1
|
Suresh S, Shaw AL, Pemberton JG, Scott MK, Harris NJ, Parson MAH, Jenkins ML, Rohilla P, Alvarez-Prats A, Balla T, Yip CK, Burke JE. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. SCIENCE ADVANCES 2024; 10:eadp6660. [PMID: 39705356 DOI: 10.1126/sciadv.adp6660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
The lipid kinase phosphatidylinositol 4 kinase III α (PI4KIIIα/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryogenic electron microscopy structure of the C terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry, and mutational analysis. The EFR3A C terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple posttranslational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Suresh S, Shaw AL, Pemberton JG, Scott MK, Harris NJ, Parson MAH, Jenkins ML, Rohilla P, Alvarez-Prats A, Balla T, Yip CK, Burke JE. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.587787. [PMID: 38746453 PMCID: PMC11092606 DOI: 10.1101/2024.04.30.587787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The lipid kinase phosphatidylinositol 4 kinase III alpha (PI4KIIIa/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryo-EM structure of the C-terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry (HDX-MS), and mutational analysis. The EFR3A C-terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple post-translational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Current address: Department of Biology, Western University, London, ON, N6A 3K7 Canada
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
3
|
Tóth AD, Szalai B, Kovács OT, Garger D, Prokop S, Soltész-Katona E, Balla A, Inoue A, Várnai P, Turu G, Hunyady L. G protein-coupled receptor endocytosis generates spatiotemporal bias in β-arrestin signaling. Sci Signal 2024; 17:eadi0934. [PMID: 38917219 DOI: 10.1126/scisignal.adi0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
The stabilization of different active conformations of G protein-coupled receptors is thought to underlie the varying efficacies of biased and balanced agonists. Here, profiling the activation of signal transducers by angiotensin II type 1 receptor (AT1R) agonists revealed that the extent and kinetics of β-arrestin binding exhibited substantial ligand-dependent differences, which were lost when receptor internalization was inhibited. When AT1R endocytosis was prevented, even weak partial agonists of the β-arrestin pathway acted as full or near-full agonists, suggesting that receptor conformation did not exclusively determine β-arrestin recruitment. The ligand-dependent variance in β-arrestin translocation was much larger at endosomes than at the plasma membrane, showing that ligand efficacy in the β-arrestin pathway was spatiotemporally determined. Experimental investigations and mathematical modeling demonstrated how multiple factors concurrently shaped the effects of agonists on endosomal receptor-β-arrestin binding and thus determined the extent of functional selectivity. Ligand dissociation rate and G protein activity had particularly strong, internalization-dependent effects on the receptor-β-arrestin interaction. We also showed that endocytosis regulated the agonist efficacies of two other receptors with sustained β-arrestin binding: the V2 vasopressin receptor and a mutant β2-adrenergic receptor. In the absence of endocytosis, the agonist-dependent variance in β-arrestin2 binding was markedly diminished. Our results suggest that endocytosis determines the spatiotemporal bias in GPCR signaling and can aid in the development of more efficacious, functionally selective compounds.
Collapse
MESH Headings
- Endocytosis/physiology
- Humans
- Signal Transduction
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- beta-Arrestins/metabolism
- beta-Arrestins/genetics
- HEK293 Cells
- Receptors, Vasopressin/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/genetics
- Endosomes/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Animals
- Ligands
- Protein Binding
- Protein Transport
Collapse
Affiliation(s)
- András D Tóth
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Szentkirályi utca 46, H-1088 Budapest, Hungary
| | - Bence Szalai
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Orsolya T Kovács
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Dániel Garger
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- Computational Health Center, Helmholtz Munich, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Eszter Soltész-Katona
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- HUN-REN-SE Laboratory of Molecular Physiology, Hungarian Research Network, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Asuka Inoue
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578 Japan
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
- HUN-REN-SE Laboratory of Molecular Physiology, Hungarian Research Network, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - Gábor Turu
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| | - László Hunyady
- Institute of Molecular Life Sciences, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Tűzoltó utca 37-47, H-1094 Budapest, Hungary
| |
Collapse
|
4
|
Kim YJ, Pemberton JG, Eisenreichova A, Mandal A, Koukalova A, Rohilla P, Sohn M, Konradi AW, Tang TT, Boura E, Balla T. Non-vesicular phosphatidylinositol transfer plays critical roles in defining organelle lipid composition. EMBO J 2024; 43:2035-2061. [PMID: 38627600 PMCID: PMC11099152 DOI: 10.1038/s44318-024-00096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 05/18/2024] Open
Abstract
Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.
Collapse
Affiliation(s)
- Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10, Prague 6, Czech Republic
| | - Amrita Mandal
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alena Koukalova
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mira Sohn
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2., 166 10, Prague 6, Czech Republic
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Tóth DJ, Tóth JT, Damouni A, Hunyady L, Várnai P. Effect of hormone-induced plasma membrane phosphatidylinositol 4,5-bisphosphate depletion on receptor endocytosis suggests the importance of local regulation in phosphoinositide signaling. Sci Rep 2024; 14:291. [PMID: 38168911 PMCID: PMC10761818 DOI: 10.1038/s41598-023-50732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) has been shown to be critical for the endocytosis of G protein-coupled receptors (GPCRs). We have previously demonstrated that depletion of PIP2 by chemically induced plasma membrane (PM) recruitment of a 5-phosphatase domain prevents the internalization of the β2 adrenergic receptor (β2AR) from the PM to early endosomes. In this study, we tested the effect of hormone-induced PM PIP2 depletion on β2AR internalization using type-1 angiotensin receptor (AT1R) or M3 muscarinic acetylcholine receptor (M3R). We followed the endocytic route of β2ARs in HEK 293T cells using bioluminescence resonance energy transfer between the receptor and endosome marker Rab5. To compare the effect of lipid depletion by different means, we created and tested an AT1R fusion protein that is capable of both recruitment-based and hormone-induced depletion methods. The rate of PM PIP2 depletion was measured using a biosensor based on the PH domain of phospholipase Cδ1. As expected, β2AR internalization was inhibited when PIP2 depletion was evoked by recruiting 5-phosphatase to PM-anchored AT1R. A similar inhibition occurred when wild-type AT1R was activated by adding angiotensin II. However, stimulation of the desensitization/internalization-impaired mutant AT1R (TSTS/4A) caused very little inhibition of β2AR internalization, despite the higher rate of measurable PIP2 depletion. Interestingly, inhibition of PIP2 resynthesis with the selective PI4KA inhibitor GSK-A1 had little effect on the change in PH-domain-measured PM PIP2 levels but did significantly decrease β2AR internalization upon either AT1R or M3R activation, indicating the importance of a locally synthetized phosphoinositide pool in the regulation of this process.
Collapse
Affiliation(s)
- Dániel J Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary
| | - József T Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- Department of Anaesthesiology and Intensive Therapy, Faculty of Medicine, Semmelweis University, Budapest, Üllői út 78/B, 1082, Hungary
| | - Amir Damouni
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary
- Institute of Enzymology, Centre of Excellence of the Hungarian Academy of Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Magyar tudósok körútja 2, 1117, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Tűzoltó utca 37-47, 1094, Hungary.
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
6
|
Eisenreichova A, Humpolickova J, Różycki B, Boura E, Koukalova A. Effects of biophysical membrane properties on recognition of phosphatidylserine, or phosphatidylinositol 4-phosphate by lipid biosensors LactC2, or P4M. Biochimie 2023; 215:42-49. [PMID: 37683994 DOI: 10.1016/j.biochi.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Lipid biosensors are molecular tools used both in vivo and in vitro applications, capable of selectively detecting specific types of lipids in biological membranes. However, despite their extensive use, there is a lack of systematic characterization of their binding properties in various membrane conditions. The purpose of this study was to investigate the impact of membrane properties, such as fluidity and membrane charge, on the sensitivity of two lipid biosensors, LactC2 and P4M, to their target lipids, phosphatidylserine (PS) or phosphatidylinositol 4-phosphate (PI4P), respectively. Dual-color fluorescence cross-correlation spectroscopy, employed in this study, provided a useful technique to investigate interactions of these recombinant fluorescent biosensors with liposomes of varying compositions. The results of the study demonstrate that the binding of the LactC2 biosensor to low levels of PS in the membrane is highly supported by the presence of anionic lipids or membrane fluidity. However, at high PS levels, the presence of anionic lipids does not further enhance binding of LactC2. In contrast, neither membrane charge, nor membrane fluidity significantly affect the binding affinity of P4M to PI4P. These findings provide valuable insights into the role of membrane properties on the binding properties of lipid biosensors.
