1
|
Bhaskar N, Bejnood A, Jackson CD. Insulin Therapy for Acute Pancreatitis in a Patient With Lipase Maturation Factor 1 Mutation: A Case Report. J Community Hosp Intern Med Perspect 2025; 15:63-65. [PMID: 39867153 PMCID: PMC11759083 DOI: 10.55729/2000-9666.1431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 01/28/2025] Open
Abstract
Acute pancreatitis is a frequent cause of hospital admission, managed with intravenous (IV) fluids, analgesia, and oral feeding when tolerated. In patients with hypertriglyceridemia-induced pancreatitis, insulin and other therapies may be necessary for disease resolution. We present a case of a patient with severe acute pancreatitis and euglycemic diabetic ketoacidosis (DKA) with known lipase maturation factor 1 (LMF1) gene mutations, which can impact insulin efficacy on triglyceride metabolism through altered lipoprotein lipase activity, successfully treated with intravenous insulin. This case highlights the effectiveness of insulin therapy even in those with LMF1 gene mutations.
Collapse
Affiliation(s)
- Neha Bhaskar
- Department of Medicine, Division of General Internal Medicine, University of Tennessee Health Science Center, Memphis, TN,
USA
| | - Aram Bejnood
- Department of Medicine, Division of General Internal Medicine, University of Tennessee Health Science Center, Memphis, TN,
USA
| | - Christopher D. Jackson
- Department of Medicine, Division of General Internal Medicine, University of Tennessee Health Science Center, Memphis, TN,
USA
| |
Collapse
|
2
|
Bedoya C, Thomas R, Bjarvin A, Ji W, Samara H, Tai J, Green L, Frost PH, Malloy MJ, Pullinger CR, Kane JP, Péterfy M. Identification and functional analysis of novel homozygous LMF1 variants in severe hypertriglyceridemia. J Clin Lipidol 2024:S1933-2874(24)00264-2. [PMID: 39537501 DOI: 10.1016/j.jacl.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/09/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The genetic basis of hypertriglyceridemia (HTG) is complex and includes variants in Lipase Maturation Factor 1 (LMF1), an endoplasmic reticulum (ER)-chaperone involved in the post-translational activation of lipoprotein lipase (LPL). OBJECTIVE The objective of this study was to identify and functionally characterize biallelic LMF1 variants in patients with HTG. METHODS Genomic DNA sequencing was used to identify biallelic LMF1 variants in HTG patients without deleterious variants in LPL, apolipoprotein C-II (APOC2), glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) or apolipoprotein A-V (APOA5). LMF1 variants were functionally evaluated by in silico analyses and assessing their impact on LPL activity, LMF1 protein expression and specific activity in transiently transfected HEK293 cells. RESULTS We identified four homozygous LMF1 variants in patients with severe HTG: two novel rare variants (p.Asn147Lys and p.Pro246Arg) and two low-frequency variants (p.Arg354Trp and p.Arg364Gln) previously reported at heterozygosity. We demonstrate that all four variants reduce the secretion of enzymatically active LPL by impairing the specific activity of LMF1, whereas p.Asn147Lys also diminishes LMF1 protein expression. CONCLUSION This study extends the role of LMF1 as a genetic determinant in severe HTG and demonstrates that rare and low-frequency LMF1 variants can underlie this condition through distinct molecular mechanisms. The clinical phenotype of patients affected by partial loss of LMF1 function is consistent with Multifactorial Chylomicronemia Syndrome (MCS) and suggests that secondary factors and additional genetic determinants contribute to HTG in these subjects.
Collapse
Affiliation(s)
- Candy Bedoya
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Rishi Thomas
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Anna Bjarvin
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Wilbur Ji
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Hanien Samara
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Jody Tai
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Laurie Green
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Philip H Frost
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Mary J Malloy
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Clive R Pullinger
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - John P Kane
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Miklós Péterfy
- Department of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
3
|
Dabravolski SA, Churov AV, Sukhorukov VN, Kovyanova TI, Beloyartsev DF, Lyapina IN, Orekhov AN. The role of lipase maturation factor 1 in hypertriglyceridaemia and atherosclerosis: An update. SAGE Open Med 2024; 12:20503121241289828. [PMID: 39483624 PMCID: PMC11526315 DOI: 10.1177/20503121241289828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Lipase maturation factor 1 is an endoplasmic reticulum-resident transmembrane protein, which acts as a critical chaperone necessary for the folding, dimerisation, and secretion of lipases. In this review, we summarise data about the recently revealed role of lipase maturation factor 1 in endoplasmic reticulum redox homeostasis, its novel interaction partners among oxidoreductases and lectin chaperones, and the identification of fibronectin and the low-density lipoprotein receptor as novel non-lipase client proteins of lipase maturation factor 1. Additionally, the role of lipase maturation factor 1-derived circular RNA in atherosclerosis progression via the miR-125a-3p/vascular endothelial growth factor A\Fibroblast Growth Factor 1 axis is discussed. Finally, we focus on the causative role of lipase maturation factor 1 variants in the development of hypertriglyceridaemia - a type of dyslipidaemia that significantly contributes to the development of atherosclerosis and other cardiovascular diseases via different mechanisms.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel, Israel
| | - Alexey V Churov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
| | | | - Tatiana I Kovyanova
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
| | | | - Irina N Lyapina
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | | |
Collapse
|
4
|
Puerto-Baracaldo K, Amaya-Montoya M, Parra-Serrano G, Prada-Robles DC, Serrano-Gómez S, Restrepo-Giraldo LM, Fragozo-Ramos MC, Tangarife V, Giraldo-González GC, Builes-Barrera CA, Naranjo-Vanegas MS, Gómez-Aldana A, Llano JP, Gil-Ochoa N, Nieves-Barreto LD, Gaete PV, Pérez-Mayorga M, Mendivil CO. Genetic variants in triglyceride metabolism genes among individuals with hypertriglyceridemia in Colombia. J Clin Lipidol 2024:S1933-2874(24)00233-2. [PMID: 39278772 DOI: 10.1016/j.jacl.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND The genetic substrate of severe hypertriglyceridemia (sHTG) in Latin America is insufficiently understood. OBJECTIVE To identify genetic variants in genes related to triglyceride (TG) metabolism among adults with sHTG from Colombia. METHODS In individuals with plasma TG≥880 mg/dL at least once in their lifetime, we amplified and sequenced all exons and intron/exon boundaries of the genes LPL, APOC2, APOA5, GPIHBP1 and LMF1. For each variant we ascertained its location, zygosity, allelic frequency and pathogenicity classification according to American College of Medical Genetics (ACMG) criteria. RESULTS The study included 166 participants (62 % male, mean age 50), peak TG levels ranged between 894 and 11,000 mg/dL. We identified 92 variants: 19 in LPL, 7 in APOC2, 11 in GPIHBP1, 38 in LMF1, and 17 in APOA5. Eighteen of these variants had not been reported. We identified a new pathogenic variant in LMF1 (c.41C>A; p.Ser14*), a new likely pathogenic variant in LMF1 (c.1527 C > T; p.Pro509=, also expressed as c.1447C>T; p.Gln483*), and a known pathogenic variant in LMF1 (c.779G>A; p.Trp260*). Four participants were heterozygous for variant c.953A>G; p.Asn318Ser in LPL, a known risk factor for hypertriglyceridemia. Participants with variants of unknown significance (VUS) in LMF1 had significantly higher peak TG than those with VUS in other genes. Peak TG were 4317 mg/dL in participants with a history of pancreatitis, and 1769 mg/dL in those without it (p = 0.001). CONCLUSION Our study identified variants associated with sHTG among Latinos, and showed that genetic variation in LMF1 may be frequently associated with sHTG in this population.
Collapse
Affiliation(s)
- Kathalina Puerto-Baracaldo
- School of Medicine, Universidad de los Andes, Bogotá, Colombia (Drs Puerto-Baracaldo, Amaya-Montoya, Nieves-Barreto, Gaete and Mendivil)
| | - Mateo Amaya-Montoya
- School of Medicine, Universidad de los Andes, Bogotá, Colombia (Drs Puerto-Baracaldo, Amaya-Montoya, Nieves-Barreto, Gaete and Mendivil)
| | - Gustavo Parra-Serrano
- Facultad de Salud, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia (Drs Parra-Serrano and Serrano-Gómez)
| | - Diana C Prada-Robles
- Grupo de Investigación en Laboratorio Clínico y Banco de Sangre Higuera Escalante, Bucaramanga, Colombia (Dr Prada-Robles)
| | - Sergio Serrano-Gómez
- Facultad de Salud, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia (Drs Parra-Serrano and Serrano-Gómez)
| | - Lina M Restrepo-Giraldo
- Grupo Célula, Laboratorio Clínico Hematológico, Medellín, Colombia (Drs Restrepo-Giraldo, Fragozo-Ramos, and Tangarife)
| | - María C Fragozo-Ramos
- Grupo Célula, Laboratorio Clínico Hematológico, Medellín, Colombia (Drs Restrepo-Giraldo, Fragozo-Ramos, and Tangarife)
| | - Verónica Tangarife
- Grupo Célula, Laboratorio Clínico Hematológico, Medellín, Colombia (Drs Restrepo-Giraldo, Fragozo-Ramos, and Tangarife)
| | | | - Carlos A Builes-Barrera
- Sección de Endocrinología, Universidad de Antioquia, Medellín, Colombia (Dr Builes-Barrera); Centro de Biociencias, Seguros SURA, Medellín, Colombia (Drs Builes-Barrera and Naranjo-Vanegas)
| | - Melisa S Naranjo-Vanegas
- Centro de Biociencias, Seguros SURA, Medellín, Colombia (Drs Builes-Barrera and Naranjo-Vanegas)
| | - Andrés Gómez-Aldana
- Hospital Universitario Fundación Santa Fé de Bogotá, Bogotá, Colombia (Dr Gómez-Aldana)
| | - Juan Pablo Llano
- Laboratorio de Investigación Hormonal, Bogotá, Colombia (Drs Llano and Gil-Ochoa)
| | - Nayibe Gil-Ochoa
- Laboratorio de Investigación Hormonal, Bogotá, Colombia (Drs Llano and Gil-Ochoa)
| | - Luz D Nieves-Barreto
- School of Medicine, Universidad de los Andes, Bogotá, Colombia (Drs Puerto-Baracaldo, Amaya-Montoya, Nieves-Barreto, Gaete and Mendivil)
| | - Paula V Gaete
- School of Medicine, Universidad de los Andes, Bogotá, Colombia (Drs Puerto-Baracaldo, Amaya-Montoya, Nieves-Barreto, Gaete and Mendivil)
| | - Maritza Pérez-Mayorga
- Facultad de Medicina, Universidad Militar Nueva Granada, Bogotá, Colombia (Dr Pérez-Mayorga)
| | - Carlos O Mendivil
- School of Medicine, Universidad de los Andes, Bogotá, Colombia (Drs Puerto-Baracaldo, Amaya-Montoya, Nieves-Barreto, Gaete and Mendivil); Endocrinology Section, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia (Dr Mendivil).
| |
Collapse
|
5
|
Cao C, Liu Y, Liu L, Wang X. Identification of a Compound Heterozygous LMF1 Variants in a Patient with Severe Hypertriglyceridemia - Case Report and Literature Review. J Atheroscler Thromb 2024; 31:1106-1111. [PMID: 38462482 PMCID: PMC11224691 DOI: 10.5551/jat.64697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/28/2024] [Indexed: 03/12/2024] Open
Abstract
Familial chylomicronemia syndrome (FCS) and multifactorial chylomicronemia (MCM), characterized by highly variable triglyceride levels with acute episodes of severe hypertriglyceridemia (HTG), are caused by rare variants in genes associated with the catabolism of circulating lipoprotein triglycerides, mainly including LPL, APOC2, APOA5, GPIHBP1, and LMF1. Among them, the LMF1 gene only accounts for 1%. This study described a Chinese patient with severe HTG carrying compound heterozygous variants of a rare nonsense variant p.W168X in exon 3 and a missense variant p.R416Q in exon 9 in the LMF1 gene. These heterozygous variants account for his family's decreased lipase activity and mass, which caused the FCS phenotype.
