1
|
Ruisanchez É, Janovicz A, Panta RC, Kiss L, Párkányi A, Straky Z, Korda D, Liliom K, Tigyi G, Benyó Z. Enhancement of Sphingomyelinase-Induced Endothelial Nitric Oxide Synthase-Mediated Vasorelaxation in a Murine Model of Type 2 Diabetes. Int J Mol Sci 2023; 24:ijms24098375. [PMID: 37176081 PMCID: PMC10179569 DOI: 10.3390/ijms24098375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Sphingolipids are important biological mediators both in health and disease. We investigated the vascular effects of enhanced sphingomyelinase (SMase) activity in a mouse model of type 2 diabetes mellitus (T2DM) to gain an understanding of the signaling pathways involved. Myography was used to measure changes in the tone of the thoracic aorta after administration of 0.2 U/mL neutral SMase in the presence or absence of the thromboxane prostanoid (TP) receptor antagonist SQ 29,548 and the nitric oxide synthase (NOS) inhibitor L-NAME. In precontracted aortic segments of non-diabetic mice, SMase induced transient contraction and subsequent weak relaxation, whereas vessels of diabetic (Leprdb/Leprdb, referred to as db/db) mice showed marked relaxation. In the presence of the TP receptor antagonist, SMase induced enhanced relaxation in both groups, which was 3-fold stronger in the vessels of db/db mice as compared to controls and could not be abolished by ceramidase or sphingosine-kinase inhibitors. Co-administration of the NOS inhibitor L-NAME abolished vasorelaxation in both groups. Our results indicate dual vasoactive effects of SMase: TP-mediated vasoconstriction and NO-mediated vasorelaxation. Surprisingly, in spite of the general endothelial dysfunction in T2DM, the endothelial NOS-mediated vasorelaxant effect of SMase was markedly enhanced.
Collapse
Affiliation(s)
- Éva Ruisanchez
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| | - Anna Janovicz
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| | - Rita Cecília Panta
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Levente Kiss
- Department of Physiology, Semmelweis University, H-1094 Budapest, Hungary
| | - Adrienn Párkányi
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Zsuzsa Straky
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Dávid Korda
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
| | - Károly Liliom
- Institute of Biophysics and Radiation Biology, Semmelweis University, H-1094 Budapest, Hungary
| | - Gábor Tigyi
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, H-1052 Budapest, Hungary
| |
Collapse
|
2
|
Li J, Satyshur KA, Guo LW, Ruoho AE. Sphingoid Bases Regulate the Sigma-1 Receptor-Sphingosine and N, N'-Dimethylsphingosine Are Endogenous Agonists. Int J Mol Sci 2023; 24:3103. [PMID: 36834510 PMCID: PMC9962145 DOI: 10.3390/ijms24043103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Both bioactive sphingolipids and Sigma-1 receptor (S1R) chaperones occur ubiquitously in mammalian cell membranes. Endogenous compounds that regulate the S1R are important for controlling S1R responses to cellular stress. Herein, we interrogated the S1R in intact Retinal Pigment Epithelial cells (ARPE-19) with the bioactive sphingoid base, sphingosine (SPH), or the pain-provoking dimethylated SPH derivative, N,N'-dimethylsphingosine (DMS). As informed by a modified native gel approach, the basal and antagonist (BD-1047)-stabilized S1R oligomers dissociated to protomeric forms in the presence of SPH or DMS (PRE-084 as control). We, thus, posited that SPH and DMS are endogenous S1R agonists. Consistently, in silico docking of SPH and DMS to the S1R protomer showed strong associations with Asp126 and Glu172 in the cupin beta barrel and extensive van der Waals interactions of the C18 alkyl chains with the binding site including residues in helices 4 and 5. Mean docking free energies were 8.73-8.93 kcal/mol for SPH and 8.56-8.15 kcal/mol for DMS, and calculated binding constants were ~40 nM for SPH and ~120 nM for DMS. We hypothesize that SPH, DMS, and similar sphingoid bases access the S1R beta barrel via a membrane bilayer pathway. We further propose that the enzymatic control of ceramide concentrations in intracellular membranes as the primary sources of SPH dictates availability of endogenous SPH and DMS to the S1R and the subsequent control of S1R activity within the same cell and/or in cellular environments.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kenneth A. Satyshur
- Small Molecule Screening Facility, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Arnold E. Ruoho
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
3
|