Collapse
Affiliation(s)
- Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Alena Koukalova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czech Republic.
| |
Collapse
|
7
|
Wills RC, Doyle CP, Zewe JP, Pacheco J, Hansen SD, Hammond GRV. A novel homeostatic mechanism tunes PI(4,5)P2-dependent signaling at the plasma membrane. J Cell Sci 2023; 136:jcs261494. [PMID: 37534432 PMCID: PMC10482388 DOI: 10.1242/jcs.261494] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
The lipid molecule phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] controls all aspects of plasma membrane (PM) function in animal cells, from its selective permeability to the attachment of the cytoskeleton. Although disruption of PI(4,5)P2 is associated with a wide range of diseases, it remains unclear how cells sense and maintain PI(4,5)P2 levels to support various cell functions. Here, we show that the PIP4K family of enzymes, which synthesize PI(4,5)P2 via a minor pathway, also function as sensors of tonic PI(4,5)P2 levels. PIP4Ks are recruited to the PM by elevated PI(4,5)P2 levels, where they inhibit the major PI(4,5)P2-synthesizing PIP5Ks. Perturbation of this simple homeostatic mechanism reveals differential sensitivity of PI(4,5)P2-dependent signaling to elevated PI(4,5)P2 levels. These findings reveal that a subset of PI(4,5)P2-driven functions might drive disease associated with disrupted PI(4,5)P2 homeostasis.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Colleen P. Doyle
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - James P. Zewe
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jonathan Pacheco
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Scott D. Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
8
|
Barlow-Busch I, Shaw AL, Burke JE. PI4KA and PIKfyve: Essential phosphoinositide signaling enzymes involved in myriad human diseases. Curr Opin Cell Biol 2023; 83:102207. [PMID: 37453227 DOI: 10.1016/j.ceb.2023.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Lipid phosphoinositides are master regulators of multiple cellular functions. Misregulation of the activity of the lipid kinases that generate phosphoinositides is causative of human diseases, including cancer, neurodegeneration, developmental disorders, immunodeficiencies, and inflammatory disease. This review will present a summary of recent discoveries on the roles of two phosphoinositide kinases (PI4KA and PIKfyve), which have emerged as targets for therapeutic intervention. Phosphatidylinositol 4-kinase alpha (PI4KA) generates PI4P at the plasma membrane and PIKfyve generates PI(3,5)P2 at endo-lysosomal membranes. Both of these enzymes exist as multi-protein mega complexes that are under myriad levels of regulation. Human disease can be caused by either loss or gain-of-function of these complexes, so understanding how they are regulated will be essential in the design of therapeutics. We will summarize insight into how these enzymes are regulated by their protein-binding partners, with a major focus on the unanswered questions of how their activity is controlled.
Collapse
Affiliation(s)
- Isobel Barlow-Busch
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
9
|
Ulengin-Talkish I, Cyert MS. A cellular atlas of calcineurin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119366. [PMID: 36191737 PMCID: PMC9948804 DOI: 10.1016/j.bbamcr.2022.119366] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Intracellular Ca2+ signals are temporally controlled and spatially restricted. Signaling occurs adjacent to sites of Ca2+ entry and/or release, where Ca2+-dependent effectors and their substrates co-localize to form signaling microdomains. Here we review signaling by calcineurin, the Ca2+/calmodulin regulated protein phosphatase and target of immunosuppressant drugs, Cyclosporin A and FK506. Although well known for its activation of the adaptive immune response via NFAT dephosphorylation, systematic mapping of human calcineurin substrates and regulators reveals unexpected roles for this versatile phosphatase throughout the cell. We discuss calcineurin function, with an emphasis on where signaling occurs and mechanisms that target calcineurin and its substrates to signaling microdomains, especially binding of cognate short linear peptide motifs (SLiMs). Calcineurin is ubiquitously expressed and regulates events at the plasma membrane, other intracellular membranes, mitochondria, the nuclear pore complex and centrosomes/cilia. Based on our expanding knowledge of localized CN actions, we describe a cellular atlas of Ca2+/calcineurin signaling.
Collapse
Affiliation(s)
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94035, United States.
| |
Collapse
|
10
|
Gulyas G, Korzeniowski MK, Eugenio CEB, Vaca L, Kim YJ, Balla T. LIPID transfer proteins regulate store-operated calcium entry via control of plasma membrane phosphoinositides. Cell Calcium 2022; 106:102631. [PMID: 35853265 PMCID: PMC9444960 DOI: 10.1016/j.ceca.2022.102631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
Abstract
The ER-resident proteins STIM1 together with the plasma membrane (PM)-localized Orai1 channels constitute the molecular components of the store-operated Ca2+ entry (SOCE) pathway. Prepositioning of STIM1 to the peripheral ER close to the PM ensures its efficient interaction with Orai1 upon a decrease in the ER luminal Ca2+ concentration. The C-terminal polybasic domain of STIM1 has been identified as mediating the interaction with PM phosphoinositides and hence positions the molecule to ER-PM contact sites. Here we show that STIM1 requires PM phosphatidylinositol 4-phosphate (PI4P) for efficient PM interaction. Accordingly, oxysterol binding protein related proteins (ORPs) that work at ER-PM junctions and consume PI4P gradients exert important control over the Ca2+ entry process. These studies reveal an important connection between non-vesicular lipid transport at ER-PM contact sites and regulation of ER Ca2+store refilling.
Collapse
Affiliation(s)
- Gergo Gulyas
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marek K Korzeniowski
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Carlos Ernesto Bastián Eugenio
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA; Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico City DF, CP, 04510, USA
| | - Luis Vaca
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico City DF, CP, 04510, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Jensen JB, Falkenburger BH, Dickson EJ, de la Cruz L, Dai G, Myeong J, Jung SR, Kruse M, Vivas O, Suh BC, Hille B. Biophysical physiology of phosphoinositide rapid dynamics and regulation in living cells. J Gen Physiol 2022; 154:e202113074. [PMID: 35583815 PMCID: PMC9121023 DOI: 10.1085/jgp.202113074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/28/2022] [Indexed: 01/07/2023] Open
Abstract
Phosphoinositide membrane lipids are ubiquitous low-abundance signaling molecules. They direct many physiological processes that involve ion channels, membrane identification, fusion of membrane vesicles, and vesicular endocytosis. Pools of these lipids are continually broken down and refilled in living cells, and the rates of some of these reactions are strongly accelerated by physiological stimuli. Recent biophysical experiments described here measure and model the kinetics and regulation of these lipid signals in intact cells. Rapid on-line monitoring of phosphoinositide metabolism is made possible by optical tools and electrophysiology. The experiments reviewed here reveal that as for other cellular second messengers, the dynamic turnover and lifetimes of membrane phosphoinositides are measured in seconds, controlling and timing rapid physiological responses, and the signaling is under strong metabolic regulation. The underlying mechanisms of this metabolic regulation remain questions for the future.
