1
|
Xu Y, Su T, Mishra H, Ando R, Furutani Y, Lu J, Cai M, Suzuki H, Yu W, Qin XY. Corn Oligopeptide Alleviates Nonalcoholic Fatty Liver Disease by Regulating the Sirtuin Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6360-6371. [PMID: 38489847 DOI: 10.1021/acs.jafc.3c09058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents the most prevalent type of chronic liver disease, spanning from simple steatosis to nonalcoholic steatohepatitis (NASH). Corn oligopeptide (CP) is a functional peptide known for its diverse pharmacological effects on metabolism. In this study, we evaluated the protective activity of CP against fatty liver disease. Oral administration of CP significantly reduced body weight gain by 2.95%, serum cholesterol by 22.54%, and liver injury, as evidenced by a reduction of 32.19% in serum aspartate aminotransferase (AST) and 49.10% in alanine aminotransferase (ALT) levels in mice subjected to a high-fat diet (HFD). In a streptozotocin/HFD-induced NASH mouse model, CP attenuated body weight gain by 5.11%, liver injury (with a 34.15% decrease in AST and 11.43% decrease in ALT), and, to some extent, liver inflammation and fibrosis. Proteomic analysis revealed the modulation of oxidative phosphorylation and sirtuin (SIRT) signaling pathways by CP. Remarkably, CP selectively inhibited the hepatic expression of mitochondrial SIRT3 and SIRT5 in both HFD and NASH models. In summary, CP demonstrates a preventive effect against metabolic-stress-induced NAFLD progression by modulating oxidative stress and the SIRT signaling pathway, suggesting the potential of CP as a therapeutic agent for the treatment of NAFLD and advanced-stage NASH.
Collapse
Affiliation(s)
- Yali Xu
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama 2300045, Japan
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ting Su
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Hricha Mishra
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama 2300045, Japan
| | - Reiko Ando
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako 3510106, Japan
| | - Yutaka Furutani
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo 1058461, Japan
| | - Jun Lu
- China National Research Institute of Food and Fermentation Industries, Beijing 100016, China
| | - Muyi Cai
- China National Research Institute of Food and Fermentation Industries, Beijing 100016, China
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama 2300045, Japan
| | - Wenkui Yu
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama 2300045, Japan
| |
Collapse
|
2
|
Daiber A, Frenis K, Kuntic M, Li H, Wolf E, Kilgallen AB, Lecour S, Van Laake LW, Schulz R, Hahad O, Münzel T. Redox Regulatory Changes of Circadian Rhythm by the Environmental Risk Factors Traffic Noise and Air Pollution. Antioxid Redox Signal 2022; 37:679-703. [PMID: 35088601 PMCID: PMC9618394 DOI: 10.1089/ars.2021.0272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022]
Abstract
Significance: Risk factors in the environment such as air pollution and traffic noise contribute to the development of chronic noncommunicable diseases. Recent Advances: Epidemiological data suggest that air pollution and traffic noise are associated with a higher risk for cardiovascular, metabolic, and mental disease, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, neurodegeneration, depression, and anxiety disorders, mainly by activation of stress hormone signaling, inflammation, and oxidative stress. Critical Issues: We here provide an in-depth review on the impact of the environmental risk factors air pollution and traffic noise exposure (components of the external exposome) on cardiovascular health, with special emphasis on the role of environmentally triggered oxidative stress and dysregulation of the circadian clock. Also, a general introduction on the contribution of circadian rhythms to cardiovascular health and disease as well as a detailed mechanistic discussion of redox regulatory pathways of the circadian clock system is provided. Future Directions: Finally, we discuss the potential of preventive strategies or "chrono" therapy for cardioprotection. Antioxid. Redox Signal. 37, 679-703.
