1
|
Martins TS, Costa RS, Vilaça R, Lemos C, Teixeira V, Pereira C, Costa V. Iron Limitation Restores Autophagy and Increases Lifespan in the Yeast Model of Niemann-Pick Type C1. Int J Mol Sci 2023; 24:6221. [PMID: 37047194 PMCID: PMC10094029 DOI: 10.3390/ijms24076221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) is an endolysosomal transmembrane protein involved in the export of cholesterol and sphingolipids to other cellular compartments such as the endoplasmic reticulum and plasma membrane. NPC1 loss of function is the major cause of NPC disease, a rare lysosomal storage disorder characterized by an abnormal accumulation of lipids in the late endosomal/lysosomal network, mitochondrial dysfunction, and impaired autophagy. NPC phenotypes are conserved in yeast lacking Ncr1, an orthologue of human NPC1, leading to premature aging. Herein, we performed a phosphoproteomic analysis to investigate the effect of Ncr1 loss on cellular functions mediated by the yeast lysosome-like vacuoles. Our results revealed changes in vacuolar membrane proteins that are associated mostly with vesicle biology (fusion, transport, organization), autophagy, and ion homeostasis, including iron, manganese, and calcium. Consistently, the cytoplasm to vacuole targeting (Cvt) pathway was increased in ncr1∆ cells and autophagy was compromised despite TORC1 inhibition. Moreover, ncr1∆ cells exhibited iron overload mediated by the low-iron sensing transcription factor Aft1. Iron deprivation restored the autophagic flux of ncr1∆ cells and increased its chronological lifespan and oxidative stress resistance. These results implicate iron overload on autophagy impairment, oxidative stress sensitivity, and cell death in the yeast model of NPC1.
Collapse
Affiliation(s)
- Telma S. Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rafaela S. Costa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Vilaça
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carolina Lemos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vitor Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Clara Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vítor Costa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Fabri JHTM, de Sá NP, Malavazi I, Del Poeta M. The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation. Prog Lipid Res 2020; 80:101063. [PMID: 32888959 DOI: 10.1016/j.plipres.2020.101063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023]
Abstract
All living beings have an optimal temperature for growth and survival. With the advancement of global warming, the search for understanding adaptive processes to climate changes has gained prominence. In this context, all living beings monitor the external temperature and develop adaptive responses to thermal variations. These responses ultimately change the functioning of the cell and affect the most diverse structures and processes. One of the first structures to detect thermal variations is the plasma membrane, whose constitution allows triggering of intracellular signals that assist in the response to temperature stress. Although studies on this topic have been conducted, the underlying mechanisms of recognizing thermal changes and modifying cellular functioning to adapt to this condition are not fully understood. Recently, many reports have indicated the participation of sphingolipids (SLs), major components of the plasma membrane, in the regulation of the thermal stress response. SLs can structurally reinforce the membrane or/and send signals intracellularly to control numerous cellular processes, such as apoptosis, cytoskeleton polarization, cell cycle arresting and fungal virulence. In this review, we discuss how SLs synthesis changes during both heat and cold stresses, focusing on fungi, plants, animals and human cells. The role of lysophospholipids is also discussed.
Collapse
Affiliation(s)
- João Henrique Tadini Marilhano Fabri
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA; Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Nivea Pereira de Sá
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA; Veterans Administration Medical Center, Northport, New York, USA.
| |
Collapse
|
3
|
Randez-Gil F, Prieto JA, Rodríguez-Puchades A, Casas J, Sentandreu V, Estruch F. Myriocin-induced adaptive laboratory evolution of an industrial strain of Saccharomyces cerevisiae reveals its potential to remodel lipid composition and heat tolerance. Microb Biotechnol 2020; 13:1066-1081. [PMID: 32212314 PMCID: PMC7264895 DOI: 10.1111/1751-7915.13555] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/01/2020] [Indexed: 12/13/2022] Open
Abstract
The modification of lipid composition allows cells to adjust membrane biophysical properties in response to changes in environmental temperature. Here, we use adaptive laboratory evolution (ALE) in the presence of myriocin, a sphingolipid (SLs) biosynthesis inhibitor, to remodel the lipid profile of an industrial yeast strain (LH) of Saccharomyces cerevisiae. The approach enabled to obtain a heterogeneous population (LHev) of myriocin-tolerant evolved clones characterized by its growth capacity at high temperature. Myriocin exposure also caused tolerance to soraphen A, an inhibitor of the acetyl-CoA carboxylase Acc1, the rate-limiting enzyme in fatty acid de novo production, supporting a change in lipid metabolism during ALE. In line with this, characterization of two randomly selected clones, LH03 and LH09, showed the presence of lipids with increased saturation degree and reduced acyl length. In addition, the clone LH03, which displays the greater improvement in fitness at 40°C, exhibited higher SL content as compared with the parental strain. Analysis of the LH03 and LH09 genomes revealed a loss of chromosomes affecting genes that have a role in fatty acid synthesis and elongation. The link between ploidy level and growth at high temperature was further supported by the analysis of a fully isogenic set of yeast strains with ploidy between 1N and 4N which showed that the loss of genome content provides heat tolerance. Consistent with this, a thermotolerant evolved population (LH40°) generated from the parental LH strain by heat-driven ALE exhibited a reduction in the chromosome copy number. Thus, our results identify myriocin-driven evolution as a powerful approach to investigate the mechanisms of acquired thermotolerance and to generate improved strains.