Collapse
Affiliation(s)
- Conghui Cao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of
Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Yuqi Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of
Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Lu Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of
Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| | - Xiaoli Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of
Thyroid Diseases, The First Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
6
|
Van Biervliet S, Vande Velde S, De Bruyne P, Callewaert B, Verloo P, De Bruyne R. Familial chylomicronemia syndrome: a novel mutation in the lipoprotein lipase gene. Acta Gastroenterol Belg 2024; 87:326-328. [PMID: 39210765 DOI: 10.51821/87.2.12025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Familial chylomicronemia syndrome (FCS) (OMIM: 238600) is a rare autosomal recessive disease caused by a biallelic loss-of-function mutation in the lipoprotein lipase (LPL) complex which includes LPL and its co-factors. Patients with FCS have severe hypertiglyceridemia (> 2000 mg/dL). We describe a 15-month-old boy with repeated pancreatitis episodes caused by severe hypertriglyceridemia. Genetic analysis revealed a novel homozygous mutation in the LPL gene, i.e. c.626T>G; p.(Leu209*). The mutation, carried by both parents, has been classified as a type 4 mutation which is likely pathogenic. Treatment aims at decreasing hypertriglyceridaemia by a low-fat diet (< 20g/day) eventually supplemented with medium chain triglyceride (MCT) fat to ensure caloric intake. In 2019, volanesorsen was approved by the European Medicines Agency (EMA) as adjunct treatment for adult patients with genetically proven FCS and persisting episodes of pancreatitis despite the diet.
Collapse
Affiliation(s)
- S Van Biervliet
- Pediatric gastroenterology, hepatology and nutrition department, Ghent University Hospital, Ghent, Belgium
| | - S Vande Velde
- Pediatric gastroenterology, hepatology and nutrition department, Ghent University Hospital, Ghent, Belgium
| | - P De Bruyne
- Pediatric gastroenterology, hepatology and nutrition department, Ghent University Hospital, Ghent, Belgium
| | - B Callewaert
- Center for medical genetics, Ghent University Hospital, Ghent, Belgium
| | - P Verloo
- Center for metabolic diseases, Ghent University Hospital, Ghent, Belgium
| | - R De Bruyne
- Pediatric gastroenterology, hepatology and nutrition department, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Alves M, Laranjeira F, Correia-da-Silva G. Understanding Hypertriglyceridemia: Integrating Genetic Insights. Genes (Basel) 2024; 15:190. [PMID: 38397180 PMCID: PMC10887881 DOI: 10.3390/genes15020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertriglyceridemia is an exceptionally complex metabolic disorder characterized by elevated plasma triglycerides associated with an increased risk of acute pancreatitis and cardiovascular diseases such as coronary artery disease. Its phenotype expression is widely heterogeneous and heavily influenced by conditions as obesity, alcohol consumption, or metabolic syndromes. Looking into the genetic underpinnings of hypertriglyceridemia, this review focuses on the genetic variants in LPL, APOA5, APOC2, GPIHBP1 and LMF1 triglyceride-regulating genes reportedly associated with abnormal genetic transcription and the translation of proteins participating in triglyceride-rich lipoprotein metabolism. Hypertriglyceridemia resulting from such genetic abnormalities can be categorized as monogenic or polygenic. Monogenic hypertriglyceridemia, also known as familial chylomicronemia syndrome, is caused by homozygous or compound heterozygous pathogenic variants in the five canonical genes. Polygenic hypertriglyceridemia, also known as multifactorial chylomicronemia syndrome in extreme cases of hypertriglyceridemia, is caused by heterozygous pathogenic genetic variants with variable penetrance affecting the canonical genes, and a set of common non-pathogenic genetic variants (polymorphisms, using the former nomenclature) with well-established association with elevated triglyceride levels. We further address recent progress in triglyceride-lowering treatments. Understanding the genetic basis of hypertriglyceridemia opens new translational opportunities in the scope of genetic screening and the development of novel therapies.
Collapse
Affiliation(s)
- Mara Alves
- Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Francisco Laranjeira
- CGM—Centro de Genética Médica Jacinto de Magalhães, Centro Hospitalar Universitário de Santo António (CHUdSA), 4099-028 Porto, Portugal;
- UMIB—Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-346 Porto, Portugal
- ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO Applied Molecular Biosciences Unit and Associate Laboratory i4HB—Institute for Health and Bioeconomy Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Abstract
The exogenous lipoprotein pathway starts with the incorporation of dietary lipids into chylomicrons in the intestine. Chylomicron triglycerides are metabolized in muscle and adipose tissue and chylomicron remnants are formed, which are removed by the liver. The endogenous lipoprotein pathway begins in the liver with the formation of very low-density lipoprotein particles (VLDL). VLDL triglycerides are metabolized in muscle and adipose tissue forming intermediate-density lipoprotein (IDL), which may be taken up by the liver or further metabolized to low-density lipoprotein (LDL). Reverse cholesterol transport begins with the formation of nascent high-density lipoprotein (HDL) by the liver and intestine that acquire cholesterol from cells resulting in mature HDL. The HDL then transports the cholesterol to the liver either directly or indirectly by transferring the cholesterol to VLDL or LDL.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Department of Medicine, University of California-San Francisco, San Francisco, California, 94117, USA.
| |
Collapse
|
9
|
Ayoub C, Azar Y, Maddah D, Ghaleb Y, Elbitar S, Abou-Khalil Y, Jambart S, Varret M, Boileau C, El Khoury P, Abifadel M. Low circulating PCSK9 levels in LPL homozygous children with chylomicronemia syndrome in a syrian refugee family in Lebanon. Front Genet 2022; 13:961028. [PMID: 36061186 PMCID: PMC9437297 DOI: 10.3389/fgene.2022.961028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Familial chylomicronemia syndrome is a rare autosomal recessive disorder of lipoprotein metabolism characterized by the presence of chylomicrons in fasting plasma and an important increase in plasma triglycerides (TG) levels that can exceed 22.58 mmol/l. The disease is associated with recurrent episodes of abdominal pain and pancreatitis, eruptive cutaneous xanthomatosis, lipemia retinalis, and hepatosplenomegaly. A consanguineous Syrian family who migrated to Lebanon was referred to our laboratory after perceiving familial chylomicronemia syndrome in two children. The LPL and PCSK9 genes were sequenced and plasma PCSK9 levels were measured. Sanger sequencing of the LPL gene revealed the presence of the p.(Val227Phe) pathogenic variant in exon 5 at the homozygous state in the two affected children, and at the heterozygous state in the other recruited family members. Interestingly, PCSK9 levels in homozygous carriers of the p.(Val227Phe) were ≈50% lower than those in heterozygous carriers of the variant (p-value = 0.13) and ranged between the 5th and the 7.5th percentile of PCSK9 levels in a sample of Lebanese children of approximately the same age group. Moreover, this is the first reported case of individuals carrying simultaneously an LPL pathogenic variant and PCSK9 variants, the L10 and L11 leucine insertion, which can lower and raise low-density lipoprotein cholesterol (LDL-C) levels respectively. TG levels fluctuated concomitantly between the two children, were especially high following the migration from a country to another, and were reduced under a low-fat diet. This case is crucial to raise public awareness on the risks of consanguineous marriages to decrease the emergence of inherited autosomal recessive diseases. It also highlights the importance of the early diagnosis and management of these diseases to prevent serious complications, such as recurrent pancreatitis in the case of familial hyperchylomicronemia.
Collapse
Affiliation(s)
- Carine Ayoub
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Yara Azar
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Dina Maddah
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Youmna Ghaleb
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Sandy Elbitar
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Yara Abou-Khalil
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Selim Jambart
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Mathilde Varret
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Catherine Boileau
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
- Genetic Department, AP-HP, Hôpital Bichat, Paris, France
| | - Petra El Khoury
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Faculty of Pharmacy, Pôle Technologie- Santé, Saint Joseph University of Beirut, Beirut, Lebanon
- Laboratory for Vascular Translational Science (LVTS), INSERM, Paris Cité University and Sorbonne Paris Nord University, Paris, France
- *Correspondence: Marianne Abifadel,
| |
Collapse
|
10
|
Childebayeva A, Rohrlach AB, Barquera R, Rivollat M, Aron F, Szolek A, Kohlbacher O, Nicklisch N, Alt KW, Gronenborn D, Meller H, Friederich S, Prüfer K, Deguilloux MF, Krause J, Haak W. Population Genetics and Signatures of Selection in Early Neolithic European Farmers. Mol Biol Evol 2022; 39:6586604. [PMID: 35578825 PMCID: PMC9171004 DOI: 10.1093/molbev/msac108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human expansion in the course of the Neolithic transition in western Eurasia has been one of the major topics in ancient DNA research in the last 10 years. Multiple studies have shown that the spread of agriculture and animal husbandry from the Near East across Europe was accompanied by large-scale human expansions. Moreover, changes in subsistence and migration associated with the Neolithic transition have been hypothesized to involve genetic adaptation. Here, we present high quality genome-wide data from the Linear Pottery Culture site Derenburg-Meerenstieg II (DER) (N = 32 individuals) in Central Germany. Population genetic analyses show that the DER individuals carried predominantly Anatolian Neolithic-like ancestry and a very limited degree of local hunter-gatherer admixture, similar to other early European farmers. Increasing the Linear Pottery culture cohort size to ∼100 individuals allowed us to perform various frequency- and haplotype-based analyses to investigate signatures of selection associated with changes following the adoption of the Neolithic lifestyle. In addition, we developed a new method called Admixture-informed Maximum-likelihood Estimation for Selection Scans that allowed us test for selection signatures in an admixture-aware fashion. Focusing on the intersection of results from these selection scans, we identified various loci associated with immune function (JAK1, HLA-DQB1) and metabolism (LMF1, LEPR, SORBS1), as well as skin color (SLC24A5, CD82) and folate synthesis (MTHFR, NBPF3). Our findings shed light on the evolutionary pressures, such as infectious disease and changing diet, that were faced by the early farmers of Western Eurasia.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Adam Benjamin Rohrlach
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia
| | - Rodrigo Barquera
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Maïté Rivollat
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Université de Bordeaux, CNRS, PACEA-UMR 5199, 33615 Pessac, France
| | - Franziska Aron
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany
| | - András Szolek
- Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany.,Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Nicole Nicklisch
- Center of Natural and Cultural Human History, Danube Private University, Krems-Stein, Austria.,State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Kurt W Alt
- Center of Natural and Cultural Human History, Danube Private University, Krems-Stein, Austria.,State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Detlef Gronenborn
- Römisch-Germanisches Zentralmuseum, Leibniz Research Institute for Archaeology, Ernst-Ludwig-Platz 2, 55116 Mainz, Germany
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Kay Prüfer
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | | | - Johannes Krause
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Wolfgang Haak
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| |
Collapse
|
11
|
Huang JK, Lee HC. Emerging Evidence of Pathological Roles of Very-Low-Density Lipoprotein (VLDL). Int J Mol Sci 2022; 23:4300. [PMID: 35457118 PMCID: PMC9031540 DOI: 10.3390/ijms23084300] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Embraced with apolipoproteins (Apo) B and Apo E, triglyceride-enriched very-low-density lipoprotein (VLDL) is secreted by the liver into circulation, mainly during post-meal hours. Here, we present a brief review of the physiological role of VLDL and a systemic review of the emerging evidence supporting its pathological roles. VLDL promotes atherosclerosis in metabolic syndrome (MetS). VLDL isolated from subjects with MetS exhibits cytotoxicity to atrial myocytes, induces atrial myopathy, and promotes vulnerability to atrial fibrillation. VLDL levels are affected by a number of endocrinological disorders and can be increased by therapeutic supplementation with cortisol, growth hormone, progesterone, and estrogen. VLDL promotes aldosterone secretion, which contributes to hypertension. VLDL induces neuroinflammation, leading to cognitive dysfunction. VLDL levels are also correlated with chronic kidney disease, autoimmune disorders, and some dermatological diseases. The extra-hepatic secretion of VLDL derived from intestinal dysbiosis is suggested to be harmful. Emerging evidence suggests disturbed VLDL metabolism in sleep disorders and in cancer development and progression. In addition to VLDL, the VLDL receptor (VLDLR) may affect both VLDL metabolism and carcinogenesis. Overall, emerging evidence supports the pathological roles of VLDL in multi-organ diseases. To better understand the fundamental mechanisms of how VLDL promotes disease development, elucidation of the quality control of VLDL and of the regulation and signaling of VLDLR should be indispensable. With this, successful VLDL-targeted therapies can be discovered in the future.