Lee WK, Maaß M, Quach A, Poscic N, Prangley H, Pallott EC, Kim JL, Pierce JS, Ogretmen B, Futerman AH, Thévenod F. Dependence of ABCB1 transporter expression and function on distinct sphingolipids generated by ceramide synthases-2 and -6 in chemoresistant renal cancer. J Biol Chem 2021; 298:101492. [PMID: 34915026 PMCID: PMC8804196 DOI: 10.1016/j.jbc.2021.101492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
Oncogenic multidrug resistance is commonly intrinsic to renal cancer based on the physiological expression of detoxification transporters, particularly ABCB1, thus hampering chemotherapy. ABCB1 activity is directly dependent on its lipid microenvironment, localizing to cholesterol- and sphingomyelin (SM)-rich domains. As ceramides are the sole source for SMs, we hypothesized that ceramide synthase (CerS)-derived ceramides regulate ABCB1 activity. Using data from RNA-Seq databases, we found that patient kidney tumors exhibited increased CerS2 mRNA, which was inversely correlated with CerS6 mRNA in ABCB1+ clear cell carcinomas. Endogenous elevated CerS2 and lower CerS5/6 mRNA and protein resulted in disproportionately higher CerS2 to CerS5/6 activities (approximately twofold) in chemoresistant ABCB1high (A498, Caki-1) compared with chemosensitive ABCB1low (ACHN, normal human proximal convoluted tubule cell) cells. In addition, lipidomics analyses by HPLC–MS/MS showed bias toward CerS2-associated C20:0/C20:1-ceramides compared with CerS5/6-associated C14:0/C16:0-ceramides (2:1). SMs were similarly altered. We demonstrated that chemoresistance to doxorubicin in ABCB1high cells was partially reversed by inhibitors of de novo ceramide synthesis (l-cycloserine) and CerS (fumonisin B1) in cell viability assays. Downregulation of CerS2/6, but not CerS5, attenuated ABCB1 mRNA, protein, plasma membrane localization, rhodamine 123+ efflux transport activity, and doxorubicin resistance. Similar findings were observed with catalytically inactive CerS6-H212A. Furthermore, CerS6-targeting siRNA shifted ceramide and SM composition to ultra long-chain species (C22–C26). Inhibitors of endoplasmic reticulum–associated degradation (eeyarestatin I) and the proteasome (MG132, bortezomib) prevented ABCB1 loss induced by CerS2/6 downregulation. We conclude that a critical balance in ceramide/SM species is prerequisite to ABCB1 expression and functionalization, which could be targeted to reverse multidrug resistance in renal cancers.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany; Physiology & Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Germany.
| | - Michelle Maaß
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany
| | - Amy Quach
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany; Faculty of Life Sciences, University of Manchester, UK
| | - Nataliya Poscic
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany
| | - Holly Prangley
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany; Faculty of Life Sciences, University of Manchester, UK
| | - Erin-Claire Pallott
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany; Faculty of Life Sciences, University of Manchester, UK
| | - Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Israel
| | - Jason S Pierce
- Lipidomics Shared Resource, Medical University of South Carolina, USA
| | - Besim Ogretmen
- Lipidomics Shared Resource, Medical University of South Carolina, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Israel
| | - Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Germany
| |
Collapse
|
4
|
Hertz E, Saarinen M, Svenningsson P. GM1 Is Cytoprotective in GPR37-Expressing Cells and Downregulates Signaling. Int J Mol Sci 2021; 22:ijms222312859. [PMID: 34884663 PMCID: PMC8657933 DOI: 10.3390/ijms222312859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are commonly pharmacologically modulated due to their ability to translate extracellular events to intracellular changes. Previously, studies have mostly focused on protein–protein interactions, but the focus has now expanded also to protein–lipid connections. GM1, a brain-expressed ganglioside known for neuroprotective effects, and GPR37, an orphan GPCR often reported as a potential drug target for diseases in the central nervous system, have been shown to form a complex. In this study, we looked into the functional effects. Endogenous GM1 was downregulated when stably overexpressing GPR37 in N2a cells (N2aGPR37-eGFP). However, exogenous GM1 specifically rescued N2aGPR37-eGFP from toxicity induced by the neurotoxin MPP+. The treatment did not alter transcription levels of GPR37 or the enzyme responsible for GM1 production, both potential mechanisms for the effect. However, GM1 treatment inhibited cAMP-dependent signaling from GPR37, here reported as potentially consecutively active, possibly contributing to the protective effects. We propose an interplay between GPR37 and GM1 as one of the many cytoprotective effects reported for GM1.
