1
|
Cravero BH, Prez G, Lombardo VA, Guastaferri FV, Delprato CB, Altabe S, de Mendoza D, Binolfi A. A high-resolution 13C NMR approach for profiling fatty acid unsaturation in lipid extracts and in live Caenorhabditiselegans. J Lipid Res 2024; 65:100618. [PMID: 39127170 PMCID: PMC11418130 DOI: 10.1016/j.jlr.2024.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Unsaturated fatty acids (UFA) play a crucial role in central cellular processes in animals, including membrane function, development, and disease. Disruptions in UFA homeostasis can contribute to the onset of metabolic, cardiovascular, and neurodegenerative disorders. Consequently, there is a high demand for analytical techniques to study lipid compositions in live cells and multicellular organisms. Conventional analysis of UFA compositions in cells, tissues, and organisms involves solvent extraction procedures coupled with analytical techniques such as gas chromatography, MS and/or NMR spectroscopy. As a nondestructive and nontargeted technique, NMR spectroscopy is uniquely capable of characterizing the chemical profiling of living cells and multicellular organisms. Here, we use NMR spectroscopy to analyze Caenorhabditis elegans, enabling the determination of their lipid compositions and fatty acid unsaturation levels both in cell-free lipid extracts and in vivo. The NMR spectra of lipid extracts from WT and fat-3 mutant C. elegans strains revealed notable differences due to the absence of Δ-6 fatty acid desaturase activity, including the lack of arachidonic and eicosapentaenoic acyl chains. Uniform 13C-isotope labeling and high-resolution 2D solution-state NMR of live worms confirmed these findings, indicating that the signals originated from fast-tumbling lipid molecules within lipid droplets. Overall, this strategy permits the analysis of lipid storage in intact worms and has enough resolution and sensitivity to identify differences between WT and mutant animals with impaired fatty acid desaturation. Our results establish methodological benchmarks for future investigations of fatty acid regulation in live C. elegans using NMR.
Collapse
Affiliation(s)
- Bruno Hernández Cravero
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina
| | - Gastón Prez
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina
| | - Verónica A Lombardo
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina; Center of Interdisciplinary Studies (CEI), National University of Rosario (UNR), Rosario, Argentina
| | - Florencia V Guastaferri
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina
| | - Carla B Delprato
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina
| | - Silvia Altabe
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina; Department of Microbiology, Faculty of Biochemical and Pharmaceutical Sciences (FBIOyF), National University of Rosario (UNR) Suipacha 598, Rosario, Argentina
| | - Diego de Mendoza
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina; Department of Microbiology, Faculty of Biochemical and Pharmaceutical Sciences (FBIOyF), National University of Rosario (UNR) Suipacha 598, Rosario, Argentina.
| | - Andres Binolfi
- Institute of Molecular and Cellular Biology of Rosario (IBR-CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina; Argentinian Platform of Structural Biology and Metabolomics (PLABEM), Ocampo y Esmeralda, Rosario, Argentina.
| |
Collapse
|
2
|
Fu L, Zhang J, Wang Y, Wu H, Xu X, Li C, Li J, Liu J, Wang H, Jiang X, Li Z, He Y, Liu P, Wu Y, Zou X, Liang B. LET-767 determines lipid droplet protein targeting and lipid homeostasis. J Cell Biol 2024; 223:e202311024. [PMID: 38551495 PMCID: PMC10982117 DOI: 10.1083/jcb.202311024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Lipid droplets (LDs) are composed of a core of neutral lipids wrapped by a phospholipid (PL) monolayer containing several hundred proteins that vary between different cells or organisms. How LD proteins target to LDs is still largely unknown. Here, we show that RNAi knockdown or gene mutation of let-767, encoding a member of hydroxysteroid dehydrogenase (HSD), displaced the LD localization of three well-known LD proteins: DHS-3 (dehydrogenase/reductase), PLIN-1 (perilipin), and DGAT-2 (diacylglycerol O-acyltransferase 2), and also prevented LD growth in Caenorhabditis elegans. LET-767 interacts with ARF-1 (ADP-ribosylation factor 1) to prevent ARF-1 LD translocation for appropriate LD protein targeting and lipid homeostasis. Deficiency of LET-767 leads to the release of ARF-1, which further recruits and promotes translocation of ATGL-1 (adipose triglyceride lipase) to LDs for lipolysis. The displacement of LD proteins caused by LET-767 deficiency could be reversed by inhibition of either ARF-1 or ATGL-1. Our work uncovers a unique LET-767 for determining LD protein targeting and maintaining lipid homeostasis.
Collapse
Affiliation(s)
- Lin Fu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingjing Zhang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Yanli Wang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Huiyin Wu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Xiumei Xu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Chunxia Li
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Jirong Li
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Jing Liu
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Haizhen Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xue Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan province, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Zhihao Li
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Yaomei He
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Wu
- School of Laboratory Animal and Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models Dalian Medical University, Dalian, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| |
Collapse
|
3
|
Sharifi S, Chaudhari P, Martirosyan A, Eberhardt AO, Witt F, Gollowitzer A, Lange L, Woitzat Y, Okoli EM, Li H, Rahnis N, Kirkpatrick J, Werz O, Ori A, Koeberle A, Bierhoff H, Ermolaeva M. Reducing the metabolic burden of rRNA synthesis promotes healthy longevity in Caenorhabditis elegans. Nat Commun 2024; 15:1702. [PMID: 38402241 PMCID: PMC10894287 DOI: 10.1038/s41467-024-46037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Ribosome biogenesis is initiated by RNA polymerase I (Pol I)-mediated synthesis of pre-ribosomal RNA (pre-rRNA). Pol I activity was previously linked to longevity, but the underlying mechanisms were not studied beyond effects on nucleolar structure and protein translation. Here we use multi-omics and functional tests to show that curtailment of Pol I activity remodels the lipidome and preserves mitochondrial function to promote longevity in Caenorhabditis elegans. Reduced pre-rRNA synthesis improves energy homeostasis and metabolic plasticity also in human primary cells. Conversely, the enhancement of pre-rRNA synthesis boosts growth and neuromuscular performance of young nematodes at the cost of accelerated metabolic decline, mitochondrial stress and premature aging. Moreover, restriction of Pol I activity extends lifespan more potently than direct repression of protein synthesis, and confers geroprotection even when initiated late in life, showcasing this intervention as an effective longevity and metabolic health treatment not limited by aging.
Collapse
Affiliation(s)
- Samim Sharifi
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Matter Bio, Inc., Brooklyn, NY, 11237, USA
| | - Prerana Chaudhari
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Asya Martirosyan
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Joseph-Stelzmann-Straße 26, 50931, Cologne, Germany
| | - Alexander Otto Eberhardt
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
| | - Finja Witt
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - André Gollowitzer
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Lisa Lange
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Yvonne Woitzat
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | | | - Huahui Li
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, PR China
| | - Norman Rahnis
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Joanna Kirkpatrick
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany
- Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, Jena, 07745, Germany.
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
| | - Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
4
|
Liu PY, Wu JJ, Li G, Lin CB, Jiang S, Liu S, Wan X. The Biosynthesis of Astaxanthin Esters in Schizochytrium sp. is Mediated by a Bifunctional Diacylglycerol Acyltransferase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3584-3595. [PMID: 38344823 DOI: 10.1021/acs.jafc.3c09086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Astaxanthin esters are a major form of astaxanthin found in nature. However, the exact mechanisms of the biosynthesis and storage of astaxanthin esters were previously unknown. We found that Schizochytrium sp. synthesized both astaxanthin and docosahexaenoic acid (DHA)-enriched lipids. The major type of astaxanthin produced was free astaxanthin along with astaxanthin-DHA monoester and other esterified forms. DHA accounted for 41.0% of the total fatty acids from astaxanthin monoesters. These compounds were deposited mainly in lipid droplets. The biosynthesis of the astaxanthin esters was mainly carried out by a novel diacylglycerol acyltransferase ScDGAT2-1, while ScDGAT2-2 was involved only in the production of triacylglycerol. We also identified astaxanthin ester synthases from the astaxanthin-producing algae Haematococcus pluvialis and Chromochloris zofingiensis, as well as a thraustochytrid Hondaea fermentalgiana with an unknown carotenoid profile. This investigation enlightens the application of thraustochytrids for the production of both DHA and astaxanthin and provides enzyme resources for the biosynthesis of astaxanthin esters in the engineered microbes.