Collapse
Affiliation(s)
- Jih-Kai Huang
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Hsiang-Chun Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Lipid Science and Aging Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
- Graduate Institute of Animal Vaccine Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
12
|
Abstract
Apolipoproteins are important structural components of plasma lipoproteins that influence vascular biology and atherosclerotic disease pathophysiology by regulating lipoprotein metabolism. Clinically important apolipoproteins related to lipid metabolism and atherogenesis include apolipoprotein B-100, apolipoprotein B-48, apolipoprotein A-I, apolipoprotein C-II, apolipoprotein C-III, apolipoprotein E and apolipoprotein(a). Apolipoprotein B-100 is the major structural component of VLDL, IDL, LDL and lipoprotein(a). Apolipoprotein B-48 is a truncated isoform of apolipoprotein B-100 that forms the backbone of chylomicrons. Apolipoprotein A-I provides the scaffolding for lipidation of HDL and has an important role in reverse cholesterol transport. Apolipoproteins C-II, apolipoprotein C-III and apolipoprotein E are involved in triglyceride-rich lipoprotein metabolism. Apolipoprotein(a) covalently binds to apolipoprotein B-100 to form lipoprotein(a). In this Review, we discuss the mechanisms by which these apolipoproteins regulate lipoprotein metabolism and thereby influence vascular biology and atherosclerotic disease. Advances in the understanding of apolipoprotein biology and their translation into therapeutic agents to reduce the risk of cardiovascular disease are also highlighted.
Collapse
|
13
|
Paragh G, Németh Á, Harangi M, Banach M, Fülöp P. Causes, clinical findings and therapeutic options in chylomicronemia syndrome, a special form of hypertriglyceridemia. Lipids Health Dis 2022; 21:21. [PMID: 35144640 PMCID: PMC8832680 DOI: 10.1186/s12944-022-01631-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/30/2022] [Indexed: 02/07/2023] Open
Abstract
The prevalence of hypertriglyceridemia has been increasing worldwide. Attention is drawn to the fact that the frequency of a special hypertriglyceridemia entity, named chylomicronemia syndrome, is variable among its different forms. The monogenic form, termed familial chylomicronemia syndrome, is rare, occuring in 1 in every 1 million persons. On the other hand, the prevalence of the polygenic form of chylomicronemia syndrome is around 1:600. On the basis of the genetical alterations, other factors, such as obesity, alcohol consumption, uncontrolled diabetes mellitus and certain drugs may significantly contribute to the development of the multifactorial form. In this review, we aimed to highlight the recent findings about the clinical and laboratory features, differential diagnosis, as well as the epidemiology of the monogenic and polygenic forms of chylomicronemias. Regarding the therapy, differentiation between the two types of the chylomicronemia syndrome is essential, as well. Thus, proper treatment options of chylomicronemia and hypertriglyceridemia will be also summarized, emphasizing the newest therapeutic approaches, as novel agents may offer solution for the effective treatment of these conditions.
Collapse
Affiliation(s)
- György Paragh
- Division of Metabolic Diseases, Department of Internal Medicine, University of Debrecen Faculty of Medicine, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
| | - Ákos Németh
- Division of Metabolic Diseases, Department of Internal Medicine, University of Debrecen Faculty of Medicine, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Mariann Harangi
- Division of Metabolic Diseases, Department of Internal Medicine, University of Debrecen Faculty of Medicine, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Péter Fülöp
- Division of Metabolic Diseases, Department of Internal Medicine, University of Debrecen Faculty of Medicine, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Over the last two decades, evolving discoveries around angiopoietin-like (ANGPTL) proteins, particularly ANGPTL3, ANGPTL4, and ANGPTL8, have generated significant interest in understanding their roles in fatty acid (FA) metabolism. Until recently, exactly how this protein family regulates lipoprotein lipase (LPL) in a tissue-specific manner to control FA partitioning has remained elusive. This review summarizes the latest insights into mechanisms by which ANGPTL3/4/8 proteins regulate postprandial FA partitioning. RECENT FINDINGS Accumulating evidence suggests that ANGPTL8 is an insulin-responsive protein that regulates ANGPTL3 and ANGPTL4 by forming complexes with them to increase or decrease markedly their respective LPL-inhibitory activities. After feeding, when insulin levels are high, ANGPTL3/8 secreted by hepatocytes acts in an endocrine manner to inhibit LPL in skeletal muscle, whereas ANGPTL4/8 secreted by adipocytes acts locally to preserve adipose tissue LPL activity, thus shifting FA toward the fat for storage. Insulin also decreases hepatic secretion of the endogenous ANGPTL3/8 inhibitor, apolipoprotein A5 (ApoA5), to accentuate ANGPTL3/8-mediated LPL inhibition in skeletal muscle. SUMMARY The ANGPTL3/4/8 protein family and ApoA5 play critical roles in directing FA toward adipose tissue postprandially. Selective targeting of these proteins holds significant promise for the treatment of dyslipidemias, metabolic syndrome, and their related comorbidities.
Collapse
Affiliation(s)
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
15
|
Garay-García K, Gaete PV, Mendivil CO. Severe hypertriglyceridemia secondary to splice-site and missense variants in LMF1 in three patients from Ecuador. J Clin Lipidol 2022; 16:277-280. [DOI: 10.1016/j.jacl.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
|
16
|
Ashraf AP, Sunil B, Bamba V, Breidbart E, Brar PC, Chung S, Gupta A, Khokhar A, Kumar S, Lightbourne M, Kamboj MK, Miller RS, Patni N, Raman V, Shah AS, Wilson DP, Kohn B. Case Studies in Pediatric Lipid Disorders and Their Management. J Clin Endocrinol Metab 2021; 106:3605-3620. [PMID: 34363474 PMCID: PMC8787854 DOI: 10.1210/clinem/dgab568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Identification of modifiable risk factors, including genetic and acquired disorders of lipid and lipoprotein metabolism, is increasingly recognized as an opportunity to prevent premature cardiovascular disease (CVD) in at-risk youth. Pediatric endocrinologists are at the forefront of this emerging public health concern and can be instrumental in beginning early interventions to prevent premature CVD-related events during adulthood. AIM In this article, we use informative case presentations to provide practical approaches to the management of pediatric dyslipidemia. CASES We present 3 scenarios that are commonly encountered in clinical practice: isolated elevation of low-density lipoprotein cholesterol (LDL-C), combined dyslipidemia, and severe hypertriglyceridemia. Treatment with statin is indicated when the LDL-C is ≥190 mg/dL (4.9 mmol/L) in children ≥10 years of age. For LDL-C levels between 130 and 189 mg/dL (3.4-4.89 mmol/L) despite dietary and lifestyle changes, the presence of additional risk factors and comorbid conditions would favor statin therapy. In the case of combined dyslipidemia, the primary treatment target is LDL-C ≤130 mg/dL (3.4 mmol/L) and the secondary target non-high-density lipoprotein cholesterol <145 mg/dL (3.7 mmol/L). If the triglyceride is ≥400 mg/dL (4.5 mmol/L), prescription omega-3 fatty acids and fibrates are considered. In the case of triglyceride >1000 mg/dL (11.3 mmol/L), dietary fat restriction remains the cornerstone of therapy, even though the landscape of medications is changing. CONCLUSION Gene variants, acquired conditions, or both are responsible for dyslipidemia during childhood. Extreme elevations of triglycerides can lead to pancreatitis. Early identification and management of dyslipidemia and cardiovascular risk factors is extremely important.
Collapse
Affiliation(s)
- Ambika P Ashraf
- Division of Pediatric Endocrinology & Diabetes, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bhuvana Sunil
- Department of Pediatrics, Division of Pediatric Endocrinology & Diabetes, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Vaneeta Bamba
- Department of Pediatrics, Division of Endocrinology, Children’s Hospital of Philadelphia, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Breidbart
- Department of Pediatrics, Division Pediatric Endocrinology and Diabetes NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Preneet Cheema Brar
- Department of Pediatrics, Division Pediatric Endocrinology and Diabetes, NYU Langone Medical Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Stephanie Chung
- Section on Pediatric Diabetes, Obesity, and Metabolism, National Institutes of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Anshu Gupta
- Department of Pediatrics, Children’s Hospital of Richmond at Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Aditi Khokhar
- Department of Pediatrics, Rutgers New Jersey Medical School, NJ 07103, USA
| | - Seema Kumar
- Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Marissa Lightbourne
- Pediatric and Adult Endocrinology Faculty, NICHD, National Institutes of Health, Bethesda, MD 20814, USA
| | - Manmohan K Kamboj
- Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH 43205, USA
| | - Ryan S Miller
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21093, USA
| | - Nivedita Patni
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vandana Raman
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA
| | - Amy S Shah
- Department of Pediatrics, Adolescent Type 2 Diabetes Program, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Don P Wilson
- Cardiovascular Health and Risk Prevention, Pediatric Endocrinology and Diabetes, Cook Children’s Medical Center, Fort Worth, TX 76104, USA
| | - Brenda Kohn
- Division Pediatric Endocrinology and DiabetesNYU Langone Medical Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
17
|
Longley MJ, Lee J, Jung J, Lohoff FW. Epigenetics of alcohol use disorder-A review of recent advances in DNA methylation profiling. Addict Biol 2021; 26:e13006. [PMID: 33538087 PMCID: PMC8596445 DOI: 10.1111/adb.13006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) is a major contributor to morbidity and mortality worldwide. Although there is a heritable component, the etiology of AUD is complex and can involve environmental exposures like trauma and can be associated with many different patterns of alcohol consumption. Epigenetic modifications, which can mediate the influence of genetic variants and environmental variables on gene expression, have emerged as an important area of AUD research. Over the past decade, the number of studies investigating AUD and DNA methylation, a form of epigenetic modification, has grown rapidly. Yet we are still far from understanding how DNA methylation contributes to or reflects aspects of AUD. In this paper, we reviewed studies of DNA methylation and AUD and discussed how the field has evolved. We found that global DNA and candidate DNA methylation studies did not produce replicable results. To assess whether findings of epigenome-wide association studies (EWAS) were replicated, we aggregated significant findings across studies and identified 184 genes and 15 gene ontological pathways that were differentially methylated in at least two studies and four genes and three gene ontological pathways that were differentially methylated in three studies. These genes and pathways repeatedly found enrichment of immune processes, which is in line with recent developments suggesting that the immune system may be altered in AUD. Finally, we assess the current limitations of studies of DNA methylation and AUD and make recommendations on how to design future studies to resolve outstanding questions.