Collapse
Affiliation(s)
- Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Alejandro Rodríguez-Puchades
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas, Jordi Girona 18-26., Barcelona, 08034, Spain
- CIBER-EHD, Instituto de Salud Carlos III, Monforte de Lemos 3-5., Madrid, 28029, Spain
| | - Vicente Sentandreu
- Genomics Section, Central Service for Experimental Research (SCSIE), Universitat de València, Dr. Moliner 50, Burjassot, 46100, Spain
| | - Francisco Estruch
- Departament of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, Burjassot, 46100, Spain
| |
Collapse
|
4
|
Prieto JA, Estruch F, Córcoles-Sáez I, Del Poeta M, Rieger R, Stenzel I, Randez-Gil F. Pho85 and PI(4,5)P 2 regulate different lipid metabolic pathways in response to cold. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158557. [PMID: 31678512 PMCID: PMC7254492 DOI: 10.1016/j.bbalip.2019.158557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022]
Abstract
Lipid homeostasis allows cells to adjust membrane biophysical properties in response to changes in environmental conditions. In the yeast Saccharomyces cerevisiae, a downward shift in temperature from an optimal reduces membrane fluidity, which triggers a lipid remodeling of the plasma membrane. How changes in membrane fluidity are perceived, and how the abundance and composition of different lipid classes is properly balanced, remain largely unknown. Here, we show that the levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], the most abundant plasma membrane phosphoinositide, drop rapidly in response to a downward shift in temperature. This change triggers a signaling cascade transmitted to cytosolic diphosphoinositol phosphate derivatives, among them 5-PP-IP4 and 1-IP7, that exert regulatory functions on genes involved in the inositol and phospholipids (PLs) metabolism, and inhibit the activity of the protein kinase Pho85. Consistent with this, cold exposure triggers a specific program of neutral lipids and PLs changes. Furthermore, we identified Pho85 as playing a key role in controlling the synthesis of long-chain bases (LCBs) via the Ypk1-Orm2 regulatory circuit. We conclude that Pho85 orchestrates a coordinated response of lipid metabolic pathways that ensure yeast thermal adaptation.
Collapse
Affiliation(s)
- Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - Francisco Estruch
- Departament of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, Burjassot 46100, Spain
| | - Isaac Córcoles-Sáez
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States of America; Veterans Administration Medical Center, Northport, NY, United States of America
| | - Robert Rieger
- Proteomics Center, Stony Brook University, Stony Brook, NY, United States of America
| | - Irene Stenzel
- Department of Cellular Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
5
|
Martins TS, Costa V, Pereira C. Signaling pathways governing iron homeostasis in budding yeast. Mol Microbiol 2018; 109:422-432. [DOI: 10.1111/mmi.14009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Telma S. Martins
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
| | - Vítor Costa
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; Porto Portugal
| | - Clara Pereira
- I3S-Instituto de Investigação e Inovação em Saúde; Universidade do Porto; Porto Portugal
- IBMC-Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto Portugal
- Departamento de Biologia Molecular; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto; Porto Portugal
| |
Collapse
|
6
|
Peltier L, Bendavid C, Cavey T, Island ML, Doyard M, Leroyer P, Allain C, De Tayrac M, Ropert M, Loréal O, Guggenbuhl P. Iron excess upregulates SPNS2 mRNA levels but reduces sphingosine-1-phosphate export in human osteoblastic MG-63 cells. Osteoporos Int 2018; 29:1905-1915. [PMID: 29721575 DOI: 10.1007/s00198-018-4531-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