Collapse
Affiliation(s)
- Peng-Yang Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jun-Jie Wu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Gang Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chu-Bin Lin
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Wuhan Polytechnic University, Wuhan 430048, China
| | - Shan Jiang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Shuang Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Wuhan Polytechnic University, Wuhan 430048, China
| | - Xia Wan
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
5
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Kumar AV, Mills J, Parker WM, Leitão JA, Rodriguez DI, Daigle SE, Ng C, Patel R, Aguilera JL, Johnson JR, Wong SQ, Lapierre LR. Lipid droplets modulate proteostasis, SQST-1/SQSTM1 dynamics, and lifespan in C. elegans. iScience 2023; 26:107960. [PMID: 37810233 PMCID: PMC10551902 DOI: 10.1016/j.isci.2023.107960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/01/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
In several long-lived Caenorhabditis elegans strains, such as insulin/IGF-1 receptor daf-2 mutants, enhanced proteostatic mechanisms are accompanied by elevated intestinal lipid stores, but their role in longevity is unclear. Here, while determining the regulatory network of the selective autophagy receptor SQST-1/SQSTM1, we uncovered an important role for lipid droplets in proteostasis and longevity. Using genome-wide RNAi screening, we identified several SQST-1 modulators, including lipid droplets-associated and aggregation-prone proteins. Expansion of intestinal lipid droplets by silencing the conserved cytosolic triacylglycerol lipase gene atgl-1/ATGL enhanced autophagy, and extended lifespan. Notably, a substantial amount of ubiquitinated proteins were found on lipid droplets. Reducing lipid droplet levels exacerbated the proteostatic collapse when autophagy or proteasome function was compromised, and significantly reduced the lifespan of long-lived daf-2 animals. Altogether, our study uncovered a key role for lipid droplets in C. elegans as a proteostatic mediator that modulates ubiquitinated protein accumulation, facilitates autophagy, and promotes longevity.
Collapse
Affiliation(s)
- Anita V Kumar
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- Biology Department, Wheaton College, 26 E. Main Street, Norton, MA 02766, USA
| | - Wesley M Parker
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joshua A Leitão
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Diego I Rodriguez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Sandrine E Daigle
- New Brunswick Center for Precision Medicine, 27 rue Providence, Moncton, NB E1C 8X3, Canada
- Département de chimie et biochimie, Université de Moncton, 18 Antonine Maillet, Moncton, NB E1A 3E9, Canada
| | - Celeste Ng
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Rishi Patel
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joseph L Aguilera
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Joseph R Johnson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Shi Quan Wong
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
- New Brunswick Center for Precision Medicine, 27 rue Providence, Moncton, NB E1C 8X3, Canada
- Département de chimie et biochimie, Université de Moncton, 18 Antonine Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
7
|
Garcia G, Zhang H, Moreno S, Tsui CK, Webster BM, Higuchi-Sanabria R, Dillin A. Lipid homeostasis is essential for a maximal ER stress response. eLife 2023; 12:e83884. [PMID: 37489956 PMCID: PMC10368420 DOI: 10.7554/elife.83884] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/08/2023] [Indexed: 07/26/2023] Open
Abstract
Changes in lipid metabolism are associated with aging and age-related diseases, including proteopathies. The endoplasmic reticulum (ER) is uniquely a major hub for protein and lipid synthesis, making its function essential for both protein and lipid homeostasis. However, it is less clear how lipid metabolism and protein quality may impact each other. Here, we identified let-767, a putative hydroxysteroid dehydrogenase in Caenorhabditis elegans, as an essential gene for both lipid and ER protein homeostasis. Knockdown of let-767 reduces lipid stores, alters ER morphology in a lipid-dependent manner, and blocks induction of the Unfolded Protein Response of the ER (UPRER). Interestingly, a global reduction in lipogenic pathways restores UPRER induction in animals with reduced let-767. Specifically, we find that supplementation of 3-oxoacyl, the predicted metabolite directly upstream of let-767, is sufficient to block induction of the UPRER. This study highlights a novel interaction through which changes in lipid metabolism can alter a cell's response to protein-induced stress.
Collapse
Affiliation(s)
- Gilberto Garcia
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Hanlin Zhang
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Sophia Moreno
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - C Kimberly Tsui
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Brant Michael Webster
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Andrew Dillin
- Department of Molecular & Cellular Biology, Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
8
|
Sun Y, Heng J, Liu F, Zhang S, Liu P. Isolation and proteomic study of fish liver lipid droplets. BIOPHYSICS REPORTS 2023; 9:120-133. [PMID: 38028150 PMCID: PMC10648235 DOI: 10.52601/bpr.2023.230004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/02/2023] [Indexed: 12/01/2023] Open
Abstract
Lipid droplets (LDs) are a neutral lipid storage organelle that is conserved in almost all species. Excessive storage of neutral lipids in LDs is directly associated with many metabolic syndromes. Zebrafish is a better model animal for the study of LD biology due to its transparent embryonic stage compared to other organisms. However, the study of LDs in fish has been difficult due to the lack of specific LD marker proteins and the limitation of purification technology. In this paper, the purification and proteomic analysis of liver LDs of fish including zebrafish and Carassius auratus were performed for the first time. 259 and 267 proteins were identified respectively. Besides most of the identified proteins were reported in previous LD proteomes of mammals, indicating the similarity between mammal and fish LDs. We also identified many unique proteins of liver LDs in fish that are involved in the regulation of LD dynamics. Through morphological and biochemical analysis, we found that the marker protein Plin2 of zebrafish LD was located on LDs in Huh7 cells. These results will facilitate further study of LDs in fish and liver metabolic diseases using fish as a model animal.
Collapse
Affiliation(s)
- Yuwei Sun
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Heng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Ruiz M, Devkota R, Kaper D, Ruhanen H, Busayavalasa K, Radović U, Henricsson M, Käkelä R, Borén J, Pilon M. AdipoR2 recruits protein interactors to promote fatty acid elongation and membrane fluidity. J Biol Chem 2023:104799. [PMID: 37164154 DOI: 10.1016/j.jbc.2023.104799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023] Open
Abstract
The human AdipoR2 and its C. elegans homolog PAQR-2 are multi-pass plasma membrane proteins that protect cells against membrane rigidification. However, how AdipoR2 promotes membrane fluidity mechanistically is not clear. Using 13C-labelled fatty acids, we show that AdipoR2 can promote the elongation and incorporation of membrane-fluidizing polyunsaturated fatty acids into phospholipids. To elucidate the molecular basis of these activities, we performed immunoprecipitations of tagged AdipoR2 and PAQR-2 expressed in HEK293 cells or whole C. elegans, respectively, and identified co-immunoprecipitated proteins using mass spectroscopy. We found that several of the evolutionarily conserved AdipoR2/PAQR-2 interactors are important for fatty acid elongation and incorporation into phospholipids. We experimentally verified some of these interactions, namely with the dehydratase HACD3 that is essential for the third of four steps in long-chain fatty acid elongation, and ACSL4 that is important for activation of unsaturated fatty acids and their channeling into phospholipids. We conclude that AdipoR2 and PAQR-2 can recruit protein interactors to promote the production and incorporation of unsaturated fatty acids into phospholipids.
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Delaney Kaper
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Ruhanen
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science, Biocenter Finland, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Uroš Radović
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Reijo Käkelä
- Helsinki University Lipidomics Unit, Helsinki Institute of Life Science, Biocenter Finland, Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
10
|
Papsdorf K, Miklas JW, Hosseini A, Cabruja M, Morrow CS, Savini M, Yu Y, Silva-García CG, Haseley NR, Murphy LM, Yao P, de Launoit E, Dixon SJ, Snyder MP, Wang MC, Mair WB, Brunet A. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. Nat Cell Biol 2023; 25:672-684. [PMID: 37127715 PMCID: PMC10185472 DOI: 10.1038/s41556-023-01136-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Dietary mono-unsaturated fatty acids (MUFAs) are linked to longevity in several species. But the mechanisms by which MUFAs extend lifespan remain unclear. Here we show that an organelle network involving lipid droplets and peroxisomes is critical for MUFA-induced longevity in Caenorhabditis elegans. MUFAs upregulate the number of lipid droplets in fat storage tissues. Increased lipid droplet number is necessary for MUFA-induced longevity and predicts remaining lifespan. Lipidomics datasets reveal that MUFAs also modify the ratio of membrane lipids and ether lipids-a signature associated with decreased lipid oxidation. In agreement with this, MUFAs decrease lipid oxidation in middle-aged individuals. Intriguingly, MUFAs upregulate not only lipid droplet number but also peroxisome number. A targeted screen identifies genes involved in the co-regulation of lipid droplets and peroxisomes, and reveals that induction of both organelles is optimal for longevity. Our study uncovers an organelle network involved in lipid homeostasis and lifespan regulation, opening new avenues for interventions to delay aging.