Collapse
Affiliation(s)
- Jill B. Jensen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | | | - Eamonn J. Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA
| | - Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Gucan Dai
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Jongyun Myeong
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO
| | | | - Martin Kruse
- Department of Biology and Program in Neuroscience, Bates College, Lewiston, ME
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| |
Collapse
|
12
|
Ulengin-Talkish I, Parson MAH, Jenkins ML, Roy J, Shih AZL, St-Denis N, Gulyas G, Balla T, Gingras AC, Várnai P, Conibear E, Burke JE, Cyert MS. Palmitoylation targets the calcineurin phosphatase to the phosphatidylinositol 4-kinase complex at the plasma membrane. Nat Commun 2021; 12:6064. [PMID: 34663815 PMCID: PMC8523714 DOI: 10.1038/s41467-021-26326-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca2+ signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAβ1. We show that unlike canonical cytosolic calcineurin, CNAβ1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase. Palmitoylation targets CNAβ1 to a distinct set of membrane-associated interactors including the phosphatidylinositol 4-kinase (PI4KA) complex containing EFR3B, PI4KA, TTC7B and FAM126A. Hydrogen-deuterium exchange reveals multiple calcineurin-PI4KA complex contacts, including a calcineurin-binding peptide motif in the disordered tail of FAM126A, which we establish as a calcineurin substrate. Calcineurin inhibitors decrease PI4P production during Gq-coupled GPCR signaling, suggesting that calcineurin dephosphorylates and promotes PI4KA complex activity. In sum, this work discovers a calcineurin-regulated signaling pathway which highlights the PI4KA complex as a regulatory target and reveals that dynamic palmitoylation confers unique localization, substrate specificity and regulation to CNAβ1.
Collapse
Affiliation(s)
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexis Z L Shih
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- High-Fidelity Science Communications, Summerside, PE, Canada
| | - Gergo Gulyas
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elizabeth Conibear
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
13
|
Myeong J, de la Cruz L, Jung SR, Yeon JH, Suh BC, Koh DS, Hille B. Phosphatidylinositol 4,5-bisphosphate is regenerated by speeding of the PI 4-kinase pathway during long PLC activation. J Gen Physiol 2021; 152:211533. [PMID: 33186442 PMCID: PMC7671494 DOI: 10.1085/jgp.202012627] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023] Open
Abstract
The dynamic metabolism of membrane phosphoinositide lipids involves several cellular compartments including the ER, Golgi, and plasma membrane. There are cycles of phosphorylation and dephosphorylation and of synthesis, transfer, and breakdown. The simplified phosphoinositide cycle comprises synthesis of phosphatidylinositol in the ER, transport, and phosphorylation in the Golgi and plasma membranes to generate phosphatidylinositol 4,5-bisphosphate, followed by receptor-stimulated hydrolysis in the plasma membrane and return of the components to the ER for reassembly. Using probes for specific lipid species, we have followed and analyzed the kinetics of several of these events during stimulation of M1 muscarinic receptors coupled to the G-protein Gq. We show that during long continued agonist action, polyphosphorylated inositol lipids are initially depleted but then regenerate while agonist is still present. Experiments and kinetic modeling reveal that the regeneration results from gradual but massive up-regulation of PI 4-kinase pathways rather than from desensitization of receptors. Golgi pools of phosphatidylinositol 4-phosphate and the lipid kinase PI4KIIIα (PI4KA) contribute to this homeostatic regeneration. This powerful acceleration, which may be at the level of enzyme activity or of precursor and product delivery, reveals strong regulatory controls in the phosphoinositide cycle.
Collapse
Affiliation(s)
- Jongyun Myeong
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Lizbeth de la Cruz
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| | | | - Jun-Hee Yeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Duk-Su Koh
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
14
|
Compartmentalization of phosphatidylinositol 4,5-bisphosphate metabolism into plasma membrane liquid-ordered/raft domains. Proc Natl Acad Sci U S A 2021; 118:2025343118. [PMID: 33619111 DOI: 10.1073/pnas.2025343118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Possible segregation of plasma membrane (PM) phosphoinositide metabolism in membrane lipid domains is not fully understood. We exploited two differently lipidated peptide sequences, L10 and S15, to mark liquid-ordered, cholesterol-rich (Lo) and liquid-disordered, cholesterol-poor (Ld) domains of the PM, often called raft and nonraft domains, respectively. Imaging of the fluorescent labels verified that L10 segregated into cholesterol-rich Lo phases of cooled giant plasma-membrane vesicles (GPMVs), whereas S15 and the dye FAST DiI cosegregated into cholesterol-poor Ld phases. The fluorescent protein markers were used as Förster resonance energy transfer (FRET) pairs in intact cells. An increase of homologous FRET between L10 probes showed that depleting membrane cholesterol shrank Lo domains and enlarged Ld domains, whereas a decrease of L10 FRET showed that adding more cholesterol enlarged Lo and shrank Ld Heterologous FRET signals between the lipid domain probes and phosphoinositide marker proteins suggested that phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P 2] and phosphatidylinositol 4-phosphate (PtdIns4P) are present in both Lo and Ld domains. In kinetic analysis, muscarinic-receptor-activated phospholipase C (PLC) depleted PtdIns(4,5)P 2 and PtdIns4P more rapidly and produced diacylglycerol (DAG) more rapidly in Lo than in Ld Further, PtdIns(4,5)P 2 was restored more rapidly in Lo than in Ld Thus destruction and restoration of PtdIns(4,5)P 2 are faster in Lo than in Ld This suggests that Lo is enriched with both the receptor G protein/PLC pathway and the PtdIns/PI4-kinase/PtdIns4P pathway. The significant kinetic differences of lipid depletion and restoration also mean that exchange of lipids between these domains is much slower than free diffusion predicts.
Collapse
|
15
|
Giubilaro J, Schuetz DA, Stepniewski TM, Namkung Y, Khoury E, Lara-Márquez M, Campbell S, Beautrait A, Armando S, Radresa O, Duchaine J, Lamarche-Vane N, Claing A, Selent J, Bouvier M, Marinier A, Laporte SA. Discovery of a dual Ras and ARF6 inhibitor from a GPCR endocytosis screen. Nat Commun 2021; 12:4688. [PMID: 34344896 PMCID: PMC8333425 DOI: 10.1038/s41467-021-24968-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 07/17/2021] [Indexed: 12/15/2022] Open
Abstract
Internalization and intracellular trafficking of G protein-coupled receptors (GPCRs) play pivotal roles in cell responsiveness. Dysregulation in receptor trafficking can lead to aberrant signaling and cell behavior. Here, using an endosomal BRET-based assay in a high-throughput screen with the prototypical GPCR angiotensin II type 1 receptor (AT1R), we sought to identify receptor trafficking inhibitors from a library of ~115,000 small molecules. We identified a novel dual Ras and ARF6 inhibitor, which we named Rasarfin, that blocks agonist-mediated internalization of AT1R and other GPCRs. Rasarfin also potently inhibits agonist-induced ERK1/2 signaling by GPCRs, and MAPK and Akt signaling by EGFR, as well as prevents cancer cell proliferation. In silico modeling and in vitro studies reveal a unique binding modality of Rasarfin within the SOS-binding domain of Ras. Our findings unveil a class of dual small G protein inhibitors for receptor trafficking and signaling, useful for the inhibition of oncogenic cellular responses. While Ras is a promising target for cancer therapy, development of inhibitors targeting Ras signaling has proven challenging. Here, the authors report the discovery of Rasarfin, a small molecule from a phenotypic screen on G protein-coupled receptor (GPCR) endocytosis that acts as a dual Ras and ARF6 inhibitor.
Collapse
Affiliation(s)
- Jenna Giubilaro
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada
| | - Doris A Schuetz
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Tomasz M Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu, Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,InterAx Biotech AG, Villigen, Switzerland
| | - Yoon Namkung
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Etienne Khoury
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Mónica Lara-Márquez
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Shirley Campbell
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Schrödinger, Inc., New York, NY, United States
| | - Sylvain Armando
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Olivier Radresa
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Nathalie Lamarche-Vane
- Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada
| | - Audrey Claing
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences of Pompeu, Fabra University (UPF)-Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC, Canada
| | - Stéphane A Laporte
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Research Institute of the McGill University Health Center (RI-MUHC), Montreal, QC, Canada. .,Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montréal, QC, Canada.
| |
Collapse
|
16
|
Batrouni AG, Baskin JM. The chemistry and biology of phosphatidylinositol 4-phosphate at the plasma membrane. Bioorg Med Chem 2021; 40:116190. [PMID: 33965837 DOI: 10.1016/j.bmc.2021.116190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Phosphoinositides are an important class of anionic, low abundance signaling lipids distributed throughout intracellular membranes. The plasma membrane contains three phosphoinositides: PI(4)P, PI(4,5)P2, and PI(3,4,5)P3. Of these, PI(4)P has remained the most mysterious, despite its characterization in this membrane more than a half-century ago. Fortunately, recent methodological innovations at the chemistry-biology interface have spurred a renaissance of interest in PI(4)P. Here, we describe these new toolsets and how they have revealed novel functions for the plasma membrane PI(4)P pool. We examine high-resolution structural characterization of the plasma membrane PI 4-kinase complex that produces PI(4)P, tools for modulating PI(4)P levels including isoform-selective PI 4-kinase inhibitors, and fluorescent probes for visualizing PI(4)P. Collectively, these chemical and biochemical approaches have revealed insights into how cells regulate synthesis of PI(4)P and its downstream metabolites as well as new roles for plasma membrane PI(4)P in non-vesicular lipid transport, membrane homeostasis and trafficking, and cell signaling pathways.