UNLABELLED We aimed to study the mechanisms involved in bone-related iron impairment by using the osteoblast-like MG-63 cell line. Our results indicate that iron impact the S1P/S1PR signalizing axis and suggest that iron can affect the S1P process and favor the occurrence of osteoporosis during chronic iron overload. INTRODUCTION Systemic iron excess favors the development of osteoporosis, especially during genetic hemochromatosis. The cellular mechanisms involved are still unclear despite numerous data supporting a direct effect of iron on bone biology. Therefore, the aim of this study was to characterize mechanisms involved in the iron-related osteoblast impairment. METHODS We studied, by using the MG-63 cell lines, the effect of iron excess on SPNS2 gene expression which was previously identified by us as potentially iron-regulated. Cell-type specificity was investigated with hepatoma HepG2 and enterocyte-like Caco-2 cell lines as well as in iron-overloaded mouse liver. The SPNS2-associated function was also investigated in MG-63 cells by fluxomic strategy which led us to determinate the S1P efflux in iron excess condition. RESULTS We showed in MG-63 cells that iron exposure strongly increased the mRNA level of the SPNS2 gene. This was not observed in HepG2, in Caco-2 cells, and in mouse livers. Fluxomic study performed concomitantly on MG-63 cells revealed an unexpected decrease in the cellular capacity to export S1P. Iron excess did not modulate SPHK1, SPHK2, SGPL1, or SGPP1 gene expression, but decreased COL1A1 and S1PR1 mRNA levels, suggesting a functional implication of low extracellular S1P concentration on the S1P/S1PR signalizing axis. CONCLUSIONS Our results indicate that iron impacts the S1P/S1PR signalizing axis in the MG-63 cell line and suggest that iron can affect the bone-associated S1P pathway and favor the occurrence of osteoporosis during chronic iron overload.
Collapse
Affiliation(s)
- L Peltier
- Service de Biochimie - Toxicologie, CHU Rennes, F-35033, Rennes, France
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
- Faculté de Médecine, Université Rennes 1, F-35043, Rennes, France
| | - C Bendavid
- Service de Biochimie - Toxicologie, CHU Rennes, F-35033, Rennes, France
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
- Faculté de Médecine, Université Rennes 1, F-35043, Rennes, France
| | - T Cavey
- Service de Biochimie - Toxicologie, CHU Rennes, F-35033, Rennes, France
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
- Faculté de Médecine, Université Rennes 1, F-35043, Rennes, France
| | - M-L Island
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - M Doyard
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - P Leroyer
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - C Allain
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - M De Tayrac
- Faculté de Médecine, Université Rennes 1, F-35043, Rennes, France
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), F-35043, Rennes, France
- Service de Génétique Moléculaire et Génomique, CHU Rennes, F-35033, Rennes, France
| | - M Ropert
- Service de Biochimie - Toxicologie, CHU Rennes, F-35033, Rennes, France
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - O Loréal
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France
| | - P Guggenbuhl
- INSERM, INRA, Univ Rennes1, Univ Bretagne Loire, Nutrition, Metabolism, and Cancer, Rennes, France.
- Faculté de Médecine, Université Rennes 1, F-35043, Rennes, France.
- Service de Rhumatologie, CHU Rennes, F-35203, Rennes, France.
| |
Collapse
|
7
|
A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane Trafficking Systems. Dev Cell 2018; 44:378-391.e5. [PMID: 29396115 DOI: 10.1016/j.devcel.2017.12.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 09/24/2017] [Accepted: 12/28/2017] [Indexed: 11/21/2022]
Abstract
Kes1/Osh4 is a member of the conserved, but functionally enigmatic, oxysterol binding protein-related protein (ORP) superfamily that inhibits phosphatidylinositol transfer protein (Sec14)-dependent membrane trafficking through the trans-Golgi (TGN)/endosomal network. We now report that Kes1, and select other ORPs, execute cell-cycle control activities as functionally non-redundant inhibitors of the G1/S transition when cells confront nutrient-poor environments and promote replicative aging. Kes1-dependent cell-cycle regulation requires the Greatwall/MASTL kinase ortholog Rim15, and is opposed by Sec14 activity in a mechanism independent of Kes1/Sec14 bulk membrane-trafficking functions. Moreover, the data identify Kes1 as a non-histone target for NuA4 through which this lysine acetyltransferase co-modulates membrane-trafficking and cell-cycle activities. We propose the Sec14/Kes1 lipid-exchange protein pair constitutes part of the mechanism for integrating TGN/endosomal lipid signaling with cell-cycle progression and hypothesize that ORPs define a family of stage-specific cell-cycle control factors that execute tumor-suppressor-like functions.