Collapse
Affiliation(s)
| | - Jason W Miklas
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amir Hosseini
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Matias Cabruja
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Christopher S Morrow
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marzia Savini
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yong Yu
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Carlos G Silva-García
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Pallas Yao
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Meng C Wang
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Institute of Neurosciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Chen WW, Tang W, Hamerton EK, Kuo PX, Lemieux GA, Ashrafi K, Cicerone MT. Identifying lipid particle sub-types in live Caenorhabditis elegans with two-photon fluorescence lifetime imaging. Front Chem 2023; 11:1161775. [PMID: 37123874 PMCID: PMC10137682 DOI: 10.3389/fchem.2023.1161775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Fat metabolism is an important modifier of aging and longevity in Caenorhabditis elegans. Given the anatomy and hermaphroditic nature of C. elegans, a major challenge is to distinguish fats that serve the energetic needs of the parent from those that are allocated to the progeny. Broadband coherent anti-Stokes Raman scattering (BCARS) microscopy has revealed that the composition and dynamics of lipid particles are heterogeneous both within and between different tissues of this organism. Using BCARS, we have previously succeeded in distinguishing lipid-rich particles that serve as energetic reservoirs of the parent from those that are destined for the progeny. While BCARS microscopy produces high-resolution images with very high information content, it is not yet a widely available platform. Here we report a new approach combining the lipophilic vital dye Nile Red and two-photon fluorescence lifetime imaging microscopy (2p-FLIM) for the in vivo discrimination of lipid particle sub-types. While it is widely accepted that Nile Red staining yields unreliable results for detecting lipid structures in live C. elegans due to strong interference of autofluorescence and non-specific staining signals, our results show that simple FLIM phasor analysis can effectively separate those signals and is capable of differentiating the non-polar lipid-dominant (lipid-storage), polar lipid-dominant (yolk lipoprotein) particles, and the intermediates that have been observed using BCARS microscopy. An advantage of this approach is that images can be acquired using common, commercially available 2p-FLIM systems within about 10% of the time required to generate a BCARS image. Our work provides a novel, broadly accessible approach for analyzing lipid-containing structures in a complex, live whole organism context.
Collapse
Affiliation(s)
- Wei-Wen Chen
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Wenyu Tang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Emily K. Hamerton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| | - Penelope X. Kuo
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States
| | - George A. Lemieux
- School of Medicine, University of California, San Francisco, CA, United States
| | - Kaveh Ashrafi
- School of Medicine, University of California, San Francisco, CA, United States
| | - Marcus T. Cicerone
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
12
|
Staab TA, McIntyre G, Wang L, Radeny J, Bettcher L, Guillen M, Peck MP, Kalil AP, Bromley SP, Raftery D, Chan JP. The lipidomes of C. elegans with mutations in asm-3/acid sphingomyelinase and hyl-2/ceramide synthase show distinct lipid profiles during aging. Aging (Albany NY) 2023; 15:650-674. [PMID: 36787434 PMCID: PMC9970312 DOI: 10.18632/aging.204515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Lipid metabolism affects cell and physiological functions that mediate animal healthspan and lifespan. Lipidomics approaches in model organisms have allowed us to better understand changes in lipid composition related to age and lifespan. Here, using the model C. elegans, we examine the lipidomes of mutants lacking enzymes critical for sphingolipid metabolism; specifically, we examine acid sphingomyelinase (asm-3), which breaks down sphingomyelin to ceramide, and ceramide synthase (hyl-2), which synthesizes ceramide from sphingosine. Worm asm-3 and hyl-2 mutants have been previously found to be long- and short-lived, respectively. We analyzed longitudinal lipid changes in wild type animals compared to mutants at 1-, 5-, and 10-days of age. We detected over 700 different lipids in several lipid classes. Results indicate that wildtype animals exhibit increased triacylglycerols (TAG) at 10-days compared to 1-day, and decreased lysophoshatidylcholines (LPC). We find that 10-day hyl-2 mutants have elevated total polyunsaturated fatty acids (PUFA) and increased LPCs compared to 10-day wildtype animals. These changes mirror another short-lived model, the daf-16/FOXO transcription factor that is downstream of the insulin-like signaling pathway. In addition, we find that hyl-2 mutants have poor oxidative stress response, supporting a model where mutants with elevated PUFAs may accumulate more oxidative damage. On the other hand, 10-day asm-3 mutants have fewer TAGs. Intriguingly, asm-3 mutants have a similar lipid composition as the long-lived, caloric restriction model eat-2/mAChR mutant. Together, these analyses highlight the utility of lipidomic analyses to characterize metabolic changes during aging in C. elegans.
Collapse
Affiliation(s)
- Trisha A. Staab
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Grace McIntyre
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joycelyn Radeny
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Lisa Bettcher
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Melissa Guillen
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| | - Margaret P. Peck
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | - Azia P. Kalil
- Department of Biology, Juniata College, Huntingdon, PA 16652, USA
| | | | - Daniel Raftery
- Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jason P. Chan
- Department of Biology, Marian University, Indianapolis, IN 46222, USA
| |
Collapse
|
13
|
Castillo-Quan JI, Steinbaugh MJ, Fernández-Cárdenas LP, Pohl NK, Wu Z, Zhu F, Moroz N, Teixeira V, Bland MS, Lehrbach NJ, Moronetti L, Teufl M, Blackwell TK. An antisteatosis response regulated by oleic acid through lipid droplet-mediated ERAD enhancement. SCIENCE ADVANCES 2023; 9:eadc8917. [PMID: 36598980 PMCID: PMC9812393 DOI: 10.1126/sciadv.adc8917] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/23/2022] [Indexed: 05/19/2023]
Abstract
Although excessive lipid accumulation is a hallmark of obesity-related pathologies, some lipids are beneficial. Oleic acid (OA), the most abundant monounsaturated fatty acid (FA), promotes health and longevity. Here, we show that OA benefits Caenorhabditis elegans by activating the endoplasmic reticulum (ER)-resident transcription factor SKN-1A (Nrf1/NFE2L1) in a lipid homeostasis response. SKN-1A/Nrf1 is cleared from the ER by the ER-associated degradation (ERAD) machinery and stabilized when proteasome activity is low and canonically maintains proteasome homeostasis. Unexpectedly, OA increases nuclear SKN-1A levels independently of proteasome activity, through lipid droplet-dependent enhancement of ERAD. In turn, SKN-1A reduces steatosis by reshaping the lipid metabolism transcriptome and mediates longevity from OA provided through endogenous accumulation, reduced H3K4 trimethylation, or dietary supplementation. Our findings reveal an unexpected mechanism of FA signal transduction, as well as a lipid homeostasis pathway that provides strategies for opposing steatosis and aging, and may mediate some benefits of the OA-rich Mediterranean diet.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Michael J. Steinbaugh
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Laura Paulette Fernández-Cárdenas
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Nancy K. Pohl
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Ziyun Wu
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Feimei Zhu
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Natalie Moroz
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Biology Department, Emmanuel College, Boston, MA, USA
| | - Veronica Teixeira
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Monet S. Bland
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Nicolas J. Lehrbach
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Lorenza Moronetti
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Magdalena Teufl
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - T. Keith Blackwell
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
14
|
Savova MS, Todorova MN, Apostolov AG, Yahubyan GT, Georgiev MI. Betulinic acid counteracts the lipid accumulation in Caenorhabditis elegans by modulation of nhr-49 expression. Biomed Pharmacother 2022; 156:113862. [DOI: 10.1016/j.biopha.2022.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
15
|
Schifano E, Conta G, Preziosi A, Ferrante C, Batignani G, Mancini P, Tomassini A, Sciubba F, Scopigno T, Uccelletti D, Miccheli A. 2-hydroxyisobutyric acid (2-HIBA) modulates ageing and fat deposition in Caenorhabditis elegans. Front Mol Biosci 2022; 9:986022. [PMID: 36533081 PMCID: PMC9749906 DOI: 10.3389/fmolb.2022.986022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 06/30/2024] Open
Abstract
High levels of 2-hydroxyisobutyric acid (2-HIBA) were found in urines of patients with obesity and hepatic steatosis, suggesting a potential involvement of this metabolite in clinical conditions. The gut microbial origin of 2-HIBA was hypothesized, however its actual origin and role in biological processes are still not clear. We investigated how treatment with 2-HIBA affected the physiology of the model organism Caenorhabditis elegans, in both standard and high-glucose diet (HGD) growth conditions, by targeted transcriptomic and metabolomic analyses, Coherent Anti-Stokes Raman Scattering (CARS) and two-photon fluorescence microscopy. In standard conditions, 2-HIBA resulted particularly effective to extend the lifespan, delay ageing processes and stimulate the oxidative stress resistance in wild type nematodes through the activation of insulin/IGF-1 signaling (IIS) and p38 MAPK pathways and, consequently, through a reduction of ROS levels. Moreover, variations of lipid accumulation observed in treated worms correlated with transcriptional levels of fatty acid synthesis genes and with the involvement of peptide transporter PEP-2. In HGD conditions, the effect of 2-HIBA on C. elegans resulted in a reduction of the lipid droplets deposition, accordingly with an increase of acs-2 gene transcription, involved in β-oxidation processes. In addition, the pro-longevity effect appeared to be correlated to higher levels of tryptophan, which may play a role in restoring the decreased viability observed in the HGD untreated nematodes.
Collapse
Affiliation(s)
- Emily Schifano
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giorgia Conta
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Adele Preziosi
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Carino Ferrante
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giovanni Batignani
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Patrizia Mancini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Alberta Tomassini
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| | - Tullio Scopigno
- Department of Physics, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- and Neuro-science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-based Metabolomics Laboratory of Sapienza (NMLab), Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Qin ZL, Yao QF, Ren H, Zhao P, Qi ZT. Lipid Droplets and Their Participation in Zika Virus Infection. Int J Mol Sci 2022; 23:ijms232012584. [PMID: 36293437 PMCID: PMC9604050 DOI: 10.3390/ijms232012584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
Lipid droplets (LDs) are highly conserved and dynamic intracellular organelles. Their functions are not limited to serving as neutral lipid reservoirs; they also participate in non-energy storage functions, such as cell lipid metabolism, protection from cell stresses, maintaining protein homeostasis, and regulating nuclear function. During a Zika virus (ZIKV) infection, the viruses hijack the LDs to provide energy and lipid sources for viral replication. The co-localization of ZIKV capsid (C) protein with LDs supports its role as a virus replication platform and a key compartment for promoting the generation of progeny virus particles. However, in view of the multiple functions of LDs, their role in ZIKV infection needs further elucidation. Here, we review the basic mechanism of LD biogenesis and biological functions and discuss how ZIKV infection utilizes these effects of LDs to facilitate virus replication, along with the future application strategy of developing new antiviral drugs based on the interaction of ZIKV with LDs.