Collapse
Affiliation(s)
- Ellen Hertz
- Correspondence: (E.H.); (P.S.); Tel.: +46-8517-74-614 (E.H.)
| | | | | |
Collapse
|
5
|
Claus RA, Graeler MH. Sphingolipidomics in Translational Sepsis Research-Biomedical Considerations and Perspectives. Front Med (Lausanne) 2021; 7:616578. [PMID: 33553212 PMCID: PMC7854573 DOI: 10.3389/fmed.2020.616578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Scientific Background: Sphingolipids are a highly diverse group of lipids with respect to physicochemical properties controlling either structure, distribution, or function, all of them regulating cellular response in health and disease. Mass spectrometry, on the other hand, is an analytical technique characterizing ionized molecules or fragments thereof by mass-to-charge ratios, which has been prosperingly developed for rapid and reliable qualitative and quantitative identification of lipid species. Parallel to best performance of in-depth chromatographical separation of lipid classes, preconditions of precise quantitation of unique molecular species by preprocessing of biological samples have to be fulfilled. As a consequence, “lipid profiles” across model systems and human individuals, esp. complex (clinical) samples, have become eminent over the last couple of years due to sensitivity, specificity, and discriminatory capability. Therefore, it is significance to consider the entire experimental strategy from sample collection and preparation, data acquisition, analysis, and interpretation. Areas Covered: In this review, we outline considerations with clinical (i.e., human) samples with special emphasis on sample handling, specific physicochemical properties, target measurements, and resulting profiling of sphingolipids in biomedicine and translational research to maximize sensitivity and specificity as well as to provide robust and reproducible results. A brief commentary is also provided regarding new insights of “clinical sphingolipidomics” in translational sepsis research. Expert Opinion: The role of mass spectrometry of sphingolipids and related species (“sphingolipidomics”) to investigate cellular and compartment-specific response to stress, e.g., in generalized infection and sepsis, is on the rise and the ability to integrate multiple datasets from diverse classes of biomolecules by mass spectrometry measurements and metabolomics will be crucial to fostering our understanding of human health as well as response to disease and treatment.
Collapse
Affiliation(s)
- Ralf A Claus
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany
| | - Markus H Graeler
- Department for Anesthesiology and Intensive Care Medicine, Sepsis Research, Jena University Hospital, Jena, Germany.,Center for Sepsis Care & Control, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany
| |
Collapse
|
6
|
Sarmento MJ, Ricardo JC, Amaro M, Šachl R. Organization of gangliosides into membrane nanodomains. FEBS Lett 2020; 594:3668-3697. [DOI: 10.1002/1873-3468.13871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Maria J. Sarmento
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Joana C. Ricardo
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague 8 Czech Republic
| |
Collapse
|
7
|
Abstract
Regulated transport through the secretory pathway is essential for embryonic development and homeostasis. Disruptions in this process impact cell fate, differentiation and survival, often resulting in abnormalities in morphogenesis and in disease. Several congenital malformations are caused by mutations in genes coding for proteins that regulate cargo protein transport in the secretory pathway. The severity of mutant phenotypes and the unclear aetiology of transport protein-associated pathologies have motivated research on the regulation and mechanisms through which these proteins contribute to morphogenesis. This review focuses on the role of the p24/transmembrane emp24 domain (TMED) family of cargo receptors in development and disease.