Collapse
|
8
|
Yi JK, Xu R, Jeong E, Mileva I, Truman JP, Lin CL, Wang K, Snider J, Wen S, Obeid LM, Hannun YA, Mao C. Aging-related elevation of sphingoid bases shortens yeast chronological life span by compromising mitochondrial function. Oncotarget 2018; 7:21124-44. [PMID: 27008706 PMCID: PMC5008273 DOI: 10.18632/oncotarget.8195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/04/2016] [Indexed: 01/08/2023] Open
Abstract
Sphingoid bases (SBs) as bioactive sphingolipids, have been implicated in aging in yeast. However, we know neither how SBs are regulated during yeast aging nor how they, in turn, regulate it. Herein, we demonstrate that the yeast alkaline ceramidases (YPC1 and YDC1) and SB kinases (LCB4 and LCB5) cooperate in regulating SBs during the aging process and that SBs shortens chronological life span (CLS) by compromising mitochondrial functions. With a lipidomics approach, we found that SBs were increased in a time-dependent manner during yeast aging. We also demonstrated that among the enzymes known for being responsible for the metabolism of SBs, YPC1 was upregulated whereas LCB4/5 were downregulated in the course of aging. This inverse regulation of YPC1 and LCB4/5 led to the aging-related upregulation of SBs in yeast and a reduction in CLS. With the proteomics-based approach (SILAC), we revealed that increased SBs altered the levels of proteins related to mitochondria. Further mechanistic studies demonstrated that increased SBs inhibited mitochondrial fusion and caused fragmentation, resulting in decreases in mtDNA copy numbers, ATP levels, mitochondrial membrane potentials, and oxygen consumption. Taken together, these results suggest that increased SBs mediate the aging process by impairing mitochondrial structural integrity and functions.
Collapse
Affiliation(s)
- Jae Kyo Yi
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA.,Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Ruijuan Xu
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Eunmi Jeong
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Izolda Mileva
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook, NY, USA
| | | | - Chih-Li Lin
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA.,Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Kai Wang
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Justin Snider
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY, USA.,Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Sally Wen
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook, NY, USA.,Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook, NY, USA
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,Stony Brook Cancer Center, Stony Brook, NY, USA
| |
Collapse
|
9
|
Martins TS, Pereira C, Canadell D, Vilaça R, Teixeira V, Moradas-Ferreira P, de Nadal E, Posas F, Costa V. The Hog1p kinase regulates Aft1p transcription factor to control iron accumulation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:61-70. [DOI: 10.1016/j.bbalip.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/15/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
|
10
|
Vilaça R, Barros I, Matmati N, Silva E, Martins T, Teixeira V, Hannun YA, Costa V. The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochim Biophys Acta Mol Basis Dis 2017; 1864:79-88. [PMID: 28988886 DOI: 10.1016/j.bbadis.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
The Niemann-Pick type C is a rare neurodegenerative disease that results from loss-of-function point mutations in NPC1 or NPC2, which affect the homeostasis of sphingolipids and sterols in human cells. We have previously shown that yeast lacking Ncr1, the orthologue of human NPC1 protein, display a premature ageing phenotype and higher sensitivity to oxidative stress associated with mitochondrial dysfunctions and accumulation of long chain bases. In this study, a lipidomic analysis revealed specific changes in the levels of ceramide species in ncr1Δ cells, including decreases in dihydroceramides and increases in phytoceramides. Moreover, the activation of Sit4, a ceramide-activated protein phosphatase, increased in ncr1Δ cells. Deletion of SIT4 or CDC55, its regulatory subunit, increased the chronological lifespan and hydrogen peroxide resistance of ncr1Δ cells and suppressed its mitochondrial defects. Notably, Sch9 and Pkh1-mediated phosphorylation of Sch9 decreased significantly in ncr1Δsit4Δ cells. These results suggest that phytoceramide accumulation and Sit4-dependent signaling mediate the mitochondrial dysfunction and shortened lifespan in the yeast model of Niemann-Pick type C1, in part through modulation of the Pkh1-Sch9 pathway.
Collapse
Affiliation(s)
- Rita Vilaça
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ivo Barros
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Elísio Silva
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Telma Martins
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vítor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
11
|
Kapahi P, Kaeberlein M, Hansen M. Dietary restriction and lifespan: Lessons from invertebrate models. Ageing Res Rev 2017; 39:3-14. [PMID: 28007498 DOI: 10.1016/j.arr.2016.12.005] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022]
Abstract
Dietary restriction (DR) is the most robust environmental manipulation known to increase active and healthy lifespan in many species. Despite differences in the protocols and the way DR is carried out in different organisms, conserved relationships are emerging among multiple species. Elegant studies from numerous model organisms are further defining the importance of various nutrient-signaling pathways including mTOR (mechanistic target of rapamycin), insulin/IGF-1-like signaling and sirtuins in mediating the effects of DR. We here review current advances in our understanding of the molecular mechanisms altered by DR to promote lifespan in three major invertebrate models, the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster.