Collapse
|
17
|
Imaging of lipid droplets using coumarin fluorophores in live cells and C. elegans. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2022; 237:112589. [DOI: 10.1016/j.jphotobiol.2022.112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
18
|
Wang Y, Li C, Zhang J, Xu X, Fu L, Xu J, Zhu H, Hu Y, Li C, Wang M, Wu Y, Zou X, Liang B. Polyunsaturated fatty acids promote the rapid fusion of lipid droplets in Caenorhabditis elegans. J Biol Chem 2022; 298:102179. [PMID: 35752365 PMCID: PMC9352923 DOI: 10.1016/j.jbc.2022.102179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022] Open
Abstract
Lipid droplets (LDs) are intracellular organelles that dynamically regulate lipids and energy homeostasis in the cell. LDs can grow through either local lipid synthesis or LD fusion. However, how lipids involving in LD fusion for LD growth is largely unknown. Here, we show that genetic mutation of acox-3 (acyl-CoA oxidase), maoc-1 (enoyl-CoA hydratase), dhs-28 (3-hydroxylacyl-CoA dehydrogenase), and daf-22 (3-ketoacyl-CoA thiolase), all involved in the peroxisomal β-oxidation pathway in Caenorhabditis elegans, led to rapid fusion of adjacent LDs to form giant LDs (gLDs). Mechanistically, we show that dysfunction of peroxisomal β-oxidation results in the accumulation of long-chain fatty acid-CoA and phosphocholine, which may activate the sterol-binding protein 1/sterol regulatory element-binding protein to promote gLD formation. Furthermore, we found that inactivation of either FAT-2 (delta-12 desaturase) or FAT-3 and FAT-1 (delta-15 desaturase and delta-6 desaturase, respectively) to block the biosynthesis of polyunsaturated fatty acids (PUFAs) with three or more double bonds (n≥3-PUFAs) fully repressed the formation of gLDs; in contrast, dietary supplementation of n≥3-PUFAs or phosphocholine bearing these PUFAs led to recovery of the formation of gLDs in peroxisomal β-oxidation-defective worms lacking PUFA biosynthesis. Thus, we conclude that n≥3-PUFAs, distinct from other well-known lipids and proteins, promote rapid LD fusion leading to LD growth.
Collapse
Affiliation(s)
- Yanli Wang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Chunxia Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Xiumei Xu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Lin Fu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Jie Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan province, Kunming Institute of Zoology, CAS, Kunming, Yunnan, China
| | - Hong Zhu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Ying Hu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chengbin Li
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Mengjie Wang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China
| | - Yingjie Wu
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Lab of Genome Engineered Animal Models Dalian Medical University, Dalian, Liaoning, China.
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
19
|
Das A, Thapa P, Santiago U, Shanmugam N, Banasiak K, Dąbrowska K, Nolte H, Szulc NA, Gathungu RM, Cysewski D, Krüger M, Dadlez M, Nowotny M, Camacho CJ, Hoppe T, Pokrzywa W. A heterotypic assembly mechanism regulates CHIP E3 ligase activity. EMBO J 2022; 41:e109566. [PMID: 35762422 PMCID: PMC9340540 DOI: 10.15252/embj.2021109566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
CHIP (C-terminus of Hsc70-interacting protein) and its worm ortholog CHN-1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin-proteasome system (UPS). CHN-1 can cooperate with UFD-2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN-1-UFD-2 complex in Caenorhabditis elegans. Our data show that UFD-2 binding promotes the cooperation between CHN-1 and ubiquitin-conjugating E2 enzymes by stabilizing the CHN-1 U-box dimer. However, HSP70/HSP-1 chaperone outcompetes UFD-2 for CHN-1 binding, thereby promoting a shift to the autoinhibited CHN-1 state by acting on a conserved residue in its U-box domain. The interaction with UFD-2 enables CHN-1 to efficiently ubiquitylate and regulate S-adenosylhomocysteinase (AHCY-1), a key enzyme in the S-adenosylmethionine (SAM) regeneration cycle, which is essential for SAM-dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN-1 and UFD-2 in substrate ubiquitylation.
Collapse
Affiliation(s)
- Aniruddha Das
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Pankaj Thapa
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Ulises Santiago
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Nilesh Shanmugam
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Katarzyna Banasiak
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | - Hendrik Nolte
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Present address:
Max‐Planck‐Institute for Biology of AgeingCologneGermany
| | - Natalia A Szulc
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | | | | | - Marcus Krüger
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Center for Molecular Medicine (CMMC), Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Michał Dadlez
- Institute of Biochemistry and BiophysicsPASWarsawPoland
| | - Marcin Nowotny
- Laboratory of Protein StructureInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| | - Carlos J Camacho
- Department of Computational and Systems BiologyUniversity of PittsburghPittsburghPAUSA
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
- Center for Molecular Medicine (CMMC), Faculty of MedicineUniversity Hospital of CologneCologneGermany
| | - Wojciech Pokrzywa
- Laboratory of Protein MetabolismInternational Institute of Molecular and Cell Biology in WarsawWarsawPoland
| |
Collapse
|
20
|
Goncalves J, Wan Y, Garcia LR. Stearoyl-CoA desaturases sustain cholinergic excitation and copulatory robustness in metabolically aging C. elegansmales. iScience 2022; 25:104082. [PMID: 35372802 PMCID: PMC8968053 DOI: 10.1016/j.isci.2022.104082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/22/2023] Open
Abstract
Regulated metabolism is required for behaviors as adults age. To understand how lipid usage affects motor coordination, we studied male Caenorhabditis elegans copulation as a model of energy-intensive behavior. Copulation performance drops after 48 h of adulthood. We found that 12–24 h before behavioral decline, males prioritize exploring and copulation behavior over feeding, suggesting that catabolizing stored metabolites, such as lipids, occurs during this period. Because fat-6/7-encoded stearoyl-CoA desaturases are essential for converting the ingested fatty acids to lipid storage, we examined the copulation behavior and neural calcium transients of fat-6(lf); fat-7(lf) mutants. In wild-type males, intestinal and epithelial fat-6/7 expression increases during the first 48 h of adulthood. The fat-6(lf); fat-7(lf) behavioral and metabolic defects indicate that in aging wild-type males, the increased expression of stearoyl-CoA desaturases in the epidermis may indirectly modulate the levels of EAG-family K+ channels in the reproductive cholinergic neurons and muscles. Tissue distribution of fat-6-encoded stearoyl-CoA desaturase changes in adulthood Markov modeling shows reduced feeding linked with more exploring in day 2 males fat-6(lf); fat-7(lf) disrupted behavior can be rescued by epidermal FAT-6 fat-6(lf); fat-7(lf) alters neural and muscular ERG and EAG K+ channel expression
Collapse
Affiliation(s)
- Jimmy Goncalves
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Yufeng Wan
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - L René Garcia
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
21
|
Huang W, Gao F, Zhang Y, Chen T, Xu C. Lipid Droplet-Associated Proteins in Cardiomyopathy. ANNALS OF NUTRITION AND METABOLISM 2021; 78:1-13. [PMID: 34856540 DOI: 10.1159/000520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The heart requires a high rate of fatty-acid oxidation (FAO) to meet its energy needs. Neutral lipids are the main source of energy for the heart and are stored in lipid droplets (LDs), which are cytosolic organelles that primarily serve to store neutral lipids and regulate cellular lipid metabolism. LD-associated proteins (LDAPs) are proteins either located on the surface of the LDs or reside in the cytosol and contribute to lipid metabolism. Therefore, abnormal cardiac lipid accumulation or FAO can alter the redox state of the heart, resulting in cardiomyopathy, a group of diseases that negatively affect the myocardial function, thereby leading to heart failure and even cardiac death. SUMMARY LDs, along with LDAPs, are pivotal for modulating heart lipid homeostasis. The proper cardiac development and the maintenance of its normal function depend largely on lipid homeostasis regulated by LDs and LDAPs. Overexpression or deletion of specific LDAPs can trigger myocardial dysfunction and may contribute to the development of cardiomyopathy. Extensive connections and interactions may also exist between LDAPs. Key Message: In this review, the various mechanisms involved in LDAP-mediated regulation of lipid metabolism, the association between cardiac development and lipid metabolism, as well as the role of LDAPs in cardiomyopathy progression are discussed.
