1
|
Lakli M, Onnée M, Carrez T, Becq F, Falguières T, Fanen P. ABC transporters involved in respiratory and cholestatic diseases: From rare to very rare monogenic diseases. Biochem Pharmacol 2024; 229:116468. [PMID: 39111603 DOI: 10.1016/j.bcp.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. These proteins, most of them being transmembrane, allow the active transport of an important variety of substrates across biological membranes, using ATP hydrolysis as an energy source. For an important proportion of these ABC transporters, genetic variations of the loci encoding them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases (variations in ABCB4 and ABCB11). In this review, we first describe these ABC transporters and how their molecular dysfunction may lead to human diseases. Then, we propose a classification of the genetic variants according to their molecular defect (expression, traffic, function and/or stability), which may be considered as a general guideline for all ABC transporters' variants. Finally, we discuss recent progress in the field of targeted pharmacotherapy, which aim to correct specific molecular defects using small molecules. In conclusion, we are opening the path to treatment repurposing for diseases involving similar deficiencies in other ABC transporters.
Collapse
Affiliation(s)
- Mounia Lakli
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Marion Onnée
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France
| | - Thomas Carrez
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France; ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Frédéric Becq
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France
| | - Thomas Falguières
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France; AP-HP, Département de Génétique Médicale, Hôpital Henri Mondor, F-94010, Créteil, France.
| |
Collapse
|
2
|
Klubdaeng A, Tovichien P. Clinical approach for pulmonary alveolar proteinosis in children. World J Clin Cases 2024; 12:6339-6345. [PMID: 39464322 PMCID: PMC11438685 DOI: 10.12998/wjcc.v12.i30.6339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
In this editorial, we discuss the clinical implications of the article by Zhang et al. Pulmonary alveolar proteinosis (PAP) is a rare lung disease characterized by excessive surfactant accumulation in the alveoli. It is classified into four categories: Primary, secondary, congenital, and unclassified forms. Primary PAP is caused by the disruption of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor signaling, which is necessary for the clearance of surfactant by alveolar macrophages. It is further divided into autoimmune PAP, caused by anti-GM-CSF antibodies blocking alveolar macrophage activation, and hereditary PAP, resulting from mutations in genes encoding GM-CSF receptors. Secondary PAP develops due to conditions affecting the number or function of alveolar macrophages, such as infections, immunodeficiency, hematological disorders, or exposure to inhaled toxins. Congenital PAP is linked to mutations in genes involved in surfactant protein production. Notably, the causes of PAP differ between children and adults. Diagnostic features include a characteristic "crazy-paving" pattern on high-resolution computed tomography, accompanied by diffuse ground-glass opacities and interlobular septal thickening. The presence of PAP can be identified by the milky appearance of bronchoalveolar lavage fluid and histological evaluation. However, these methods cannot definitively determine the cause of PAP. Whole lung lavage remains the standard treatment, often combined with specific therapies based on the underlying cause.
Collapse
Affiliation(s)
- Anuvat Klubdaeng
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Prakarn Tovichien
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
3
|
Ognean ML, Anciuc-Crauciuc M, Galiș R, Stepan AE, Stepan MD, Bănescu C, Grosu F, Kramer BW, Cucerea M. ABCA3 c.838C>T (p.Arg280Cys, R280C) and c.697C>T (p.Gln233Ter, Q233X, Q233*) as Causative Variants for RDS: A Family Case Study and Literature Review. Biomedicines 2024; 12:2390. [PMID: 39457702 PMCID: PMC11505159 DOI: 10.3390/biomedicines12102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Respiratory distress syndrome (RDS) is the primary cause of respiratory failure in preterm infants, but it also affects 5-7% of term infants. Dysfunctions in pulmonary surfactant metabolism, resulting from mutations of the lung surfactant genes, are rare diseases, ranging from fatal neonatal RDS to interstitial lung disease, associated with increased morbidity and mortality. This study aims to clarify the clinical significance of ABCA3 variants found in a specific family case, as existing data in the literature are inconsistent. Material and Methods: A family case report was conducted; targeted panel genetic testing identified a variant of the SFTPB gene and two variants of ABCA3 genes. Comprehensive research involving a systematic review of PubMed, Google Scholar databases, and genome browsers was used to clarify the pathogenicity of the two ABCA3 variants found in the index patient. Advanced prediction tools were employed to assess the pathogenicity of the two ABCA3 variants, ensuring the validity and reliability of our findings. Results: The index case exhibited fatal neonatal RDS. Genetic testing revealed the presence of the SFTPB p.Val267Ile variant, which was not previously reported but is a benign variant based on family genetic testing and history. Additionally, two ABCA3 gene variants were identified: c.697C>T, not yet reported, and c.838C>T. These variants were found to affect ABCA3 protein function and were likely associated with neonatal RDS. Prediction tools and data from nine other cases in the literature supported this conclusion. Conclusions: Based on in silico predictors, an analysis of the presented family, and cases described in the literature, it is reasonable to consider reclassifying the two ABCA3 variants identified in the index case as pathogenic/pathogenic. Reclassification will improve genetic counseling accuracy and facilitate correct diagnosis.