Collapse
|
12
|
Singh P, Ramachandran SK, Zhu J, Kim BC, Biswas D, Ha T, Iglesias PA, Li R. Sphingolipids facilitate age asymmetry of membrane proteins in dividing yeast cells. Mol Biol Cell 2017; 28:2712-2722. [PMID: 28768828 PMCID: PMC5620378 DOI: 10.1091/mbc.e17-05-0335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 01/20/2023] Open
Abstract
One proposed mechanism of cellular aging is the gradual loss of certain cellular components that are insufficiently renewed. In an earlier study, multidrug resistance transporters (MDRs) were postulated to be such aging determinants during the yeast replicative life span (RLS). Aged MDR proteins were asymmetrically retained by the aging mother cell and did not diffuse freely into the bud, whereas newly synthesized MDR proteins were thought to be deposited mostly in the bud before cytokinesis. In this study, we further demonstrate the proposed age asymmetry of MDR proteins in dividing yeast cells and investigate the mechanism that controls diffusive properties of MDR proteins to maintain this asymmetry. We found that long-chain sphingolipids, but not the septin/endoplasmic reticulum-based membrane diffusion barrier, are important for restricting MDR diffusion. Depletion of sphingolipids or shortening of their long acyl chains resulted in an increase in the lateral mobility of MDR proteins, causing aged MDR protein in the mother cell to enter the bud. We used a mathematical model to understand the effect of diminished MDR age asymmetry on yeast cell aging, the result of which was qualitatively consistent with the observed RLS shortening in sphingolipid mutants.
Collapse
Affiliation(s)
- Pushpendra Singh
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Sree Kumar Ramachandran
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Jin Zhu
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Byoung Choul Kim
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218.,Howard Hughes Medical Institute, Baltimore, MD 21218.,Division of Nano-bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Debojyoti Biswas
- Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218.,Howard Hughes Medical Institute, Baltimore, MD 21218
| | - Pablo A Iglesias
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218.,Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
13
|
Mahazar NH, Zakuan Z, Norhayati H, MeorHussin AS, Rukayadi Y. Optimization of Culture Medium for the Growth of Candida sp. and Blastobotrys sp. as Starter Culture in Fermentation of Cocoa Beans (Theobroma cacao) Using Response Surface Methodology (RSM). Pak J Biol Sci 2017; 20:154-159. [PMID: 29023007 DOI: 10.3923/pjbs.2017.154.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Inoculation of starter culture in cocoa bean fermentation produces consistent, predictable and high quality of fermented cocoa beans. It is important to produce healthy inoculum in cocoa bean fermentation for better fermented products. Inoculum could minimize the length of the lag phase in fermentation. The purpose of this study was to optimize the component of culture medium for the maximum cultivation of Candida sp. and Blastobotrys sp. MATERIALS AND METHODS Molasses and yeast extract were chosen as medium composition and Response Surface Methodology (RSM) was then employed to optimize the molasses and yeast extract. RESULTS Maximum growth of Candida sp. (7.63 log CFU mL-1) and Blastobotrys sp. (8.30 log CFU mL-1) were obtained from the fermentation. Optimum culture media for the growth of Candida sp., consist of 10% (w/v) molasses and 2% (w/v) yeast extract, while for Blastobotrys sp., were 1.94% (w/v) molasses and 2% (w/v) yeast extract. CONCLUSION This study shows that culture medium consists of molasses and yeast extract were able to produce maximum growth of Candida sp. and Blastobotrys sp., as a starter culture for cocoa bean fermentation.
Collapse
Affiliation(s)
- N H Mahazar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Z Zakuan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - H Norhayati
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - A S MeorHussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Y Rukayadi
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Megyeri M, Riezman H, Schuldiner M, Futerman AH. Making Sense of the Yeast Sphingolipid Pathway. J Mol Biol 2016; 428:4765-4775. [PMID: 27664439 DOI: 10.1016/j.jmb.2016.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022]
Abstract
Sphingolipids (SL) and their metabolites play key roles both as structural components of membranes and as signaling molecules. Many of the key enzymes and regulators of SL metabolism were discovered using the yeast Saccharomyces cerevisiae, and based on the high degree of conservation, a number of mammalian homologs were identified. Although yeast continues to be an important tool for SL research, the complexity of SL structure and nomenclature often hampers the ability of new researchers to grasp the subtleties of yeast SL biology and discover new modulators of this intricate pathway. Moreover, the emergence of lipidomics by mass spectrometry has enabled the rapid identification of SL species in yeast and rendered the analysis of SL composition under various physiological and pathophysiological conditions readily amenable. However, the complex nomenclature of the identified species renders much of the data inaccessible to non-specialists. In this review, we focus on parsing both the classical SL nomenclature and the nomenclature normally used during mass spectrometry analysis, which should facilitate the understanding of yeast SL data and might shed light on biological processes in which SLs are involved. Finally, we discuss a number of putative roles of various yeast SL species.
