dynamics and different mechanisms of lipid functioning.
Collapse
Affiliation(s)
- Shweta Chitkara
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
2
|
Ostermeyer-Fay AG, Kanodia A, Pathak R, Hernandez-Corbacho MJ, van der Spoel AC, Hannun YA, Canals D. The steady-state level of plasma membrane ceramide is regulated by neutral sphingomyelinase 2. J Lipid Res 2025; 66:100719. [PMID: 39631562 PMCID: PMC11742583 DOI: 10.1016/j.jlr.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
During the last 30 years, an increasing number of cellular functions have been reported to be regulated by the lipid ceramide. The diversity in the ceramide structure, leading to tens of ceramide species and the discrete distribution based on subcellular topology, could explain the wide variety of functions attributed to this bioactive lipid. One of these pools of ceramide resides in the plasma membrane, and several works have suggested that an increase in plasma membrane ceramide (PMCer) in response to stimulation leads to cell death and modulates cell adhesion and migration. However, there is a limitation in studying PMCer content in this location primarily due to the inability to quantify its mass. Our group recently developed a method to specifically quantitate PMCer. In this work, we interrogate what sphingolipid metabolizing enzymes are responsible for modulating the basal levels of plasma membrane ceramide. An in-silico prediction and experimental confirmation found an almost perfect correlation between the endogenous expression levels of neutral sphingomyelinase (nSMase2) and the amount of plasma membrane ceramide in unstimulated cells. Manipulating the expression levels of nSMase2, but not other candidate enzymes of ceramide metabolism, profoundly affected PMCer. Moreover, a physiologic induction of nSMase2 during cell confluence resulted in a nSMase2-dependent dramatic increase in PMCer. Together, these results identify nSMase2 as the primary enzyme to regulate plasma membrane ceramide.
Collapse
Affiliation(s)
| | - Abhay Kanodia
- Department of Medicine, Cancer Center at Stony Brook, Stony Brook, NY, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY, USA
| | - Ranjana Pathak
- Department of Medicine, Cancer Center at Stony Brook, Stony Brook, NY, USA
| | | | - Aarnoud C van der Spoel
- The Atlantic Research Centre, Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yusuf A Hannun
- Department of Medicine, Cancer Center at Stony Brook, Stony Brook, NY, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Daniel Canals
- Department of Medicine, Cancer Center at Stony Brook, Stony Brook, NY, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA; Biological Mass Spectrometry Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
3
|
D'Souza-Schorey C, Stahl PD. Resolving the two-body problem: A postulated role for the V0 sector of the V0V1-ATPase in exosome biogenesis and multivesicular body fate. Mol Biol Cell 2025; 36:pe1. [PMID: 39705591 PMCID: PMC11742106 DOI: 10.1091/mbc.e24-09-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/22/2024] Open
Abstract
Because the discovery of the multivesicular body (MVB) as the origin of secreted vesicles or exosomes, the question arose and still looms-what distinguishes an MVB destined for fusion with the plasma membrane (EXO-MVB) facilitating exosome release from an MVB involved in transport of content to the lysosome (LYSO-MVB). Do they have independent origins? Hence, the two-body problem. We hypothesize that a key to this conundrum is the membrane spanning V0 sector of the proton pump, V0V1-ATPase. The V0V1-ATPase participates in the acidification of intracellular compartments, although V0 can function separately from V1 and different V0 isoforms are endowed with membrane binding capabilities that allow the V0V1-ATPase to selectively localize to different endocytic compartments including early and late endosomes and lysosomes. We propose that V0, in collaboration with cholesterol and phosphoinositides, plays a central role in the early endosome as a nucleation center to direct the de novo assembly of an EXO-MVB scaffold. The EXO-MVB scaffold may play multiple roles-operating as an assembly platform, participating in membrane fission as well as providing downstream navigational queues necessary for exosome secretion. Thus, V0 may represent an influential nexus, a starting point, in exosome biogenesis.
Collapse
Affiliation(s)
| | - Philip D. Stahl
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Huang M, Stremlau M, Zavras J, Zivko C, Thomas AG, Pietri P, Machairaki V, Slusher BS. Neutral sphingomyelinase 2: A promising drug target for CNS disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 102:65-101. [PMID: 39929585 DOI: 10.1016/bs.apha.2024.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Neutral sphingomyelinase 2 (nSMase2), encoded by the SMPD3 gene, is a pivotal enzyme in sphingolipid metabolism, hydrolyzing sphingomyelin to produce ceramide, a bioactive lipid involved in apoptosis, inflammation, membrane structure, and extracellular vesicle (EV) biogenesis. nSMase2 is abundantly expressed in the central nervous system (CNS), particularly in neurons, and its dysregulation is implicated in pathologies such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), prion diseases, and neuroviral diseases. In this review, we discuss the critical role of nSMase2 in the CNS and its involvement in neurological as well as non-neurological diseases. We explore the enzyme's functions in sphingolipid metabolism, its regulatory mechanisms, and the implications of its dysregulation in disease pathogenesis. The chapter highlights the therapeutic potential of pharmacologically targeting nSMase2 with small molecule inhibitors and emphasizes the need for further research to optimize inhibitor specificity and efficacy for clinical applications. By understanding the multifaceted roles of nSMase2, we aim to provide insights into novel therapeutic strategies for treating complex diseases associated with its dysregulation.
Collapse
Affiliation(s)
- Meixiang Huang
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Matthew Stremlau
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jason Zavras
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Cristina Zivko
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States; The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Peter Pietri
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Vasiliki Machairaki
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States; The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States; Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States; Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, United States.
| |
Collapse
|
5
|
Lee AH, Snider JM, Moorthi S, Coant N, Trayssac M, Canals D, Clarke CJ, Luberto C, Hannun YA. A comprehensive measure of Golgi sphingolipid flux using NBD C 6-ceramide: evaluation of sphingolipid inhibitors. J Lipid Res 2024; 65:100584. [PMID: 38925252 PMCID: PMC11326893 DOI: 10.1016/j.jlr.2024.100584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Measurements of sphingolipid metabolism are most accurately performed by LC-MS. However, this technique is expensive, not widely accessible, and without the use of specific probes, it does not provide insight into metabolic flux through the pathway. Employing the fluorescent ceramide analogue NBD-C6-ceramide as a tracer in intact cells, we developed a comprehensive HPLC-based method that simultaneously measures the main nodes of ceramide metabolism in the Golgi. Hence, by quantifying the conversion of NBD-C6-ceramide to NBD-C6-sphingomyelin, NBD-C6-hexosylceramides, and NBD-C6-ceramide-1-phosphate (NBD-C1P), the activities of Golgi resident enzymes sphingomyelin synthase 1, glucosylceramide synthase, and ceramide kinase (CERK) could be measured simultaneously. Importantly, the detection of NBD-C1P allowed us to quantify CERK activity in cells, a usually difficult task. By applying this method, we evaluated the specificity of commonly used sphingolipid inhibitors and discovered that 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, which targets glucosylceramide synthase, and fenretinide (4HPR), an inhibitor for dihydroceramide desaturase, also suppress CERK activity. This study demonstrates the benefit of an expanded analysis of ceramide metabolism in the Golgi, and it provides a qualitative and easy-to-implement method.
Collapse
Affiliation(s)
- Allen H Lee
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Justin M Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sitapriya Moorthi
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Nicolas Coant
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Department of Pathology, Stony Brook University, Stony Brook, NY, USA; Department of Medicine, The Northport Veterans Affairs Hospital, Northport, NY, USA.
| |
Collapse
|
6
|
Schöl M, Schempp R, Hennig T, Wigger D, Schumacher F, Kleuser B, Stigloher C, van Ham M, Jänsch L, Schneider-Schaulies S, Dölken L, Avota E. Dynamic changes in the proximitome of neutral sphingomyelinase-2 (nSMase2) in TNFα stimulated Jurkat cells. Front Immunol 2024; 15:1435701. [PMID: 39044828 PMCID: PMC11263205 DOI: 10.3389/fimmu.2024.1435701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
Ceramides generated by the activity of the neutral sphingomyelinase 2 (nSMase2) play a pivotal role in stress responses in mammalian cells. Dysregulation of sphingolipid metabolism has been implicated in numerous inflammation-related pathologies. However, its influence on inflammatory cytokine-induced signaling is yet incompletely understood. Here, we used proximity labeling to explore the plasma membrane proximal protein network of nSMase2 and TNFα-induced changes thereof. We established Jurkat cells stably expressing nSMase2 C-terminally fused to the engineered ascorbate peroxidase 2 (APEX2). Removal of excess biotin phenol substantially improved streptavidin-based affinity purification of biotinylated proteins. Using our optimized protocol, we determined nSMase2-proximal biotinylated proteins and their changes within the first 5 min of TNFα stimulation by quantitative mass spectrometry. We observed significant dynamic changes in the nSMase2 microenvironment in response to TNFα stimulation consistent with rapid remodeling of protein networks. Our data confirmed known nSMase2 interactors and revealed that the recruitment of most proteins depended on nSMase2 enzymatic activity. We measured significant enrichment of proteins related to vesicle-mediated transport, including proteins of recycling endosomes, trans-Golgi network, and exocytic vesicles in the proximitome of enzymatically active nSMase2 within the first minutes of TNFα stimulation. Hence, the nSMase2 proximal network and its TNFα-induced changes provide a valuable resource for further investigations into the involvement of nSMase2 in the early signaling pathways triggered by TNFα.