Collapse
Affiliation(s)
- Maria Livia Ognean
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Neonatology Department, Clinical County Emergency Hospital, 550245 Sibiu, Romania
| | - Mădălina Anciuc-Crauciuc
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| | - Radu Galiș
- Department of Neonatology, Emergency County Hospital Bihor, Oradea University, 410087 Oradea, Romania;
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Alex-Emilian Stepan
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Mioara Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Claudia Bănescu
- Genetic Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania
| | - Florin Grosu
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Imaging Department, Lucian Blaga University, 550169 Sibiu, Romania
| | - Boris W. Kramer
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Manuela Cucerea
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| |
Collapse
|
4
|
Abstract
ABC transporters are essential for cellular physiology. Humans have 48 ABC genes organized into seven distinct families. Of these genes, 44 (in five distinct families) encode for membrane transporters, of which several are involved in drug resistance and disease pathways resulting from transporter dysfunction. Over the last decade, advances in structural biology have vastly expanded our mechanistic understanding of human ABC transporter function, revealing details of their molecular arrangement, regulation, and interactions, facilitated in large part by advances in cryo-EM that have rendered hitherto inaccessible targets amenable to high-resolution structural analysis. As a result, experimentally determined structures of multiple members of each of the five families of ABC transporters in humans are now available. Here we review this recent progress, highlighting the physiological relevance of human ABC transporters and mechanistic insights gleaned from their direct structure determination. We also discuss the impact and limitations of model systems and structure prediction methods in understanding human ABC transporters and discuss current challenges and future research directions.
Collapse
Affiliation(s)
- Amer Alam
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zurich, Switzerland;
| |
Collapse
|
5
|
Xiao GL, Gao Y, Hao H, Wei T, Hong C, Wang Y, Lin YY, Chi XF, Liu Y, Gao HY, Nie C. Novel insights into congenital surfactant dysfunction disorders by in silico analysis of ABCA3 proteins. World J Pediatr 2023; 19:293-301. [PMID: 36404394 PMCID: PMC9974682 DOI: 10.1007/s12519-022-00645-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Affiliation(s)
- Guo-Liang Xiao
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China
| | - Yuan Gao
- Department of Marine Science, College of Oceanography, South China Agricultural University, Guangzhou, China
| | - Hu Hao
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Chun Hong
- Department of Thoracic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yue Wang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China
| | - Ying-Yi Lin
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China
| | - Xiu-Fang Chi
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China
| | - Ying Liu
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China
| | - Hong-Yi Gao
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, 511442, Guangzhou, China.
| | - Chuan Nie
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China.
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China.