Collapse
Affiliation(s)
- Márton Megyeri
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Howard Riezman
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, 1211, Switzerland
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
15
|
Ishijima H, Uchida R, Ohtawa M, Kondo A, Nagai K, Shima K, Nonaka K, Masuma R, Iwamoto S, Onodera H, Nagamitsu T, Tomoda H. Simplifungin and Valsafungins, Antifungal Antibiotics of Fungal Origin. J Org Chem 2016; 81:7373-83. [PMID: 27400027 DOI: 10.1021/acs.joc.6b00952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The targets of antifungal antibiotics in clinical use are more limited than those of antibacterial antibiotics. Therefore, new antifungal antibiotics with different mechanisms of action are desired. In the course of our screening for antifungal antibiotics of microbial origins, new antifungal antibiotics, simplifungin (1) and valsafungins A (2) and B (3), were isolated from cultures of the fungal strains Simplicillium minatense FKI-4981 and Valsaceae sp. FKH-53, respectively. The structures of 1 to 3 including their absolute stereochemistries were elucidated using various spectral analyses including NMR and collision-induced dissociation (CID)-MS/MS as well as chemical approaches including modifications to the Mosher's method. They were structurally related to myriocin. They inhibited the growth of yeast-like and zygomycetous fungi with MICs ranging between 0.125 and 8.0 μg/mL. An examination of their mechanisms of action by the newly established assay using LC-MS revealed that 1 and 2 inhibited serine palmitoyltransferase activity, which is involved in sphingolipid biosynthesis, with IC50 values of 224 and 24 nM, respectively.
Collapse
Affiliation(s)
- Hiroyuki Ishijima
- Graduate School of Pharmaceutical Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ryuji Uchida
- Graduate School of Pharmaceutical Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masaki Ohtawa
- Graduate School of Pharmaceutical Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ariko Kondo
- Graduate School of Pharmaceutical Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenichiro Nagai
- Graduate School of Pharmaceutical Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Keisuke Shima
- Life Science Business Department, Shimadzu Corporation , Kyoto 604-8511, Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Rokuro Masuma
- Kitasato Institute for Life Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Susumu Iwamoto
- Chemical Research Laboratories, R&D Division, Kyowa Hakko Kirin Co., Ltd. , 1188 Shimotogari, Nagaizumi-cho, Shizuoka 411-8731, Japan
| | - Hideyuki Onodera
- Chemical Research Laboratories, R&D Division, Kyowa Hakko Kirin Co., Ltd. , 1188 Shimotogari, Nagaizumi-cho, Shizuoka 411-8731, Japan
| | - Tohru Nagamitsu
- Graduate School of Pharmaceutical Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroshi Tomoda
- Graduate School of Pharmaceutical Sciences, Kitasato University , 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
16
|
Martínez-Montañés F, Schneiter R. Tools for the analysis of metabolic flux through the sphingolipid pathway. Biochimie 2016; 130:76-80. [PMID: 27208414 DOI: 10.1016/j.biochi.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/13/2016] [Indexed: 01/26/2023]
Abstract
Discerning the complex regulation of the enzymatic steps necessary for sphingolipid biosynthesis is facilitated by the utilization of tracers that allow a time-resolved analysis of the pathway dynamics without affecting the metabolic flux. Different strategies have been used and new tools are continuously being developed to probe the various enzymatic conversions that occur within this complex pathway. Here, we provide a short overview of the divergent fungal and mammalian sphingolipid biosynthetic routes, and of the tracers and methods that are frequently employed to follow the flux of intermediates throughout these pathways.