Collapse
Affiliation(s)
- Marie Schöl
- Institute for Virology and Immunobiology, University of Wuerzburg, Würzburg, Germany
| | - Rebekka Schempp
- Institute for Virology and Immunobiology, University of Wuerzburg, Würzburg, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, University of Wuerzburg, Würzburg, Germany
| | - Dominik Wigger
- Institute of Pharmacy, Department of Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Department of Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Department of Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Wuerzburg, Würzburg, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Lars Dölken
- Institute of Virology, Medizinische Hochschule Hannover, Hannover, Germany
| | - Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Würzburg, Germany
| |
Collapse
|
7
|
El-Amouri S, Karakashian A, Bieberich E, Nikolova-Karakashian M. Regulated translocation of neutral sphingomyelinase-2 to the plasma membrane drives insulin resistance in steatotic hepatocytes. J Lipid Res 2023; 64:100435. [PMID: 37640282 PMCID: PMC10550728 DOI: 10.1016/j.jlr.2023.100435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Obesity-associated diabetes is linked to the accumulation of ceramide in various organs, including the liver. The exact mechanisms by which ceramide contributes to diabetic pathology are unclear, but one proposed scenario is that ceramide accumulation may inhibit insulin signaling pathways. It is unknown however whether the excess ceramide is generated proximal to the insulin receptor, that is, at the plasma membrane (PM), where it could affect the insulin signaling pathway directly, or the onset of insulin resistance is due to ceramide-induced mitochondrial dysfunction and/or lipotoxicity. Using hepatic cell lines and primary cultures, gain- and loss- of function approach, and state-of-the art lipid imaging, this study shows that PM-associated neutral sphingomyelinase 2 (nSMase2) regulates ceramide homeostasis in fat-loaded hepatocytes and drives the onset of insulin resistance. Our results provide evidence of a regulated translocation of nSMase2 to the PM which leads to local generation of ceramide and insulin resistance in cells treated with palmitic acid (PAL), a type of fat commonly found in diabetogenic diets. Oleic acid, which also causes accumulation of lipid droplets, does not induce nSMase2 translocation and insulin resistance. Experiments using the acyl-biotin exchange method to quantify protein palmitoylation show that cellular PAL abundance regulates the rate of nSMase2 palmitoylation. Furthermore, while inhibition of nSMase2 with GW4869 prevents PAL-induced insulin resistance, the overexpression of wild type nSMase2 but not palmitoylation-defective mutant protein potentiates the suppressive effect of PAL on insulin signaling. Overall, this study identifies nSMase2 as a novel component of the mechanism of insulin resistance onset in fat-loaded hepatocytes, that is, cell-autonomous and driven by PAL.
Collapse
Affiliation(s)
- S El-Amouri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - A Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - E Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - M Nikolova-Karakashian
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
8
|
Kong X, Patel NA, Chalfant CE, Cooper DR. Ceramide synthesis regulates biogenesis and packaging of exosomal MALAT1 from adipose derived stem cells, increases dermal fibroblast migration and mitochondrial function. Cell Commun Signal 2023; 21:221. [PMID: 37620957 PMCID: PMC10463839 DOI: 10.1186/s12964-022-00900-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/17/2022] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The function of exosomes, small extracellular vesicles (sEV) secreted from human adipose-derived stem cells (ADSC), is becoming increasingly recognized as a means of transferring the regenerative power of stem cells to injured cells in wound healing. Exosomes are rich in ceramides and long noncoding RNA (lncRNA) like metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). We identified putative ceramide responsive cis-elements (CRCE) in MALAT1. We hypothesized that CRCE respond to cellular ceramide levels to regulate sEV MALAT1 packaging. MALAT1 levels by many cells exceed those of protein coding genes and it's expression is equally high in exosomes. Ceramide also regulates exosome synthesis, however, the contents of exosome cargo via sphingomyelinase and ceramide synthase pathways has not been demonstrated. METHODS ADSC were treated with an inhibitor of sphingomyelinase, GW4869, and stimulators of ceramide synthesis, C2- and C6-short chain ceramides, prior to collection of conditioned media (CM). sEV were isolated from CM, and then used to treat human dermal fibroblast (HDF) cultures in cell migration scratch assays, and mitochondrial stress tests to evaluate oxygen consumption rates (OCR). RESULTS Inhibition of sphingomyelinase by treatment of ADSC with GW4869 lowered levels of MALAT1 in small EVs. Stimulation of ceramide synthesis using C2- and C6- ceramides increased cellular, EVs levels of MALAT1. The functional role of sEV MALAT1 was evaluated in HDF by applying EVs to HDF. Control sEV increased migration of HDF, and significantly increased ATP production, basal and maximal respiration OCR. sEV from GW4869-treated ADSC inhibited cell migration and maximal respiration. However, sEV from C2- and C6-treated cells, respectively, increased both functions but not significantly above control EV except for maximal respiration. sEV were exosomes except when ADSC were treated with GW4869 and C6-ceramide, then they were larger and considered microvesicles. CONCLUSIONS Ceramide synthesis regulates MALAT1 EV content. Sphingomyelinase inhibition blocked MALAT1 from being secreted from ADSC EVs. Our report is consistent with those of MALAT1 increasing cell migration and mitochondrial MALAT1 altering maximal respiration in cells. Since MALAT1 is important for exosome function, it stands that increased exosomal MALAT1 should be beneficial for wound healing as shown with these assays. Video Abstract.
Collapse
Affiliation(s)
- Xaioyuan Kong
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
| | - Niketa A. Patel
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, USA
| | - Charles E. Chalfant
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Cellular Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33612 USA
| | - Denise R. Cooper
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, USA
| |
Collapse
|
9
|
Santiago Valtierra FX, Aveldaño MI, Oresti GM. Differentiation-linked changes in the biosynthesis and turnover of sphingomyelins in rat male germ cells: Genes involved and effects of testosterone. J Biol Chem 2023; 299:103058. [PMID: 36841478 PMCID: PMC10074206 DOI: 10.1016/j.jbc.2023.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023] Open
Abstract
In rodents, sphingomyelins (SMs) species with very-long-chain polyunsaturated fatty acid (VLCPUFA) are required for normal spermatogenesis. Data on the expression of enzymes with roles in their biosynthesis and turnover during germ cell differentiation and on possible effects on such expression of testosterone (Tes), known to promote this biological process, were lacking. Here we quantified, in isolated pachytene spermatocytes (PtS), round spermatids (RS), and later spermatids (LS), the mRNA levels from genes encoding ceramide (Cer), glucosylceramide (GlcCer), and SM synthases (Cers3, Gcs, Sms1, and Sms2) and sphingomyelinases (aSmase, nSmase) and assessed products of their activity in cells in culture using nitrobenzoxadiazole (NBD)-labeled substrates and [3H]palmitate as precursor. Transcript levels from Cers3 and Gcs were maximal in PtS. While mRNA levels from Sms1 increased with differentiation in the direction PtS→RS→LS, those from Sms2 increased between PtS and RS but decreased in LS. In turn, the nSmase transcript increased in the PtS→RS→LS order. During incubations with NBD-Cer, spermatocytes produced more GlcCer and SM than did spermatids. In total germ cells cultured for up to 25 h with NBD-SM, not only abundant NBD-Cer but also NBD-GlcCer were formed, demonstrating SM→Cer turnover and Cer recycling. After 20 h with [3H]palmitate, PtS produced [3H]SM and RS formed [3H]SM and [3H]Cer, all containing VLCPUFA, and Tes increased their labeling. In total germ cells, Tes augmented in 5 h the expression of genes with roles in VLCPUFA synthesis, decreased the mRNA from Sms2, and increased that from nSmase. Thus, Tes enhanced or accelerated the metabolic changes occurring to VLCPUFA-SM during germ cell differentiation.
Collapse
Affiliation(s)
- Florencia X Santiago Valtierra
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Marta I Aveldaño
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Gerardo M Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.
| |
Collapse
|
10
|
Wang S, Tanaka Y, Xu Y, Takeda S, Hirokawa N. KIF3B promotes a PI3K signaling gradient causing changes in a Shh protein gradient and suppressing polydactyly in mice. Dev Cell 2022; 57:2273-2289.e11. [DOI: 10.1016/j.devcel.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/27/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
|
11
|
Pavlic A, Bahram Sangani N, Kerins J, Nicolaes G, Schurgers L, Reutelingsperger C. Vascular Smooth Muscle Cell Neutral Sphingomyelinase 2 in the Release of Exosomes and Vascular Calcification. Int J Mol Sci 2022; 23:ijms23169178. [PMID: 36012444 PMCID: PMC9409231 DOI: 10.3390/ijms23169178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification (VC) is the pathological precipitation of calcium salts in the walls of blood vessels. It is a risk factor for cardiovascular events and their associated mortality. VC can be observed in a variety of cardiovascular diseases and is most prominent in diseases that are associated with dysregulated mineral homeostasis such as in chronic kidney disease. Local factors and mechanisms underlying VC are still incompletely understood, but it is appreciated that VC is a multifactorial process in which vascular smooth muscle cells (VSMCs) play an important role. VSMCs participate in VC by releasing extracellular vesicles (EVs), the extent, composition, and propensity to calcify of which depend on VSMC phenotype and microenvironment. Currently, no targeted therapy is available to treat VC. In-depth knowledge of molecular players of EV release and the understanding of their mechanisms constitute a vital foundation for the design of pharmacological treatments to combat VC effectively. This review highlights our current knowledge of VSMCs in VC and focuses on the biogenesis of exosomes and the role of the neutral Sphingomyelinase 2 (nSMase2).
Collapse
Affiliation(s)
- Angelina Pavlic
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Nasim Bahram Sangani
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Johanna Kerins
- University College Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Gerry Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: ; Tel.: +31-43-388-1533
| |
Collapse
|
12
|
Céspedes PF, Jainarayanan A, Fernández-Messina L, Valvo S, Saliba DG, Kurz E, Kvalvaag A, Chen L, Ganskow C, Colin-York H, Fritzsche M, Peng Y, Dong T, Johnson E, Siller-Farfán JA, Dushek O, Sezgin E, Peacock B, Law A, Aubert D, Engledow S, Attar M, Hester S, Fischer R, Sánchez-Madrid F, Dustin ML. T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles. Nat Commun 2022; 13:3460. [PMID: 35710644 PMCID: PMC9203538 DOI: 10.1038/s41467-022-31160-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/07/2022] [Indexed: 12/19/2022] Open
Abstract
The immunological synapse is a molecular hub that facilitates the delivery of three activation signals, namely antigen, costimulation/corepression and cytokines, from antigen-presenting cells (APC) to T cells. T cells release a fourth class of signaling entities, trans-synaptic vesicles (tSV), to mediate bidirectional communication. Here we present bead-supported lipid bilayers (BSLB) as versatile synthetic APCs to capture, characterize and advance the understanding of tSV biogenesis. Specifically, the integration of juxtacrine signals, such as CD40 and antigen, results in the adaptive tailoring and release of tSV, which differ in size, yields and immune receptor cargo compared with steadily released extracellular vesicles (EVs). Focusing on CD40L+ tSV as model effectors, we show that PD-L1 trans-presentation together with TSG101, ADAM10 and CD81 are key in determining CD40L vesicular release. Lastly, we find greater RNA-binding protein and microRNA content in tSV compared with EVs, supporting the specialized role of tSV as intercellular messengers.