| |
Collapse
|
6
|
Li L, Liu Y, Liu X, Zheng N, Gu Y, Song Y, Wang X. Regulatory roles of external cholesterol in human airway epithelial mitochondrial function through STARD3 signalling. Clin Transl Med 2022; 12:e902. [PMID: 35678098 PMCID: PMC9178408 DOI: 10.1002/ctm2.902] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hypercholesterolemia is found in patients with chronic lung inflammation, during which airway epithelial cells play important roles in maintenance of inflammatory responses to pathogens. The present study aims at molecular mechanisms by which cholesterol changes airway epithelial sensitivity in response to smoking. METHODS Human bronchial epithelial cells (HBEs) were stimulated with cigarette smoke extract (CSE) and mice were exposed to CS/lipopolysaccharide (LPS) as models in vitro and in vivo. Severe COPD patients and healthy volunteers were also enrolled and the level of cholesterol in plasma was detected by metabolomics. Filipin III and elisa kits were used to stain free cholesterol. Mitochondrial function was detected by mitotracker green, mitotracker green, and Seahorse. Mitochondrial morphology was detected by high content screening and electron microscopy. The mRNA and protein levels of mitochondrial dynamics-related proteins were detected by RT-qPCR and Western blot,respectively. BODIPY 493/503 was used to stain lipid droplets. Lipidomics was used to detect intracellular lipid components. The mRNA level of interleukin (IL)-6 and IL-8 were detected by RT-qPCR. RESULTS We found that the cholesterol overload was associated with chronic obstructive pulmonary disease (COPD) and airway epithelia-driven inflammation, evidenced by hypercholesterolemia in patients with COPD and preclinical models, alteration of lipid metabolism-associated genes in CSE-induced airway epithelia and production of ILs. External cholesterol altered airway epithelial sensitivity of inflammation in response to CSE, through the regulation of STARD3-MFN2 pathway, cholesterol re-distribution, altered transport and accumulation of cholesterol, activities of lipid transport regulators and disorder of mitochondrial function and dynamics. MFN2 down-regulation increased airway epithelial sensitivity and production of ILs after smoking, at least partially by injuring fatty acid oxidation and activating mTOR phosphorylation. CONCLUSIONS Our data provide new insights for understanding molecular mechanisms of cholesterol-altered airway epithelial inflammation and for developing diagnostic biomarkers and therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yifei Liu
- Center of Molecular Diagnosis and TherapyThe Second Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Xuanqi Liu
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Nannan Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yutong Gu
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| |
Collapse
|
7
|
Xie T, Zhang Z, Yue J, Fang Q, Gong X. Cryo-EM structures of the human surfactant lipid transporter ABCA3. SCIENCE ADVANCES 2022; 8:eabn3727. [PMID: 35394827 PMCID: PMC8993109 DOI: 10.1126/sciadv.abn3727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter ABCA3 plays a critical role in pulmonary surfactant biogenesis. Mutations in human ABCA3 have been recognized as the most frequent causes of inherited surfactant dysfunction disorders. Despite two decades of research, in vitro biochemical and structural studies of ABCA3 are still lacking. Here, we report the cryo-EM structures of human ABCA3 in two distinct conformations, both at resolution of 3.3 Å. In the absence of ATP, ABCA3 adopts a "lateral-opening" conformation with the lateral surfaces of transmembrane domains (TMDs) exposed to the membrane and features two positively charged cavities within the TMDs as potential substrate binding sites. ATP binding induces pronounced conformational changes, resulting in the collapse of the potential substrate binding cavities. Our results help to rationalize the disease-causing mutations in human ABCA3 and suggest a conserved "lateral access and extrusion" mechanism for both lipid export and import mediated by ABCA transporters.
Collapse
|
8
|
Dietl P, Frick M. Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells 2021; 11:45. [PMID: 35011607 PMCID: PMC8750383 DOI: 10.3390/cells11010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
9
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
10
|
Hall Z, Wilson CH, Burkhart DL, Ashmore T, Evan GI, Griffin JL. Myc linked to dysregulation of cholesterol transport and storage in nonsmall cell lung cancer. J Lipid Res 2020; 61:1390-1399. [PMID: 32753459 PMCID: PMC7604716 DOI: 10.1194/jlr.ra120000899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonsmall cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. While mutations in Kras and overexpression of Myc are commonly found in patients, the role of altered lipid metabolism in lung cancer and its interplay with oncogenic Myc is poorly understood. Here we use a transgenic mouse model of Kras-driven lung adenocarcinoma with reversible activation of Myc combined with surface analysis lipid profiling of lung tumors and transcriptomics to study the effect of Myc activity on cholesterol homeostasis. Our findings reveal that the activation of Myc leads to the accumulation of cholesteryl esters (CEs) stored in lipid droplets. Subsequent Myc deactivation leads to further increases in CEs, in contrast to tumors in which Myc was never activated. Gene expression analysis linked cholesterol transport and storage pathways to Myc activity. Our results suggest that increased Myc activity is associated with increased cholesterol influx, reduced efflux, and accumulation of CE-rich lipid droplets in lung tumors. Targeting cholesterol homeostasis is proposed as a promising avenue to explore for novel treatments of lung cancer, with diagnostic and stratification potential in human NSCLC.