Collapse
Affiliation(s)
- Andreas Daiber
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Katie Frenis
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marin Kuntic
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Aoife B. Kilgallen
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Linda W. Van Laake
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Omar Hahad
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
3
|
Choi W, Kim J, Ko JW, Choi A, Kwon YH. Effects of maternal branched-chain amino acid and alanine supplementation on growth and biomarkers of protein metabolism in dams fed a low-protein diet and their offspring. Amino Acids 2022; 54:977-988. [PMID: 35353249 DOI: 10.1007/s00726-022-03157-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/13/2022] [Indexed: 11/24/2022]
Abstract
A considerable number of studies have reported that maternal protein restriction may disturb fetal growth and organ development due to a lower availability of amino acids. Leucine, one of branched-chain amino acid (BCAA) promotes protein synthesis through mechanistic target of rapamycin signaling. Here, we investigated the effects of BCAA supplementation in the dams fed a low-protein diet on serum and hepatic biochemical parameters of protein metabolism of dams and their offspring. Female ICR mice were fed a control (20% casein), a low-protein (10% casein), a low-protein with 2% BCAAs or a low-protein with 2% alanine diet for 2 weeks before mating and then throughout pregnancy and lactation. Alanine was used as an amino nitrogen control for the BCAA. Dams and their male offspring were sacrificed at postnatal day 21. There were no changes in body weight and fat mass in low-protein fed dams; however, BCAA supplementation significantly increased fat mass and serum leptin levels. Low-protein diet consumption reduced maternal protein synthesis based on biochemical analysis of serum albumin and hepatic protein levels and immunoblotting of S6 protein, which were increased by BCAA and alanine supplementation. Offspring from dams fed a low-protein diet exhibited lower body and organ weights. Body weight and hepatic protein levels of the offspring were increased by alanine supplementation. However, the decreased serum biochemical parameters, including glucose, triglyceride, total protein and albumin levels in the low-protein offspring group were not changed in response to BCAA or alanine supplementation. A reduced density of the hepatic vessel system in the offspring from dams fed a low-protein diet was restored in the offspring from dams fed either BCAA and alanine-supplemented diet. These results suggest that supplementation of amino nitrogen per se may be responsible for inducing hepatic protein synthesis in the dams fed a low-protein diet and alleviating the distorted growth and liver development of their offspring.
Collapse
Affiliation(s)
- Wooseon Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.,Department of Pharmacology, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Juhae Kim
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Je Won Ko
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Alee Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. .,Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
4
|
Oxidative Stress Profile of Mothers and Their Offspring after Maternal Consumption of High-Fat Diet in Rodents: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9073859. [PMID: 34868458 PMCID: PMC8636978 DOI: 10.1155/2021/9073859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
Maternal exposure to the high-fat diet (HFD) during gestation or lactation can be harmful to both a mother and offspring. The aim of this systematic review was to identify and evaluate the studies with animal models (rodents) that were exposed to the high-fat diet during pregnancy and/or lactation period to investigate oxidative stress and lipid and liver enzyme profile of mothers and their offspring. The electronic search was performed in the PUBMED (Public/Publisher MEDLINE), EMBASE (Ovid), and Web of Science databases. Data from 77 studies were included for qualitative analysis, and of these, 13 studies were included for meta-analysis by using a random effects model. The pooled analysis revealed higher malondialdehyde levels in offspring of high-fat diet groups. Furthermore, the pooled analysis showed increased reactive oxygen species and lower superoxide dismutase and catalase in offspring of mothers exposed to high-fat diet during pregnancy and/or lactation. Despite significant heterogeneity, the systematic review shows oxidative stress in offspring induced by maternal HFD.
Collapse
|
5
|
Cox LA, Chan J, Rao P, Hamid Z, Glenn JP, Jadhav A, Das V, Karere GM, Quillen E, Kavanagh K, Olivier M. Integrated omics analysis reveals sirtuin signaling is central to hepatic response to a high fructose diet. BMC Genomics 2021; 22:870. [PMID: 34861817 PMCID: PMC8641221 DOI: 10.1186/s12864-021-08166-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dietary high fructose (HFr) is a known metabolic disruptor contributing to development of obesity and diabetes in Western societies. Initial molecular changes from exposure to HFr on liver metabolism may be essential to understand the perturbations leading to insulin resistance and abnormalities in lipid and carbohydrate metabolism. We studied vervet monkeys (Clorocebus aethiops sabaeus) fed a HFr (n=5) or chow diet (n=5) for 6 weeks, and obtained clinical measures of liver function, blood insulin, cholesterol and triglycerides. In addition, we performed untargeted global transcriptomics, proteomics, and metabolomics analyses on liver biopsies to determine the molecular impact of a HFr diet on coordinated pathways and networks that differed by diet. RESULTS We show that integration of omics data sets improved statistical significance for some pathways and networks, and decreased significance for others, suggesting that multiple omics datasets enhance confidence in relevant pathway and network identification. Specifically, we found that sirtuin signaling and a peroxisome proliferator activated receptor alpha (PPARA) regulatory network were significantly altered in hepatic response to HFr. Integration of metabolomics and miRNAs data further strengthened our findings. CONCLUSIONS Our integrated analysis of three types of omics data with pathway and regulatory network analysis demonstrates the usefulness of this approach for discovery of molecular networks central to a biological response. In addition, metabolites aspartic acid and docosahexaenoic acid (DHA), protein ATG3, and genes ATG7, and HMGCS2 link sirtuin signaling and the PPARA network suggesting molecular mechanisms for altered hepatic gluconeogenesis from consumption of a HFr diet.
Collapse
Affiliation(s)
- Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA.
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA.