Collapse
Affiliation(s)
- Pablo F Céspedes
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK.
| | - Ashwin Jainarayanan
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Lola Fernández-Messina
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Intercellular communication in the inflammatory response. Vascular Physiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Salvatore Valvo
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - David G Saliba
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Elke Kurz
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Lina Chen
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Charity Ganskow
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
| | - Huw Colin-York
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
| | - Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, The University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Errin Johnson
- Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | | | - Omer Dushek
- Sir William Dunn School of Pathology, The University of Oxford, Oxford, UK
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Simon Engledow
- Oxford Genomics Centre, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Moustafa Attar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK
- Oxford Genomics Centre, Wellcome Centre for Human Genetics, The University of Oxford, Oxford, UK
| | - Svenja Hester
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, The University of Oxford, Oxford, UK
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, The University of Oxford, Oxford, UK
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital de la Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Intercellular communication in the inflammatory response. Vascular Physiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Ca 2+-activated sphingomyelin scrambling and turnover mediate ESCRT-independent lysosomal repair. Nat Commun 2022; 13:1875. [PMID: 35388011 PMCID: PMC8986845 DOI: 10.1038/s41467-022-29481-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Lysosomes are vital organelles vulnerable to injuries from diverse materials. Failure to repair or sequester damaged lysosomes poses a threat to cell viability. Here we report that cells exploit a sphingomyelin-based lysosomal repair pathway that operates independently of ESCRT to reverse potentially lethal membrane damage. Various conditions perturbing organelle integrity trigger a rapid calcium-activated scrambling and cytosolic exposure of sphingomyelin. Subsequent metabolic conversion of sphingomyelin by neutral sphingomyelinases on the cytosolic surface of injured lysosomes promotes their repair, also when ESCRT function is compromised. Conversely, blocking turnover of cytosolic sphingomyelin renders cells more sensitive to lysosome-damaging drugs. Our data indicate that calcium-activated scramblases, sphingomyelin, and neutral sphingomyelinases are core components of a previously unrecognized membrane restoration pathway by which cells preserve the functional integrity of lysosomes.
Collapse
|
14
|
Chung LH, Liu D, Liu XT, Qi Y. Ceramide Transfer Protein (CERT): An Overlooked Molecular Player in Cancer. Int J Mol Sci 2021; 22:13184. [PMID: 34947980 PMCID: PMC8705978 DOI: 10.3390/ijms222413184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingolipids are a class of essential lipids implicated in constructing cellular membranes and regulating nearly all cellular functions. Sphingolipid metabolic network is centered with the ceramide-sphingomyelin axis. Ceramide is well-recognized as a pro-apoptotic signal; while sphingomyelin, as the most abundant type of sphingolipids, is required for cell growth. Therefore, the balance between these two sphingolipids can be critical for cancer cell survival and functioning. Ceramide transfer protein (CERT) dictates the ratio of ceramide to sphingomyelin within the cell. It is the only lipid transfer protein that specifically delivers ceramide from the endoplasmic reticulum to the Golgi apparatus, where ceramide serves as the substrate for sphingomyelin synthesis. In the past two decades, an increasing body of evidence has suggested a critical role of CERT in cancer, but much more intensive efforts are required to draw a definite conclusion. Herein, we review all research findings of CERT, focusing on its molecular structure, cellular functions and implications in cancer. This comprehensive review of CERT will help to better understand the molecular mechanism of cancer and inspire to identify novel druggable targets.
Collapse
Affiliation(s)
- Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| | | | | | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| |
Collapse
|
15
|
Canals D, Clarke CJ. Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy. Pharmacol Ther 2021; 232:108005. [PMID: 34582834 DOI: 10.1016/j.pharmthera.2021.108005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SLs) are a family of bioactive lipids implicated in a variety of cellular processes, and whose levels are controlled by an interlinked network of enzymes. While the spatial distribution of SL metabolism throughout the cell has been understood for some time, the implications of this for SL signaling and biological outcomes have only recently begun to be fully explored. In this review, we outline the compartmentalization of SL metabolism and describe advances in tools for investigating and probing compartment-specific SL functions. We also briefly discuss the implications of SL compartmentalization for cell signaling and therapeutic approaches to targeting the SL network.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Christopher J Clarke
- Department of Medicine and the Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
16
|
Rajendran KV, Neelakanta G, Sultana H. Sphingomyelinases in a journey to combat arthropod-borne pathogen transmission. FEBS Lett 2021; 595:1622-1638. [PMID: 33960414 DOI: 10.1002/1873-3468.14103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022]
Abstract
Ixodes scapularis ticks feed on humans and other vertebrate hosts and transmit several pathogens of public health concern. Tick saliva is a complex mixture of bioactive proteins, lipids and immunomodulators, such as I. scapularis sphingomyelinase (IsSMase)-like protein, an ortholog of dermonecrotoxin SMase D found in the venom of Loxosceles spp. of spiders. IsSMase modulates the host immune response towards Th2, which suppresses Th1-mediated cytokines to facilitate pathogen transmission. Arboviruses utilize exosomes for their transmission from tick to the vertebrate host, and exosomes derived from tick saliva/salivary glands suppress C-X-C motif chemokine ligand 12 and interleukin-8 immune response(s) in human skin to delay wound healing and repair processes. IsSMase affects also viral replication and exosome biogenesis, thereby inhibiting tick-to-vertebrate host transmission of pathogenic exosomes. In this review, we elaborate on exosomes and their biogenesis as potential candidates for developing novel control measure(s) to combat tick-borne diseases. Such targets could help with the development of an efficient anti-tick vaccine for preventing the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Kundave V Rajendran
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Girish Neelakanta
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA
| | - Hameeda Sultana
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA.,Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.,Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
17
|
Canals D, Salamone S, Santacreu BJ, Aguilar D, Hernandez-Corbacho MJ, Ostermeyer-Fay AG, Greene M, Nemeth E, Haley JD, Obeid LM, Hannun YA. The doxorubicin-induced cell motility network is under the control of the ceramide-activated protein phosphatase 1 alpha. FASEB J 2021; 35:e21396. [PMID: 33583073 PMCID: PMC8220868 DOI: 10.1096/fj.202002427r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/20/2022]
Abstract
We have recently reported that a specific pool of ceramide, located in the plasma membrane, mediated the effects of sublethal doses of the chemotherapeutic compound doxorubicin on enhancing cancer cell migration. We identified neutral sphingomyelinase 2 (nSMase2) as the enzyme responsible to generate this bioactive pool of ceramide. In this work, we explored the role of members of the protein phosphatases 1 family (PP1), and we identified protein phosphatase 1 alpha isoform (PP1 alpha) as the specific PP1 isoform to mediate this phenotype. Using a bioinformatics approach, we build a functional interaction network based on phosphoproteomics data on plasma membrane ceramide. This led to the identification of several ceramide-PP1 alpha downstream substrates. Studies on phospho mutants of ezrin (T567) and Scrib (S1378/S1508) demonstrated that their dephosphorylation is sufficient to enhance cell migration. In summary, we identified a mechanism where reduced doses of doxorubicin result in the dysregulation of cytoskeletal proteins and enhanced cell migration. This mechanism could explain the reported effects of doxorubicin worsening cancer metastasis in animal models.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Silvia Salamone
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bruno Jaime Santacreu
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Facultad de Farmacia y Bioquimica, Catedra de Biologia Celular y Molecular, Buenos Aires, Argentina
| | - Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Catalunya, Spain
| | | | | | - Meaghan Greene
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Erika Nemeth
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - John D. Haley
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Pathology, Stony Brook University, NY, USA
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Northport VA Hospital, Northport, NY, USA
- Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook, NY, USA
- Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
18
|
Canals D, Salamone S, Santacreu BJ, Nemeth E, Aguilar D, Hernandez-Corbacho MJ, Adada M, Staquicini DI, Arap W, Pasqualini R, Haley J, Obeid LM, Hannun YA. Ceramide launches an acute anti-adhesion pro-migration cell signaling program in response to chemotherapy. FASEB J 2020; 34:7610-7630. [PMID: 32307766 PMCID: PMC8265206 DOI: 10.1096/fj.202000205r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022]
Abstract
Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment. Using mass spectrometry and network analysis, followed by experimental confirmation, the results revealed that this pool of ceramide acutely regulates cell adhesion and cell migration pathways with weak connections to commonly established ceramide functions (eg, cell death). Neutral sphingomyelinase 2 (nSMase2) was identified as responsible for the generation of plasma membrane ceramide upon chemotherapy treatment, and both ceramide at the plasma membrane and nSMase2 were necessary and sufficient to mediate these "side" effects of chemotherapy on cell adhesion and migration. This is the first time a specific pool of ceramide is interrogated for acute signaling functions, and the results define plasma membrane ceramide as an acute signaling effector necessary and sufficient for regulation of cell adhesion and cell migration under chemotherapeutical stress.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Silvia Salamone
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Bruno Jaime Santacreu
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Erika Nemeth
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniel Aguilar
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Barcelona, Catalunya, Spain
| | | | - Mohamad Adada
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Daniela I. Staquicini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, United States
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - John Haley
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Pathology, Stony Brook University, Stony Brook, NY, United States
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Northport VA Hospital
- Stony Brook Cancer Center, Stony Brook, NY, United States
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Biochemistry, Stony Brook University
- Stony Brook Cancer Center, Stony Brook, NY, United States
| |
Collapse
|
19
|
Acid and Neutral Sphingomyelinase Behavior in Radiation-Induced Liver Pyroptosis and in the Protective/Preventive Role of rMnSOD. Int J Mol Sci 2020; 21:ijms21093281. [PMID: 32384654 PMCID: PMC7247354 DOI: 10.3390/ijms21093281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
Sphingomyelins (SMs) are a class of relevant bioactive molecules that act as key modulators of different cellular processes, such as growth arrest, exosome formation, and the inflammatory response influenced by many environmental conditions, leading to pyroptosis, a form of programmed cell death due to Caspase-1 involvement. To study liver pyroptosis and hepatic SM metabolism via both lysosomal acid SMase (aSMase) and endoplasmic reticulum/nucleus neutral SMase (nSMase) during the exposure of mice to radiation and to ascertain if this process can be modulated by protective molecules, we used an experimental design (previously used by us) to evaluate the effects of both ionizing radiation and a specific protective molecule (rMnSOD) in the brain in collaboration with the Joint Institute for Nuclear Research, Dubna (Russia). As shown by the Caspase-1 immunostaining of the liver sections, the radiation resulted in the loss of the normal cell structure alongside a progressive and dose-dependent increase of the labelling, treatment, and pretreatment with rMnSOD, which had a significant protective effect on the livers. SM metabolic analyses, performed on aSMase and nSMase gene expression, as well as protein content and activity, proved that rMnSOD was able to significantly reduce radiation-induced damage by playing both a protective role via aSMase and a preventive role via nSMase.