Collapse
Affiliation(s)
- Weiwei Huang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianhui Chen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Sun X, Zhang T, Zhao P, Tao G, Liu R, Chang M, Wang X. 2D2D HILIC‐ELSD/UPLC‐Q‐TOF‐MS Method for Acquiring Phospholipid Profiles and the Application in
Caenorhabditis elegans. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaotian Sun
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Tao Zhang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
- European Research Institute for the Biology of Aging University Medical Center Groningen University of Groningen Groningen 9713 AV The Netherlands
| | - Pinzhen Zhao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Guanjun Tao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Ruijie Liu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Ming Chang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province National Engineering Research Center for Functional Food, School of Food Science and Technology Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
23
|
Deciphering Differential Life Stage Radioinduced Reproductive Decline in Caenorhabditis elegans through Lipid Analysis. Int J Mol Sci 2021; 22:ijms221910277. [PMID: 34638618 PMCID: PMC8508812 DOI: 10.3390/ijms221910277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Wildlife is chronically exposed to various sources of ionizing radiations, both environmental or anthropic, due to nuclear energy use, which can induce several defects in organisms. In invertebrates, reproduction, which directly impacts population dynamics, has been found to be the most radiosensitive endpoint. Understanding the underlying molecular pathways inducing this reproduction decrease can help in predicting the effects at larger scales (i.e., population). In this study, we used a life stage dependent approach in order to better understand the molecular determinants of reproduction decrease in the roundworm C. elegans. Worms were chronically exposed to 50 mGy·h−1 external gamma ionizing radiations throughout different developmental periods (namely embryogenesis, gametogenesis, and full development). Then, in addition to reproduction parameters, we performed a wide analysis of lipids (different class and fatty acid via FAMES), which are both important signaling molecules for reproduction and molecular targets of oxidative stress. Our results showed that reproductive defects are life stage dependent, that lipids are differently misregulated according to the considered exposure (e.g., upon embryogenesis and full development) and do not fully explain radiation induced reproductive defects. Finally, our results enable us to propose a conceptual model of lipid signaling after radiation stress in which both the soma and the germline participate.
Collapse
|
24
|
Lourenço AB, Artal-Sanz M. The Mitochondrial Prohibitin (PHB) Complex in C. elegans Metabolism and Ageing Regulation. Metabolites 2021; 11:metabo11090636. [PMID: 34564452 PMCID: PMC8472356 DOI: 10.3390/metabo11090636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
The mitochondrial prohibitin (PHB) complex, composed of PHB-1 and PHB-2, is an evolutionarily conserved context-dependent modulator of longevity. This extremely intriguing phenotype has been linked to alterations in mitochondrial function and lipid metabolism. The true biochemical function of the mitochondrial PHB complex remains elusive, but it has been shown to affect membrane lipid composition. Recent work, using large-scale biochemical approaches, has highlighted a broad effect of PHB on the C. elegans metabolic network. Collectively, the biochemical data support the notion that PHB modulates, at least partially, worm longevity through the moderation of fat utilisation and energy production via the mitochondrial respiratory chain. Herein, we review, in a systematic manner, recent biochemical insights into the impact of PHB on the C. elegans metabolome.
Collapse
Affiliation(s)
- Artur B. Lourenço
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km 1, 41013 Seville, Spain
- Correspondence: (A.B.L.); (M.A.-S.)
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera Km 1, 41013 Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Seville, Spain
- Correspondence: (A.B.L.); (M.A.-S.)
| |
Collapse
|
25
|
Ke W, Reed JN, Yang C, Higgason N, Rayyan L, Wählby C, Carpenter AE, Civelek M, O’Rourke EJ. Genes in human obesity loci are causal obesity genes in C. elegans. PLoS Genet 2021; 17:e1009736. [PMID: 34492009 PMCID: PMC8462697 DOI: 10.1371/journal.pgen.1009736] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/24/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity and its associated metabolic syndrome are a leading cause of morbidity and mortality. Given the disease's heavy burden on patients and the healthcare system, there has been increased interest in identifying pharmacological targets for the treatment and prevention of obesity. Towards this end, genome-wide association studies (GWAS) have identified hundreds of human genetic variants associated with obesity. The next challenge is to experimentally define which of these variants are causally linked to obesity, and could therefore become targets for the treatment or prevention of obesity. Here we employ high-throughput in vivo RNAi screening to test for causality 293 C. elegans orthologs of human obesity-candidate genes reported in GWAS. We RNAi screened these 293 genes in C. elegans subject to two different feeding regimens: (1) regular diet, and (2) high-fructose diet, which we developed and present here as an invertebrate model of diet-induced obesity (DIO). We report 14 genes that promote obesity and 3 genes that prevent DIO when silenced in C. elegans. Further, we show that knock-down of the 3 DIO genes not only prevents excessive fat accumulation in primary and ectopic fat depots but also improves the health and extends the lifespan of C. elegans overconsuming fructose. Importantly, the direction of the association between expression variants in these loci and obesity in mice and humans matches the phenotypic outcome of the loss-of-function of the C. elegans ortholog genes, supporting the notion that some of these genes would be causally linked to obesity across phylogeny. Therefore, in addition to defining causality for several genes so far merely correlated with obesity, this study demonstrates the value of model systems compatible with in vivo high-throughput genetic screening to causally link GWAS gene candidates to human diseases.
Collapse
Affiliation(s)
- Wenfan Ke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jordan N. Reed
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
| | - Chenyu Yang
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Noel Higgason
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Leila Rayyan
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carolina Wählby
- Department of Information Technology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Anne E. Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Mete Civelek
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Eyleen J. O’Rourke
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
26
|
Calahorro F, Holden-Dye L, O'Connor V. Impact of drug solvents on C. elegans pharyngeal pumping. Toxicol Rep 2021; 8:1240-1247. [PMID: 34195015 PMCID: PMC8233170 DOI: 10.1016/j.toxrep.2021.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/20/2021] [Accepted: 06/14/2021] [Indexed: 02/05/2023] Open
Abstract
Caenorhabditis elegans provides a multi-cellular model organism for toxicology and drug discovery. These studies usually require solvents such as dimethyl sulfoxide (DMSO), ethanol or acetone as a vehicle. This raises the need to carefully consider whether the chemical vehicles used in these screens are anodyne towards C. elegans. Here, we use pharyngeal pumping as a bioassay to assess this. Pharyngeal pumping is a visually scoreable behaviour that is controlled by environmental cues activating sensory and integrative neural signalling to coordinate pharyngeal activity. As such it serves as a rich bioassay to screen for chemical modulation. We found that while pumping was insensitive to high concentrations of the widely used drug solvents ethanol and acetone, it was perturbed by concentrations of DMSO above 0.5 % v/v encompassing concentrations used as drug vehicle. This was manifested as an inhibition of pharyngeal pump rate followed by a slow recovery in the continued presence of the solvent. The inhibition was not observed in a neuroligin mutant, nlg-1, consistent with DMSO acting at the level of sensory processing that modulates pumping. We found that bus-17 mutants, which have enhanced cuticle penetration to drugs are more sensitive to DMSO. The effect of DMSO is accompanied by a progressive morphological disruption in which internal membrane-like structures of varying size accumulate. These internal structures are seen in all three genotypes investigated in this study and likely arise independent of the effects on pharyngeal pumping. Overall, these results highlight sensory signalling and strain dependent vehicle sensitivity. Although we define concentrations at which this can be mitigated, it highlights the need to consider time-dependent vehicle effects when evaluating control responses in C. elegans chemical biology.
Collapse
|
27
|
Lourenço AB, Rodríguez-Palero MJ, Doherty MK, Cabrerizo Granados D, Hernando-Rodríguez B, Salas JJ, Venegas-Calerón M, Whitfield PD, Artal-Sanz M. The Mitochondrial PHB Complex Determines Lipid Composition and Interacts With the Endoplasmic Reticulum to Regulate Ageing. Front Physiol 2021; 12:696275. [PMID: 34276415 PMCID: PMC8281979 DOI: 10.3389/fphys.2021.696275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolic disorders are frequently associated with physiological changes that occur during ageing. The mitochondrial prohibitin complex (PHB) is an evolutionary conserved context-dependent modulator of longevity, which has been linked to alterations in lipid metabolism but which biochemical function remains elusive. In this work we aimed at elucidating the molecular mechanism by which depletion of mitochondrial PHB shortens the lifespan of wild type animals while it extends that of insulin signaling receptor (daf-2) mutants. A liquid chromatography coupled with mass spectrometry approach was used to characterize the worm lipidome of wild type and insulin deficient animals upon PHB depletion. Toward a mechanistic interpretation of the insights coming from this analysis, we used a combination of biochemical, microscopic, and lifespan analyses. We show that PHB depletion perturbed glycerophospholipids and glycerolipids pools differently in short- versus long-lived animals. Interestingly, PHB depletion in otherwise wild type animals induced the endoplasmic reticulum (ER) unfolded protein response (UPR), which was mitigated in daf-2 mutants. Moreover, depletion of DNJ-21, which functionally interacts with PHB in mitochondria, mimicked the effect of PHB deficiency on the UPRER and on the lifespan of wild type and insulin signaling deficient mutants. Our work shows that PHB differentially modulates lipid metabolism depending on the worm’s metabolic status and provides evidences for a new link between PHB and ER homeostasis in ageing regulation.