Collapse
Affiliation(s)
- Zoe Hall
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Catherine H Wilson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Deborah L Burkhart
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tom Ashmore
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int J Mol Sci 2020; 21:ijms21103708. [PMID: 32466119 PMCID: PMC7279303 DOI: 10.3390/ijms21103708] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface.
Collapse
|
12
|
Wei M, Fu H, Han A, Ma L. A Term Neonatal Case With Lethal Respiratory Failure Associated With a Novel Homozygous Mutation in ABCA3 Gene. Front Pediatr 2020; 8:138. [PMID: 32363169 PMCID: PMC7181334 DOI: 10.3389/fped.2020.00138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
The mutations in the ABCA3 (ATP-binding cassette transporter subfamily A member 3) gene could result in lethal respiratory distress syndrome (RDS) in neonates and interstitial lung disease (ILD) in infants and children. Here, we describe a full-term newborn who manifested respiratory distress 20 min after birth and then gradually developed hypoxemic respiratory failure and died on 53 days of life. A homozygous missense mutation (c.746C >T) was identified in exon 8 of ABCA3 gene in the neonate by next-generation sequencing, and the mutations were inherited from parents, respectively. This homozygous mutation is the first reported to date.
Collapse
Affiliation(s)
- Meili Wei
- Department of Pediatrics, Zibo Central Hospital, Shandong, China
| | - Haibo Fu
- Department of Pediatrics, Zibo Central Hospital, Shandong, China
| | - Aiqin Han
- Department of Pediatrics, Zibo Central Hospital, Shandong, China
| | - Liji Ma
- Department of Pediatrics, Zibo Central Hospital, Shandong, China
| |
Collapse
|
13
|
Pasello M, Giudice AM, Scotlandi K. The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 2019; 60:57-71. [PMID: 31605751 DOI: 10.1016/j.semcancer.2019.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a cause of drug resistance in a plethora of tumors. More recent evidence indicates additional contribution of these transporters to other processes, such as tumor cell dissemination and metastasis, thereby extending their possible roles in tumor progression. While the role of some ABC transporters, such as ABCB1, ABCC1 and ABCG2, in multidrug resistance is well documented, the mechanisms by which ABC transporters affect the proliferation, differentiation, migration and invasion of cancer cells are still poorly defined and are frequently controversial. This review, summarizes recent advances that highlight the role of subfamily A members in cancer. Emerging evidence highlights the potential value of ABCA members as biomarkers of risk and response in different tumors, but information is disperse and very little is known about their possible mechanisms of action. The only clear evidence is that ABCA members are involved in lipid metabolism and homeostasis. In particular, the relationship between ABCA1 and cholesterol is becoming evident in different fields of biology, including cancer. In parallel, emerging findings indicate that cholesterol, the main component of cell membranes, can influence many physiological and pathological processes, including cell migration, cancer progression and metastasis. This review aims to link the dispersed knowledge regarding the relationship of ABCA members with lipid metabolism and cancer in an effort to stimulate and guide readers to areas that the writers consider to have significant impact and relevant potentialities.
Collapse
Affiliation(s)
- Michela Pasello
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| | - Anna Maria Giudice
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Mutations in genes encoding proteins critical for the production and function of pulmonary surfactant cause diffuse lung disease. Timely recognition and diagnosis of affected individuals is important for proper counseling concerning prognosis and recurrence risk. RECENT FINDINGS Involved genes include those encoding for surfactant proteins A, B, and C, member A3 of the ATP-binding cassette family, and for thyroid transcription factor 1. Clinical presentations overlap and range from severe and rapidly fatal neonatal lung disease to development of pulmonary fibrosis well into adult life. The inheritance patterns, course, and prognosis differ depending upon the gene involved, and in some cases the specific mutation. Treatment options are currently limited, with lung transplantation an option for patients with end-stage pulmonary fibrosis. Additional genetic disorders with overlapping pulmonary phenotypes are being identified through newer methods, although these disorders often involve other organ systems. SUMMARY Genetic disorders of surfactant production are rare but associated with significant morbidity and mortality. Diagnosis can be made invasively through clinically available genetic testing. Improved treatment options are needed and better understanding of the molecular pathophysiology may provide insights into treatments for other lung disorders causing fibrosis.