Collapse
|
20
|
Interaction of Synaptosomal-Associated Protein 25 with Neutral Sphingomyelinase 2: Functional Impact on the Sphingomyelin Pathway. Neuroscience 2020; 427:1-15. [PMID: 31765623 DOI: 10.1016/j.neuroscience.2019.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 11/22/2022]
Abstract
Neurotransmitter release is mediated by ceramide, which is generated by sphingomyelin hydrolysis. In the present study, we examined whether synaptosomal-associated protein 25 (SNAP-25) is involved in ceramide production and exocytosis. Neutral sphingomyelinase 2 (nSMase2) was partially purified from bovine brain and we found that SNAP-25 was enriched in the nSMase2-containing fractions. In rat synaptosomes and PC12 cells, the immunoprecipitation pellet of anti-SNAP-25 antibody showed higher nSMase activity than the immunoprecipitation pellet of anti-nSMase2 antibody. In PC12 cells, SNAP-25 was colocalized with nSMase2. Transfection of SNAP-25 small interfering RNA (siRNA) significantly inhibited nSMase2 translocation to the plasma membrane. A23187-induced ceramide production was concomitantly reduced in SNAP-25 siRNA-transfected PC12 cells compared with that in scrambled siRNA-transfected cells. Moreover, transfection of SNAP-25 siRNA inhibited dopamine release, whereas addition of C6-ceramide to the siRNA-treated cells moderately reversed this inhibition. Additionally, nSMase2 inhibition reduced dopamine release. Collectively, our results indicate that SNAP-25 interacts with nSMase2 during ceramide production, which mediates exocytosis and neurotransmitter release.
Collapse
|
21
|
Abstract
Sphingosine, ceramide, sphingosine-1-phosphate, and other related sphingolipids have emerged as important bioactive molecules involved in a variety of key cellular processes such as cell growth, differentiation, apoptosis, exosome release, and inter- and intracellular cell communication, making the pathways of sphingolipid metabolism a key domain in maintaining cell homeostasis (Hannun and Obeid, Trends Biochem Sci 20:73-77, 1995; Hannun and Obeid, Nat Rev Mol Cell Biol 9:139-150, 2008; Kosaka et al., J Biol Chem 288:10849-10859, 2013). Various studies have determined that these pathways play a central role in regulating intracellular production of ceramide and the other bioactive sphingolipids and hence are an important component of signaling in various diseases such as cancer, diabetes, and neurodegenerative and cardiovascular diseases (Chaube et al., Biochim Biophys Acta 1821:313-323, 2012; Clarke et al., Adv Enzyme Regul 51:51-58, 2011b; Horres and Hannun, Neurochem Res 37:1137-1149, 2012). In this chapter, we discuss one of the major enzyme classes in producing ceramide, sphingomyelinases (SMases), from a biochemical and structural perspective with an emphasis on their applicability as therapeutic targets.
Collapse
Affiliation(s)
- Prajna Shanbhogue
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
- Stony Brook University Cancer Center, Stony Brook, NY, USA.
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
22
|
Börtlein C, Schumacher F, Kleuser B, Dölken L, Avota E. Role of Neutral Sphingomyelinase-2 (NSM 2) in the Control of T Cell Plasma Membrane Lipid Composition and Cholesterol Homeostasis. Front Cell Dev Biol 2019; 7:226. [PMID: 31681760 PMCID: PMC6803391 DOI: 10.3389/fcell.2019.00226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The activity of neutral sphingomyelinase-2 (NSM2) to catalyze the conversion of sphingomyelin (SM) to ceramide and phosphocholine at the cytosolic leaflet of plasma membrane (PM) is important in T cell receptor (TCR) signaling. We recently identified PKCζ as a major NSM2 downstream effector which regulates microtubular polarization. It remained, however, unclear to what extent NSM2 activity affected overall composition of PM lipids and downstream effector lipids in antigen stimulated T cells. Here, we provide a detailed lipidomics analyses on PM fractions isolated from TCR stimulated wild type and NSM2 deficient (ΔNSM) Jurkat T cells. This revealed that in addition to that of sphingolipids, NSM2 depletion also affected concentrations of many other lipids. In particular, NSM2 ablation resulted in increase of lyso-phosphatidylcholine (LPC) and lyso-phosphatidylethanolamine (LPE) which both govern PM biophysical properties. Crucially, TCR dependent upregulation of the important T cell signaling lipid diacylglycerol (DAG), which is fundamental for activation of conventional and novel PKCs, was abolished in ΔNSM cells. Moreover, NSM2 activity was found to play an important role in PM cholesterol transport to the endoplasmic reticulum (ER) and production of cholesteryl esters (CE) there. Most importantly, CE accumulation was essential to sustain human T cell proliferation. Accordingly, inhibition of CE generating enzymes, the cholesterol acetyltransferases ACAT1/SOAT1 and ACAT2/SOAT2, impaired TCR driven expansion of both CD4+ and CD8+ T cells. In summary, our study reveals an important role of NSM2 in regulating T cell functions by its multiple effects on PM lipids and cholesterol homeostasis.
Collapse
Affiliation(s)
- Charlene Börtlein
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Fabian Schumacher
- Department of Toxicology, Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Nuthetal, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Hollmann C, Wiese T, Dennstädt F, Fink J, Schneider-Schaulies J, Beyersdorf N. Translational Approaches Targeting Ceramide Generation From Sphingomyelin in T Cells to Modulate Immunity in Humans. Front Immunol 2019; 10:2363. [PMID: 31681273 PMCID: PMC6798155 DOI: 10.3389/fimmu.2019.02363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022] Open
Abstract
In T cells, as in all other cells of the body, sphingolipids form important structural components of membranes. Due to metabolic modifications, sphingolipids additionally play an active part in the signaling of cell surface receptors of T cells like the T cell receptor or the co-stimulatory molecule CD28. Moreover, the sphingolipid composition of their membranes crucially affects the integrity and function of subcellular compartments such as the lysosome. Previously, studying sphingolipid metabolism has been severely hampered by the limited number of analytical methods/model systems available. Besides well-established high resolution mass spectrometry new tools are now available like novel minimally modified sphingolipid subspecies for click chemistry as well as recently generated mouse mutants with deficiencies/overexpression of sphingolipid-modifying enzymes. Making use of these tools we and others discovered that the sphingolipid sphingomyelin is metabolized to ceramide to different degrees in distinct T cell subpopulations of mice and humans. This knowledge has already been translated into novel immunomodulatory approaches in mice and will in the future hopefully also be applicable to humans. In this paper we are, thus, summarizing the most recent findings on the impact of sphingolipid metabolism on T cell activation, differentiation, and effector functions. Moreover, we are discussing the therapeutic concepts arising from these insights and drugs or drug candidates which are already in clinical use or could be developed for clinical use in patients with diseases as distant as major depression and chronic viral infection.
Collapse
Affiliation(s)
- Claudia Hollmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Teresa Wiese
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Fabio Dennstädt
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Julian Fink
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | | | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Avota E, de Lira MN, Schneider-Schaulies S. Sphingomyelin Breakdown in T Cells: Role of Membrane Compartmentalization in T Cell Signaling and Interference by a Pathogen. Front Cell Dev Biol 2019; 7:152. [PMID: 31457008 PMCID: PMC6700246 DOI: 10.3389/fcell.2019.00152] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022] Open
Abstract
Sphingolipids are major components of cellular membranes, and at steady-state level, their metabolic fluxes are tightly controlled. On challenge by external signals, they undergo rapid turnover, which substantially affects the biophysical properties of membrane lipid and protein compartments and, consequently, signaling and morphodynamics. In T cells, external cues translate into formation of membrane microdomains where proximal signaling platforms essential for metabolic reprograming and cytoskeletal reorganization are organized. This review will focus on sphingomyelinases, which mediate sphingomyelin breakdown and ensuing ceramide release that have been implicated in T-cell viability and function. Acting at the sphingomyelin pool at the extrafacial or cytosolic leaflet of cellular membranes, acid and neutral sphingomyelinases organize ceramide-enriched membrane microdomains that regulate T-cell homeostatic activity and, upon stimulation, compartmentalize receptors, membrane proximal signaling complexes, and cytoskeletal dynamics as essential for initiating T-cell motility and interaction with endothelia and antigen-presenting cells. Prominent examples to be discussed in this review include death receptor family members, integrins, CD3, and CD28 and their associated signalosomes. Progress made with regard to experimental tools has greatly aided our understanding of the role of bioactive sphingolipids in T-cell biology at a molecular level and of targets explored by a model pathogen (measles virus) to specifically interfere with their physiological activity.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Maria Nathalia de Lira
- Institute for Virology and Immunobiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
25
|
Sakamoto W, Canals D, Salamone S, Allopenna J, Clarke CJ, Snider J, Obeid LM, Hannun YA. Probing compartment-specific sphingolipids with targeted bacterial sphingomyelinases and ceramidases. J Lipid Res 2019; 60:1841-1850. [PMID: 31243119 DOI: 10.1194/jlr.m094722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
Sphingolipids contribute to the regulation of cell and tissue homeostasis, and disorders of sphingolipid metabolism lead to diseases such as inflammation, stroke, diabetes, and cancer. Sphingolipid metabolic pathways involve an array of enzymes that reside in specific subcellular organelles, resulting in the formation of many diverse sphingolipids with distinct molecular species based on the diversity of the ceramide (Cer) structure. In order to probe compartment-specific metabolism of sphingolipids in this study, we analyzed the Cer and SM species preferentially produced in the inner plasma membrane (PM), Golgi apparatus, ER, mitochondria, nucleus, and cytoplasm by using compartmentally targeted bacterial SMases and ceramidases. The results showed that the length of the acyl chain of Cer becomes longer according to the progress of Cer from synthesis in the ER to the Golgi apparatus, then to the PM. These findings suggest that each organelle shows different properties of SM-derived Cers consistent with its emerging distinct functions in vitro and in vivo.