Collapse
Affiliation(s)
- Martha J. Longley
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Jisoo Lee
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental TherapeuticsNational Institute on Alcohol Abuse and Alcoholism, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
18
|
Charrière S. Hypertriglycéridémies majeures : diagnostic et prise en charge. NUTR CLIN METAB 2021. [DOI: 10.1016/j.nupar.2020.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Wu SA, Kersten S, Qi L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol Metab 2021; 32:48-61. [PMID: 33277156 PMCID: PMC8627828 DOI: 10.1016/j.tem.2020.11.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Lipoprotein lipase (LPL) is one of the most important factors in systemic lipid partitioning and metabolism. It mediates intravascular hydrolysis of triglycerides packed in lipoproteins such as chylomicrons and very-low-density lipoprotein (VLDL). Since its initial discovery in the 1940s, its biology and pathophysiological significance have been well characterized. Nonetheless, several studies in the past decade, with recent delineation of LPL crystal structure and the discovery of several new regulators such as angiopoietin-like proteins (ANGPTLs), glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), lipase maturation factor 1 (LMF1) and Sel-1 suppressor of Lin-12-like 1 (SEL1L), have completely transformed our understanding of LPL biology.
Collapse
Affiliation(s)
- Shuangcheng Alivia Wu
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48105, USA.
| | - Sander Kersten
- Nutrition Metabolism and Genomics group, Wageningen University, Wageningen, The Netherlands
| | - Ling Qi
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI48105, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
20
|
Tripathi M, Wong A, Solomon V, Yassine HN. THE PREVALENCE OF PROBABLE FAMILIAL CHYLOMICRONEMIA SYNDROME IN A SOUTHERN CALIFORNIA POPULATION. Endocr Pract 2020; 27:71-76. [PMID: 33475504 DOI: 10.4158/ep-2020-0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To estimate the prevalence of probable familial chylomicronemia syndrome (FCS) in a major Southern California Academic Center as well as to provide a systematic review of past FCS studies and management recommendations. METHODS Electronic medical records were queried based on single fasting plasma triglyceride (TG) levels of ≥880 mg/dL and at least 1 episode of acute pancreatitis. After the exclusion of secondary causes (diabetes, alcohol misuse, gallbladder disease, chronic kidney disease, uncontrolled hypothyroidism, estrogen, and drug use) and responses to lipid-lowering treatment, probable patients with FCS were identified. A systematic review of all published literature on the prevalence and management guidelines for FCS was then presented and discussed. RESULTS Out of 7 699 288 charts queried, 138 patients with TG levels of ≥880 mg/dL and documented evidence of at least 1 episode of acute pancreatitis were identified. Nine patients did not have any documented secondary causes of chylomicronemia. Four of the 9 patients had >20% decrease in TG levels after lipid-lowering treatment, 2 patients were not responsive to lipid-lowering medication, and data on lipid-lowering medications were missing in 3 patients. CONCLUSION Our study estimates the prevalence of probable FCS at a range of 0.26 to 0.66 per million. Using the recommended criteria, probable FCS cases can be identified to allow early diagnosis and management.
Collapse
Affiliation(s)
- Mrinali Tripathi
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - April Wong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Victoria Solomon
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
21
|
Serveaux Dancer M, Marmontel O, Wozny AS, Marcais C, Mahl M, Dumont S, Simonet T, Moulin P, Di Filippo M, Charrière S. Involvement of a homozygous exon 6 deletion of LMF1 gene in intermittent severe hypertriglyceridemia. J Clin Lipidol 2020; 14:756-761. [PMID: 33039347 DOI: 10.1016/j.jacl.2020.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 11/16/2022]
Abstract
Severe hypertriglyceridemia (HTG), characterized by triglycerides (TG) permanently over 10 mmol/L, may correspond to familial chylomicronemia syndrome (FCS), a rare disorder. However, hypertriglyceridemic patients more often present multifactorial chylomicronemia syndrome (MCS), characterized by highly variable TG. A few nonsense variants of LMF1 gene were reported in literature in FCS patients. In this study, we described a woman with an intermittent severe HTG. NGS analysis and the sequencing of a long range PCR product revealed a homozygous deletion of 6507 base pairs in LMF1 gene, c.730-1528_898-3417del, removing exon 6, predicted to create an in-frame deletion of 56 amino acids, p.(Thr244_Gln299del). Despite an exon 6 homozygous deletion of LMF1, the patient's highly variable lipid phenotype was suggestive of MCS diagnosis.
Collapse
Affiliation(s)
- Marine Serveaux Dancer
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Centre de Biologie Sud, Laboratoire de Biochimie Moléculaire et Métabolique, Pierre-Bénite Cedex, France
| | - Oriane Marmontel
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Oullins Cedex, France; Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Biochimie et Biologie Moléculaire Grand Est, Bron Cedex, France
| | - Anne-Sophie Wozny
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Centre de Biologie Sud, Laboratoire de Biochimie Moléculaire et Métabolique, Pierre-Bénite Cedex, France
| | - Christophe Marcais
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Centre de Biologie Sud, Laboratoire de Biochimie Moléculaire et Métabolique, Pierre-Bénite Cedex, France; INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Oullins Cedex, France
| | - Muriel Mahl
- Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Centre de Biologie Sud, Laboratoire de Biochimie Moléculaire et Métabolique, Pierre-Bénite Cedex, France
| | - Sabrina Dumont
- Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Biochimie et Biologie Moléculaire Grand Est, Bron Cedex, France
| | - Thomas Simonet
- Hospices Civils de Lyon, Cellule BioInformatique, Bron Cedex, France
| | - Philippe Moulin
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Oullins Cedex, France; Hospices Civils de Lyon, Hôpital Louis Pradel, Fédération d'endocrinologie, Maladies Métaboliques, Diabète et Nutrition, Bron Cedex, France
| | - Mathilde Di Filippo
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Oullins Cedex, France; Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Biochimie et Biologie Moléculaire Grand Est, Bron Cedex, France
| | - Sybil Charrière
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Oullins Cedex, France; Hospices Civils de Lyon, Hôpital Louis Pradel, Fédération d'endocrinologie, Maladies Métaboliques, Diabète et Nutrition, Bron Cedex, France.
| |
Collapse
|
22
|
Kheirkhah Rahimabad P, Arshad SH, Holloway JW, Mukherjee N, Hedman A, Gruzieva O, Andolf E, Kere J, Pershagen G, Almqvist C, Jiang Y, Chen S, Karmaus W. Association of Maternal DNA Methylation and Offspring Birthweight. Reprod Sci 2020; 28:218-227. [PMID: 32754889 DOI: 10.1007/s43032-020-00281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2025]
Abstract
This study aims to evaluate the association of maternal DNA methylation (DNAm) during pregnancy and offspring birthweight. One hundred twenty-two newborn-mother dyads from the Isle of Wight (IOW) cohort were studied to identify differentially methylated cytosine-phosphate-guanine sites (CpGs) in maternal blood associated with offspring birthweight. Peripheral blood samples were drawn from mothers at 22-38 weeks of pregnancy for epigenome-wide DNAm assessment using the Illumina Infinium HumanMethylation450K array. Candidate CpGs were identified using a course of 100 repetitions of a training and testing process with robust regressions. CpGs were considered informative if they showed statistical significance in at least 80% of training and testing samples. Linear mixed models adjusting for covariates were applied to further assess the selected CpGs. The Swedish Born Into Life cohort was used to replicate our findings (n = 33). Eight candidate CpGs corresponding to the genes LMF1, KIF9, KLHL18, DAB1, VAX2, CD207, SCT, SCYL2, DEPDC4, NECAP1, and SFRS3 in mothers were identified as statistically significantly associated with their children's birthweight in the IOW cohort and confirmed by linear mixed models after adjusting for covariates. Of these, in the replication cohort, three CpGs (cg01816814, cg23153661, and cg17722033 with p values = 0.06, 0.175, and 0.166, respectively) associated with four genes (LMF1, VAX2, CD207, and NECAP1) were marginally significant. Biological pathway analyses of three of the genes revealed cellular processes such as endocytosis (possibly sustaining an adequate maternal-fetal interface) and metabolic processes such as regulation of lipoprotein lipase activity (involved in providing substrates for the developing fetus). Our results contribute to an epigenetic understanding of maternal involvement in offspring birthweight. Measuring DNAm levels of maternal CpGs may in the future serve as a diagnostic tool recognizing mothers at risk for pregnancies ending with altered birthweights.
Collapse
Affiliation(s)
- Parnian Kheirkhah Rahimabad
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA.
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, England, UK
| | - John W Holloway
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, England, UK.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nandini Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Anna Hedman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Ellika Andolf
- Department of Clinical Sciences, Danderyd Hospital, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Molecular Neurology Research Program, University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Goran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Unit of Pediatric Allergy and Pulmonology at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| | - Su Chen
- Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN, USA
| |
Collapse
|
23
|
Unfolding of monomeric lipoprotein lipase by ANGPTL4: Insight into the regulation of plasma triglyceride metabolism. Proc Natl Acad Sci U S A 2020; 117:4337-4346. [PMID: 32034094 DOI: 10.1073/pnas.1920202117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The binding of lipoprotein lipase (LPL) to GPIHBP1 focuses the intravascular hydrolysis of triglyceride-rich lipoproteins on the surface of capillary endothelial cells. This process provides essential lipid nutrients for vital tissues (e.g., heart, skeletal muscle, and adipose tissue). Deficiencies in either LPL or GPIHBP1 impair triglyceride hydrolysis, resulting in severe hypertriglyceridemia. The activity of LPL in tissues is regulated by angiopoietin-like proteins 3, 4, and 8 (ANGPTL). Dogma has held that these ANGPTLs inactivate LPL by converting LPL homodimers into monomers, rendering them highly susceptible to spontaneous unfolding and loss of enzymatic activity. Here, we show that binding of an LPL-specific monoclonal antibody (5D2) to the tryptophan-rich lipid-binding loop in the carboxyl terminus of LPL prevents homodimer formation and forces LPL into a monomeric state. Of note, 5D2-bound LPL monomers are as stable as LPL homodimers (i.e., they are not more prone to unfolding), but they remain highly susceptible to ANGPTL4-catalyzed unfolding and inactivation. Binding of GPIHBP1 to LPL alone or to 5D2-bound LPL counteracts ANGPTL4-mediated unfolding of LPL. In conclusion, ANGPTL4-mediated inactivation of LPL, accomplished by catalyzing the unfolding of LPL, does not require the conversion of LPL homodimers into monomers. Thus, our findings necessitate changes to long-standing dogma on mechanisms for LPL inactivation by ANGPTL proteins. At the same time, our findings align well with insights into LPL function from the recent crystal structure of the LPL•GPIHBP1 complex.
Collapse
|
24
|
Hegele RA, Borén J, Ginsberg HN, Arca M, Averna M, Binder CJ, Calabresi L, Chapman MJ, Cuchel M, von Eckardstein A, Frikke-Schmidt R, Gaudet D, Hovingh GK, Kronenberg F, Lütjohann D, Parhofer KG, Raal FJ, Ray KK, Remaley AT, Stock JK, Stroes ES, Tokgözoğlu L, Catapano AL. Rare dyslipidaemias, from phenotype to genotype to management: a European Atherosclerosis Society task force consensus statement. Lancet Diabetes Endocrinol 2020; 8:50-67. [PMID: 31582260 DOI: 10.1016/s2213-8587(19)30264-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 12/18/2022]
Abstract
Genome sequencing and gene-based therapies appear poised to advance the management of rare lipoprotein disorders and associated dyslipidaemias. However, in practice, underdiagnosis and undertreatment of these disorders are common, in large part due to interindividual variability in the genetic causes and phenotypic presentation of these conditions. To address these challenges, the European Atherosclerosis Society formed a task force to provide practical clinical guidance focusing on patients with extreme concentrations (either low or high) of plasma low-density lipoprotein cholesterol, triglycerides, or high-density lipoprotein cholesterol. The task force also recognises the scarcity of quality information regarding the prevalence and outcomes of these conditions. Collaborative registries are needed to improve health policy for the care of patients with rare dyslipidaemias.