Collapse
Affiliation(s)
- Alex G Batrouni
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Tóth AD, Garger D, Prokop S, Soltész-Katona E, Várnai P, Balla A, Turu G, Hunyady L. A general method for quantifying ligand binding to unmodified receptors using Gaussia luciferase. J Biol Chem 2021; 296:100366. [PMID: 33545176 PMCID: PMC7950324 DOI: 10.1016/j.jbc.2021.100366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/23/2022] Open
Abstract
Reliable measurement of ligand binding to cell surface receptors is of outstanding biological and pharmacological importance. Resonance energy transfer-based assays are powerful approaches to achieve this goal, but the currently available methods are hindered by the necessity of receptor tagging, which can potentially alter ligand binding properties. Therefore, we developed a tag-free system to measure ligand‒receptor interactions in live cells using the Gaussia luciferase (GLuc) as a bioluminescence resonance energy transfer donor. GLuc is as small as the commonly applied Nanoluciferase but has enhanced brightness, and its proper substrate is the frequently used coelenterazine. In our assay, bystander bioluminescence resonance energy transfer is detected between a GLuc-based extracellular surface biosensor and fluorescent ligands bound to their unmodified receptors. The broad spectrum of applications includes equilibrium and kinetic ligand binding measurements for both labeled and competitive unlabeled ligands, and the assay can be utilized for different classes of plasma membrane receptors. Furthermore, the assay is suitable for high-throughput screening, as evidenced by the identification of novel α1 adrenergic receptor ligands. Our data demonstrate that GLuc-based biosensors provide a simple, sensitive, and cost-efficient platform for drug characterization and development.
Collapse
Affiliation(s)
- András Dávid Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary; Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Dániel Garger
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Susanne Prokop
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Soltész-Katona
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary.
| |
Collapse
|
18
|
Abstract
Lipids, like phosphoinositides, can be visualized in living cells in real time using genetically encoded biosensors and fluorescence microscopy. Sensor localization can be quantified by determining the fluorescence intensity of each fluorophore. Enrichment of lipids at membranes can be determined by generating and applying an organelle-specific binary mask. In this chapter, we provide a detailed list of reagents and methods to visualize and quantify relative lipid levels. Applying this approach, changes in lipid levels can be assessed in cases when lipid metabolizing enzymes are mutated or otherwise altered.
Collapse
Affiliation(s)
- Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Pacheco
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Balla T. Rushing to maintain plasma membrane phosphoinositide levels. J Gen Physiol 2020; 152:211537. [PMID: 33186443 PMCID: PMC7671492 DOI: 10.1085/jgp.202012793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New findings by Myeong et al. provide further details on how cells maintain their plasma membrane PI(4,5)P2 levels when stimulated via M1 muscarinic receptors
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
21
|
Pemberton JG, Kim YJ, Humpolickova J, Eisenreichova A, Sengupta N, Toth DJ, Boura E, Balla T. Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. J Cell Biol 2020; 219:133809. [PMID: 32211894 PMCID: PMC7054996 DOI: 10.1083/jcb.201906130] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/08/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
Phosphatidylinositol (PI) is an essential structural component of eukaryotic membranes that also serves as the common precursor for polyphosphoinositide (PPIn) lipids. Despite the recognized importance of PPIn species for signal transduction and membrane homeostasis, there is still a limited understanding of the relationship between PI availability and the turnover of subcellular PPIn pools. To address these shortcomings, we established a molecular toolbox for investigations of PI distribution within intact cells by exploiting the properties of a bacterial enzyme, PI-specific PLC (PI-PLC). Using these tools, we find a minor presence of PI in membranes of the ER, as well as a general enrichment within the cytosolic leaflets of the Golgi complex, peroxisomes, and outer mitochondrial membrane, but only detect very low steady-state levels of PI within the plasma membrane (PM) and endosomes. Kinetic studies also demonstrate the requirement for sustained PI supply from the ER for the maintenance of monophosphorylated PPIn species within the PM, Golgi complex, and endosomal compartments.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Eisenreichova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Nivedita Sengupta
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Daniel J Toth
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
22
|
Lengyel M, Czirják G, Jacobson DA, Enyedi P. TRESK and TREK-2 two-pore-domain potassium channel subunits form functional heterodimers in primary somatosensory neurons. J Biol Chem 2020; 295:12408-12425. [PMID: 32641496 DOI: 10.1074/jbc.ra120.014125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Indexed: 01/08/2023] Open
Abstract
Two-pore-domain potassium channels (K2P) are the major determinants of the background potassium conductance. They play a crucial role in setting the resting membrane potential and regulating cellular excitability. These channels form homodimers; however, a few examples of heterodimerization have also been reported. The K2P channel subunits TRESK and TREK-2 provide the predominant background potassium current in the primary sensory neurons of the dorsal root and trigeminal ganglia. A recent study has shown that a TRESK mutation causes migraine because it leads to the formation of a dominant negative truncated TRESK fragment. Surprisingly, this fragment can also interact with TREK-2. In this study, we determined the biophysical and pharmacological properties of the TRESK/TREK-2 heterodimer using a covalently linked TRESK/TREK-2 construct to ensure the assembly of the different subunits. The tandem channel has an intermediate single-channel conductance compared with the TRESK and TREK-2 homodimers. Similar conductance values were recorded when TRESK and TREK-2 were coexpressed, demonstrating that the two subunits can spontaneously form functional heterodimers. The TRESK component confers calcineurin-dependent regulation to the heterodimer and gives rise to a pharmacological profile similar to the TRESK homodimer, whereas the presence of the TREK-2 subunit renders the channel sensitive to the selective TREK-2 activator T2A3. In trigeminal primary sensory neurons, we detected single-channel activity with biophysical and pharmacological properties similar to the TRESK/TREK-2 tandem, indicating that WT TRESK and TREK-2 subunits coassemble to form functional heterodimeric channels also in native cells.
Collapse
Affiliation(s)
- Miklós Lengyel
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Czirják
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Péter Enyedi
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Gulyás G, Sohn M, Kim YJ, Várnai P, Balla T. ORP3 phosphorylation regulates phosphatidylinositol 4-phosphate and Ca 2+ dynamics at plasma membrane-ER contact sites. J Cell Sci 2020; 133:jcs.237388. [PMID: 32041906 DOI: 10.1242/jcs.237388] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Oxysterol-binding protein (OSBP)-related proteins (ORPs) mediate non-vesicular lipid transfer between intracellular membranes. Phosphoinositide (PI) gradients play important roles in the ability of OSBP and some ORPs to transfer cholesterol and phosphatidylserine between the endoplasmic reticulum (ER) and other organelle membranes. Here, we show that plasma membrane (PM) association of ORP3 (also known as OSBPL3), a poorly characterized ORP family member, is triggered by protein kinase C (PKC) activation, especially when combined with Ca2+ increases, and is determined by both PI(4,5)P 2 and PI4P After activation, ORP3 efficiently extracts PI4P and to a lesser extent phosphatidic acid from the PM, and slightly increases PM cholesterol levels. Full activation of ORP3 resulted in decreased PM PI4P levels and inhibited Ca2+ entry via the store-operated Ca2+ entry pathway. The C-terminal region of ORP3 that follows the strictly defined lipid transfer domain was found to be critical for the proper localization and function of the protein.