Collapse
Affiliation(s)
- Artur B Lourenço
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - María Jesús Rodríguez-Palero
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Mary K Doherty
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, United Kingdom
| | - David Cabrerizo Granados
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Blanca Hernando-Rodríguez
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Joaquín J Salas
- Instituto de la Grasa (CSIC), Universidad Pablo de Olavide, Seville, Spain
| | | | - Phillip D Whitfield
- Division of Biomedical Science, University of the Highlands and Islands, Inverness, United Kingdom
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain.,Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
28
|
Thiam AR, Ikonen E. Lipid Droplet Nucleation. Trends Cell Biol 2020; 31:108-118. [PMID: 33293168 DOI: 10.1016/j.tcb.2020.11.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
All living organisms can make lipid droplets (LDs), intracellular oil-in-water droplets, surrounded by a phospholipid and protein monolayer. LDs are at the nexus of cellular lipid metabolism and function in diverse biological processes. During the past decade, multidisciplinary approaches have shed light on LD assembly steps from the endoplasmic reticulum (ER): nucleation, growth, budding, and formation of a separate organelle. However, the molecular mechanisms underpinning these steps remain elusive. In this review, we focus on the nucleation step, defining where and how LD assembly is initiated. We present how membrane biophysical and physicochemical properties control this step and how proteins act on it to orchestrate LD biogenesis.
Collapse
Affiliation(s)
- Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland.
| |
Collapse
|
29
|
Leyland B, Zarka A, Didi-Cohen S, Boussiba S, Khozin-Goldberg I. High Resolution Proteome of Lipid Droplets Isolated from the Pennate Diatom Phaeodactylum tricornutum (Bacillariophyceae) Strain pt4 provides mechanistic insights into complex intracellular coordination during nitrogen deprivation. JOURNAL OF PHYCOLOGY 2020; 56:1642-1663. [PMID: 32779202 DOI: 10.1111/jpy.13063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 07/12/2020] [Indexed: 05/08/2023]
Abstract
Lipid droplets (LDs) are an organelle conserved amongst all eukaryotes, consisting of a neutral lipid core surrounded by a polar lipid monolayer. Many species of microalgae accumulate LDs in response to stress conditions, such as nitrogen starvation. Here, we report the isolation and proteomic profiling of LD proteins from the model oleaginous pennate diatom Phaeodactylum tricornutum, strain Pt4 (UTEX 646). We also provide a quantitative description of LD morphological ontogeny, and fatty acid content. Novel cell disruption and LD isolation methods, combined with suspension-trapping and nanoflow liquid chromatography coupled to high resolution mass spectrometry, yielded an unprecedented number of LD proteins. Predictive annotation of the LD proteome suggests a broad assemblage of proteins with diverse functions, including lipid metabolism and vesicle trafficking, as well as ribosomal and proteasomal machinery. These proteins provide mechanistic insights into LD processes, and evidence for interactions between LDs and other organelles. We identify for the first time several key steps in diatom LD-associated triacylglycerol biosynthesis. Bioinformatic analyses of the LD proteome suggests multiple protein targeting mechanisms, including amphipathic helices, post-translational modifications, and translocation machinery. This work corroborates recent findings from other strains of P. tricornutum, other diatoms, and other eukaryotic organisms, suggesting that the fundamental proteins orchestrating LDs are conserved, and represent an ancient component of the eukaryotic endomembrane system. We postulate a comprehensive model of nitrogen starvation-induced diatom LDs on a molecular scale, and provide a wealth of candidates for metabolic engineering, with the potential to eventually customize LD contents.
Collapse
Affiliation(s)
- Ben Leyland
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Aliza Zarka
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Shoshana Didi-Cohen
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Sammy Boussiba
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| | - Inna Khozin-Goldberg
- The Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology, Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus, Be'er Sheva, 84990, Israel
| |
Collapse
|
30
|
Espada L, Dakhovnik A, Chaudhari P, Martirosyan A, Miek L, Poliezhaieva T, Schaub Y, Nair A, Döring N, Rahnis N, Werz O, Koeberle A, Kirkpatrick J, Ori A, Ermolaeva MA. Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nat Metab 2020; 2:1316-1331. [PMID: 33139960 DOI: 10.1038/s42255-020-00307-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Current clinical trials are testing the life-extending benefits of the diabetes drug metformin in healthy individuals without diabetes. However, the metabolic response of a non-diabetic cohort to metformin treatment has not been studied. Here, we show in C. elegans and human primary cells that metformin shortens lifespan when provided in late life, contrary to its positive effects in young organisms. We find that metformin exacerbates ageing-associated mitochondrial dysfunction, causing respiratory failure. Age-related failure to induce glycolysis and activate the dietary-restriction-like mobilization of lipid reserves in response to metformin result in lethal ATP exhaustion in metformin-treated aged worms and late-passage human cells, which can be rescued by ectopic stabilization of cellular ATP content. Metformin toxicity is alleviated in worms harbouring disruptions in insulin-receptor signalling, which show enhanced resilience to mitochondrial distortions at old age. Together, our data show that metformin induces deleterious changes of conserved metabolic pathways in late life, which could bring into question its benefits for older individuals without diabetes.
Collapse
Affiliation(s)
- Lilia Espada
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | | | - Prerana Chaudhari
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Asya Martirosyan
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Laura Miek
- Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | | | - Yvonne Schaub
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ashish Nair
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Nadia Döring
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Norman Rahnis
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Oliver Werz
- Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Andreas Koeberle
- Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
- Michael Popp Research Institute, University of Innsbruck, Innsbruck, Austria
| | | | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Maria A Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
31
|
Bai X, Huang LJ, Chen SW, Nebenfuehr B, Wysolmerski B, Wu JC, Olson SK, Golden A, Wang CW. Loss of the seipin gene perturbs eggshell formation in Caenorhabditiselegans. Development 2020; 147:dev192997. [PMID: 32820022 PMCID: PMC7578359 DOI: 10.1242/dev.192997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
Seipin, an evolutionary conserved protein, plays pivotal roles during lipid droplet (LD) biogenesis and is associated with various human diseases with unclear mechanisms. Here, we analyzed Caenorhabditis elegans mutants deleted of the sole SEIPIN gene, seip-1 Homozygous seip-1 mutants displayed penetrant embryonic lethality, which is caused by the disruption of the lipid-rich permeability barrier, the innermost layer of the C. elegans embryonic eggshell. In C. elegans oocytes and embryos, SEIP-1 is associated with LDs and is crucial for controlling LD size and lipid homeostasis. The seip-1 deletion mutants reduced the ratio of polyunsaturated fatty acids (PUFAs) in their embryonic fatty acid pool. Interestingly, dietary supplementation of selected n-6 PUFAs rescued the embryonic lethality and defective permeability barrier. Accordingly, we propose that SEIP-1 may maternally regulate LD biogenesis and lipid homeostasis to orchestrate the formation of the permeability barrier for eggshell synthesis during embryogenesis. A lipodystrophy allele of seip-1 resulted in embryonic lethality as well and could be rescued by PUFA supplementation. These experiments support a great potential for using C. elegans to model SEIPIN-associated human diseases.
Collapse
Affiliation(s)
- Xiaofei Bai
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leng-Jie Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Sheng-Wen Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Benjamin Nebenfuehr
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Wysolmerski
- Department of Biology and Program in Molecular Biology, Pomona College, Claremont, CA 91711, USA
| | - Jui-Ching Wu
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Sara K Olson
- Department of Biology and Program in Molecular Biology, Pomona College, Claremont, CA 91711, USA
| | - Andy Golden
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
32
|
Yilmaz LS, Li X, Nanda S, Fox B, Schroeder F, Walhout AJ. Modeling tissue-relevant Caenorhabditis elegans metabolism at network, pathway, reaction, and metabolite levels. Mol Syst Biol 2020; 16:e9649. [PMID: 33022146 PMCID: PMC7537831 DOI: 10.15252/msb.20209649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Metabolism is a highly compartmentalized process that provides building blocks for biomass generation during development, homeostasis, and wound healing, and energy to support cellular and organismal processes. In metazoans, different cells and tissues specialize in different aspects of metabolism. However, studying the compartmentalization of metabolism in different cell types in a whole animal and for a particular stage of life is difficult. Here, we present MEtabolic models Reconciled with Gene Expression (MERGE), a computational pipeline that we used to predict tissue-relevant metabolic function at the network, pathway, reaction, and metabolite levels based on single-cell RNA-sequencing (scRNA-seq) data from the nematode Caenorhabditis elegans. Our analysis recapitulated known tissue functions in C. elegans, captured metabolic properties that are shared with similar tissues in human, and provided predictions for novel metabolic functions. MERGE is versatile and applicable to other systems. We envision this work as a starting point for the development of metabolic network models for individual cells as scRNA-seq continues to provide higher-resolution gene expression data.