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA.
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, 27157, Winston-Salem, NC, USA.
| | - Jeannie Chan
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Prahlad Rao
- University of Tennessee Health Science Center, TN, Memphis, USA
| | - Zeeshan Hamid
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
| | - Jeremy P Glenn
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Avinash Jadhav
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Vivek Das
- Novo Nordisk Research Center, Seattle, WA, USA
| | - Genesio M Karere
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Ellen Quillen
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| | - Kylie Kavanagh
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, 27157, Winston-Salem, NC, USA
| | - Michael Olivier
- Center for Precision Medicine, Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, NRC, G-floor, NC, 27157, Winston-Salem, USA
- Department of Genetics, Texas Biomedical Research Institute, 78245, San Antonio, TX, USA
| |
Collapse
|
6
|
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is a group of diseases related to metabolic abnormalities, which severely impairs the life and health of patients, and brings great pressure to the society and medical resources. Currently, there is no specific treatment. Histone deacetylases (HDACs) have recently been reported to be involved in the pathogenesis of NAFLD and are considered as new targets for the treatment of NAFLD.Area covered: In this review, we summarized the role of HDACs in the pathogenesis of NAFLD and proposed possible therapeutic targets in order to provide new strategies for the treatment of NAFLD.Expert commentary: HDACs and related signal pathways are widely involved in the pathogenesis of NAFLD and have the potential to become therapeutic targets. However, based on current research alone, HDACs cannot be practical applied to the treatment of NAFLD. Therefore, more research on the pathogenesis of NAFLD and the mechanism of HDACs is what we need most now.
Collapse
Affiliation(s)
- Shifeng Fu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China.,Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Meihong Yu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China.,Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Yuyong Tan
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China.,Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Dengliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China.,Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| |
Collapse
|
7
|
Nassir F. Role of acetylation in nonalcoholic fatty liver disease: a focus on SIRT1 and SIRT3. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent liver chronic disease worldwide. The pathogenesis of NAFLD is complex and involves many metabolic enzymes and multiple pathways. Posttranslational modifications of proteins (PMPs) added another layer of complexity to the pathogenesis of NAFLD. PMPs change protein properties and regulate many biological functions, including cellular localization, stability, intracellular signaling, and protein function. Lysine acetylation is a common reversible PMP that consists of the transfer of an acetyl group from acetyl-coenzyme A (CoA) to a lysine residue on targeted proteins. The deacetylation reaction is catalyzed by deacetylases called sirtuins. This review summarizes the role of acetylation in NAFLD with a focus on sirtuins 1 and 3.
Collapse
Affiliation(s)
- Fatiha Nassir
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
8
|
Liu CW, Huang CC, Hsu CF, Li TH, Tsai YL, Lin MW, Tsai HC, Huang SF, Yang YY, Hsieh YC, Lee TY, Tsai CY, Huang YH, Hou MC, Lin HC. SIRT1-dependent mechanisms and effects of resveratrol for amelioration of muscle wasting in NASH mice. BMJ Open Gastroenterol 2020; 7:bmjgast-2020-000381. [PMID: 32371503 PMCID: PMC7228468 DOI: 10.1136/bmjgast-2020-000381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
Background In non-alcoholic steatohepatitis (NASH), muscle wasting was an aggravating factor for the progression of hepatic steatosis. This study explores the potential benefits of chronic treatment with resveratrol, a strong activator of SIRT1 on the muscle wasting of NASH mice. Methods In vivo and in vitro study, we evaluate the SIRT1-dependent mechanisms and effects of resveratrol administration for 6 weeks with high-fat-methionine and choline deficient diet-induced NASH mice and palmitate-pretreated C2C12 myoblast cells. Results Resveratrol treatment improved grip strength and muscle mass of limbs, increased running distance and time on exercise wheels in NASH mice. There is a negative correlation between muscular SIRT1 activity and 3-nitrotyrosine levels of NASH and NASH-resv mice. The SIRT1-dependent effect of muscle wasting was associated with the suppression of oxidative stress, upregulation of antioxidants, inhibition of protein degradation, activation of autophagy, suppression of apoptotic activity, upregulation of lipolytic genes and the reduction of fatty infiltration in limb muscles of NASH mice. In vitro, resveratrol alleviated palmitate acid-induced oxidative stress, lipid deposition, autophagy dysfunction, apoptotic signals, and subsequently reduced fusion index and myotube formation of C2C12 cells. The beneficial effects of resveratrol were abolished by EX527. Conclusions Our study suggests that chronic resveratrol treatment is a potential strategy for amelioration of hepatic steatosis and muscle wasting in NASH mouse model.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Division of Allergy, Immunology and Rheumatology, Taipei, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan
| | - Chia-Chang Huang
- Institute of Clinical Medicine, Taipei, Taiwan.,Division of Clinical Skills Center, Department of Medical Education, Taipei Veterans General Hospital, Taoyuan, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chien-Fu Hsu