Collapse
Affiliation(s)
- Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Marcello Arca
- Department of Internal Medicine and Allied Sciences, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome, Italy
| | - Maurizio Averna
- Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialities, University of Palermo, Palermo, Italy
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Laura Calabresi
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M John Chapman
- National Institute for Health and Medical Research (INSERM), Sorbonne University and Pitié-Salpétrière University Hospital, Paris, France
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel Gaudet
- Clinical Lipidology and Rare Lipid Disorders Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, Montreal, QC, Canada; ECOGENE, Clinical and Translational Research Center, Chicoutimi, QC, Canada; Lipid Clinic, Chicoutimi Hospital, Chicoutimi, QC, Canada
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Klaus G Parhofer
- Medizinische Klinik IV-Grosshadern, University of Munich, Munich, Germany
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jane K Stock
- European Atherosclerosis Society, Gothenburg, Sweden
| | - Erik S Stroes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, Netherlands
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
25
|
Mitochondrial function in immature bovine oocytes is improved by an increase of cellular cyclic AMP. Sci Rep 2019; 9:5167. [PMID: 30914704 PMCID: PMC6435665 DOI: 10.1038/s41598-019-41610-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 03/11/2019] [Indexed: 11/08/2022] Open
Abstract
Although in vitro maturation (IVM) of oocytes is important for assisted reproduction, the rate of development of embryos from IVM oocytes is lower than from their in vivo counterparts. It has been shown that an artificial increase of intracellular cAMP before culture significantly improves oocyte developmental competence in cattle and mice. Here, we revealed that forskolin and 3-isobutyl-1-methylxanthine treatment of prophase-stage oocytes induced the expression of genes required for glycolysis, fatty acid degradation, and the mitochondrial electron transport system and improved mitochondrial functions and ATP levels in oocytes without involving nuclear maturation. We propose the existence of a comprehensive energy-supply system in oocytes under follicle-stimulating hormone stimulation as a potential explanation of how oocytes acquire developmental competence.
Collapse
|
26
|
Surendran RP, Udayyapan SD, Clemente-Postigo M, Havik SR, Schimmel AWM, Tinahones F, Nieuwdorp M, Dallinga-Thie GM. Decreased GPIHBP1 protein levels in visceral adipose tissue partly underlie the hypertriglyceridemic phenotype in insulin resistance. PLoS One 2018; 13:e0205858. [PMID: 30408040 PMCID: PMC6224034 DOI: 10.1371/journal.pone.0205858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/02/2018] [Indexed: 01/29/2023] Open
Abstract
GPIHBP1 is a protein localized at the endothelial cell surface that facilitates triglyceride (TG) lipolysis by binding lipoprotein lipase (LPL). Whether Glycosyl Phosphatidyl Inositol high density lipoprotein binding protein 1 (GPIHBP1) function is impaired and may underlie the hyperTG phenotype observed in type 2 diabetes is not yet established. To elucidate the mechanism underlying impaired TG homeostasis in insulin resistance state we studied the effect of insulin on GPIHBP1 protein expression in human microvascular endothelial cells (HMVEC) under flow conditions. Next, we assessed visceral adipose tissue GPIHBP1 protein expression in type 2 diabetes Leprdb/db mouse model as well as in subjects with ranging levels of insulin resistance. We report that insulin reduces the expression of GPIHBP1 protein in HMVECs. Furthermore, GPIHBP1 protein expression in visceral adipose tissue in Leprdb/db mice is significantly reduced as is the active monomeric form of GPIHBP1 as compared to Leprdb/m mice. A similar decrease in GPIHBP1 protein was observed in subjects with increased body weight. GPIHBP1 protein expression was negatively associated with insulin and HOMA-IR. In conclusion, our data suggest that decreased GPIHBP1 availability in insulin resistant state may hamper peripheral lipolysis capacity.
Collapse
Affiliation(s)
- R. Preethi Surendran
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Shanti D. Udayyapan
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Mercedes Clemente-Postigo
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Malaga, Malaga, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CB06/03), Barcelona, Spain
| | - Stefan R. Havik
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Alinda W. M. Schimmel
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Fransisco Tinahones
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Malaga, Malaga, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CB06/03), Barcelona, Spain
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Geesje M. Dallinga-Thie
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Malaga, Malaga, Spain
- * E-mail:
| |
Collapse
|
27
|
Intensive genetic analysis for Chinese patients with very high triglyceride levels: Relations of mutations to triglyceride levels and acute pancreatitis. EBioMedicine 2018; 38:171-177. [PMID: 30420299 PMCID: PMC6306308 DOI: 10.1016/j.ebiom.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Severe hypertriglyceridemia (SHTG, TG ≥5·65 mmol/L), a disease, usually resulting from a combination of genetic and environmental factors, may increase the risk of acute pancreatitis (AP). However, previous genetic analysis has been limited by lacking of related observation of gene to AP. Methods The expanding genetic sequencing including 15 TG-related genes (LPL, LMF1, APOC2, GPIHBP1, GCKR, ANGPTL3, APOB, APOA1-A4-C3-A5, TRIB1, CETP, APOE, and LIPI) was performed within 103 patients who were diagnosed with primary SHTG and 46 age- and sex-matched normal controls. Findings Rare variants were found in 46 patients and 12 controls. The detection rate of rare variants in SHTG group increased by 19·5% via intensive genetic analysis. Presence of rare variants in LPL, APOA5, five LPL molecular regulating genes and all the sequenced genes were found to be associated with SHTG (p < 0·05). Of noted, patients with history of AP presented higher frequency of rare variants in LPL gene and all the LPL molecular regulating genes (27·8% vs.4·7% and 50·0% vs. 20·0%). The risk scores for SHTG determined by common TG-associated variants were increased in subgroups according to the extent of SHTG when they were compared with that of controls. Finally, patients without rare variants within SHTG group also presented higher risk scores than control group (p < 0·05). Interpretation Expanding genetic analysis had a higher detection rate of rare variants in patients with SHTG. Rare variants in LPL and its molecular regulating genes could increase the risk of AP among Chinese patients with SHTG. Fund This work was partially supported by the Capital Health Development Fund (201614035) and CAMS. Major Collaborative Innovation Project (2016-I2M-1-011) awarded to Dr. Jian-Jun Li, MD, PhD.
Collapse
|
28
|
Ariza MJ, Rioja J, Ibarretxe D, Camacho A, Díaz-Díaz JL, Mangas A, Carbayo-Herencia JA, Ruiz-Ocaña P, Lamíquiz-Moneo I, Mosquera D, Sáenz P, Masana L, Muñiz-Grijalvo O, Pérez-Calahorra S, Valdivielso P, Suárez Tembra M, Iglesias GP, Carbayo Herencia J, Guerrero Buitrago C, Vila L, Morales Coca C, Llargués Rocabruna E, Perea Castillo V, Pedro-Botet J, Climent E, Mauri Pont M, Pinto X, Ortega Martínez de la Victoria E, Amor J, Zambón Rados D, Blanco Vaca F, Ramiro Lozano J, Fuentes Jiménez F, Soler I, Ferrer C, Zamora Cervantes A, Vila Belmonte A, Novoa Mogollón F, Sanchez-Hernández R, Expósito Montesdeoca A, Romero Jiménez M, González García M, Bueno Díez M, Brea Hernando A, Lahoz C, Mostaza Prieto J, Millán Núñez-Cortés J, Reinares García L, Blanco Echevarría A, Ariza Corbo MJ, Rioja Villodres J, Sánchez-Chaparro M, Jansen Chaparro S, Sáenz Aranzubía P, Martorell Mateu E, Almagro Múgica F, Muñiz Grijalvo O, Masana Martín L, Plana Gil N, Ibarretxe Gerediaga D, Rodríguez Borjabad C, Zabala López S, Hernández Mijares A, Ascaso Gimilio J, Pérez García L, Civeira Murillo F, Pérez-Calahorra S, Lamiquiz-Moneo I, Mateo Gallego R, Marco Benedí V, Ferrando Vela J. Molecular basis of the familial chylomicronemia syndrome in patients from the National Dyslipidemia Registry of the Spanish Atherosclerosis Society. J Clin Lipidol 2018; 12:1482-1492.e3. [DOI: 10.1016/j.jacl.2018.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/09/2018] [Accepted: 07/24/2018] [Indexed: 01/16/2023]
|
29
|
Péterfy M, Bedoya C, Giacobbe C, Pagano C, Gentile M, Rubba P, Fortunato G, Di Taranto MD. Characterization of two novel pathogenic variants at compound heterozygous status in lipase maturation factor 1 gene causing severe hypertriglyceridemia. J Clin Lipidol 2018; 12:1253-1259. [PMID: 30172716 DOI: 10.1016/j.jacl.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/07/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Severe hypertriglyceridemia is a rare disease characterized by triglyceride levels higher than 1000 mg/dL (11.3 mmol/L) and acute pancreatitis. The disease is caused by pathogenic variants in genes encoding lipoprotein lipase (LPL), apolipoprotein A5, apolipoprotein C2, glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1, and lipase maturation factor 1 (LMF1). OBJECTIVE We aim to identify the genetic cause of severe hypertriglyceridemia and characterize the new variants in a patient with severe hypertriglyceridemia. METHODS The proband was a male showing severe hypertriglyceridemia (triglycerides 1416 mg/dL, 16.0 mmol/L); proband's relatives were also screened. Genetic screening included direct sequencing of the above genes and identification of large rearrangements in the LPL gene. Functional characterization of mutant LMF1 variants was performed by complementing LPL maturation in transfected LMF1-deficient mouse fibroblasts. RESULTS The proband and his affected brother were compound heterozygotes for variants in the LMF1 gene never identified as causative of severe hypertriglyceridemia c.[157delC;1351C>T];[410C>T], p.[(Arg53Glyfs*5)];[(Ser137Leu)]. Functional analysis demonstrated that the p.(Arg53Glyfs*5) truncation completely abolished and the p.(Ser137Leu) missense variant dramatically diminished the lipase maturation activity of LMF1. CONCLUSIONS In addition to a novel truncating variant, we describe for the first time a missense variant functionally demonstrated affecting the lipase maturation function of LMF1. This is the first case in which compound heterozygous variants in LMF1 were functionally demonstrated as causative of severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Miklós Péterfy
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Candy Bedoya
- Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Carmen Pagano
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Marco Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Paolo Rubba
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy
| | - Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy; CEINGE S.C.a r.l. Biotecnologie Avanzate, Napoli, Italy.
| |
Collapse
|
30
|
Abraham E, Rousseaux S, Agier L, Giorgis-Allemand L, Tost J, Galineau J, Hulin A, Siroux V, Vaiman D, Charles MA, Heude B, Forhan A, Schwartz J, Chuffart F, Bourova-Flin E, Khochbin S, Slama R, Lepeule J. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. ENVIRONMENT INTERNATIONAL 2018; 118:334-347. [PMID: 29935799 DOI: 10.1016/j.envint.2018.05.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Air pollution exposure represents a major health threat to the developing foetus. DNA methylation is one of the most well-known molecular determinants of the epigenetic status of cells. Blood DNA methylation has been proven sensitive to air pollutants, but the molecular impact of air pollution on new-borns has so far received little attention. OBJECTIVES We investigated whether nitrogen dioxide (NO2), particulate matter (PM10), temperature and humidity during pregnancy are associated with differences in placental DNA methylation levels. METHODS Whole-genome DNA-methylation was measured using the Illumina's Infinium HumanMethylation450 BeadChip in the placenta of 668 newborns from the EDEN cohort. We designed an original strategy using a priori biological information to focus on candidate genes with a specific expression pattern in placenta (active or silent) combined with an agnostic epigenome-wide association study (EWAS). We used robust linear regression to identify CpGs and differentially methylated regions (DMR) associated with each exposure during short- and long-term time-windows. RESULTS The candidate genes approach identified nine CpGs mapping to 9 genes associated with prenatal NO2 and PM10 exposure [false discovery rate (FDR) p < 0.05]. Among these, the methylation level of 2 CpGs located in ADORA2B remained significantly associated with NO2 exposure during the 2nd trimester and whole pregnancy in the EWAS (FDR p < 0.05). EWAS further revealed associations between the environmental exposures under study and variations of DNA methylation of 4 other CpGs. We further identified 27 DMRs significantly (FDR p < 0.05) associated with air pollutants exposure and 13 DMRs with meteorological conditions. CONCLUSIONS The methylation of ADORA2B, a gene whose expression was previously associated with hypoxia and pre-eclampsia, was consistently found here sensitive to atmospheric pollutants. In addition, air pollutants were associated to DMRs pointing towards genes previously implicated in preeclampsia, hypertensive and metabolic disorders. These findings demonstrate that air pollutants exposure at levels commonly experienced in the European population are associated with placental gene methylation and provide some mechanistic insight into some of the reported effects of air pollutants on preeclampsia.