Collapse
Affiliation(s)
- Lutfu Safak Yilmaz
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Xuhang Li
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shivani Nanda
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Bennett Fox
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Frank Schroeder
- Boyce Thompson Institute, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Albertha Jm Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
33
|
Jin C, Yuan P. Implications of lipid droplets in lung cancer: Associations with drug resistance. Oncol Lett 2020; 20:2091-2104. [PMID: 32782526 PMCID: PMC7399769 DOI: 10.3892/ol.2020.11769] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells usually show different metabolic patterns compared with healthy cells due to the reprogramming of metabolic processes. The process of lipid metabolism undergoes notable changes, leading to the accumulation of lipid droplets in cells. Additionally, this phenotype is considered an important marker of cancer cells. Lipid droplets are a highly dynamic type of organelle in the cell, which is composed of a neutral lipid core, a monolayer phospholipid membrane and lipid droplet-related proteins. Lipid droplets are involved in several biological processes, including cell proliferation, apoptosis, lipid metabolism, stress, immunity, signal transduction and protein trafficking. Epidermal growth factor receptor (EGFR)-activating mutations are currently the most effective therapeutic targets for non-small cell lung cancer. Several EGFR tyrosine kinase inhibitors (EGFR-TKIs) that target these mutations, including gefitinib, erlotinib, afatinib and osimertinib, have been widely used clinically. However, the development of acquired resistance has a major impact on the efficacy of these drugs. A number of previous studies have reported that the expression of lipid droplets in the tumor tissues of patients with lung cancer are elevated, whereas the association between elevated numbers of lipid droplets and drug resistance has received little attention. The present review describes the potential association between lipid droplets and drug resistance. Furthermore, the mechanisms and implications of lipid droplet accumulation in cancer cells are analyzed, as wells as the mechanism by which lipid droplets suppress endoplasmic reticulum stress and apoptosis, which are essential for the development and treatment of lung cancer.
Collapse
Affiliation(s)
- Chunlai Jin
- Department of Surgery, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| | - Peng Yuan
- Department of Surgery, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
| |
Collapse
|
34
|
Spectroscopic coherent Raman imaging of Caenorhabditis elegans reveals lipid particle diversity. Nat Chem Biol 2020; 16:1087-1095. [PMID: 32572275 DOI: 10.1038/s41589-020-0565-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022]
Abstract
Caenorhabditis elegans serves as a model for understanding adiposity and its connections to aging. Current methodologies do not distinguish between fats serving the energy needs of the parent, akin to mammalian adiposity, from those that are distributed to the progeny, making it difficult to accurately interpret the physiological implications of fat content changes induced by external perturbations. Using spectroscopic coherent Raman imaging, we determine the protein content, chemical profiles and dynamics of lipid particles in live animals. We find fat particles in the adult intestine to be diverse, with most destined for the developing progeny. In contrast, the skin-like epidermis contains fats that are the least heterogeneous, the least dynamic and have high triglyceride content. These attributes are most consistent with stored somatic energy reservoirs. These results challenge the prevailing practice of assessing C. elegans adiposity by measurements that are dominated by the intestinal fat content.
Collapse
|
35
|
Haeussler S, Köhler F, Witting M, Premm MF, Rolland SG, Fischer C, Chauve L, Casanueva O, Conradt B. Autophagy compensates for defects in mitochondrial dynamics. PLoS Genet 2020; 16:e1008638. [PMID: 32191694 PMCID: PMC7135339 DOI: 10.1371/journal.pgen.1008638] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/06/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
Compromising mitochondrial fusion or fission disrupts cellular homeostasis; however, the underlying mechanism(s) are not fully understood. The loss of C. elegans fzo-1MFN results in mitochondrial fragmentation, decreased mitochondrial membrane potential and the induction of the mitochondrial unfolded protein response (UPRmt). We performed a genome-wide RNAi screen for genes that when knocked-down suppress fzo-1MFN(lf)-induced UPRmt. Of the 299 genes identified, 143 encode negative regulators of autophagy, many of which have previously not been implicated in this cellular quality control mechanism. We present evidence that increased autophagic flux suppresses fzo-1MFN(lf)-induced UPRmt by increasing mitochondrial membrane potential rather than restoring mitochondrial morphology. Furthermore, we demonstrate that increased autophagic flux also suppresses UPRmt induction in response to a block in mitochondrial fission, but not in response to the loss of spg-7AFG3L2, which encodes a mitochondrial metalloprotease. Finally, we found that blocking mitochondrial fusion or fission leads to increased levels of certain types of triacylglycerols and that this is at least partially reverted by the induction of autophagy. We propose that the breakdown of these triacylglycerols through autophagy leads to elevated metabolic activity, thereby increasing mitochondrial membrane potential and restoring mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
- Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fabian Köhler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, Technische Universität München, Freising, Germany
| | - Madeleine F. Premm
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Christian Fischer
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Laetitia Chauve
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Olivia Casanueva
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
- Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
36
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
37
|
Tan Y, Jin Y, Wu X, Ren Z. PSMD1 and PSMD2 regulate HepG2 cell proliferation and apoptosis via modulating cellular lipid droplet metabolism. BMC Mol Biol 2019; 20:24. [PMID: 31703613 PMCID: PMC6842266 DOI: 10.1186/s12867-019-0141-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
Background Obesity and nonalcoholic steatohepatitis (NASH) are well-known risk factors of hepatocellular carcinoma (HCC). The lipid-rich environment enhances the proliferation and metastasis abilities of tumor cells. Previous studies showed the effect of the ubiquitin–proteasome system (UPS) on tumor cell proliferation. However, the underlying mechanism of UPS in regulating the proliferation of lipid-rich tumor cells is not totally clear. Results Here, we identify two proteasome 26S subunits, non-ATPase 1 and 2 (PSMD1 and PSMD2), which regulate HepG2 cells proliferation via modulating cellular lipid metabolism. Briefly, the knockdown of PSMD1 and/or PSMD2 decreases the formation of cellular lipid droplets, the provider of the energy and membrane components for tumor cell proliferation. Mechanically, PSMD1 and PSMD2 regulate the expression of genes related to de novo lipid synthesis via p38-JNK and AKT signaling. Moreover, the high expression of PSMD1 and PSMD2 is significantly correlated with poor prognosis of HCC. Conclusion We demonstrate that PSMD1 and PSMD2 promote the proliferation of HepG2 cells via facilitating cellular lipid droplet accumulation. This study provides a potential therapeutic strategy for the treatment of lipid-rich tumors.
Collapse
Affiliation(s)
- Yanjie Tan
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yi Jin
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiang Wu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China. .,Bio-Medical Center of Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
38
|
MDT-28/PLIN-1 mediates lipid droplet-microtubule interaction via DLC-1 in Caenorhabditis elegans. Sci Rep 2019; 9:14902. [PMID: 31624276 PMCID: PMC6797801 DOI: 10.1038/s41598-019-51399-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Ectopic lipid accumulation in lipid droplets (LD) has been linked to many metabolic diseases. In this study, DHS-3::GFP was used as a LD marker in C. elegans and a forward genetic screen was carried out to find novel LD regulators. There were 140 mutant alleles identified which were divided into four phenotypic categories: enlarged, aggregated, aggregated and small, and decreased. After genetic mapping, mutations in three known LD regulatory genes (maoc-1, dhs-28, daf-22) and a peroxisome-related gene (acox-3) were found to enlarge LDs, demonstrating the reliability of using DHS-3 as a living marker. In the screen, the cytoskeleton protein C27H5.2 was found to be involved in LD aggregation, as was the LD resident/structure-like protein, MDT-28/PLIN-1. Using yeast two-hybrid screening and pull-down assays, MDT-28/PLIN-1 was found to bind to DLC-1 (dynein light chain). Fluorescence imaging confirmed that MDT-28/PLIN-1 mediated the interaction between DHS-3 labeled LDs and DLC-1 labeled microtubules. Furthermore, MDT-28/PLIN-1 was directly bound to DLC-1 through its amino acids 1–210 and 275–415. Taken together, our results suggest that MDT-28/PLIN-1 is involved in the regulation of LD distribution through its interaction with microtubule-related proteins.
Collapse
|
39
|
Perez MF, Lehner B. Vitellogenins - Yolk Gene Function and Regulation in Caenorhabditis elegans. Front Physiol 2019; 10:1067. [PMID: 31551797 PMCID: PMC6736625 DOI: 10.3389/fphys.2019.01067] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022] Open
Abstract
Vitellogenins are a family of yolk proteins that are by far the most abundant among oviparous animals. In the model nematode Caenorhabditis elegans, the 6 vitellogenins are among the most highly expressed genes in the adult hermaphrodite intestine, which produces copious yolk to provision eggs. In this article we review what is known about the vitellogenin genes and proteins in C. elegans, in comparison with vitellogenins in other taxa. We argue that the primary purpose of abundant vitellogenesis in C. elegans is to support post-embryonic development and fertility, rather than embryogenesis, especially in harsh environments. Increasing vitellogenin provisioning underlies several post-embryonic phenotypic alterations associated with advancing maternal age, demonstrating that vitellogenins can act as an intergenerational signal mediating the influence of parental physiology on progeny. We also review what is known about vitellogenin regulation - how tissue-, sex- and stage-specificity of expression is achieved, how vitellogenins are regulated by major signaling pathways, how vitellogenin expression is affected by extra-intestinal tissues and how environmental experience affects vitellogenesis. Lastly, we speculate whether C. elegans vitellogenins may play other roles in worm physiology.