Collapse
Affiliation(s)
- Gergő Gulyás
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.,Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mira Sohn
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Omnus DJ, Cadou A, Thomas FB, Bader JM, Soh N, Chung GHC, Vaughan AN, Stefan CJ. A heat-sensitive Osh protein controls PI4P polarity. BMC Biol 2020; 18:28. [PMID: 32169085 PMCID: PMC7071650 DOI: 10.1186/s12915-020-0758-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/26/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Phosphoinositide lipids provide spatial landmarks during polarized cell growth and migration. Yet how phosphoinositide gradients are oriented in response to extracellular cues and environmental conditions is not well understood. Here, we elucidate an unexpected mode of phosphatidylinositol 4-phosphate (PI4P) regulation in the control of polarized secretion. RESULTS We show that PI4P is highly enriched at the plasma membrane of growing daughter cells in budding yeast where polarized secretion occurs. However, upon heat stress conditions that redirect secretory traffic, PI4P rapidly increases at the plasma membrane in mother cells resulting in a more uniform PI4P distribution. Precise control of PI4P distribution is mediated through the Osh (oxysterol-binding protein homology) proteins that bind and present PI4P to a phosphoinositide phosphatase. Interestingly, Osh3 undergoes a phase transition upon heat stress conditions, resulting in intracellular aggregates and reduced cortical localization. Both the Osh3 GOLD and ORD domains are sufficient to form heat stress-induced aggregates, indicating that Osh3 is highly tuned to heat stress conditions. Upon loss of Osh3 function, the polarized distribution of both PI4P and the exocyst component Exo70 are impaired. Thus, an intrinsically heat stress-sensitive PI4P regulatory protein controls the spatial distribution of phosphoinositide lipid metabolism to direct secretory trafficking as needed. CONCLUSIONS Our results suggest that control of PI4P metabolism by Osh proteins is a key determinant in the control of polarized growth and secretion.
Collapse
Affiliation(s)
- Deike J Omnus
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Present address: Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Angela Cadou
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Ffion B Thomas
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Jakob M Bader
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
- Present address: Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nathaniel Soh
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gary H C Chung
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Andrew N Vaughan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
25
|
Facchinetti F, Appetecchia M, Aragona C, Bevilacqua A, Bezerra Espinola MS, Bizzarri M, D'Anna R, Dewailly D, Diamanti-Kandarakis E, Hernández Marín I, Kamenov ZA, Kandaraki E, Laganà AS, Monastra G, Montanino Oliva M, Nestler JE, Orio F, Ozay AC, Papalou O, Pkhaladze L, Porcaro G, Prapas N, Soulage CO, Stringaro A, Wdowiak A, Unfer V. Experts' opinion on inositols in treating polycystic ovary syndrome and non-insulin dependent diabetes mellitus: a further help for human reproduction and beyond. Expert Opin Drug Metab Toxicol 2020; 16:255-274. [PMID: 32129111 DOI: 10.1080/17425255.2020.1737675] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/28/2020] [Indexed: 01/05/2023]
Abstract
Introduction: This Experts' opinion provides an updated scientific support to gynecologists, obstetricians, endocrinologists, nutritionists, neurologists and general practitioners on the use of Inositols in the therapy of Polycystic Ovary Syndrome (PCOS) and non-insulin dependent (type 2) diabetes mellitus (NIDDM).Areas covered: This paper summarizes the physiology of Myo-Inositol (MI) and D-Chiro-Inositol (DCI), two important molecules present in human organisms, and their therapeutic role, also for treating infertility. Some deep differences between the physiological functions of MI and DCI, as well as their safety and intestinal absorption are discussed. Updates include new evidence on the efficacy exerted in PCOS by the 40:1 MI/DCI ratio, and the innovative approach based on alpha-lactalbumin to overcome the decreased therapeutic efficacy of Inositols in some patients.Expert opinion: The evidence suggests that MI, alone or with DCI in the 40:1 ratio, offers a promising treatment for PCOS and NIDDM. However, additional studies need to evaluate some still unresolved issues, such as the best MI/DCI ratio for treating NIDDM, the potential cost-effectiveness of reduced gonadotropins administration in IVF due to MI treatment, or the benefit of MI supplementation in ovulation induction with clomiphene citrate in PCOS patients.
Collapse
Affiliation(s)
- Fabio Facchinetti
- Department of Obstetrics and Gynecology and Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Cesare Aragona
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosario D'Anna
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, Lille, France
- INSERM, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Lille, France
| | | | - Imelda Hernández Marín
- Human Reproduction Department, Hospital Juárez de México, México City Mexico
- Facultad de Medicina, Universidad Nacional Autónoma De México (UNAM), México City, México
| | - Zdravko A Kamenov
- Department of Internal Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Eleni Kandaraki
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy
| | - Giovanni Monastra
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - John E Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Francesco Orio
- Department of Endocrinology, "Parthenope" University of Naples, Italy
| | - Ali Cenk Ozay
- Faculty of Medicine, Department of Obstetrics and Gynecology, Near East University, Nicosia Cyprus
- Near East University, Research Center of Experimental Health Sciences, Nicosia, Cyprus
| | - Olga Papalou
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Lali Pkhaladze
- Department of Gynecological Endocrinology, Ioseb Zhordania Institute of Reproductology, Tbilisi, Georgia
| | | | - Nikos Prapas
- 3rd Department of OB-GYNAE, Aristotle University of Thessaloniki, Thessaloniki Greece
- IVF Laboratory, IAKENTRO Fertility Centre, Thessaloniki, Greece
| | | | - Annarita Stringaro
- National Center for Drug Research and Evaluation - Italian National Institute of Health, Rome, Italy
| | - Artur Wdowiak
- Diagnostic Techniques Unit, Medical University of Lublin, Poland
| | - Vittorio Unfer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Baba T, Toth DJ, Sengupta N, Kim YJ, Balla T. Phosphatidylinositol 4,5-bisphosphate controls Rab7 and PLEKHM1 membrane cycling during autophagosome-lysosome fusion. EMBO J 2019; 38:e100312. [PMID: 31368593 PMCID: PMC6463214 DOI: 10.15252/embj.2018100312] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/02/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
The small GTPase Rab7 is a key organizer of receptor sorting and lysosomal degradation by recruiting of a variety of effectors depending on its GDP/GTP-bound state. However, molecular mechanisms that trigger Rab7 inactivation remain elusive. Here we find that, among the endosomal pools, Rab7-positive compartments possess the highest level of PI4P, which is primarily produced by PI4K2A kinase. Acute conversion of this endosomal PI4P to PI(4,5)P2 causes Rab7 dissociation from late endosomes and releases a regulator of autophagosome-lysosome fusion, PLEKHM1, from the membrane. Rab7 effectors Vps35 and RILP are not affected by acute PI(4,5)P2 production. Deletion of PI4K2A greatly reduces PIP5Kγ-mediated PI(4,5)P2 production in Rab7-positive endosomes leading to impaired Rab7 inactivation and increased number of LC3-positive structures with defective autophagosome-lysosome fusion. These results reveal a late endosomal PI4P-PI(4,5)P2 -dependent regulatory loop that impacts autophagosome flux by affecting Rab7 cycling and PLEKHM1 association.