Collapse
Affiliation(s)
- Emilie Abraham
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | | | - Lydiane Agier
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | | | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | | | | | - Valérie Siroux
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Marie-Aline Charles
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Barbara Heude
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Anne Forhan
- Inserm U1153, Early Origins of Child Health and Development team, Research Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, Villejuif, France
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Saadi Khochbin
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Rémy Slama
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France
| | - Johanna Lepeule
- Univ. Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France.
| |
Collapse
|
31
|
Serveaux Dancer M, Di Filippo M, Marmontel O, Valéro R, Piombo Rivarola MDC, Peretti N, Caussy C, Krempf M, Vergès B, Mahl M, Marçais C, Moulin P, Charrière S. New rare genetic variants of LMF1 gene identified in severe hypertriglyceridemia. J Clin Lipidol 2018; 12:1244-1252. [PMID: 30037590 DOI: 10.1016/j.jacl.2018.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND The LMF1 (lipase maturation factor 1) gene encodes a protein involved in lipoprotein lipase and hepatic lipase maturation. Homozygous mutations in LMF1 leading to severe hypertriglyceridemia (SHTG) are rare in the literature. A few additional rare LMF1 variants have been described with poor functional studies. OBJECTIVE The aim of this study was to assess the frequency of LMF1 variants in a cohort of 385 patients with SHTG, without homozygous or compound heterozygous deleterious mutations identified in lipoprotein lipase (LPL), apolipoprotein A5 (APOA5), apolipoprotein C2 (APOC2), glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) genes, and to determine their functionality. METHODS LMF1 coding variants were screened using denaturing high-performance liquid chromatography followed by direct sequencing. In silico studies of LMF1 variants were performed, followed by in vitro functional studies using human embryonic kidney 293T (HEK-293T) cells cotransfected with vectors encoding human LPL and LMF1 cDNA. LPL activity was measured in cell culture medium after heparin addition using human VLDL-TG as substrate. RESULTS Nineteen nonsynonymous coding LMF1 variants were identified in 65 patients; 10 variants were newly described in SHTG. In vitro, p.Gly172Arg, p.Arg354Trp, p.Arg364Gln, and p.Arg537Trp LMF1 variants decreased LPL activity, and the p.Trp464Ter variant completely abolished LPL activity. We identified a young girl heterozygote for the p.Trp464Ter variant and a homozygote carrier of the p.Gly172Arg variant with a near 50% decreased LPL activity in vitro and in vivo. CONCLUSION The study confirms the rarity of LMF1 variants in a large cohort of patients with SHTG. LMF1 variants are likely to be involved in multifactorial hyperchylomicronemia. Partial LMF1 defects could be associated with intermittent phenotype as described for p.Gly172Arg homozygous and p.Trp464Ter heterozygous carriers.
Collapse
Affiliation(s)
- Marine Serveaux Dancer
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Centre de Biologie Sud, Laboratoire de Biochimie moléculaire et métabolique, Pierre-Bénite, France
| | - Mathilde Di Filippo
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Service de Biochimie et Biologie moléculaire Grand Est, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - Oriane Marmontel
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Service de Biochimie et Biologie moléculaire Grand Est, Hospices Civils de Lyon, Groupement Hospitalier Est, Bron, France
| | - René Valéro
- Université d'Aix-Marseille, C2VN, INSERM UMR1062, INRA UMR1260, APHM, service de nutrition, maladies métaboliques, endocrinologie Hôpital La Conception, Marseille, France
| | | | - Noël Peretti
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Service d'Hépato-Gastroentérologie Nutrition pédiatrique, Bron, France
| | - Cyrielle Caussy
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'endocrinologie, diabète, nutrition, Centre Intégré de l'Obésité Rhône-Alpes, Fédération Hospitalo-Universitaire DO-iT, Lyon, Pierre-Bénite, France
| | - Michel Krempf
- CHU de Nantes, Hôpital de l'Hôtel Dieu, Service d'endocrinologie, maladies métaboliques et nutrition, Institut du thorax, Centre de Recherche en Nutrition Humaine, INRA, UMR 1280, Physiologie des Adaptations Nutritionnelles, Nantes, France
| | - Bruno Vergès
- CHU de Dijon, Service d'endocrinologie-diabétologie, INSERM LNC-UMR 1231, Dijon, France
| | - Murielle Mahl
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Centre de Biologie Sud, Laboratoire de Biochimie moléculaire et métabolique, Pierre-Bénite, France
| | - Christophe Marçais
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Centre de Biologie Sud, Laboratoire de Biochimie moléculaire et métabolique, Pierre-Bénite, France
| | - Philippe Moulin
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Hôpital Louis Pradel, Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Bron, France
| | - Sybil Charrière
- INSERM U1060, Laboratoire Carmen, Université Lyon 1, INRA U1235, INSA de Lyon, CENS, Centre de Recherche en Nutrition Humaine Rhône Alpes, Villeurbanne, Oullins, France; Hospices Civils de Lyon, Hôpital Louis Pradel, Fédération d'endocrinologie, maladies métaboliques, diabète et nutrition, Bron, France.
| |
Collapse
|
32
|
Liu Y, Xu J, Tao W, Yu R, Zhang X. A Compound Heterozygous Mutation of Lipase Maturation Factor 1 is Responsible for Hypertriglyceridemia of a Patient. J Atheroscler Thromb 2018; 26:136-144. [PMID: 29910226 PMCID: PMC6365152 DOI: 10.5551/jat.44537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM Dyslipidemia is the most common lipid metabolism disorder in humans, and its etiology remains elusive. Hypertriglyceridemia (HTG) is a type of dyslipidemia that contributes to atherosclerosis and coronary heart disease. Previous studies have demonstrated that mutations in lipoprotein lipase (LPL), apolipoprotein CII (APOC2), apolipoprotein AV (APOA5), glycosylphosphatidylinositol anchored high-density lipoprotein-binding protein 1 (GPIHBP1), lipase maturation factor 1(LMF1), and glycerol-3 phosphate dehydrogenase 1 (GPD1) are responsible for HTG by using genomic microarrays and next-generation sequencing. The aim of this study was to identify genetic lesions in patients with HTG. METHOD Our study included a family of seven members from Jiangsu province across three generations. The proband was diagnosed with severe HTG, with a plasma triglyceride level of 38.70 mmol/L. Polymerase chain reaction (PCR) and Sanger sequencing were performed to explore the possible causative gene mutations for this patient. Furthermore, we measured the post-heparin LPL and hepatic lipase (HL) activities using an antiserum inhibition method. RESULTS A compound heterozygous mutation in the LMF1 gene (c.257C>T/p.P86L and c.1184C>T/p.T395I) was identified and co-segregated with the affected patient in this family. Both mutations were predicted to be deleterious by three bioinformatics programs (Polymorphism Phenotyping-2, Sorting Intolerant From Tolerant, and MutationTaster). The levels of the plasma post-heparin LPL and HL activities in the proband (57 and 177 mU/mL) were reduced to 24% and 75%, respectively, compared with those assayed in the control subject with normal plasma triglycerides. CONCLUSION A compound heterozygous mutation of LMF1 was identified in the presenting patient with severe HTG. These findings expand on the spectrum of LMF1 mutations and contribute to the genetic diagnosis and counseling of families with HTG.
Collapse
Affiliation(s)
- Yihui Liu
- Department of Neurology, Affiliated Hospital of Yangzhou University
| | - Jiang Xu
- Medical School of Yangzhou University
| | - Wanyun Tao
- Department of Biochemistry, School of Medicine, Case Western Reserve University
| | - Rong Yu
- Department of Anesthesiology, the Second XiangYa Hospital, Central South University
| | - Xinjiang Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University.,Medical School of Yangzhou University
| |
Collapse
|
33
|
An M, Ryu DR, Won Park J, Ha Choi J, Park EM, Eun Lee K, Woo M, Kim M. ULK1 prevents cardiac dysfunction in obesity through autophagy-meditated regulation of lipid metabolism. Cardiovasc Res 2018; 113:1137-1147. [PMID: 28430962 DOI: 10.1093/cvr/cvx064] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 03/23/2017] [Indexed: 11/14/2022] Open
Abstract
Aims Autophagy is essential to maintain tissue homeostasis, particularly in long-lived cells such as cardiomyocytes. Whereas many studies support the importance of autophagy in the mechanisms underlying obesity-related cardiac dysfunction, the role of autophagy in cardiac lipid metabolism remains unclear. In the heart, lipotoxicity is exacerbated by cardiac lipoprotein lipase (LPL), which mediates accumulation of fatty acids to the heart through intravascular triglyceride (TG) hydrolysis. Methods and results In both genetic and dietary models of obesity, we observed a substantial increase in cardiac LPL protein levels without any change in messenger ribonucleic acid (mRNA). This was accompanied by a dramatic down-regulation of autophagy in the heart, as revealed by reduced levels of unc-51 like kinase-1 (ULK1) protein. To further explore the relationship between cardiac LPL and autophagy, we generated cardiomyocyte-specific knockout mice for ulk1 (Myh6-cre/ulk1fl/fl), Lpl (Myh6-cre/Lplfl/fl), and mice with a combined deficiency (Myh6-cre/ulk1fl/flLplfl/fl). Similar to genetic and dietary models of obesity, Myh6-cre/ulk1fl/fl mice had a substantial increase in cardiac LPL levels. When these mice were fed a high-fat diet (HFD), they showed elevated cardiac TG levels and deterioration in heart function. However, with combined deletion of LPL and ULK1 in Myh6-cre/ulk1fl/flLplfl/fl mice, HFD feeding did not lead to alterations in levels of TG or diacylglycerol, or in cardiac function. To further elucidate the role of autophagy in cardiac lipid metabolism, we infused a peptide that enhanced autophagy (D-Tat-beclin1). This effectively lowered LPL levels at the coronary lumen by restoring autophagy in the genetic model of obesity. This decrease in cardiac luminal LPL was associated with a reduction in TG levels and recovery of cardiac function. Conclusion These results provide clear evidence of the critical role of modulating cardiac LPL activity through autophagy-mediated proteolytic clearance as a potential novel strategy to overcome obesity-related cardiomyopathy.