Collapse
Affiliation(s)
- Marcos Francisco Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
40
|
Hänel V, Pendleton C, Witting M. The sphingolipidome of the model organism Caenorhabditis elegans. Chem Phys Lipids 2019; 222:15-22. [PMID: 31028715 DOI: 10.1016/j.chemphyslip.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/19/2023]
Abstract
Sphingolipids are important lipids and integral members of membranes, where they form small microdomains called lipid rafts. These rafts are enriched in cholesterol and sphingolipids, which influences biophysical properties. Interestingly, the membranes of the biomedical model organism Caenorhabditis elegans contain only low amounts of cholesterol. Sphingolipids in C. elegans are based on an unusual C17iso branched sphingoid base. In order to analyze and the sphingolipidome of C. elegans in more detail, we performed fractionation of lipid extracts and depletion of glycero- and glycerophospholipids together with in-depth analysis using UPLC-UHR-ToF-MS. In total we were able to detect 82 different sphingolipids from different classes, including several isomeric species.
Collapse
Affiliation(s)
- Victoria Hänel
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85674 Neuherberg, Germany
| | - Christian Pendleton
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85674 Neuherberg, Germany
| | - Michael Witting
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85674 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
| |
Collapse
|
41
|
Kuzmic M, Galas S, Lecomte-Pradines C, Dubois C, Dubourg N, Frelon S. Interplay between ionizing radiation effects and aging in C. elegans. Free Radic Biol Med 2019; 134:657-665. [PMID: 30743047 DOI: 10.1016/j.freeradbiomed.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 11/26/2022]
Abstract
Living species are chronically exposed to environmental ionizing radiations from sources that can be overexpressed by nuclear accidents. In invertebrates, reproduction is the most radiosensitive studied endpoint, likely to be connected with aging. Surprisingly, aging is a sparsely investigated endpoint after chronic ionizing radiation, whereas understanding it is of fundamental interest in biology and medicine. Indeed, aging and aging-related diseases (e.g., cancer and degenerative diseases) cause about 90% of deaths in developed countries. Therefore, glp-1 sterile Caenorhabditis elegans nematode was used to assess the impact of chronic gamma irradiation on the lifespan. Analyses were performed, at the individual level, on aging and, in order to delve deeper into the mechanisms, at the molecular level, on oxidative damage (carbonylation), biomolecules (lipids, proteins and nucleic acids) and their colocalization. We observed that ionizing radiation accelerates aging (whatever the duration (3-19 days)/dose (0.5-24 Gy)/dose rate (7 and 52 mGy h-1) tested) leading to a longevity value equivalent to that of wt nematode (∼25-30 days). Moreover, the level of protein oxidative damage (carbonylation) turned out to be good cellular biomarker of aging, since it increases with age. Conversely, chronic radiation treatments reduced carbonylation levels and induced neutral lipid catabolism whatever the dose rate and the final delivered dose. Finally, under some conditions a lipid-protein colocalization without any carbonyl was observed; this could be linked to yolk accumulation in glp-1 nematodes. To conclude, we noticed through this study a link between chronic gamma exposure, lifespan shortening and lipid level decrease associated with a decrease in the overall carbonylation.
Collapse
Affiliation(s)
- Mira Kuzmic
- Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, 13115, Saint Paul Lez Durance Cedex, France
| | - Simon Galas
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, 13115, Saint Paul Lez Durance Cedex, France
| | - Cécile Dubois
- Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, 13115, Saint Paul Lez Durance Cedex, France
| | - Nicolas Dubourg
- Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, 13115, Saint Paul Lez Durance Cedex, France
| | - Sandrine Frelon
- Institut de Radioprotection et de Sûreté Nucléaire, Cadarache, 13115, Saint Paul Lez Durance Cedex, France.
| |
Collapse
|
42
|
Control of Drosophila Growth and Survival by the Lipid Droplet-Associated Protein CG9186/Sturkopf. Cell Rep 2019; 26:3726-3740.e7. [DOI: 10.1016/j.celrep.2019.02.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/08/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
|
43
|
Zhang C, Liu P. The New Face of the Lipid Droplet: Lipid Droplet Proteins. Proteomics 2018; 19:e1700223. [DOI: 10.1002/pmic.201700223] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Congyan Zhang
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pingsheng Liu
- National Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences Beijing 100101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
44
|
Liu Y, Xu S, Zhang C, Zhu X, Hammad MA, Zhang X, Christian M, Zhang H, Liu P. Hydroxysteroid dehydrogenase family proteins on lipid droplets through bacteria, C. elegans, and mammals. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:881-894. [DOI: 10.1016/j.bbalip.2018.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/18/2018] [Accepted: 04/21/2018] [Indexed: 02/08/2023]
|
45
|
Nitrogen-starvation triggers cellular accumulation of triacylglycerol in Metarhizium robertsii. Fungal Biol 2018; 122:410-419. [DOI: 10.1016/j.funbio.2017.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/13/2017] [Accepted: 07/06/2017] [Indexed: 01/11/2023]
|
46
|
Chen Y, Li B, Cen K, Lu Y, Zhang S, Wang C. Diverse effect of phosphatidylcholine biosynthetic genes on phospholipid homeostasis, cell autophagy and fungal developments in Metarhizium robertsii. Environ Microbiol 2017; 20:293-304. [PMID: 29159973 DOI: 10.1111/1462-2920.13998] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/15/2017] [Indexed: 11/27/2022]
Abstract
Phosphatidylcholine (PC) plays an important role in maintaining membrane integrity and functionality. In this study, two key genes (Mrpct and Mrpem) putatively involved in the cytidine diphosphate (CDP)-choline and phosphatidylethanolamine N-methyltransferase (PEMT) pathways for PC biosynthesis were characterized in the insect pathogenic fungus Metarhizium robertsii. The results indicated that disruption of Mrpct did not lead to any reduction of total PC content but impaired fungal virulence and increased cellular accumulation of triacylglycerol. Deletion of Mrpem reduced PC content and impaired fungal conidiation and infection structure differentiation but did not result in virulence defects. Lipidomic analysis revealed that deletion of Mrpct and Mrpem resulted in dissimilar effects on increase and decrease of PC moieties and other phospholipid species accumulations. Interestingly, we found that these two genes played opposite roles in activation of cell autophagy when the fungi were grown in a nutrient-rich medium. The connection between PC metabolism and autophagy was confirmed because PC content was drastically reduced in Mratg8Δ and that the addition of PC could rescue null mutant sporulation defect. The results of this study facilitate the understanding of PC metabolism on fungal physiology.
Collapse
Affiliation(s)
- Yixiong Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bing Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kai Cen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuzhen Lu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Siwei Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
47
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
48
|
Arndt DA, Oostveen EK, Triplett J, Butterfield DA, Tsyusko OV, Collin B, Starnes DL, Cai J, Klein JB, Nass R, Unrine JM. The role of charge in the toxicity of polymer-coated cerium oxide nanomaterials to Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 201:1-10. [PMID: 28888877 DOI: 10.1016/j.cbpc.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
This study examined the impact of surface functionalization and charge on ceria nanomaterial toxicity to Caenorhabditis elegans. The examined endpoints included mortality, reproduction, protein expression, and protein oxidation profiles. Caenorhabditis elegans were exposed to identical 2-5nm ceria nanomaterial cores which were coated with cationic (diethylaminoethyl dextran; DEAE), anionic (carboxymethyl dextran; CM), and non-ionic (dextran; DEX) polymers. Mortality and reproductive toxicity of DEAE-CeO2 was approximately two orders of magnitude higher than for CM-CeO2 or DEX-CeO2. Two-dimensional gel electrophoresis with orbitrap mass spectrometry identification revealed changes in the expression profiles of several mitochondrial-related proteins and proteins that are expressed in the C. elegans intestine. However, each type of CeO2 material exhibited a distinct protein expression profile. Increases in protein carbonyls and protein-bound 3-nitrotyrosine were also observed for some proteins, indicating oxidative and nitrosative damage. Taken together the results indicate that the magnitude of toxicity and toxicity pathways vary greatly due to surface functionalization of CeO2 nanomaterials.
Collapse
Affiliation(s)
- Devrah A Arndt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Emily K Oostveen
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Judy Triplett
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Blanche Collin
- CNRS, IRD, Coll. France, CEREGE, Aix Marseille Université, Aix-en-Provence, France
| | - Daniel L Starnes
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Jian Cai
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Jon B Klein
- Center for Proteomics, University of Louisville, Louisville, KY, United States
| | - Richard Nass
- Department of Pharmacology and Toxicology, Indiana University, Indianapolis, IN, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
49
|
Barbosa AD, Siniossoglou S. Function of lipid droplet-organelle interactions in lipid homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1459-1468. [DOI: 10.1016/j.bbamcr.2017.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/31/2017] [Accepted: 04/02/2017] [Indexed: 12/20/2022]
|
50
|
Shen P, Yue Y, Park Y. A living model for obesity and aging research:Caenorhabditis elegans. Crit Rev Food Sci Nutr 2017; 58:741-754. [DOI: 10.1080/10408398.2016.1220914] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|