Collapse
Affiliation(s)
- Takashi Baba
- Section on Molecular Signal TransductionProgram for Developmental NeuroscienceEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Daniel J Toth
- Section on Molecular Signal TransductionProgram for Developmental NeuroscienceEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Nivedita Sengupta
- Section on Molecular Signal TransductionProgram for Developmental NeuroscienceEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Yeun Ju Kim
- Section on Molecular Signal TransductionProgram for Developmental NeuroscienceEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Tamas Balla
- Section on Molecular Signal TransductionProgram for Developmental NeuroscienceEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
27
|
Kankanamge D, Tennakoon M, Weerasinghe A, Cedeno-Rosario L, Chadee DN, Karunarathne A. G protein αq exerts expression level-dependent distinct signaling paradigms. Cell Signal 2019; 58:34-43. [PMID: 30849518 DOI: 10.1016/j.cellsig.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/16/2022]
Abstract
G protein αq-coupled receptors (Gq-GPCRs) primarily signal through GαqGTP mediated phospholipase Cβ (PLCβ) stimulation and the subsequent hydrolysis of phosphatidylinositol 4, 5 bisphosphate (PIP2). Though Gq-heterotrimer activation results in both GαqGTP and Gβγ, unlike Gi/o-receptors, it is unclear if Gq-coupled receptors employ Gβγ as a major signal transducer. Compared to Gi/o- and Gs-coupled receptors, we observed that most cell types exhibit a limited free Gβγ generation upon Gq-pathway and Gαq/11 heterotrimer activation. We show that cells transfected with Gαq or endogenously expressing more than average-levels of Gαq/11 compared to Gαs and Gαi exhibit a distinct signaling regime primarily characterized by recovery-resistant PIP2 hydrolysis. Interestingly, the elevated Gq-expression is also associated with enhanced free Gβγ generation and signaling. Furthermore, the gene GNAQ, which encodes for Gαq, has recently been identified as a cancer driver gene. We also show that GNAQ is overexpressed in tumor samples of patients with Kidney Chromophobe (KICH) and Kidney renal papillary (KIRP) cell carcinomas in a matched tumor-normal sample analysis, which demonstrates the clinical significance of Gαq expression. Overall, our data indicates that cells usually express low Gαq levels, likely safeguarding cells from excessive calcium as wells as from Gβγ signaling.
Collapse
Affiliation(s)
- Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Amila Weerasinghe
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Luis Cedeno-Rosario
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Deborah N Chadee
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
28
|
Sengupta N, Jović M, Barnaeva E, Kim DW, Hu X, Southall N, Dejmek M, Mejdrova I, Nencka R, Baumlova A, Chalupska D, Boura E, Ferrer M, Marugan J, Balla T. A large scale high-throughput screen identifies chemical inhibitors of phosphatidylinositol 4-kinase type II alpha. J Lipid Res 2019; 60:683-693. [PMID: 30626625 DOI: 10.1194/jlr.d090159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/08/2019] [Indexed: 12/24/2022] Open
Abstract
The minor phospholipid, phosphatidylinositol 4-phosphate (PI4P), is emerging as a key regulator of lipid transfer in ER-membrane contact sites. Four different phosphatidylinositol 4-kinase (PI4K) enzymes generate PI4P in different membrane compartments supporting distinct cellular processes, many of which are crucial for the maintenance of cellular integrity but also hijacked by intracellular pathogens. While type III PI4Ks have been targeted by small molecular inhibitors, thus helping decipher their importance in cellular physiology, no inhibitors are available for the type II PI4Ks, which hinders investigations into their cellular functions. Here, we describe the identification of small molecular inhibitors of PI4K type II alpha (PI4K2A) by implementing a large scale small molecule high-throughput screening. A novel assay was developed that allows testing of selected inhibitors against PI4K2A in intact cells using a bioluminescence resonance energy transfer approach adapted to plate readers. The compounds disclosed here will pave the way to the optimization of PI4K2A inhibitors that can be used in cellular and animal studies to better understand the role of this enzyme in both normal and pathological states.
Collapse
Affiliation(s)
- Nivedita Sengupta
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Marko Jović
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Elena Barnaeva
- Division of Preclinical Innovation National Center for Advancing Translational Sciences, Rockville, MD 20850
| | - David W Kim
- Division of Preclinical Innovation National Center for Advancing Translational Sciences, Rockville, MD 20850
| | - Xin Hu
- Division of Preclinical Innovation National Center for Advancing Translational Sciences, Rockville, MD 20850
| | - Noel Southall
- Division of Preclinical Innovation National Center for Advancing Translational Sciences, Rockville, MD 20850
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Ivana Mejdrova
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Adriana Baumlova
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic, 166 10 Prague 6, Czech Republic
| | - Marc Ferrer
- Division of Preclinical Innovation National Center for Advancing Translational Sciences, Rockville, MD 20850
| | - Juan Marugan
- Division of Preclinical Innovation National Center for Advancing Translational Sciences, Rockville, MD 20850
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
29
|
Tóth JT, Gulyás G, Hunyady L, Várnai P. Development of Nonspecific BRET-Based Biosensors to Monitor Plasma Membrane Inositol Lipids in Living Cells. Methods Mol Biol 2019; 1949:23-34. [PMID: 30790246 DOI: 10.1007/978-1-4939-9136-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
There are several difficulties to face when investigating the role of phosphoinositides. Although they are present in most organelles, their concentration is very low, sometimes undetectable with the available methods; moreover, their level can quickly change upon several external stimuli. Here we introduce a newly improved lipid sensor tool-set based on the balanced expression of luciferase-fused phosphoinositide recognizing protein domains and a Venus protein targeted to the plasma membrane, allowing us to perform Bioluminescence Resonance Energy Transfer (BRET) measurements that reflect phosphoinositide changes in a population of transiently transfected cells. This method is highly sensitive, specific, and capable of semiquantitative characterization of plasma membrane phosphoinositide changes with high temporal resolution.
Collapse
Affiliation(s)
- József T Tóth
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary.,Faculty of Medicine, Department of Anesthesiology and Intensive Therapy, Semmelweis University, Budapest, Hungary
| | - Gergő Gulyás
- Faculty of Medicine, Department of Physiology Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary.,MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary
| | - Péter Várnai
- Faculty of Medicine, Department of Physiology, Semmelweis University, Budapest, Hungary. .,MTA-SE Laboratory of Molecular Physiology, Budapest, Hungary.
| |
Collapse
|
30
|
Sohn M, Toth DJ, Balla T. Monitoring Non-vesicular Transport of Phosphatidylserine and Phosphatidylinositol 4-Phosphate in Intact Cells by BRET Analysis. Methods Mol Biol 2019; 1949:13-22. [PMID: 30790245 PMCID: PMC11103723 DOI: 10.1007/978-1-4939-9136-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Non-vesicular lipid transport via lipid transfer proteins (LTPs) at membrane contact sites (MCSs) is critical for the maintenance of the lipid composition of biological membranes. The ability to measure lipid transfer activity of diverse LTPs in live cells without interrupting the fine structural organization is essential to better understand the contribution of non-vesicular lipid transport to membrane organization. Here, we describe a semiquantitative method to analyze phosphatidylinositol 4-phosphate (PI4P) and phosphatidylserine (PS) changes at the plasma membrane (PM) as they relate to LTP functions. This live cell method is based on bioluminescence resonance energy transfer (BRET) measurements between a luciferase-tagged lipid-recognizing module and a PM-targeted fluorescent acceptor. Oxysterol-binding protein-related protein (ORP) 5 is a PI4P/PS lipid transfer protein which is stably tethered to the ER and also dynamically interacts with PM PI4P/PI(4,5)P2 via its pleckstrin homology (PH) domain. We show that this method is able to detect PI4P and PS changes in the PM upon acute recruitment of an ORP5 construct to the PM. This method is convenient and robust, utilizing population of cells in 96-well plates analyzed in a plate reader. We will also highlight potential further applications extending the method for other LTPs and other lipid cargoes.
Collapse
Affiliation(s)
- Mira Sohn
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Daniel J Toth
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Greenwald EC, Mehta S, Zhang J. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chem Rev 2018; 118:11707-11794. [PMID: 30550275 PMCID: PMC7462118 DOI: 10.1021/acs.chemrev.8b00333] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cellular signaling networks are the foundation which determines the fate and function of cells as they respond to various cues and stimuli. The discovery of fluorescent proteins over 25 years ago enabled the development of a diverse array of genetically encodable fluorescent biosensors that are capable of measuring the spatiotemporal dynamics of signal transduction pathways in live cells. In an effort to encapsulate the breadth over which fluorescent biosensors have expanded, we endeavored to assemble a comprehensive list of published engineered biosensors, and we discuss many of the molecular designs utilized in their development. Then, we review how the high temporal and spatial resolution afforded by fluorescent biosensors has aided our understanding of the spatiotemporal regulation of signaling networks at the cellular and subcellular level. Finally, we highlight some emerging areas of research in both biosensor design and applications that are on the forefront of biosensor development.