Collapse
Affiliation(s)
- Minae An
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Dong-Ryeol Ryu
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jang Won Park
- Department of Orthopedic surgery, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Ji Ha Choi
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung Eun Lee
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minna Woo
- Department of Medicine, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Minsuk Kim
- Department of Pharmacology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
34
|
He PP, Jiang T, OuYang XP, Liang YQ, Zou JQ, Wang Y, Shen QQ, Liao L, Zheng XL. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin Chim Acta 2018; 480:126-137. [PMID: 29453968 DOI: 10.1016/j.cca.2018.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/20/2023]
|
35
|
Brown WV, Gaudet D, Goldberg I, Hegele R. Roundtable on etiology of familial chylomicronemia syndrome. J Clin Lipidol 2018; 12:5-11. [DOI: 10.1016/j.jacl.2017.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Lee CJ, Oum CY, Lee Y, Park S, Kang SM, Choi D, Jang Y, Lee JH, Lee SH. Variants of Lipolysis-Related Genes in Korean Patients with Very High Triglycerides. Yonsei Med J 2018; 59:148-153. [PMID: 29214790 PMCID: PMC5725353 DOI: 10.3349/ymj.2018.59.1.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/01/2017] [Accepted: 09/07/2017] [Indexed: 11/27/2022] Open
Abstract
We investigated the prevalence and characteristics of variants of five lipolysis-related genes in Korean patients with very high triglycerides (TGs). Twenty-six patients with TG levels >885 mg/dL were selected from 13545 Korean subjects. Five candidate genes, LPL, APOC2, GPIHBP1, APOA5, and LMF1, were sequenced by targeted next-generation sequencing. Predictions of functional effects were performed and matched against public databases of variants. Ten rare variants of three genes were found in nine (34.6%) patients (three in LPL, four in APOA5, and three in LMF1). Five were novel and all variants were suspected of being disease-causing. Nine were heterozygous, and one (3.8%) had a homozygous rare variant of LPL. Six common variants of four genes were observed in 25 (96.2%) patients (one in LPL, one in GPIHBP1, two in APOA5, and two in LMF1). The c.G41T variant of GPIHBP1 and c.G533T variant of APOA5 were most frequent and found in 15 (57.7%) and 14 (53.8%) patients, respectively. Rare homozygous variants of the genes were very uncommon, while diverse rare heterozygous variants were commonly identified. Taken together, most study subjects may be manifesting the combined effects of rare heterozygous variants and common variants.
Collapse
Affiliation(s)
- Chan Joo Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chi Yoon Oum
- Department of Biostatistics and Computing, The Graduate School, Yonsei University, Seoul, Korea
| | - Yunbeom Lee
- Department of Medicine, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sungha Park
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seok Min Kang
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Donghoon Choi
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Yangsoo Jang
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea.
| | - Sang Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Lipoprotein Lipase Expression in Chronic Lymphocytic Leukemia: New Insights into Leukemic Progression. Molecules 2017; 22:molecules22122083. [PMID: 29206143 PMCID: PMC6149886 DOI: 10.3390/molecules22122083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/21/2022] Open
Abstract
Lipoprotein lipase (LPL) is a central enzyme in lipid metabolism. Due to its catalytic activity, LPL is involved in metabolic pathways exploited by various solid and hematologic malignancies to provide an extra energy source to the tumor cell. We and others described a link between the expression of LPL in the tumor cell and a poor clinical outcome of patients suffering Chronic Lymphocytic Leukemia (CLL). This leukemia is characterized by a slow accumulation of mainly quiescent clonal CD5 positive B cells that infiltrates secondary lymphoid organs, bone marrow and peripheral blood. Despite LPL being found to be a reliable molecular marker for CLL prognosis, its functional role and the molecular mechanisms regulating its expression are still matter of debate. Herein we address some of these questions reviewing the current state of the art of LPL research in CLL and providing some insights into where currently unexplored questions may lead to.
Collapse
|
38
|
Buonuomo PS, Rabacchi C, Macchiaiolo M, Trenti C, Fasano T, Tarugi P, Bartuli A, Bertolini S, Calandra S. Incidental finding of severe hypertriglyceridemia in children. Role of multiple rare variants in genes affecting plasma triglyceride. J Clin Lipidol 2017; 11:1329-1337.e3. [PMID: 28951076 DOI: 10.1016/j.jacl.2017.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The incidental finding of severe hypertriglyceridemia (HyperTG) in a child may suggest the diagnosis of familial chylomicronemia syndrome (FCS), a recessive disorder of the intravascular hydrolysis of triglyceride (TG)-rich lipoproteins. FCS may be due to pathogenic variants in lipoprotein lipase (LPL), as well as in other proteins, such as apolipoprotein C-II and apolipoprotein A-V (activators of LPL), GPIHBP1 (the molecular platform required for LPL activity on endothelial surface) and LMF1 (a factor required for intracellular formation of active LPL). OBJECTIVE Molecular characterization of 5 subjects in whom HyperTG was an incidental finding during infancy/childhood. METHODS We performed the parallel sequencing of 20 plasma TG-related genes. RESULTS Three children with severe HyperTG were found to be compound heterozygous for rare pathogenic LPL variants (2 nonsense, 3 missense, and 1 splicing variant). Another child was found to be homozygous for a nonsense variant of APOA5, which was also found in homozygous state in his father with longstanding HyperTG. The fifth patient with a less severe HyperTG was found to be heterozygous for a frameshift variant in LIPC resulting in a truncated Hepatic Lipase. In addition, 1 of the patients with LPL deficiency and the patient with APOA-V deficiency were also heterozygous carriers of a pathogenic variant in LIPC and LPL gene, respectively, whereas the patient with LIPC variant was also a carrier of a rare APOB missense variant. CONCLUSIONS Targeted parallel sequencing of TG-related genes is recommended to define the molecular defect in children presenting with an incidental finding of HyperTG.
Collapse
Affiliation(s)
| | - Claudio Rabacchi
- Department of Life Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics, Bambino Gesù Children Hospital, Rome, Italy
| | - Chiara Trenti
- Department of Internal Medicine, Lipid Clinic, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Tommaso Fasano
- Clinical Chemistry and Endocrinology Laboratory, IRCCS-Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Patrizia Tarugi
- Department of Life Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics, Bambino Gesù Children Hospital, Rome, Italy
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genova, Genova, Italy.
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, Modena, Italy.
| |
Collapse
|
39
|
Lun Y, Sun X, Wang P, Chi J, Hou X, Wang Y. Severe hypertriglyceridemia due to two novel loss-of-function lipoprotein lipase gene mutations (C310R/E396V) in a Chinese family associated with recurrent acute pancreatitis. Oncotarget 2017; 8:47741-47754. [PMID: 28548960 PMCID: PMC5564601 DOI: 10.18632/oncotarget.17762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/11/2017] [Indexed: 11/25/2022] Open
Abstract
Lipoprotein lipase (LPL) is widely expressed in skeletal muscles, cardiac muscles as well as adipose tissue and involved in the catabolism of triglyceride. Herein we have systematically characterized two novel loss-of-function mutations in LPL from a Chinese family in which afflicted members were manifested by severe hypertriglyceridemia and recurrent pancreatitis. DNA sequencing revealed that the proband was a heterozygote carrying a novel c.T928C (p.C310R) mutation in exon 6 of the LPL gene. Another member of the family was detected to be a compound heterozygote who along with the c.T928C mutation also carried a novel missense mutation c.A1187T (p.E396V) in exon 8 of the LPL gene. Furthermore, COS-1 cells were transfected with lentiviruses containing the mutant LPL genes. While C310R markedly reduced the overall LPL protein level, COS-1 cells carrying E396V or double mutations contained similar overall LPL protein levels to the wild-type. The specific activity of the LPL mutants remained at comparable magnitude to the wild-type. However, few LPL were detected in the culture medium for the mutants, suggesting that both mutations caused aberrant triglyceride catabolism. More specifically, E396V and double mutations dampened the transport of LPL to the cell surface, while for the C310R mutation, reducing LPL protein level might be involved. By characterizing these two novel LPL mutations, this study has expanded our understanding on the pathogenesis of familial hypertriglyceridemia (FHTG).
Collapse
Affiliation(s)
- Yu Lun
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofang Sun
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ping Wang
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingwei Chi
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xu Hou
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolic Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Lee J, Hegele RA. Investigated treatments for lipoprotein lipase deficiency and related metabolic disorders. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1311784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Deciphering mechanisms underlying the genetic variation of general production and liver quality traits in the overfed mule duck by pQTL analyses. Genet Sel Evol 2017; 49:38. [PMID: 28424047 PMCID: PMC5396126 DOI: 10.1186/s12711-017-0313-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/30/2017] [Indexed: 11/29/2022] Open
Abstract
Background The aim of this study was to analyse the mechanisms that underlie phenotypic quantitative trait loci (QTL) in overfed mule ducks by identifying co-localized proteomic QTL (pQTL). The QTL design consisted of three families of common ducks that were progeny-tested by using 294 male mule ducks. This population of common ducks was genotyped using a genetic map that included 334 genetic markers located across 28 APL chromosomes (APL for Anas platyrhynchos). Mule ducks were phenotyped for 49 traits related to growth, metabolism, overfeeding ability and meat and fatty liver quality, and 326 soluble fatty liver proteins were quantified. Results One hundred and seventy-six pQTL and 80 phenotypic QTL were detected at the 5% chromosome-wide significance threshold. The great majority of the identified pQTL were trans-acting and localized on a chromosome other than that carrying the coding gene. The most significant pQTL (1% genome-wide significance) were found for alpha-enolase on APL18 and fatty acid synthase on APL24. Some proteins were associated with numerous pQTL (for example, 17 and 14 pQTL were detected for alpha-enolase and apolipoprotein A1, respectively) and pQTL hotspots were observed on some chromosomes (APL18, 24, 25 and 29). We detected 66 co-localized phenotypic QTL and pQTL for which the significance of the two-trait QTL (2t-QTL) analysis was higher than that of the strongest QTL using a single-trait approach. Among these, 16 2t-QTL were pleiotropic. For example, on APL15, melting rate and abundance of two alpha-enolase spots appeared to be impacted by a single locus that is involved in the glycolytic process. On APLZ, we identified a pleiotropic QTL that modified both the blood level of glucose at the beginning of the force-feeding period and the concentration of glutamate dehydrogenase, which, in humans, is involved in increased glucose absorption by the liver when the glutamate dehydrogenase 1 gene is mutated. Conclusions We identified pleiotropic loci that affect metabolic pathways linked to glycolysis or lipogenesis, and in the end to fatty liver quality. Further investigation, via transcriptomics and metabolomics approaches, is required to confirm the biomarkers that were found to impact the genetic variability of these phenotypic traits. Electronic supplementary material The online version of this article (doi:10.1186/s12711-017-0313-6) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Fusco DN, Pratt H, Kandilas S, Cheon SSY, Lin W, Cronkite DA, Basavappa M, Jeffrey KL, Anselmo A, Sadreyev R, Yapp C, Shi X, O'Sullivan JF, Gerszten RE, Tomaru T, Yoshino S, Satoh T, Chung RT. HELZ2 Is an IFN Effector Mediating Suppression of Dengue Virus. Front Microbiol 2017; 8:240. [PMID: 28265266 PMCID: PMC5316548 DOI: 10.3389/fmicb.2017.00240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 01/07/2023] Open
Abstract
Flaviviral infections including dengue virus are an increasing clinical problem worldwide. Dengue infection triggers host production of the type 1 IFN, IFN alpha, one of the strongest and broadest acting antivirals known. However, dengue virus subverts host IFN signaling at early steps of IFN signal transduction. This subversion allows unbridled viral replication which subsequently triggers ongoing production of IFN which, again, is subverted. Identification of downstream IFN antiviral effectors will provide targets which could be activated to restore broad acting antiviral activity, stopping the signal to produce endogenous IFN at toxic levels. To this end, we performed a targeted functional genomic screen for IFN antiviral effector genes (IEGs), identifying 56 IEGs required for antiviral effects of IFN against fully infectious dengue virus. Dengue IEGs were enriched for genes encoding nuclear receptor interacting proteins, including HELZ2, MAP2K4, SLC27A2, HSP90AA1, and HSP90AB1. We focused on HELZ2 (Helicase With Zinc Finger 2), an IFN stimulated gene and IEG which encodes a promiscuous nuclear factor coactivator that exists in two isoforms. The two unique HELZ2 isoforms are both IFN responsive, contain ISRE elements, and gene products increase in the nucleus upon IFN stimulation. Chromatin immunoprecipitation-sequencing revealed that the HELZ2 complex interacts with triglyceride-regulator LMF1. Mass spectrometry revealed that HELZ2 knockdown cells are depleted of triglyceride subsets. We thus sought to determine whether HELZ2 interacts with a nuclear receptor known to regulate immune response and lipid metabolism, AHR, and identified HELZ2:AHR interactions via co-immunoprecipitation, found that AHR is a dengue IEG, and that an AHR ligand, FICZ, exhibits anti-dengue activity. Primary bone marrow derived macrophages from HELZ2 knockout mice, compared to wild type controls, exhibit enhanced dengue infectivity. Overall, these findings reveal that IFN antiviral response is mediated by HELZ2 transcriptional upregulation, enrichment of HELZ2 protein levels in the nucleus, and activation of a transcriptional program that appears to modulate intracellular lipid state. IEGs identified in this study may serve as both (1) potential targets for host directed antiviral design, downstream of the common flaviviral subversion point, as well as (2) possible biomarkers, whose variation, natural, or iatrogenic, could affect host response to viral infections.