Collapse
Affiliation(s)
| | - Roger Schneiter
- University of Fribourg, Department of Biology, 1700 Fribourg, Switzerland.
| |
Collapse
|
17
|
Chauhan N, Han G, Somashekarappa N, Gable K, Dunn T, Kohlwein SD. Regulation of Sphingolipid Biosynthesis by the Morphogenesis Checkpoint Kinase Swe1. J Biol Chem 2015; 291:2524-34. [PMID: 26634277 PMCID: PMC4732232 DOI: 10.1074/jbc.m115.693200] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 12/31/2022] Open
Abstract
Sphingolipid (SL) biosynthesis is negatively regulated by the highly conserved endoplasmic reticulum-localized Orm family proteins. Defective SL synthesis in Saccharomyces cerevisiae leads to increased phosphorylation and inhibition of Orm proteins by the kinase Ypk1. Here we present evidence that the yeast morphogenesis checkpoint kinase, Swe1, regulates SL biosynthesis independent of the Ypk1 pathway. Deletion of the Swe1 kinase renders mutant cells sensitive to serine palmitoyltransferase inhibition due to impaired sphingoid long-chain base synthesis. Based on these data and previous results, we suggest that Swe1 kinase perceives alterations in SL homeostasis, activates SL synthesis, and may thus represent the missing regulatory link that controls the SL rheostat during the cell cycle.
Collapse
Affiliation(s)
- Neha Chauhan
- From the Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria and
| | - Gongshe Han
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | | - Kenneth Gable
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Teresa Dunn
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Sepp D Kohlwein
- From the Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria and
| |
Collapse
|
18
|
Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids. Nat Commun 2014; 5:5338. [DOI: 10.1038/ncomms6338] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/20/2014] [Indexed: 12/19/2022] Open
|
19
|
Voynova NS, Mallela SK, Vazquez HM, Cerantola V, Sonderegger M, Knudsen J, Ejsing CS, Conzelmann A. Characterization of yeast mutants lacking alkaline ceramidases YPC1 and YDC1. FEMS Yeast Res 2014; 14:776-88. [PMID: 24866405 DOI: 10.1111/1567-1364.12169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/22/2022] Open
Abstract
Humans and yeast possess alkaline ceramidases located in the early secretory pathway. Single deletions of the highly homologous yeast alkaline ceramidases YPC1 and YDC1 have very little genetic interactions or phenotypes. Here, we performed chemical-genetic screens to find deletions/conditions that would alter the growth of ypc1∆ydc1∆ double mutants. These screens were essentially negative, demonstrating that ceramidase activity is not required for cell growth even under genetic stresses. A previously reported protein targeting defect of ypc1∆ could not be reproduced and reported abnormalities in sphingolipid biosynthesis detected by metabolic labeling do not alter the mass spectrometric lipid profile of ypc1∆ydc1∆ cells. Ceramides of ypc1∆ydc1∆ remained normal even in presence of aureobasidin A, an inhibitor of inositolphosphorylceramide synthase. Moreover, in caloric restriction conditions Ypc1p reduces chronological life span. A novel finding is that, when working backwards as a ceramide synthase in vivo, Ypc1p prefers C24 and C26 fatty acids as substrates, whereas it prefers C16:0, when solubilized in detergent and working in vitro. Therefore, its physiological activity may not only concern the minor ceramides containing C14 and C16. Intriguingly, so far the sole discernable benefit of conserving YPC1 for yeast resides with its ability to convey relative resistance toward H2O2.
Collapse
Affiliation(s)
- Natalia S Voynova
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Aguilera-Romero A, Gehin C, Riezman H. Sphingolipid homeostasis in the web of metabolic routes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:647-56. [DOI: 10.1016/j.bbalip.2013.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
21
|
Teixeira V, Medeiros TC, Vilaça R, Moradas-Ferreira P, Costa V. Reduced TORC1 signaling abolishes mitochondrial dysfunctions and shortened chronological lifespan of Isc1p-deficient cells. MICROBIAL CELL 2014; 1:21-36. [PMID: 28357207 PMCID: PMC5349163 DOI: 10.15698/mic2014.01.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The target of rapamycin (TOR) is an important signaling pathway on a hierarchical
network of interacting pathways regulating central biological processes, such as
cell growth, stress response and aging. Several lines of evidence suggest a
functional link between TOR signaling and sphingolipid metabolism. Here, we
report that the TORC1-Sch9p pathway is activated in cells lacking Isc1p, the
yeast orthologue of mammalian neutral sphingomyelinase 2. The deletion of
TOR1 or SCH9 abolishes the premature
aging, oxidative stress sensitivity and mitochondrial dysfunctions displayed by
isc1Δ cells and this is correlated with the suppression of
the autophagic flux defect exhibited by the mutant strain. The protective effect
of TOR1 deletion, as opposed to that of SCH9
deletion, is not associated with the attenuation of Hog1p hyperphosphorylation,
which was previously implicated in isc1Δ phenotypes. Our data