Collapse
|
8
|
Aisenbrey C, Kemayo-Koumkoua P, Salnikov ES, Glattard E, Bechinger B. Investigations of the Structure, Topology, and Interactions of the Transmembrane Domain of the Lipid-Sorting Protein p24 Being Highly Selective for Sphingomyelin-C18. Biochemistry 2019; 58:2782-2795. [PMID: 31120242 DOI: 10.1021/acs.biochem.9b00375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The p24 proteins play an important role in the secretory pathway where they selectively connect various cargo to other proteins, thereby being involved in the controlled assembly and disassembly of the coat protein complexes and lipid sorting. Recently, a highly selective lipid interaction motif has been identified within the p24 transmembrane domain (TMD) that recognizes the combination of the sphingomyelin headgroup and the exact length of the C18 fatty acyl chain (SM-C18). Here, we present investigations of the structure, dynamics, and sphingomyelin interactions of the p24 transmembrane region using circular dichroism, tryptophan fluorescence, and solid-state nuclear magnetic resonance (NMR) spectroscopies of the polypeptides and the surrounding lipids. Membrane insertion and/or conformation of the TMD is strongly dependent on the membrane lipid composition where the transmembrane helical insertion is strongest in the presence of 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) and SM-C18. By analyzing solid-state NMR angular restraints from a large number of labeled sites, we have found a tilt angle of 19° for the transmembrane helical domain at a peptide-to-lipid ratio of 1 mol %. Only minor changes in the solid-state NMR spectra are observed due to the presence of SM-C18; the only visible alterations are associated with the SM-C18 recognition motif close to the carboxy-terminal part of the hydrophobic transmembrane region in the proximity of the SM headgroup. Finally, the deuterium order parameters of POPC- d31 were nearly unaffected by the presence of SM-C18 or the polypeptide alone but decreased noticeably when the sphingomyelin and the polypeptide were added in combination.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Université de Strasbourg/CNRS, UMR7177 , Institut de Chimie , 4, rue Blaise Pascal , 67070 Strasbourg , France
| | - Patricia Kemayo-Koumkoua
- Université de Strasbourg/CNRS, UMR7177 , Institut de Chimie , 4, rue Blaise Pascal , 67070 Strasbourg , France
| | - Evgeniy S Salnikov
- Université de Strasbourg/CNRS, UMR7177 , Institut de Chimie , 4, rue Blaise Pascal , 67070 Strasbourg , France
| | - Elise Glattard
- Université de Strasbourg/CNRS, UMR7177 , Institut de Chimie , 4, rue Blaise Pascal , 67070 Strasbourg , France
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177 , Institut de Chimie , 4, rue Blaise Pascal , 67070 Strasbourg , France
| |
Collapse
|
9
|
Ding X, Sun C, Cui H, Chen S, Gao Y, Yang Y, Wang J, He X, Iuga D, Tian F, Watts A, Zhao X. Functional roles of tyrosine 185 during the bacteriorhodopsin photocycle as revealed by in situ spectroscopic studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1006-1014. [PMID: 29800547 DOI: 10.1016/j.bbabio.2018.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/15/2018] [Accepted: 05/20/2018] [Indexed: 01/22/2023]
Abstract
Tyrosine 185 (Y185), one of the aromatic residues within the retinal (Ret) chromophore binding pocket in helix F of bacteriorhodopsin (bR), is highly conserved among the microbial rhodopsin family proteins. Many studies have investigated the functions of Y185, but its underlying mechanism during the bR photocycle remains unclear. To address this research gap, in situ two-dimensional (2D) magic-angle spinning (MAS) solid-state NMR (ssNMR) of specifically labelled bR, combined with light-induced transient absorption change measurements, dynamic light scattering (DLS) measurements, titration analysis and site-directed mutagenesis, was used to elucidate the functional roles of Y185 during the bR photocycle in the native membrane environment. Different interaction modes were identified between Y185 and the Ret chromophore in the dark-adapted (inactive) state and M (active) state, indicating that Y185 may serve as a rotamer switch maintaining the protein dynamics, and plays an important role in the efficient proton-pumping mechanism in the bR purple membrane.
Collapse
Affiliation(s)
- Xiaoyan Ding
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, PA 17033-0850, USA
| | - Chao Sun
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Haolin Cui
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Sijin Chen
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Yujiao Gao
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Yanan Yang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Juan Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China
| | - Xiao He
- Shang Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Dinu Iuga
- The UK 850 MHz Solid-State NMR Facility, Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Fang Tian
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, PA 17033-0850, USA.