Collapse
Affiliation(s)
- Lawrence M Nogee
- Eudowood Neonatal Pulmonary Division, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Zhou W, Zhuang Y, Sun J, Wang X, Zhao Q, Xu L, Wang Y. Variants of the ABCA3 gene might contribute to susceptibility to interstitial lung diseases in the Chinese population. Sci Rep 2017; 7:4097. [PMID: 28642621 PMCID: PMC5481373 DOI: 10.1038/s41598-017-04486-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/16/2017] [Indexed: 01/06/2023] Open
Abstract
ATP-binding cassette A3 (ABCA3) is a phospholipid carrier that is mainly expressed in the alveolar epithelium. Biallelic mutations of ABCA3 has been associated with fatal respiratory distress syndrome and interstitial lung disease (ILD) in children. However, whether variations in ABCA3 have a role in the development of adult ILD, including idiopathic pulmonary fibrosis (IPF), remains to be addressed. In this study, we screened for germline variants of ABCA3 by exons-sequencing in 30 patients with sporadic IPF and in 30 matched healthy controls. Eleven missense variants, predominantly in heterozygous, were found in 13 of these patients, but only two missenses in 2 healthy controls. We then selected four of the detected missense variants (p.L39V, p.S828F, p.V968M and p.G1205R) to performed cohort analysis in 1,024 ILD patients, containing 250 IPF and 774 connective tissue disease-ILD (CTD-ILD) patients, and 1,054 healthy individuals. Our results showed that the allele frequency of p.G1205R, but not p.L39V, was significantly higher in ILD patients than in healthy controls. However, no additional subject carrying the variant p.S828F or p.V968M was detected in the cohort analysis. These results indicate that the heterozygous ABCA3 gene variants may contribute to susceptibility to diseases in the Chinese population.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Zhuang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Department of Respirology, Medical School Affiliated Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jiapeng Sun
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Xiaofen Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Qingya Zhao
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Lizhi Xu
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Yaping Wang
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Chai AB, Ammit AJ, Gelissen IC. Examining the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Respir Res 2017; 18:41. [PMID: 28241820 PMCID: PMC5330150 DOI: 10.1186/s12931-017-0526-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/21/2017] [Indexed: 01/03/2023] Open
Abstract
Respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD) are characterised by excessive and persistent inflammation. Current treatments are often inadequate for symptom and disease control, and hence new therapies are warranted. Recent emerging research has implicated dyslipidaemia in pulmonary inflammation. Three ATP-binding cassette (ABC) transporters are found in the mammalian lung – ABCA1, ABCG1 and ABCA3 – that are involved in movement of cholesterol and phospholipids from lung cells. The aim of this review is to corroborate the current evidence for the role of ABC lipid transporters in pulmonary lipid homeostasis and inflammation. Here, we summarise results from murine knockout studies, human diseases associated with ABC transporter mutations, and in vitro studies. Disruption to ABC transporter activity results in lipid accumulation and elevated levels of inflammatory cytokines in lung tissue. Furthermore, these ABC-knockout mice exhibit signs of respiratory distress. ABC lipid transporters appear to have a crucial and protective role in the lung. However, our knowledge of the underlying molecular mechanisms for these benefits requires further attention. Understanding the relationship between cholesterol and inflammation in the lung, and the role that ABC transporters play in this may illuminate new pathways to target for the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Amanda B Chai
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, 2006, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Camperdown, NSW, Australia. .,School of Life Sciences, University of Technology, Sydney, NSW, Australia.
| | - Ingrid C Gelissen
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
17
|
The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res 2016; 367:481-493. [PMID: 28025703 DOI: 10.1007/s00441-016-2554-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 01/10/2023]
Abstract
The lipid transporter, ATP-binding cassette class A3 (ABCA3), is a highly conserved multi-membrane-spanning protein that plays a critical role in the regulation of pulmonary surfactant homeostasis. Mutations in ABCA3 have been increasingly recognized as one of the causes of inherited pulmonary diseases. These monogenic disorders produce familial lung abnormalities with pathological presentations ranging from neonatal surfactant-deficiency-induced respiratory failure to childhood or adult diffuse parenchymal lung diseases for which specific treatment modalities remain limited. More than 200 ABCA3 mutations have been reported to date with approximately three quarters of patients presenting as compound heterozygotes. Recent advances in our understanding of the molecular basis underlying normal ABCA3 biosynthesis and processing and of the mechanisms of alveolar epithelial cell dysregulation caused by the expression of its mutant forms are beginning to emerge. These insights and the role of environmental factors and modifier genes are discussed in the context of the considerable variability in disease presentation observed in patients with identical ABCA3 gene mutations. Moreover, the opportunities afforded by an enhanced understanding of ABCA3 biology for targeted therapeutic strategies are addressed.