support a model in which Isc1p regulates mitochondrial function and
chronological lifespan in yeast through the TORC1-Sch9p pathway although Isc1p
and TORC1 also seem to act through independent pathways, as
isc1Δtor1Δ phenotypes are intermediate to
those displayed by isc1Δ and tor1Δ cells. We
also provide evidence that TORC1 downstream effectors, the type 2A protein
phosphatase Sit4p and the AGC protein kinase Sch9p, integrate nutrient and
stress signals from TORC1 with ceramide signaling derived from Isc1p to regulate
mitochondrial function and lifespan in yeast. Overall, our results show that
TORC1-Sch9p axis is deregulated in Isc1p-deficient cells, contributing to
mitochondrial dysfunction, enhanced oxidative stress sensitivity and premature
aging of isc1Δ cells.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia C Medeiros
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Rita Vilaça
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Pedro Moradas-Ferreira
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
22
|
Swinnen E, Wilms T, Idkowiak-Baldys J, Smets B, De Snijder P, Accardo S, Ghillebert R, Thevissen K, Cammue B, De Vos D, Bielawski J, Hannun YA, Winderickx J. The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae. Mol Biol Cell 2013; 25:196-211. [PMID: 24196832 PMCID: PMC3873890 DOI: 10.1091/mbc.e13-06-0340] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sphingolipids play crucial roles in the determination of growth and survival of eukaryotic cells. The budding yeast protein kinase Sch9 is not only an effector, but also a regulator of sphingolipid metabolism. This new function provides a crucial link between nutrient and sphingolipid signaling. The Saccharomyces cerevisiae protein kinase Sch9 is an in vitro and in vivo effector of sphingolipid signaling. This study examines the link between Sch9 and sphingolipid metabolism in S. cerevisiae in vivo based on the observation that the sch9Δ mutant displays altered sensitivity to different inhibitors of sphingolipid metabolism, namely myriocin and aureobasidin A. Sphingolipid profiling indicates that sch9Δ cells have increased levels of long-chain bases and long-chain base-1 phosphates, decreased levels of several species of (phyto)ceramides, and altered ratios of complex sphingolipids. We show that the target of rapamycin complex 1–Sch9 signaling pathway functions to repress the expression of the ceramidase genes YDC1 and YPC1, thereby revealing, for the first time in yeast, a nutrient-dependent transcriptional mechanism involved in the regulation of sphingolipid metabolism. In addition, we establish that Sch9 affects the activity of the inositol phosphosphingolipid phospholipase C, Isc1, which is required for ceramide production by hydrolysis of complex sphingolipids. Given that sphingolipid metabolites play a crucial role in the regulation of stress tolerance and longevity of yeast cells, our data provide a model in which Sch9 regulates the latter phenotypes by acting not only as an effector but also as a regulator of sphingolipid metabolism.
Collapse
Affiliation(s)
- Erwin Swinnen
- Functional Biology, KU Leuven, 3001 Heverlee, Belgium Centre for Surface Chemistry and Catalysis, KU Leuven, 3001 Heverlee, Belgium Centre of Microbial and Plant Genetics, KU Leuven, 3001 Heverlee, Belgium Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Swinnen E, Ghillebert R, Wilms T, Winderickx J. Molecular mechanisms linking the evolutionary conserved TORC1-Sch9 nutrient signalling branch to lifespan regulation in Saccharomyces cerevisiae. FEMS Yeast Res 2013; 14:17-32. [PMID: 24102693 DOI: 10.1111/1567-1364.12097] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/09/2013] [Accepted: 09/06/2013] [Indexed: 01/13/2023] Open
Abstract
The knowledge on the molecular aspects regulating ageing in eukaryotic organisms has benefitted greatly from studies using the budding yeast Saccharomyces cerevisiae. Indeed, many aspects involved in the control of lifespan appear to be well conserved among species. Of these, the lifespan-extending effects of calorie restriction (CR) and downregulation of nutrient signalling through the target of rapamycin (TOR) pathway are prime examples. Here, we present an overview on the molecular mechanisms by which these interventions mediate lifespan extension in yeast. Several models have been proposed in the literature, which should be seen as complementary, instead of contradictory. Results indicate that CR mediates a large amount of its effect by downregulating signalling through the TORC1-Sch9 branch. In addition, we note that Sch9 is more than solely a downstream effector of TORC1, and documented connections with sphingolipid metabolism may be particularly interesting for future research on ageing mechanisms. As Sch9 comprises the yeast orthologue of the mammalian PKB/Akt and S6K1 kinases, future studies in yeast may continue to serve as an attractive model to elucidate conserved mechanisms involved in ageing and age-related diseases in humans.
Collapse
|
24
|
Borklu Yucel E, Ulgen KO. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. MOLECULAR BIOSYSTEMS 2013; 9:2914-31. [DOI: 10.1039/c3mb70248k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|