Collapse
Affiliation(s)
- Wataru Sakamoto
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY.,Ono Pharmaceutical Company, Ltd. Oncology Research Laboratories, Osaka, Japan
| | - Daniel Canals
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Silvia Salamone
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Janet Allopenna
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Christopher J Clarke
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Justin Snider
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Lina M Obeid
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY.,Northport Veterans Affairs Medical Center, Northport, NY
| | - Yusuf A Hannun
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY .,Departments of Biochemistry, Pharmacology, and Pathology, Stony Brook University, Stony Brook, NY
| |
Collapse
|
26
|
Shanbhogue P, Hoffmann RM, Airola MV, Maini R, Hamelin DJ, Garcia-Diaz M, Burke JE, Hannun YA. The juxtamembrane linker in neutral sphingomyelinase-2 functions as an intramolecular allosteric switch that activates the enzyme. J Biol Chem 2019; 294:7488-7502. [PMID: 30890560 DOI: 10.1074/jbc.ra118.007288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/08/2019] [Indexed: 11/06/2022] Open
Abstract
Neutral sphingomyelinase 2 (nSMase2) produces the bioactive lipid ceramide and has important roles in neurodegeneration, cancer, and exosome formation. Although nSMase2 has low basal activity, it is fully activated by phosphatidylserine (PS). Previous work showed that interdomain interactions within nSMase2 are needed for PS activation. Here, we use multiple approaches, including small angle X-ray scattering, hydrogen-deuterium exchange-MS, circular dichroism and thermal shift assays, and membrane yeast two-hybrid assays, to define the mechanism mediating this interdomain interactions within nSMase2. In contrast to what we previously assumed, we demonstrate that PS binding at the N-terminal and juxtamembrane regions of nSMase2 rather acts as a conformational switch leading to interdomain interactions that are critical to enzyme activation. Our work assigns a unique function for a class of linkers of lipid-activated, membrane-associated proteins. It indicates that the linker actively participates in the activation mechanism via intramolecular interactions, unlike the canonical linkers that typically aid protein dimerization or localization.
Collapse
Affiliation(s)
- Prajna Shanbhogue
- From the Departments of Biochemistry and Cell Biology.,the Stony Brook University Cancer Center, Stony Brook, New York 11794, and
| | - Reece M Hoffmann
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | | | - Rohan Maini
- From the Departments of Biochemistry and Cell Biology
| | - David J Hamelin
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | - Miguel Garcia-Diaz
- Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
| | - John E Burke
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | - Yusuf A Hannun
- From the Departments of Biochemistry and Cell Biology, .,the Stony Brook University Cancer Center, Stony Brook, New York 11794, and.,Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794.,Medicine, and
| |
Collapse
|
27
|
Abbas OA, Ibrahim IG, Ismail AGE. Therapeutic Effects of Nano-HAp in a Rat Model of AlCl 3 Induced Neurotoxicity. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2019; 18:1309-1322. [PMID: 32641941 PMCID: PMC6934970 DOI: 10.22037/ijpr.2019.1100760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the advance in nanomedicine, the present study was conducted to explore the possible therapeutic role of intravenous nano- hydroxyapatite (nano-HAp) in male rats after chronic exposure to aluminum chloride (AlCl3). This exposure interposed DNA fragmentation, apoptosis, alters oxidant/antioxidant status as well as change in content of neurotransmitters. The rats were injected with 100 mg/kg. body weight (b.w.) of AlCl3 intraperitoneally for 90 days, after then nano-HAp was injected intravenously (i.v.) three times per week at a dose level 100 mg/kg b.w. Based on the results obtained, it can be concluded that the treatment with the prepared nano-HAp restrains the damage inflicted on brain modulation by lipid oxidation products and decreased the susceptibility of apoptotic cells death with subsequent repaired the fragmented DNA as well as improved the synthesis of neurotransmitters. The most salient finding of nano-HAp treatment is the disappearance of most pathological changes due to AlCl3 administration.
Collapse
Affiliation(s)
- Osma Ahmed Abbas
- Radioisotopes Department, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | | | | |
Collapse
|
28
|
Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis. Chem Phys Lipids 2018; 216:114-131. [PMID: 30194926 PMCID: PMC6196108 DOI: 10.1016/j.chemphyslip.2018.08.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/25/2018] [Indexed: 12/12/2022]
Abstract
About twenty years ago, the functional lipid raft model of the plasma membrane was published. It took into account decades of research showing that cellular membranes are not just homogenous mixtures of lipids and proteins. Lateral anisotropy leads to assembly of membrane domains with specific lipid and protein composition regulating vesicular traffic, cell polarity, and cell signaling pathways in a plethora of biological processes. However, what appeared to be a clearly defined entity of clustered raft lipids and proteins became increasingly fluid over the years, and many of the fundamental questions about biogenesis and structure of lipid rafts remained unanswered. Experimental obstacles in visualizing lipids and their interactions hampered progress in understanding just how big rafts are, where and when they are formed, and with which proteins raft lipids interact. In recent years, we have begun to answer some of these questions and sphingolipids may take center stage in re-defining the meaning and functional significance of lipid rafts. In addition to the archetypical cholesterol-sphingomyelin raft with liquid ordered (Lo) phase and the liquid-disordered (Ld) non-raft regions of cellular membranes, a third type of microdomains termed ceramide-rich platforms (CRPs) with gel-like structure has been identified. CRPs are "ceramide rafts" that may offer some fresh view on the membrane mesostructure and answer several critical questions for our understanding of lipid rafts.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology at the University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
29
|
Schoenauer R, Larpin Y, Babiychuk EB, Drücker P, Babiychuk VS, Avota E, Schneider-Schaulies S, Schumacher F, Kleuser B, Köffel R, Draeger A. Down‐regulation of acid sphingomyelinase and neutral sphingomyelinase‐2 inversely determines the cellular resistance to plasmalemmal injury by pore‐forming toxins. FASEB J 2018; 33:275-285. [DOI: 10.1096/fj.201800033r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Roman Schoenauer
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Yu Larpin
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Eduard B. Babiychuk
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Patrick Drücker
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | | | - Elita Avota
- Institute of Virology and ImmunobiologyUniversity of Würzburg Würzburg Germany
| | | | - Fabian Schumacher
- Institute of Nutritional ScienceUniversity of Potsdam Potsdam Germany
| | - Burkhard Kleuser
- Institute of Nutritional ScienceUniversity of Potsdam Potsdam Germany
| | - René Köffel
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| | - Annette Draeger
- Department of Cell BiologyInstitute of AnatomyUniversity of Bern Bern Switzerland
| |
Collapse
|
30
|
Activation of neutral sphingomyelinase 2 by starvation induces cell-protective autophagy via an increase in Golgi-localized ceramide. Cell Death Dis 2018; 9:670. [PMID: 29867196 PMCID: PMC5986760 DOI: 10.1038/s41419-018-0709-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is essential for optimal cell function and survival, and the entire process accompanies membrane dynamics. Ceramides are produced by different enzymes at different cellular membrane sites and mediate differential signaling. However, it remains unclear which ceramide-producing pathways/enzymes participate in autophagy regulation under physiological conditions such as nutrient starvation, and what the underlying mechanisms are. In this study, we demonstrate that among ceramide-producing enzymes, neutral sphingomyelinase 2 (nSMase2) plays a key role in autophagy during nutrient starvation. nSMase2 was rapidly and stably activated upon starvation, and the enzymatic reaction in the Golgi apparatus facilitated autophagy through the activation of p38 MAPK and inhibition of mTOR. Moreover, nSMase2 played a protective role against cellular damage depending on autophagy. These findings suggest that nSMase2 is a novel regulator of autophagy and provide evidence that Golgi-localized ceramides participate in cytoprotective autophagy against starvation.
Collapse
|
31
|
Verderio C, Gabrielli M, Giussani P. Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles. J Lipid Res 2018; 59:1325-1340. [PMID: 29853528 DOI: 10.1194/jlr.r083915] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/06/2018] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released by both eukaryotic and prokaryotic cells; they not only serve physiological functions, such as disposal of cellular components, but also play pathophysiologic roles in inflammatory and degenerative diseases. Common molecular mechanisms for EV biogenesis are evident in different cell biological contexts across eukaryotic phyla, and inhibition of this biogenesis may provide an avenue for therapeutic research. The involvement of sphingolipids (SLs) and their enzymes on EV biogenesis and release has not received much attention in current research. Here, we review how SLs participate in EV biogenesis by shaping membrane curvature and how they contribute to EV action in target cells. First, we describe how acid and neutral SMases, by generating the constitutive SL, ceramide, facilitate biogenesis of EVs at the plasma membrane and inside the endocytic compartment. We then discuss the involvement of other SLs, such as sphingosine-1-phosphate and galactosyl-sphingosine, in EV formation and cargo sorting. Last, we look ahead at some biological effects of EVs mediated by changes in SL levels in recipient cells.
Collapse
Affiliation(s)
- Claudia Verderio
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy .,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas, 20089 Rozzano, Italy
| | - Martina Gabrielli
- Consiglio Nazionale delle Ricerche (CNR) Institute of Neuroscience, 20129 Milano, Italy
| | - Paola Giussani
- Department of Biotechnology and Translational Medicine, University of Milano, 20090 Segrate, Italy
| |
Collapse
|
32
|
Ueda A, Shima S, Murate K, Kikuchi K, Nagao R, Maeda T, Muto E, Niimi Y, Mizutani Y, Mutoh T. Anti-GM1 ganglioside antibodies modulate membrane-associated sphingomyelin metabolism by altering neutral sphingomyelinase activity. Mol Cell Neurosci 2018; 89:42-48. [PMID: 29601870 DOI: 10.1016/j.mcn.2018.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/24/2018] [Accepted: 03/25/2018] [Indexed: 11/24/2022] Open
Abstract
Previous studies have shown that patients with Guillain-Barré syndrome express autoantibodies against ganglioside GM1 (GM1), although its pathogenic significance for the development of the disease remains to be elucidated. nSMase2 is the best characterized neutral sphingomyelinase (nSMase) found in neuronal cells. Activation of this enzyme leads to ceramide production, which is a known second messenger of the cell-death program in neuronal cells. We have explored the effects of anti-GM1 antibodies on sphingomyelin metabolism of PC12 cells stably transfected with human trk cDNA (PCtrk cells) by determining their effects on nSMase2 activity. The data we present here strongly suggest that anti-GM1 caused a significant change in sphingomyelin content of the membrane fraction in PCtrk cells. Both nSMase2 activity and the level of nSMase2 protein were significantly decreased by anti-GM1 treatment of PCtrk cells, while acidic SMase activities remained unchanged. Our results indicate, for the first time, that anti-GM1 may produce profound impacts on lipid metabolism in neuronal cell membranes.