Collapse
Affiliation(s)
- Eric C Greenwald
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Sohum Mehta
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| | - Jin Zhang
- University of California , San Diego, 9500 Gilman Drive, BRFII , La Jolla , CA 92093-0702 , United States
| |
Collapse
|
32
|
Stefan CJ. Building ER-PM contacts: keeping calm and ready on alarm. Curr Opin Cell Biol 2018; 53:1-8. [DOI: 10.1016/j.ceb.2018.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 11/28/2022]
|
33
|
Chavent M, Karia D, Kalli AC, Domański J, Duncan AL, Hedger G, Stansfeld PJ, Seiradake E, Jones EY, Sansom MSP. Interactions of the EphA2 Kinase Domain with PIPs in Membranes: Implications for Receptor Function. Structure 2018; 26:1025-1034.e2. [PMID: 29887500 PMCID: PMC6039763 DOI: 10.1016/j.str.2018.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/15/2018] [Accepted: 05/08/2018] [Indexed: 11/29/2022]
Abstract
EphA2 is a member of the receptor tyrosine kinase family. Interactions of the cytoplasmic region of EphA2 with the cell membrane are functionally important and yet remain incompletely characterized. Molecular dynamics simulations combined with biochemical studies reveal the interactions of the transmembrane, juxtamembrane (JM), and kinase domains with the membrane. We describe how the kinase domain is oriented relative to the membrane and how the JM region can modulate this interaction. We highlight the role of phosphatidylinositol phosphates (PIPs) in mediating the interaction of the kinase domain with the membrane and, conversely, how positively charged patches at the kinase surface and in the JM region induce the formation of nanoclusters of PIP molecules in the membrane. Integration of these results with those from previous studies enable computational reconstitution of a near complete EphA2 receptor within a membrane, suggesting a role for receptor-lipid interactions in modulation of EphA2.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Institut de Pharmacologie et de Biologie Structurale IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Antreas C Kalli
- Leeds Institute of Cancer and Pathology, St James's University Hospital, University of Leeds, Leeds, UK
| | - Jan Domański
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - George Hedger
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
34
|
Sohn M, Korzeniowski M, Zewe JP, Wills RC, Hammond GRV, Humpolickova J, Vrzal L, Chalupska D, Veverka V, Fairn GD, Boura E, Balla T. PI(4,5)P 2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites. J Cell Biol 2018; 217:1797-1813. [PMID: 29472386 PMCID: PMC5940310 DOI: 10.1083/jcb.201710095] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 11/22/2022] Open
Abstract
Sohn et al. show that plasma membrane PI(4,5)P2 controls the level of its precursor, PI4P, by regulating PI4P/PS exchange activity of ORP5/8. This control is achieved via regulation of ORP5/8 interaction with the plasma membrane by both of these phosphoinositides. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a critically important regulatory lipid of the plasma membrane (PM); however, little is known about how cells regulate PM PI(4,5)P2 levels. Here, we show that the phosphatidylinositol 4-phosphate (PI4P)/phosphatidylserine (PS) transfer activity of the endoplasmic reticulum (ER)–resident ORP5 and ORP8 is regulated by both PM PI4P and PI(4,5)P2. Dynamic control of ORP5/8 recruitment to the PM occurs through interactions with the N-terminal Pleckstrin homology domains and adjacent basic residues of ORP5/8 with both PI4P and PI(4,5)P2. Although ORP5 activity requires normal levels of these inositides, ORP8 is called on only when PI(4,5)P2 levels are increased. Regulation of the ORP5/8 attachment to the PM by both phosphoinositides provides a powerful means to determine the relative flux of PI4P toward the ER for PS transport and Sac1-mediated dephosphorylation and PIP 5-kinase–mediated conversion to PI(4,5)P2. Using this rheostat, cells can maintain PI(4,5)P2 levels by adjusting the availability of PI4P in the PM.
Collapse
Affiliation(s)
- Mira Sohn
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Marek Korzeniowski
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - James P Zewe
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jana Humpolickova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lukas Vrzal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
35
|
Choy CH, Han BK, Botelho RJ. Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box. Bioessays 2017; 39. [PMID: 28977683 DOI: 10.1002/bies.201700121] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Indexed: 12/26/2022]
Abstract
Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.
Collapse
Affiliation(s)
- Christopher H Choy
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| | - Bong-Kwan Han
- The Intelligent Synthetic Biology Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Roberto J Botelho
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada M5B2K3.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada M5B2K3
| |
Collapse
|
36
|
Gulyás G, Radvánszki G, Matuska R, Balla A, Hunyady L, Balla T, Várnai P. Plasma membrane phosphatidylinositol 4-phosphate and 4,5-bisphosphate determine the distribution and function of K-Ras4B but not H-Ras proteins. J Biol Chem 2017; 292:18862-18877. [PMID: 28939768 DOI: 10.1074/jbc.m117.806679] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/11/2017] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane (PM) localization of Ras proteins is crucial for transmitting signals upon mitogen stimulation. Post-translational lipid modification of Ras proteins plays an important role in their recruitment to the PM. Electrostatic interactions between negatively charged PM phospholipids and basic amino acids found in K-Ras4B (K-Ras) but not in H-Ras are important for permanent K-Ras localization to the PM. Here, we investigated how acute depletion of negatively charged PM polyphosphoinositides (PPIns) from the PM alters the intracellular distribution and activity of K- and H-Ras proteins. PPIns depletion from the PM was achieved either by agonist-induced activation of phospholipase C β or with a rapamycin-inducible system in which various phosphatidylinositol phosphatases were recruited to the PM. Redistribution of the two Ras proteins was monitored with confocal microscopy or with a recently developed bioluminescence resonance energy transfer-based approach involving fusion of the Ras C-terminal targeting sequences or the entire Ras proteins to Venus fluorescent protein. We found that PM PPIns depletion caused rapid translocation of K-Ras but not H-Ras from the PM to the Golgi. PM depletion of either phosphatidylinositol 4-phosphate (PtdIns4P) or PtdIns(4,5)P2 but not PtdIns(3,4,5)P3 was sufficient to evoke K-Ras translocation. This effect was diminished by deltarasin, an inhibitor of the Ras-phosphodiesterase interaction, or by simultaneous depletion of the Golgi PtdIns4P. The PPIns depletion decreased incorporation of [3H]leucine in K-Ras-expressing cells, suggesting that Golgi-localized K-Ras is not as signaling-competent as its PM-bound form. We conclude that PPIns in the PM are important regulators of K-Ras-mediated signals.
Collapse
Affiliation(s)
- Gergő Gulyás
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Glória Radvánszki
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Rita Matuska
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - András Balla
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary.,MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest 1094, Hungary, and
| | - László Hunyady
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary.,MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest 1094, Hungary, and
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Péter Várnai
- From the Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary,
| |
Collapse
|
37
|
Topological organisation of the phosphatidylinositol 4,5-bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM gap. Biochem J 2017; 473:4289-4310. [PMID: 27888240 DOI: 10.1042/bcj20160514c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/13/2022]
Abstract
Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane-associated diacylglycerol (DG) and the consumption of PM PI(4,5)P2 Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid. The biochemical intermediates of this cycle and the enzymes that mediate these reactions are topologically distributed across two membrane compartments, the PM and the endoplasmic reticulum (ER). At the PM, the DG formed during PLC activation is rapidly converted into phosphatidic acid (PA) that needs to be transported to the ER where the machinery for its conversion into PI is localised. Conversely, PI from the ER needs to be rapidly transferred to the PM where it can be phosphorylated by lipid kinases to regenerate PI(4,5)P2 Thus, two lipid transport steps between membrane compartments through the cytosol are required for the replenishment of PI(4,5)P2 at the PM. Here, we review the topological constraints in the PI(4,5)P2 cycle and current understanding how these constraints are overcome during PLC signalling. In particular, we discuss the role of lipid transfer proteins in this process. Recent findings on the biochemical properties of a membrane-associated lipid transfer protein of the PITP family, PITPNM proteins (alternative name RdgBα/Nir proteins) that localise to membrane contact sites are discussed. Studies in both Drosophila and mammalian cells converge to provide a resolution to the conundrum of reciprocal transfer of PA and PI during PLC signalling.