Collapse
|
18
|
Wittmann T, Schindlbeck U, Höppner S, Kinting S, Frixel S, Kröner C, Liebisch G, Hegermann J, Aslanidis C, Brasch F, Reu S, Lasch P, Zarbock R, Griese M. Tools to explore ABCA3 mutations causing interstitial lung disease. Pediatr Pulmonol 2016; 51:1284-1294. [PMID: 27177387 DOI: 10.1002/ppul.23471] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/18/2016] [Accepted: 04/24/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Interstitial lung diseases (ILD) comprise disorders of mostly unknown cause. Among the few molecularly defined entities, mutations in the gene encoding the ATP-binding cassette (ABC), subfamily A, member 3 (ABCA3) lipid transporter represent the main cause of inherited surfactant dysfunction disorders, a subgroup of ILD. Whereas many cases are reported, specific methods to functionally define such mutations are rarely presented. MATERIALS AND METHODS In this study, we exemplarily utilized a set of molecular tools to characterize the mutation K1388N, which had been identified in a patient suffering from ILD with lethal outcome. We also aimed to correlate in vitro and ex vivo findings. RESULTS We found that presence of the K1388N mutation did not affect protein expression, but resulted in an altered protein processing and a functional impairment of ABCA3. This was demonstrated by decreased dipalmitoyl-phosphatidylcholine (PC 32:0) content and malformed lamellar bodies in cells transfected with the K1388N variant as compared to controls. CONCLUSIONS Here we present a set of tools useful for categorizing different ABCA3 mutations according to their impact upon ABCA3 activity. Knowledge of the molecular defects and close correlation of in vitro and ex vivo data will allow us to define groups of mutations that can be targeted by small molecule correctors for restoring impaired ABCA3 transporter in the future. Pediatr Pulmonol. 2016;51:1284-1294. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas Wittmann
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research, Munich, 80337, Germany
| | - Ulrike Schindlbeck
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research, Munich, 80337, Germany
| | - Stefanie Höppner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research, Munich, 80337, Germany
| | - Susanna Kinting
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research, Munich, 80337, Germany
| | - Sabrina Frixel
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research, Munich, 80337, Germany
| | - Carolin Kröner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research, Munich, 80337, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, German Center for Lung Research (DZL), Hannover, Germany
| | - Charalampos Aslanidis
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Frank Brasch
- Department of Pathology, Academic Teaching Hospital Bielefeld, Bielefeld, Germany
| | - Simone Reu
- Department of Pathology, Ludwig-Maximilians University, Munich, Germany
| | - Peter Lasch
- Pediatric Intensive Care, Hospital Bremen-Mitte, Bremen, Germany
| | - Ralf Zarbock
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research, Munich, 80337, Germany
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research, Munich, 80337, Germany
| |
Collapse
|
19
|
Olmeda B, Martínez-Calle M, Pérez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: Biogenesis, extracellular conversions, recycling. Ann Anat 2016; 209:78-92. [PMID: 27773772 DOI: 10.1016/j.aanat.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/22/2016] [Accepted: 09/25/2016] [Indexed: 01/03/2023]
Abstract
Pulmonary surfactant is a lipid-protein complex that lines and stabilizes the respiratory interface in the alveoli, allowing for gas exchange during the breathing cycle. At the same time, surfactant constitutes the first line of lung defense against pathogens. This review presents an updated view on the processes involved in biogenesis and intracellular processing of newly synthesized and recycled surfactant components, as well as on the extracellular surfactant transformations before and after the formation of the surface active film at the air-water interface. Special attention is paid to the crucial regulation of surfactant homeostasis, because its disruption is associated with several lung pathologies.
Collapse
Affiliation(s)
- Bárbara Olmeda
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Marta Martínez-Calle
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain
| | - Jesus Pérez-Gil
- Department of Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, 28040 Madrid, Spain.
| |
Collapse
|