Collapse
Affiliation(s)
- Akihiro Ueda
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Sayuri Shima
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Kenitiroh Murate
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Kouichi Kikuchi
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Ryunosuke Nagao
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Toshiki Maeda
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Eri Muto
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Yoshiki Niimi
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Yasuaki Mizutani
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan
| | - Tatsuro Mutoh
- Department of Neurology, Fujita Health University School of Medicine, Aichi, Japan.
| |
Collapse
|
33
|
Kong JN, Zhu Z, Itokazu Y, Wang G, Dinkins MB, Zhong L, Lin HP, Elsherbini A, Leanhart S, Jiang X, Qin H, Zhi W, Spassieva SD, Bieberich E. Novel function of ceramide for regulation of mitochondrial ATP release in astrocytes. J Lipid Res 2018; 59:488-506. [PMID: 29321137 DOI: 10.1194/jlr.m081877] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/08/2018] [Indexed: 12/14/2022] Open
Abstract
We reported that amyloid β peptide (Aβ42) activated neutral SMase 2 (nSMase2), thereby increasing the concentration of the sphingolipid ceramide in astrocytes. Here, we show that Aβ42 induced mitochondrial fragmentation in wild-type astrocytes, but not in nSMase2-deficient cells or astrocytes treated with fumonisin B1 (FB1), an inhibitor of ceramide synthases. Unexpectedly, ceramide depletion was concurrent with rapid movements of mitochondria, indicating an unknown function of ceramide for mitochondria. Using immunocytochemistry and super-resolution microscopy, we detected ceramide-enriched and mitochondria-associated membranes (CEMAMs) that were codistributed with microtubules. Interaction of ceramide with tubulin was confirmed by cross-linking to N-[9-(3-pent-4-ynyl-3-H-diazirine-3-yl)-nonanoyl]-D-erythro-sphingosine (pacFACer), a bifunctional ceramide analog, and binding of tubulin to ceramide-linked agarose beads. Ceramide-associated tubulin (CAT) translocated from the perinuclear region to peripheral CEMAMs and mitochondria, which was prevented in nSMase2-deficient or FB1-treated astrocytes. Proximity ligation and coimmunoprecipitation assays showed that ceramide depletion reduced association of tubulin with voltage-dependent anion channel 1 (VDAC1), an interaction known to block mitochondrial ADP/ATP transport. Ceramide-depleted astrocytes contained higher levels of ATP, suggesting that ceramide-induced CAT formation leads to VDAC1 closure, thereby reducing mitochondrial ATP release, and potentially motility and resistance to Aβ42 Our data also indicate that inhibiting ceramide generation may protect mitochondria in Alzheimer's disease.
Collapse
Affiliation(s)
- Ji-Na Kong
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Zhihui Zhu
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA
| | - Guanghu Wang
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Michael B Dinkins
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA
| | - Liansheng Zhong
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY.,College of Basic Medicine, China Medical University, Shenyang, People's Republic of China
| | - Hsuan-Pei Lin
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Ahmed Elsherbini
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA.,Department of Physiology, University of Kentucky, Lexington, KY
| | - Silvia Leanhart
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA
| | - Xue Jiang
- Department of Physiology, University of Kentucky, Lexington, KY.,Rehabilitation Center, ShengJing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Haiyan Qin
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Wenbo Zhi
- Center of Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA
| | | | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine Augusta University, Augusta, GA .,Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
34
|
Menck K, Sönmezer C, Worst TS, Schulz M, Dihazi GH, Streit F, Erdmann G, Kling S, Boutros M, Binder C, Gross JC. Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J Extracell Vesicles 2017; 6:1378056. [PMID: 29184623 PMCID: PMC5699186 DOI: 10.1080/20013078.2017.1378056] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/27/2017] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane particles secreted from cells into all body fluids. Several EV populations exist differing in size and cellular origin. Using differential centrifugation EVs pelleting at 14,000 g ("microvesicles" (MV)) and 100,000 g ("exosomes") are distinguishable by protein markers. Neutral sphingomyelinase (nSMase) inhibition has been shown to inhibit exosome release from cells and has since been used to study their functional implications. How nSMases (also known as SMPD2 and SMPD3) affect the basal secretion of MVs is unclear. Here we investigated how SMPD2/3 impact both EV populations. SMPD2/3 inhibition by GW4869 or RNAi decreases secretion of exosomes, but also increases secretion of MVs from the plasma membrane. Both populations differ significantly in metabolite composition and Wnt proteins are specifically loaded onto MVs under these conditions. Taken together, our data reveal a novel regulatory function of SMPD2/3 in vesicle budding from the plasma membrane and clearly suggest that - despite the different vesicle biogenesis - the routes of vesicular export are adaptable.
Collapse
Affiliation(s)
- Kerstin Menck
- INSERM, U1068, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, and Université Aix-Marseille, Marseille, France.,Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Can Sönmezer
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Thomas Stefan Worst
- Department of Urology, Mannheim Medical Center, University of Heidelberg, Mannheim, Germany.,Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Matthias Schulz
- Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Gry Helene Dihazi
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Frank Streit
- Department of Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | | | - Simon Kling
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Claudia Binder
- Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Julia Christina Gross
- Hematology and Oncology/Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
35
|
Airola MV, Shanbhogue P, Shamseddine AA, Guja KE, Senkal CE, Maini R, Bartke N, Wu BX, Obeid LM, Garcia-Diaz M, Hannun YA. Structure of human nSMase2 reveals an interdomain allosteric activation mechanism for ceramide generation. Proc Natl Acad Sci U S A 2017; 114:E5549-E5558. [PMID: 28652336 PMCID: PMC5514751 DOI: 10.1073/pnas.1705134114] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neutral sphingomyelinase 2 (nSMase2, product of the SMPD3 gene) is a key enzyme for ceramide generation that is involved in regulating cellular stress responses and exosome-mediated intercellular communication. nSMase2 is activated by diverse stimuli, including the anionic phospholipid phosphatidylserine. Phosphatidylserine binds to an integral-membrane N-terminal domain (NTD); however, how the NTD activates the C-terminal catalytic domain is unclear. Here, we identify the complete catalytic domain of nSMase2, which was misannotated because of a large insertion. We find the soluble catalytic domain interacts directly with the membrane-associated NTD, which serves as both a membrane anchor and an allosteric activator. The juxtamembrane region, which links the NTD and the catalytic domain, is necessary and sufficient for activation. Furthermore, we provide a mechanistic basis for this phenomenon using the crystal structure of the human nSMase2 catalytic domain determined at 1.85-Å resolution. The structure reveals a DNase-I-type fold with a hydrophobic track leading to the active site that is blocked by an evolutionarily conserved motif which we term the "DK switch." Structural analysis of nSMase2 and the extended N-SMase family shows that the DK switch can adopt different conformations to reposition a universally conserved Asp (D) residue involved in catalysis. Mutation of this Asp residue in nSMase2 disrupts catalysis, allosteric activation, stimulation by phosphatidylserine, and pharmacological inhibition by the lipid-competitive inhibitor GW4869. Taken together, these results demonstrate that the DK switch regulates ceramide generation by nSMase2 and is governed by an allosteric interdomain interaction at the membrane interface.
Collapse
Affiliation(s)
- Michael V Airola
- Stony Brook University Cancer Center, Stony Brook, NY 11794
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Prajna Shanbhogue
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | | | - Kip E Guja
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Can E Senkal
- Stony Brook University Cancer Center, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Rohan Maini
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
| | - Nana Bartke
- Danone Nutricia Research, Singapore 138671
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Bill X Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Lina M Obeid
- Stony Brook University Cancer Center, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
- Northport Veterans Affairs Medical Center, Northport, NY 11768
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A Hannun
- Stony Brook University Cancer Center, Stony Brook, NY 11794;
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
36
|
Skotland T, Sandvig K, Llorente A. Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res 2017; 66:30-41. [PMID: 28342835 DOI: 10.1016/j.plipres.2017.03.001] [Citation(s) in RCA: 737] [Impact Index Per Article: 92.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 12/29/2022]
Abstract
Lipids are essential components of exosomal membranes, and it is well-known that specific lipids are enriched in exosomes compared to their parent cells. In this review we discuss current knowledge about the lipid composition of exosomes. We compare published data for different lipid classes in exosomes, and what is known about their lipid species, i.e. lipid molecules with different fatty acyl groups. Moreover, we elaborate on the hypothesis about hand-shaking between the very-long-chain sphingolipids in the outer leaflet and PS 18:0/18:1 in the inner leaflet, and we propose this to be an important mechanism in membrane biology, not only for exosomes. The similarity between the lipid composition of exosomes, HIV particles, and detergent resistant membranes, used as lipid rafts models, is also discussed. Furthermore, we summarize knowledge about the role of specific lipids and lipid metabolizing enzymes on the formation and release of exosomes. Finally, the use of exosomal lipids as biomarkers and how the lipid composition of exosomes may be of importance for researchers aiming to use exosomes as drug delivery vehicles is discussed. In conclusion, we have summarized what is presently known about lipids in exosomes and identified issues that should be taken into consideration in future studies.
Collapse
Affiliation(s)
- Tore Skotland
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway.
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway; Department of Molecular Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, 0379 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, 0379 Oslo, Norway
| |
Collapse
|
37
|
Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci 2015; 16:5076-124. [PMID: 25751724 PMCID: PMC4394466 DOI: 10.3390/ijms16035076] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022] Open
Abstract
Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan, Ishikawa 924-8588, Japan.
| |
Collapse
|
38
|
Mueller N, Avota E, Collenburg L, Grassmé H, Schneider-Schaulies S. Neutral sphingomyelinase in physiological and measles virus induced T cell suppression. PLoS Pathog 2014; 10:e1004574. [PMID: 25521388 PMCID: PMC4270778 DOI: 10.1371/journal.ppat.1004574] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/12/2014] [Indexed: 11/20/2022] Open
Abstract
T cell paralysis is a main feature of measles virus (MV) induced immunosuppression. MV contact mediated activation of sphingomyelinases was found to contribute to MV interference with T cell actin reorganization. The role of these enzymes in MV-induced inhibition of T cell activation remained equally undefined as their general role in regulating immune synapse (IS) activity which relies on spatiotemporal membrane patterning. Our study for the first time reveals that transient activation of the neutral sphingomyelinase 2 (NSM2) occurs in physiological co-stimulation of primary T cells where ceramide accumulation is confined to the lamellum (where also NSM2 can be detected) and excluded from IS areas of high actin turnover. Genetic ablation of the enzyme is associated with T cell hyper-responsiveness as revealed by actin dynamics, tyrosine phosphorylation, Ca2+-mobilization and expansion indicating that NSM2 acts to suppress overshooting T cell responses. In line with its suppressive activity, exaggerated, prolonged NSM2 activation as occurring in co-stimulated T cells following MV exposure was associated with aberrant compartmentalization of ceramides, loss of spreading responses, interference with accumulation of tyrosine phosphorylated protein species and expansion. Altogether, this study for the first time reveals a role of NSM2 in physiological T cell stimulation which is dampening and can be abused by a virus, which promotes enhanced and prolonged NSM2 activation to cause pathological T cell suppression. Though the ability of measles virus (MV) to impair T cell activation has long been known, it is mechanistically not well understood. We have shown earlier that MV can contact dependently trigger activation of sphingomyelinases which is known to affect compartmentalization of membrane lipids and proteins. Because these are particularly important in the activity of the immune synapse (IS), we investigated whether MV-induced sphingomyelinase activity would interfere at that level with T cell activation. Our study for the first time revealed that the neutral sphingomyelinase 2 (NSM2) is transiently activated in primary T cells by co-stimulation through CD3 and CD28, and that this does occur to dampen early T cell responses. The virus appears to exploit this inhibitory activity of the enzyme to suppress T cell activation by promoting an enhanced and prolonged NSM2 activation. These findings do not only assign a hitherto novel role of the NSM2 in regulating T cell responses, but also reveal a novel strategy for viral T cell suppression.