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| | - Xin Zhao
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
10
|
Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains. Proc Natl Acad Sci U S A 2018; 115:E3145-E3154. [PMID: 29559531 DOI: 10.1073/pnas.1719462115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The eukaryotic plasma membrane is compartmentalized into domains enriched in specific lipids and proteins. However, our understanding of the molecular bases and biological roles of this partitioning remains incomplete. The best-studied domain in yeast is the membrane compartment containing the arginine permease Can1 (MCC) and later found to cluster additional transporters. MCCs correspond to static, furrow-like invaginations of the plasma membrane and associate with subcortical structures named "eisosomes" that include upstream regulators of the target of rapamycin complex 2 (TORC2) in the sensing of sphingolipids and membrane stress. However, how and why Can1 and other nutrient transporters preferentially segregate in MCCs remains unknown. In this study we report that the clustering of Can1 in MCCs is dictated by its conformation, requires proper sphingolipid biosynthesis, and controls its ubiquitin-dependent endocytosis. In the substrate-free outward-open conformation, Can1 accumulates in MCCs in a manner dependent on sustained biogenesis of complex sphingolipids. An arginine transport-elicited shift to an inward-facing conformation promotes its cell-surface dissipation and makes it accessible to the ubiquitylation machinery triggering its endocytosis. We further show that under starvation conditions MCCs increase in number and size, this being dependent on the BAR domain-containing Lsp1 eisosome component. This expansion of MCCs provides protection for nutrient transporters from bulk endocytosis occurring in parallel with autophagy upon TORC1 inhibition. Our study reveals nutrient-regulated protection from endocytosis as an important role for protein partitioning into membrane domains.
Collapse
|
11
|
Spassieva S, Bieberich E. Lysosphingolipids and sphingolipidoses: Psychosine in Krabbe's disease. J Neurosci Res 2017; 94:974-81. [PMID: 27638582 DOI: 10.1002/jnr.23888] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022]
Abstract
Until recently, lipids were considered inert building blocks of cellular membranes. This changed three decades ago when lipids were found to regulate cell polarity and vesicle transport, and the "lipid raft" concept took shape. The lipid-driven membrane anisotropy in form of "rafts" that associate with proteins led to the view that organized complexes of lipids and proteins regulate various cell functions. Disturbance of this organization can lead to cellular, tissue, and organ malfunction. Sphingolipidoses, lysosomal storage diseases that are caused by enzyme deficiencies in the sphingolipid degradation pathway, were found to be particularly detrimental to the brain. These enzyme deficiencies result in accumulation of sphingolipid metabolites in lysosomes, although it is not yet clear how this accumulation affects the organization of lipids in cellular membranes. Krabbe's disease (KD), or globoid cell leukodystrophy, was one of the first sphingolipidosis for which the raft concept offered a potential mechanism. KD is caused by mutations in the enzyme β-galactocerebrosidase; however, elevation of its substrate, galactosylceramide, is not observed or considered detrimental. Instead, it was found that a byproduct of galactosylceramide metabolism, the lysosphingolipid psychosine, is accumulated. The "psychosine hypothesis" has been refined by showing that psychosine disrupts lipid rafts and vesicular transport critical for the function of glia and neurons. The role of psychosine in KD is an example of how the disruption of sphingolipid metabolism can lead to elevation of a toxic lysosphingolipid, resulting in disruption of cellular membrane organization and neurotoxicity. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefka Spassieva
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas
| | - Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Geogia.
| |
Collapse
|
12
|
Abstract
Maintenance of cellular homeostasis requires tight and coordinated control of numerous metabolic pathways, which are governed by interconnected networks of signaling pathways and energy-sensing regulators. Autophagy, a lysosomal degradation pathway by which the cell self-digests its own components, has over the past decade been recognized as an essential part of metabolism. Autophagy not only rids the cell of excessive or damaged organelles, misfolded proteins, and invading microorganisms, it also provides nutrients to maintain crucial cellular functions. Besides serving as essential structural moieties of biomembranes, lipids including sphingolipids are increasingly being recognized as central regulators of a number of important cellular processes, including autophagy. In the present review we describe how sphingolipids, with special emphasis on ceramides and sphingosine-1-phosphate, can act as physiological regulators of autophagy in relation to cellular and organismal growth, survival, and aging.