Collapse
|
38
|
Tóth AD, Gyombolai P, Szalai B, Várnai P, Turu G, Hunyady L. Angiotensin type 1A receptor regulates β-arrestin binding of the β 2-adrenergic receptor via heterodimerization. Mol Cell Endocrinol 2017; 442:113-124. [PMID: 27908837 DOI: 10.1016/j.mce.2016.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 11/26/2016] [Indexed: 02/06/2023]
Abstract
Heterodimerization between angiotensin type 1A receptor (AT1R) and β2-adrenergic receptor (β2AR) has been shown to modulate G protein-mediated effects of these receptors. Activation of G protein-coupled receptors (GPCRs) leads to β-arrestin binding, desensitization, internalization and G protein-independent signaling of GPCRs. Our aim was to study the effect of heterodimerization on β-arrestin coupling. We found that β-arrestin binding of β2AR is affected by activation of AT1Rs. Costimulation with angiotensin II and isoproterenol markedly enhanced the interaction between β2AR and β-arrestins, by prolonging the lifespan of β2AR-induced β-arrestin2 clusters at the plasma membrane. While candesartan, a conventional AT1R antagonist, had no effect on the β-arrestin2 binding to β2AR, TRV120023, a β-arrestin biased agonist, enhanced the interaction. These findings reveal a new crosstalk mechanism between AT1R and β2AR, and suggest that enhanced β-arrestin2 binding to β2AR can contribute to the pharmacological effects of biased AT1R agonists.
Collapse
Affiliation(s)
- András D Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary
| | - Pál Gyombolai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
39
|
Várnai P, Gulyás G, Tóth DJ, Sohn M, Sengupta N, Balla T. Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium 2016; 64:72-82. [PMID: 28088320 DOI: 10.1016/j.ceca.2016.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022]
Abstract
One of the largest challenges in cell biology is to map the lipid composition of the membranes of various organelles and define the exact location of processes that control the synthesis and distribution of lipids between cellular compartments. The critical role of phosphoinositides, low-abundant lipids with rapid metabolism and exceptional regulatory importance in the control of almost all aspects of cellular functions created the need for tools to visualize their localizations and dynamics at the single cell level. However, there is also an increasing need for methods to determine the cellular distribution of other lipids regulatory or structural, such as diacylglycerol, phosphatidic acid, or other phospholipids and cholesterol. This review will summarize recent advances in this research field focusing on the means by which changes can be described in more quantitative terms.
Collapse
Affiliation(s)
- Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergő Gulyás
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel J Tóth
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States; Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mira Sohn
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Nivedita Sengupta
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
40
|
Mondal S, Rakshit A, Pal S, Datta A. Cell Permeable Ratiometric Fluorescent Sensors for Imaging Phosphoinositides. ACS Chem Biol 2016; 11:1834-43. [PMID: 27082310 DOI: 10.1021/acschembio.6b00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Phosphoinositides are critical cell-signal mediators present on the plasma membrane. The dynamic change of phosphoinositide concentrations on the membrane including clustering and declustering mediates signal transduction. The importance of phosphoinositides is scored by the fact that they participate in almost all cell-signaling events, and a defect in phosphoinositide metabolism is linked to multiple diseases including cancer, bipolar disorder, and type-2 diabetes. Optical sensors for visualizing phosphoinositide distribution can provide information on phosphoinositide dynamics. This exercise will ultimately afford a handle into understanding and manipulating cell-signaling processes. The major requirement in phosphoinositide sensor development is a selective, cell permeable probe that can quantify phosphoinositides. To address this requirement, we have developed short peptide-based ratiometric fluorescent sensors for imaging phosphoinositides. The sensors afford a selective response toward two crucial signaling phosphoinositides, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol-4-phosphate (PI4P), over other anionic membrane phospholipids and soluble inositol phosphates. Dissociation constant values indicate up to 4 times higher probe affinity toward PI(4,5)P2 when compared to PI4P. Significantly, the sensors are readily cell-permeable and enter cells within 15 min of incubation as indicated by multiphoton excitation confocal microscopy. Furthermore, the sensors light up signaling phosphoinositides present both on the cell membrane and on organelle membranes near the perinuclear space, opening avenues for quantifying and monitoring phosphoinositide signaling.
Collapse
Affiliation(s)
- Samsuzzoha Mondal
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Ananya Rakshit
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Suranjana Pal
- Department
of Biological Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| | - Ankona Datta
- Department
of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai-400005, India
| |
Collapse
|
41
|
Lengyel M, Czirják G, Enyedi P. Formation of Functional Heterodimers by TREK-1 and TREK-2 Two-pore Domain Potassium Channel Subunits. J Biol Chem 2016; 291:13649-61. [PMID: 27129242 DOI: 10.1074/jbc.m116.719039] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 11/06/2022] Open
Abstract
Two-pore domain (K2P) potassium channels are the major molecular correlates of the background (leak) K(+) current in a wide variety of cell types. They generally play a key role in setting the resting membrane potential and regulate the response of excitable cells to various stimuli. K2P channels usually function as homodimers, and only a few examples of heteromerization have been previously reported. Expression of the TREK (TWIK-related K(+) channel) subfamily members of K2P channels often overlaps in neurons and in other excitable cells. Here, we demonstrate that heterologous coexpression of TREK-1 and TREK-2 subunits results in the formation of functional heterodimers. Taking advantage of a tandem construct (in which the two different subunits were linked together to enforce heterodimerization), we characterized the biophysical and pharmacological properties of the TREK-1/TREK-2 current. The heteromer was inhibited by extracellular acidification and by spadin similarly to TREK-1, and its ruthenium red sensitivity was intermediate between TREK-1 and TREK-2 homodimers. The heterodimer has also been distinguished from the homodimers by its unique single channel conductance. Assembly of the two different subunits was confirmed by coimmunoprecipitation of epitope-tagged TREK-1 and TREK-2 subunits, coexpressed in Xenopus oocytes. Formation of TREK-1/TREK-2 channels was also demonstrated in native dorsal root ganglion neurons indicating that heterodimerization may provide greater diversity of leak K(+) conductances also in native tissues.
Collapse
Affiliation(s)
- Miklós Lengyel
- From the Department of Physiology, Semmelweis University, H-1428 Budapest, Hungary
| | - Gábor Czirják
- From the Department of Physiology, Semmelweis University, H-1428 Budapest, Hungary
| | - Péter Enyedi
- From the Department of Physiology, Semmelweis University, H-1428 Budapest, Hungary
| |
Collapse
|
42
|
Lenz-Majewski mutations in PTDSS1 affect phosphatidylinositol 4-phosphate metabolism at ER-PM and ER-Golgi junctions. Proc Natl Acad Sci U S A 2016; 113:4314-9. [PMID: 27044099 DOI: 10.1073/pnas.1525719113] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lenz-Majewski syndrome (LMS) is a rare disease characterized by complex craniofacial, dental, cutaneous, and limb abnormalities combined with intellectual disability. Mutations in thePTDSS1gene coding one of the phosphatidylserine (PS) synthase enzymes, PSS1, were described as causative in LMS patients. Such mutations render PSS1 insensitive to feedback inhibition by PS levels. Here we show that expression of mutant PSS1 enzymes decreased phosphatidylinositol 4-phosphate (PI4P) levels both in the Golgi and the plasma membrane (PM) by activating the Sac1 phosphatase and altered PI4P cycling at the PM. Conversely, inhibitors of PI4KA, the enzyme that makes PI4P in the PM, blocked PS synthesis and reduced PS levels by 50% in normal cells. However, mutant PSS1 enzymes alleviated the PI4P dependence of PS synthesis. Oxysterol-binding protein-related protein 8, which was recently identified as a PI4P-PS exchanger between the ER and PM, showed PI4P-dependent membrane association that was significantly decreased by expression of PSS1 mutant enzymes. Our studies reveal that PS synthesis is tightly coupled to PI4P-dependent PS transport from the ER. Consequently, PSS1 mutations not only affect cellular PS levels and distribution but also lead to a more complex imbalance in lipid homeostasis by disturbing PI4P metabolism.
Collapse
|