Collapse
Affiliation(s)
- Nora Mueller
- University of Würzburg, Institute for Virology and Immunobiology, Wuerzburg, Germany
| | - Elita Avota
- University of Würzburg, Institute for Virology and Immunobiology, Wuerzburg, Germany
| | - Lena Collenburg
- University of Würzburg, Institute for Virology and Immunobiology, Wuerzburg, Germany
| | | | | |
Collapse
|
39
|
Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 2014; 290:3455-67. [PMID: 25505180 DOI: 10.1074/jbc.m114.605253] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are a group of transmissible, fatal neurodegenerative disorders associated with the misfolding of the host-encoded prion protein, PrP(C), into a disease-associated form, PrP(Sc). The transmissible prion agent is principally formed of PrP(Sc) itself and is associated with extracellular vesicles known as exosomes. Exosomes are released from cells both in vitro and in vivo, and have been proposed as a mechanism by which prions spread intercellularly. The biogenesis of exosomes occurs within the endosomal system, through formation of intraluminal vesicles (ILVs), which are subsequently released from cells as exosomes. ILV formation is known to be regulated by the endosomal sorting complexes required for transport (ESCRT) machinery, although an alternative neutral sphingomyelinase (nSMase) pathway has been suggested to also regulate this process. Here, we investigate a role for the nSMase pathway in exosome biogenesis and packaging of PrP into these vesicles. Inhibition of the nSMase pathway using GW4869 revealed a role for the nSMase pathway in both exosome formation and PrP packaging. In agreement, targeted knockdown of nSMase1 and nSMase2 in mouse neurons using lentivirus-mediated RNAi also decreases exosome release, demonstrating the nSMase pathway regulates the biogenesis and release of exosomes. We also demonstrate that PrP(C) packaging is dependent on nSMase2, whereas the packaging of disease-associated PrP(Sc) into exosomes occurs independently of nSMase2. These findings provide further insight into prion transmission and identify a pathway which directly assists exosome-mediated transmission of prions.
Collapse
Affiliation(s)
- Belinda B Guo
- From the Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Australia and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Shayne A Bellingham
- From the Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Australia and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| | - Andrew F Hill
- From the Department of Biochemistry and Molecular Biology, The University of Melbourne, VIC 3010, Australia and the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|
40
|
Rajagopalan V, Canals D, Luberto C, Snider J, Voelkel-Johnson C, Obeid LM, Hannun YA. Critical determinants of mitochondria-associated neutral sphingomyelinase (MA-nSMase) for mitochondrial localization. Biochim Biophys Acta Gen Subj 2014; 1850:628-39. [PMID: 25484313 DOI: 10.1016/j.bbagen.2014.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/07/2014] [Accepted: 11/25/2014] [Indexed: 01/05/2023]
Abstract
BACKGROUND A novel murine mitochondria-associated neutral sphingomyelinase (MA-nSMase) has been recently cloned and partially characterized. The subcellular localization of the enzyme was found to be predominant in mitochondria. In this work, the determinants of mitochondrial localization and its topology were investigated. METHODS MA-nSMase mutants lacking consecutive regions and fusion proteins of GFP with truncated MA-nSMase regions were constructed and expressed in MCF-7 cells. Its localization was analyzed using confocal microscopy and sub-cellular fractionation methods. The sub-mitochondrial localization of MA-nSMase was determined using protease protection assay on isolated mitochondria. RESULTS The results initially showed that a putative mitochondrial localization signal (MLS), homologous to an MLS in the zebra-fish mitochondrial SMase is not necessary for the mitochondrial localization of the murine MA-nSMase. Evidence is provided to the presence of two regions in MA-nSMase that are sufficient for mitochondrial localization: a signal sequence (amino acids 24-56) that is responsible for the mitochondrial localization and an additional 'signal-anchor' sequence (amino acids 77-99) that anchors the protein to the mitochondrial membrane. This protein is topologically located in the outer mitochondrial membrane where both the C and N-termini remain exposed to the cytosol. CONCLUSIONS MA-nSMase is a membrane anchored protein with a MLS and a signal-anchor sequence at its N-terminal to localize it to the outer mitochondrial membrane. GENERAL SIGNIFICANCE Mitochondrial sphingolipids have been reported to play a critical role in cellular viability. This study opens a new window to investigate their cellular functions, and to define novel therapeutic targets.
Collapse
Affiliation(s)
- Vinodh Rajagopalan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173, Ashley Avenue, Charleston, SC 29425, USA
| | - Daniel Canals
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center and the Department of Physiology and Biophysics, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Justin Snider
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Christina Voelkel-Johnson
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173, Ashley Avenue, Charleston, SC 29425, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA.
| |
Collapse
|
41
|
Shamseddine AA, Airola MV, Hannun YA. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv Biol Regul 2014; 57:24-41. [PMID: 25465297 DOI: 10.1016/j.jbior.2014.10.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/11/2014] [Indexed: 12/23/2022]
Abstract
Our understanding of the functions of ceramide signaling has advanced tremendously over the past decade. In this review, we focus on the roles and regulation of neutral sphingomyelinase 2 (nSMase2), an enzyme that generates the bioactive lipid ceramide through the hydrolysis of the membrane lipid sphingomyelin. A large body of work has now implicated nSMase2 in a diverse set of cellular functions, physiological processes, and disease pathologies. We discuss different aspects of this enzyme's regulation from transcriptional, post-translational, and biochemical. Furthermore, we highlight nSMase2 involvement in cellular processes including inflammatory signaling, exosome generation, cell growth, and apoptosis, which in turn play important roles in pathologies such as cancer metastasis, Alzheimer's disease, and other organ systems disorders. Lastly, we examine avenues where targeted nSMase2-inhibition may be clinically beneficial in disease scenarios.
Collapse
Affiliation(s)
- Achraf A Shamseddine
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| | - Michael V Airola
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook, NY 11794, USA; The Stony Brook Cancer Center, Stony Brook, NY 11794, USA.
| |
Collapse
|
42
|
Noirot E, Der C, Lherminier J, Robert F, Moricova P, Kiêu K, Leborgne-Castel N, Simon-Plas F, Bouhidel K. Dynamic changes in the subcellular distribution of the tobacco ROS-producing enzyme RBOHD in response to the oomycete elicitor cryptogein. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5011-22. [PMID: 24987013 PMCID: PMC4144778 DOI: 10.1093/jxb/eru265] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plant NADPH oxidases, also known as respiratory burst oxidase homologues (RBOHs), have been identified as a major source of reactive oxygen species (ROS) during plant-microbe interactions. The subcellular localization of the tobacco (Nicotiana tabacum) ROS-producing enzyme RBOHD was examined in Bright Yellow-2 cells before and after elicitation with the oomycete protein cryptogein using electron and confocal microscopy. The plasma membrane (PM) localization of RBOHD was confirmed and immuno-electron microscopy on purified PM vesicles revealed its distribution in clusters. The presence of the protein fused to GFP was also seen in intracellular compartments, mainly Golgi cisternae. Cryptogein induced, within 1h, a 1.5-fold increase in RBOHD abundance at the PM and a concomitant decrease in the internal compartments. Use of cycloheximide revealed that most of the proteins targeted to the PM upon elicitation were not newly synthesized but may originate from the Golgi pool. ROS accumulation preceded RBOHD transcript- and protein-upregulation, indicating that ROS resulted from the activation of a PM-resident pool of enzymes, and that enzymes newly addressed to the PM were inactive. Taken together, the results indicate that control of RBOH abundance and subcellular localization may play a fundamental role in the mechanism of ROS production.
Collapse
Affiliation(s)
- Elodie Noirot
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, Plateforme DImaCell, Centre de Microscopie INRA/Université de Bourgogne, BP 86510, F-21065 Dijon Cedex, France
| | - Christophe Der
- Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Jeannine Lherminier
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, Plateforme DImaCell, Centre de Microscopie INRA/Université de Bourgogne, BP 86510, F-21065 Dijon Cedex, France
| | - Franck Robert
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Pavla Moricova
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France Present address: Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Kiên Kiêu
- INRA, UR341 Mathématiques et Informatique Appliquées, F-78352 Jouy-en-Josas Cedex, France
| | - Nathalie Leborgne-Castel
- Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Françoise Simon-Plas
- INRA, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| | - Karim Bouhidel
- Université de Bourgogne, UMR1347 Agroécologie, ERL CNRS 6300, BP 86510, F-21065 Dijon Cedex, France
| |
Collapse
|
43
|
Moylan JS, Smith JD, Wolf Horrell EM, McLean JB, Deevska GM, Bonnell MR, Nikolova-Karakashian MN, Reid MB. Neutral sphingomyelinase-3 mediates TNF-stimulated oxidant activity in skeletal muscle. Redox Biol 2014; 2:910-20. [PMID: 25180167 PMCID: PMC4143815 DOI: 10.1016/j.redox.2014.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022] Open
Abstract
Aims Sphingolipid and oxidant signaling affect glucose uptake, atrophy, and force production of skeletal muscle similarly and both are stimulated by tumor necrosis factor (TNF), suggesting a connection between systems. Sphingolipid signaling is initiated by neutral sphingomyelinase (nSMase), a family of agonist-activated effector enzymes. Northern blot analyses suggest that nSMase3 may be a striated muscle-specific nSMase. The present study tested the hypothesis that nSMase3 protein is expressed in skeletal muscle and functions to regulate TNF-stimulated oxidant production. Results We demonstrate constitutive nSMase activity in skeletal muscles of healthy mice and humans and in differentiated C2C12 myotubes. nSMase3 (Smpd4 gene) mRNA is highly expressed in muscle. An nSMase3 protein doublet (88 and 85 kD) is derived from alternative mRNA splicing of exon 11. The proteins partition differently. The full-length 88 kD isoform (nSMase3a) fractionates with membrane proteins that are resistant to detergent extraction; the 85 kD isoform lacking exon 11 (nSMase3b) is more readily extracted and fractionates with detergent soluble membrane proteins; neither variant is detected in the cytosol. By immunofluorescence microscopy, nSMase3 resides in both internal and sarcolemmal membranes. Finally, myotube nSMase activity and cytosolic oxidant activity are stimulated by TNF. Both if these responses are inhibited by nSMase3 knockdown. Innovation These findings identify nSMase3 as an intermediate that links TNF receptor activation, sphingolipid signaling, and skeletal muscle oxidant production. Conclusion Our data show that nSMase3 acts as a signaling nSMase in skeletal muscle that is essential for TNF-stimulated oxidant activity. First measures of endogenous nSMase3 protein in muscle. Detection of nSMase3 splice variant proteins. Identification of a functional role for nSMase3 in redox signaling. Identification of an intermediate in TNF/redox signaling.