Collapse
Affiliation(s)
- Dahlene N. Fusco
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Division of Infectious Diseases, Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Medical SchoolBoston, MA, USA
| | - Henry Pratt
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Stephen Kandilas
- Division of Infectious Diseases, Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Department of Medicine, Athens University Medical SchoolAthens, Greece
| | | | - Wenyu Lin
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - D. Alex Cronkite
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Megha Basavappa
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Kate L. Jeffrey
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General HospitalBoston, MA, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General HospitalBoston, MA, USA
| | - Clarence Yapp
- Laboratory for Systems Pharmacology, Harvard Medical SchoolBoston, MA, USA
| | - Xu Shi
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical CenterBoston, MA, USA
| | - John F. O'Sullivan
- Division of Cardiology, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Robert E. Gerszten
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical CenterBoston, MA, USA
- Division of Cardiology, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Takuya Tomaru
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Satoshi Yoshino
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Tetsurou Satoh
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Raymond T. Chung
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| |
Collapse
|
43
|
Hegele RA. Multidimensional regulation of lipoprotein lipase: impact on biochemical and cardiovascular phenotypes. J Lipid Res 2016; 57:1601-7. [PMID: 27412676 DOI: 10.1194/jlr.c070946] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
44
|
Blanchard PG, Turcotte V, Côté M, Gélinas Y, Nilsson S, Olivecrona G, Deshaies Y, Festuccia WT. Peroxisome proliferator-activated receptor γ activation favours selective subcutaneous lipid deposition by coordinately regulating lipoprotein lipase modulators, fatty acid transporters and lipogenic enzymes. Acta Physiol (Oxf) 2016; 217:227-39. [PMID: 26918671 DOI: 10.1111/apha.12665] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/15/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
Abstract
AIM Peroxisome proliferator-activated receptor (PPAR) γ activation is associated with preferential lipoprotein lipase (LPL)-mediated fatty acid storage in peripheral subcutaneous fat depots. How PPARγ agonism acts upon the multi-level modulation of depot-specific lipid storage remains incompletely understood. METHODS We evaluated herein triglyceride-derived lipid incorporation into adipose tissue depots, LPL mass and activity, mRNA levels and content of proteins involved in the modulation of LPL activity and fatty acid transport, and the expression/activity of enzymes defining adipose tissue lipogenic potential in rats treated with the PPARγ ligand rosiglitazone (30 mg kg(-1) day(-1) , 23 days) after either a 10-h fasting period or a 17-h fast followed by 6 h of ad libitum refeeding. RESULTS Rosiglitazone stimulated lipid accretion in subcutaneous fat (SF) ~twofold and significantly reduced that of visceral fat (VF) to nearly half. PPARγ activation selectively increased LPL mass, activity and the expression of its chaperone LMF1 in SF. In VF, rosiglitazone had no effect on LPL activity and downregulated the mRNA levels of the transendothelial transporter GPIHBP1. Overexpression of lipid uptake and fatty acid transport proteins (FAT/CD36, FATP1 and FABP4) and stimulation of lipogenic enzyme activities (GPAT, AGPAT and DGAT) upon rosiglitazone treatment were of higher magnitude in SF. CONCLUSIONS Together these findings demonstrate that the depot-specific transcriptional control of LPL induced by PPARγ activation extends to its key interacting proteins and post-translational modulators to favour subcutaneous lipid storage.
Collapse
Affiliation(s)
- P. G. Blanchard
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - V. Turcotte
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - M. Côté
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - Y. Gélinas
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - S. Nilsson
- Department of Medical Biosciences/Physiological Chemistry; Umeå University; Umeå Sweden
| | - G. Olivecrona
- Department of Medical Biosciences/Physiological Chemistry; Umeå University; Umeå Sweden
| | - Y. Deshaies
- Department of Medicine; Faculty of Medicine; Quebec Heart and Lung Institute; Laval University; Quebec QC Canada
| | - W. T. Festuccia
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
45
|
Zhang L, Wang HH. The essential functions of endoplasmic reticulum chaperones in hepatic lipid metabolism. Dig Liver Dis 2016; 48:709-16. [PMID: 27133206 DOI: 10.1016/j.dld.2016.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is an essential organelle for protein and lipid synthesis in hepatocytes. ER homeostasis is vital to maintain normal hepatocyte physiology. Perturbed ER functions causes ER stress associated with accumulation of unfolded protein in the ER that activates a series of adaptive signalling pathways, termed unfolded protein response (UPR). The UPR regulates ER chaperone levels to preserve ER protein-folding environment to protect the cell from ER stress. Recent findings reveal an array of ER chaperones that alter the protein-folding environment in the ER of hepatocytes and contribute to dysregulation of hepatocyte lipid metabolism and liver disease. In this review, we will discuss the specific functions of these chaperones in regulation of lipid metabolism, especially de novo lipogenesis and lipid transport and demonstrate their homeostatic role not only for ER-protein synthesis but also for lipid metabolism in hepatocyte.
Collapse
Affiliation(s)
- LiChun Zhang
- Department of Emergency, Shengjing Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha, Hunan Province, China.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW A major step in energy metabolism is hydrolysis of triacylglycerol-rich lipoproteins (TRLs) to release fatty acids that can be used or stored. This is accomplished by lipoprotein lipase (LPL) at 'binding lipolysis sites' at the vascular endothelium. A multitude of interactions are involved in this seemingly simple reaction. Recent advances in the understanding of some of these factors will be discussed in an attempt to build a comprehensive picture. RECENT FINDINGS The first event in catabolism of TRLs is that they dock at the vascular endothelium. This requires LPL and GPIHBP1, the endothelial transporter of LPL.Kinetic studies in rats with labeled chylomicrons showed that once a chylomicron has docked in the heart it stays for minutes and a large number of triacylglycerol molecules are split. The distribution of binding between tissues reflects the amount of LPL, as evident from studies with mutant mice.Clearance of TRLs is often slowed down in metabolic disease, as was demonstrated both in mice and men. In mice, this was directly connected to decreased amounts of endothelial LPL. SUMMARY The LPL system is central in energy metabolism and results from interplay between several factors. Rapid and exciting progress is being made.
Collapse
Affiliation(s)
- Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This article summarizes the current evidence to support a role of sulfatase 2 (SULF2) in triglyceride-rich lipoprotein (TRL) metabolism and angiogenesis. RECENT FINDINGS Heparan sulfate proteoglycans (HSPG) are involved in the hepatic clearance of TRLs in mice and in humans. Different genetically modified mouse models have been instrumental to provide evidence that syndecan1, the core protein of HSPG, but also the degree of sulfation of the heparin sulfate chain, attached to syndecan 1, is important for hepatic TRL metabolism. Studies in humans demonstrate the regulating role of SULF2 in the hepatic uptake of TRL by HSPG and demonstrate the importance of 6-O-sulfation, modulated by SULF2, for HSPG function. The role of SULF2 in angiogenesis is illustrated by increased SULF2 mRNA expression in the stalk cells of angiogenic vascular sprouts that use fatty acids derived from TRL as a source for biomass production. Interestingly, SULF2 also interferes with HSPG-vascular endothelial growth factor binding, which impacts upon the angiogenic properties of stalk cells. SUMMARY SULF2 is a multifaceted protein involved in TRL homeostasis and angiogenesis. Future investigations should focus on the potential benefits of targeting SULF2 in atherosclerosis and angiogenesis.
Collapse
Affiliation(s)
- Marchien G Dallinga
- aDepartment of Ophthalmology bDepartment of Vascular cDepartment of Experimental Vascular Medicine, Academic Medical Center Amsterdam, University of Amsterdam, The Netherlands
| | | |
Collapse
|
48
|
Chiu APL, Wan A, Rodrigues B. Cardiomyocyte-endothelial cell control of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1434-41. [PMID: 26995461 DOI: 10.1016/j.bbalip.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrea Wan
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
49
|
Pingitore P, Lepore SM, Pirazzi C, Mancina RM, Motta BM, Valenti L, Berge KE, Retterstøl K, Leren TP, Wiklund O, Romeo S. Identification and characterization of two novel mutations in the LPL gene causing type I hyperlipoproteinemia. J Clin Lipidol 2016; 10:816-823. [PMID: 27578112 DOI: 10.1016/j.jacl.2016.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/28/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Type 1 hyperlipoproteinemia is a rare autosomal recessive disorder most often caused by mutations in the lipoprotein lipase (LPL) gene resulting in severe hypertriglyceridemia and pancreatitis. OBJECTIVES The aim of this study was to identify novel mutations in the LPL gene causing type 1 hyperlipoproteinemia and to understand the molecular mechanisms underlying the severe hypertriglyceridemia. METHODS Three patients presenting classical features of type 1 hyperlipoproteinemia were recruited for DNA sequencing of the LPL gene. Pre-heparin and post-heparin plasma of patients were used for protein detection analysis and functional test. Furthermore, in vitro experiments were performed in HEK293 cells. Protein synthesis and secretion were analyzed in lysate and medium fraction, respectively, whereas medium fraction was used for functional assay. RESULTS We identified two novel mutations in the LPL gene causing type 1 hyperlipoproteinemia: a two base pair deletion (c.765_766delAG) resulting in a frameshift at position 256 of the protein (p.G256TfsX26) and a nucleotide substitution (c.1211 T > G) resulting in a methionine to arginine substitution (p.M404 R). LPL protein and activity were not detected in pre-heparin or post-heparin plasma of the patient with p.G256TfsX26 mutation or in the medium of HEK293 cells over-expressing recombinant p.G256TfsX26 LPL. A relatively small amount of LPL p.M404 R was detected in both pre-heparin and post-heparin plasma and in the medium of the cells, whereas no LPL activity was detected. CONCLUSIONS We conclude that these two novel mutations cause type 1 hyperlipoproteinemia by inducing a loss or reduction in LPL secretion accompanied by a loss of LPL enzymatic activity.
Collapse
Affiliation(s)
- Piero Pingitore
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Saverio Massimo Lepore
- Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Carlo Pirazzi
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Benedetta Maria Motta
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Luca Valenti
- Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Knut Erik Berge
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway; Lipid Clinic, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
50
|
Valdivielso P. [Hypertriglyceridemia and LMF 1: Another piece of the puzzle]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2015; 27:253-255. [PMID: 26398545 DOI: 10.1016/j.arteri.2015.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Pedro Valdivielso
- Unidad de Lípidos, Hospital Virgen de la Victoria,, Málaga, España; Departamento de Medicina y Dermatología, Instituto de Biomedicina de Málaga (IBIMA), Universidad de Málaga, Málaga, España.
| |
Collapse
|