Collapse
Affiliation(s)
- Eva Bang Harvald
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | | | | |
Collapse
|
13
|
Signorelli P, Fabiani C, Brizzolari A, Paroni R, Casas J, Fabriàs G, Rossi D, Ghidoni R, Caretti A. Natural Grape Extracts Regulate Colon Cancer Cells Malignancy. Nutr Cancer 2015; 67:494-503. [DOI: 10.1080/01635581.2015.1004591] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Paola Signorelli
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| | - Carlotta Fabiani
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| | - Andrea Brizzolari
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Catalan Institute of Advanced Chemistry, Barcelona, Spain
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules, Department of Biomedicinal Chemistry, Catalan Institute of Advanced Chemistry, Barcelona, Spain
| | - Dario Rossi
- Immobiliare Ca’ Novella srl, Alessandria, Italy
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| | - Anna Caretti
- Department of Health Sciences, University of Milan, Milan, Italy, and San Paolo Hospital, Milan, Italy
| |
Collapse
|
14
|
Landreh M, Robinson CV. A new window into the molecular physiology of membrane proteins. J Physiol 2014; 593:355-62. [PMID: 25630257 PMCID: PMC4303381 DOI: 10.1113/jphysiol.2014.283150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022] Open
Abstract
Integral membrane proteins comprise ∼25% of the human proteome. Yet, our understanding of their molecular physiology is still in its infancy. This can be attributed to two factors: the experimental challenges that arise from the difficult chemical nature of membrane proteins, and the unclear relationship between their activity and their native environment. New approaches are therefore required to address these challenges. Recent developments in mass spectrometry have shown that it is possible to study membrane proteins in a solvent-free environment and provide detailed insights into complex interactions, ligand binding and folding processes. Interestingly, not only detergent micelles but also lipid bilayer nanodiscs or bicelles can serve as a means for the gentle desolvation of membrane proteins in the gas phase. In this manner, as well as by direct addition of lipids, it is possible to study the effects of different membrane components on the structure and function of the protein components allowing us to add functional data to the least accessible part of the proteome.
Collapse
Affiliation(s)
- Michael Landreh
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 5QY, UK
| | | |
Collapse
|
15
|
Early and late HIV-1 membrane fusion events are impaired by sphinganine lipidated peptides that target the fusion site. Biochem J 2014; 461:213-22. [PMID: 24766462 PMCID: PMC4072049 DOI: 10.1042/bj20140189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipid-conjugated peptides have advanced the understanding of membrane protein functions and the roles of lipids in the membrane milieu. These lipopeptides modulate various biological systems such as viral fusion. A single function has been suggested for the lipid, binding to the membrane and thus elevating the local concentration of the peptide at the target site. In the present paper, we challenged this argument by exploring in-depth the antiviral mechanism of lipopeptides, which comprise sphinganine, the lipid backbone of DHSM (dihydrosphingomyelin), and an HIV-1 envelope-derived peptide. Surprisingly, we discovered a partnership between the lipid and the peptide that impaired early membrane fusion events by reducing CD4 receptor lateral diffusion and HIV-1 fusion peptide-mediated lipid mixing. Moreover, only the joint function of sphinganine and its conjugate peptide disrupted HIV-1 fusion protein assembly and folding at the later fusion steps. Via imaging techniques we revealed for the first time the direct localization of these lipopeptides to the virus–cell and cell–cell contact sites. Overall, the findings of the present study may suggest lipid–protein interactions in various biological systems and may help uncover a role for elevated DHSM in HIV-1 and its target cell membranes. We show that sphinganine lipidated peptides affect membrane fusion, modulate the membrane and disrupt protein assembly. In addition the findings may aid in deciphering the function of DHSM in biological membranes.
Collapse
|
16
|
Wakashima T, Abe K, Kihara A. Dual functions of the trans-2-enoyl-CoA reductase TER in the sphingosine 1-phosphate metabolic pathway and in fatty acid elongation. J Biol Chem 2014; 289:24736-48. [PMID: 25049234 DOI: 10.1074/jbc.m114.571869] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sphingolipid metabolite sphingosine 1-phosphate (S1P) functions as a lipid mediator and as a key intermediate of the sole sphingolipid to glycerophospholipid metabolic pathway (S1P metabolic pathway). In this pathway, S1P is converted to palmitoyl-CoA through 4 reactions, then incorporated mainly into glycerophospholipids. Although most of the genes responsible for the S1P metabolic pathway have been identified, the gene encoding the trans-2-enoyl-CoA reductase, responsible for the saturation step (conversion of trans-2-hexadecenoyl-CoA to palmitoyl-CoA) remains unidentified. In the present study, we show that TER is the missing gene in mammals using analyses involving yeast cells, deleting the TER homolog TSC13, and TER-knockdown HeLa cells. TER is known to be involved in the production of very long-chain fatty acids (VLCFAs). A significant proportion of the saturated and monounsaturated VLCFAs are used for sphingolipid synthesis. Therefore, TER is involved in both the production of VLCFAs used in the fatty acid moiety of sphingolipids as well as in the degradation of the sphingosine moiety of sphingolipids via S1P.
Collapse
Affiliation(s)
- Takeshi Wakashima
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Kensuke Abe
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- From the Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|