Collapse
Affiliation(s)
- Jennifer S Moylan
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Jeffrey D Smith
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Erin M Wolf Horrell
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA ; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Julie B McLean
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Gergana M Deevska
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Mark R Bonnell
- Department of Surgery, University of Kentucky, Lexington, KY, USA
| | | | - Michael B Reid
- Department of Physiology, University of Kentucky, Lexington, KY, USA ; Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
44
|
Phuyal S, Hessvik NP, Skotland T, Sandvig K, Llorente A. Regulation of exosome release by glycosphingolipids and flotillins. FEBS J 2014; 281:2214-27. [PMID: 24605801 DOI: 10.1111/febs.12775] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/06/2014] [Accepted: 03/04/2014] [Indexed: 12/14/2022]
Abstract
Exosomes are released by cells after fusion of multivesicular bodies with the plasma membrane. The molecular mechanism of this process is still unclear. We investigated the role of sphingolipids and flotillins, which constitute a raft-associated family of proteins, in the release of exosomes. Interestingly, our results show that dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase, seemed to affect the composition of exosomes released from PC-3 cells. However, the inhibition of ceramide formation from the de novo pathway by fumonisin B1 did not affect exosome secretion. Moreover, in contrast to findings obtained with other cell lines published so far, inhibition of neutral sphingomyelinase 2, an enzyme that catalyzes the formation of ceramide from sphingomyelin, did not inhibit the secretion of exosomes in PC-3 cells. Finally, small interfering RNA-mediated downregulation of flotillin-1 and flotillin-2 did not significantly change the levels of released exosomes as such, but seemed to affect the composition of exosomes. In conclusion, our results reveal the involvement of glycosphingolipids and flotillins in the release of exosomes from PC-3 cells, and indicate that the role of ceramide in exosome formation may be cell-dependent.
Collapse
Affiliation(s)
- Santosh Phuyal
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital - The Norwegian Radium Hospital, Norway; Center for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
45
|
Abstract
Sphingolipids are an important class of lipid molecules that play fundamental roles in our cells and body. Beyond a structural role, it is now clearly established that sphingolipids serve as bioactive signaling molecules to regulate diverse processes including inflammatory signaling, cell death, proliferation, and pain sensing. Sphingolipid metabolites have been implicated in the onset and progression of various diseases including cancer, lung disease, diabetes, and lysosomal storage disorders. Here we review sphingolipid metabolism to introduce basic concepts as well as emerging complexities in sphingolipid function gained from modern technological advances and detailed cell and animal studies. Furthermore, we discuss the family of neutral sphingomyelinases (N-SMases), which generate ceramide through the hydrolysis of sphingomyelin and are key enzymes in sphingolipid metabolism. Four mammalian N-SMase enzymes have now been identified. Most prominent is nSMase2 with established roles in bone mineralization, exosome formation, and cellular stress responses. Function for the other N-SMases has been more enigmatic and is an area of active investigation. The known properties and potential role(s) of each enzyme are discussed to help guide future studies.
Collapse
|
46
|
Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ, Obeid LM, Green DR. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 2012; 148:988-1000. [PMID: 22385963 DOI: 10.1016/j.cell.2012.01.038] [Citation(s) in RCA: 344] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/10/2011] [Accepted: 01/20/2012] [Indexed: 01/28/2023]
Abstract
Mitochondria are functionally and physically associated with heterotypic membranes, yet little is known about how these interactions impact mitochondrial outer-membrane permeabilization (MOMP) and apoptosis. We observed that dissociation of heterotypic membranes from mitochondria inhibited BAK/BAX-dependent cytochrome c (cyto c) release. Biochemical purification of neutral sphingomyelinases that correlated with MOMP sensitization suggested that sphingolipid metabolism coordinates BAK/BAX activation. Using purified lipids and enzymes, sensitivity to MOMP was achieved by in vitro reconstitution of the sphingolipid metabolic pathway. Sphingolipid metabolism inhibitors blocked MOMP from heavy membrane preparations but failed to influence MOMP in the presence of sphingolipid-reconstituted, purified mitochondria. Furthermore, the sphingolipid products, sphingosine-1-PO(4) and hexadecenal, cooperated specifically with BAK and BAX, respectively. Sphingolipid metabolism was also required for cellular responses to apoptosis. Our studies suggest that BAK/BAX activation and apoptosis are coordinated through BH3-only proteins and a specific lipid milieu that is maintained by heterotypic membrane-mitochondrial interactions.
Collapse
Affiliation(s)
- Jerry E Chipuk
- Mount Sinai School of Medicine, Department of Oncological Sciences, New York, NY 10029, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
The Roles of Neutral Sphingomyelinases in Neurological Pathologies. Neurochem Res 2012; 37:1137-49. [DOI: 10.1007/s11064-011-0692-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/25/2011] [Accepted: 12/29/2011] [Indexed: 12/14/2022]
|
48
|
Filosto S, Ashfaq M, Chung S, Fry W, Goldkorn T. Neutral sphingomyelinase 2 activity and protein stability are modulated by phosphorylation of five conserved serines. J Biol Chem 2011; 287:514-522. [PMID: 22074919 DOI: 10.1074/jbc.m111.315481] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We previously presented that the neutral sphingomyelinase 2 (nSMase2) is the only SMase activated in human airway epithelial (HAE) cells following exposure to oxidative stress (ox-stress), yielding ceramide accumulation and thereby inducing apoptosis. Furthermore, we reported that nSMase2 is a phospho-protein in which the level of phosphorylation controls nSMase2 activation induced by ox-stress. Here we identify five specific serines that are phosphorylated in nSMase2 and demonstrate that their phosphorylation controls the nSMase2 activity upon ox-stress exposure in an interdependent manner. Furthermore, we show that the nSMase2 protein stability and thus its level of expression is also post-translationally regulated by these five serine phosphorylation sites. This study provides initial structure/function insights regarding nSMase2 phosphorylation sites and offers some new links for future studies aiming to fully elucidate nSMase2 regulatory machinery.
Collapse
Affiliation(s)
- Simone Filosto
- Department of Internal Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California 95616
| | - Majid Ashfaq
- Department of Internal Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California 95616
| | - Samuel Chung
- Department of Internal Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California 95616
| | - William Fry
- Department of Internal Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California 95616
| | - Tzipora Goldkorn
- Department of Internal Medicine, Genome and Biomedical Sciences Facility, University of California School of Medicine, Davis, California 95616.
| |
Collapse
|
49
|
Khavandgar Z, Poirier C, Clarke CJ, Li J, Wang N, McKee MD, Hannun YA, Murshed M. A cell-autonomous requirement for neutral sphingomyelinase 2 in bone mineralization. ACTA ACUST UNITED AC 2011; 194:277-89. [PMID: 21788370 PMCID: PMC3144407 DOI: 10.1083/jcb.201102051] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
nSMase2, which cleaves sphingomyelin to generate bioactive lipids, is required for chondrocyte apoptosis and, cell autonomously, for bone mineralization. A deletion mutation called fro (fragilitas ossium) in the murine Smpd3 (sphingomyelin phosphodiesterase 3) gene leads to a severe skeletal dysplasia. Smpd3 encodes a neutral sphingomyelinase (nSMase2), which cleaves sphingomyelin to generate bioactive lipid metabolites. We examined endochondral ossification in embryonic day 15.5 fro/fro mouse embryos and observed impaired apoptosis of hypertrophic chondrocytes and severely undermineralized cortical bones in the developing skeleton. In a recent study, it was suggested that nSMase2 activity in the brain regulates skeletal development through endocrine factors. However, we detected Smpd3 expression in both embryonic and postnatal skeletal tissues in wild-type mice. To investigate whether nSMase2 plays a cell-autonomous role in these tissues, we examined the in vitro mineralization properties of fro/fro osteoblast cultures. fro/fro cultures mineralized less than the control osteoblast cultures. We next generated fro/fro;Col1a1-Smpd3 mice, in which osteoblast-specific expression of Smpd3 corrected the bone abnormalities observed in fro/fro embryos without affecting the cartilage phenotype. Our data suggest tissue-specific roles for nSMase2 in skeletal tissues.
Collapse
Affiliation(s)
- Zohreh Khavandgar
- Faculty of Dentistry, McGill University, Montreal, Quebec QC H3A 1A4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wu BX, Clarke CJ, Matmati N, Montefusco D, Bartke N, Hannun YA. Identification of novel anionic phospholipid binding domains in neutral sphingomyelinase 2 with selective binding preference. J Biol Chem 2011; 286:22362-71. [PMID: 21550973 DOI: 10.1074/jbc.m110.156471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sphingolipids such as ceramide are recognized as vital regulators of many biological processes. Neutral sphingomyelinase 2 (nSMase2) is one of the key enzymes regulating ceramide production. It was previously shown that the enzymatic activity of nSMase2 was dependent on anionic phospholipids (APLs). In this study, the structural requirements for APL-selective binding of nSMase2 were determined and characterized. Using lipid-protein overlay assays, nSMase2 interacted specifically and directly with several APLs, including phosphatidylserine and phosphatidic acid. Lipid-protein binding studies of deletion mutants identified two discrete APL binding domains in the N terminus of nSMase2. Further, mutagenesis experiments pinpointed the core sequences and major cationic amino acids in the domains that are necessary for the cooperative activation of nSMase2 by APLs. The first domain included the first amino-terminal hydrophobic segment and Arg-33, which were essential for nSMase2 to interact with APLs. The second binding domain was comprised of the second hydrophobic segment and Arg-92 and Arg-93. Moreover, mutation of one or both domains decreased APL binding and APL-dependent catalytic activity of nSMase2. Further, mutation of both domains in nSMase2 reduced its plasma membrane localization. Finally, these binding domains are also important for the capability of nSMase2 to rescue the defects of yeast lacking the nSMase homologue, ISC1. In conclusion, these data have identified the APL binding domains of nSMase2 for the first time. The analysis of interactions between nSMase2 and APLs will contribute to our understanding of signaling pathways mediated by sphingolipid metabolites.
Collapse
Affiliation(s)
- Bill X Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|