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Hao Li
- Institute of Clinical Medicine, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Lien Tsai
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Lin
- Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Cheng Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shiang-Fen Huang
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Infection Disease, Taipei, Taiwan
| | - Ying-Ying Yang
- Institute of Clinical Medicine, Taipei, Taiwan .,Division of Clinical Skills Center, Department of Medical Education, Taipei Veterans General Hospital, Taoyuan, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Institute of Clinical Medicine, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei, Taiwan
| | - Ming-Chih Hou
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei, Taiwan
| | - Han-Chieh Lin
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei, Taiwan
| |
Collapse
|
9
|
Li H, Kilgallen AB, Münzel T, Wolf E, Lecour S, Schulz R, Daiber A, Van Laake LW. Influence of mental stress and environmental toxins on circadian clocks: Implications for redox regulation of the heart and cardioprotection. Br J Pharmacol 2020; 177:5393-5412. [PMID: 31833063 PMCID: PMC7680009 DOI: 10.1111/bph.14949] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Risk factors in the environment such as air pollution and mental stress contribute to the development of chronic non-communicable disease. Air pollution was identified as the leading health risk factor in the physical environment, followed by water pollution, soil pollution/heavy metals/chemicals and occupational exposures, however neglecting the non-chemical environmental health risk factors (e.g. mental stress and noise). Epidemiological data suggest that environmental risk factors are associated with higher risk for cardiovascular, metabolic and mental diseases, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, depression and anxiety disorders. We provide an overview on the impact of the external exposome comprising risk factors/exposures on cardiovascular health with a focus on dysregulation of stress hormones, mitochondrial function, redox balance and inflammation with special emphasis on the circadian clock. Finally, we assess the impact of circadian clock dysregulation on cardiovascular health and the potential of environment-specific preventive strategies or "chrono" therapy for cardioprotection. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Aoife B Kilgallen
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| | - Thomas Münzel
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany.,Structural Chronobiology, Institute of Molecular Biology, Mainz, Germany
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Linda W Van Laake
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Cleal JK, Bruce KD, Shearer JL, Thomas H, Plume J, Gregory L, Shepard JN, Spiers-Fitzgerald KL, Mani R, Lewis RM, Lillycrop KA, Hanson MA, Byrne CD, Cagampang FR. Maternal Obesity during Pregnancy Alters Daily Activity and Feeding Cycles, and Hypothalamic Clock Gene Expression in Adult Male Mouse Offspring. Int J Mol Sci 2019; 20:E5408. [PMID: 31671625 PMCID: PMC6862679 DOI: 10.3390/ijms20215408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/12/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
An obesogenic diet adversely affects the endogenous mammalian circadian clock, altering daily activity and metabolism, and resulting in obesity. We investigated whether an obese pregnancy can alter the molecular clock in the offspring hypothalamus, resulting in changes to their activity and feeding rhythms. Female mice were fed a control (C, 7% kcal fat) or high fat diet (HF, 45% kcal fat) before mating and throughout pregnancy. Male offspring were fed the C or HF diet postweaning, resulting in four offspring groups: C/C, C/HF, HF/C, and HF/HF. Daily activity and food intake were monitored, and at 15 weeks of age were killed at six time-points over 24 h. The clock genes Clock, Bmal1, Per2, and Cry2 in the suprachiasmatic nucleus (SCN) and appetite genes Npy and Pomc in the arcuate nucleus (ARC) were measured. Daily activity and feeding cycles in the HF/C, C/HF, and HF/HF offspring were altered, with increased feeding bouts and activity during the day and increased food intake but reduced activity at night. Gene expression patterns and levels of Clock, Bmal1, Per2, and Cry2 in the SCN and Npy and Pomc in the ARC were altered in HF diet-exposed offspring. The altered expression of hypothalamic molecular clock components and appetite genes, together with changes in activity and feeding rhythms, could be contributing to offspring obesity.
Collapse
Affiliation(s)
- Jane K Cleal
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Kimberley D Bruce
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Jasmin L Shearer
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Hugh Thomas
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Jack Plume
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Louise Gregory
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - James N Shepard
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Kerry L Spiers-Fitzgerald
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Ravi Mani
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Rohan M Lewis
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Karen A Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Mark A Hanson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Christopher D Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| | - Felino R Cagampang
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
11
|
Simões-Alves AC, Costa-Silva JH, Barros-Junior IB, da Silva Filho RC, Vasconcelos DAA, Vidal H, Morio B, Fernandes MP. Saturated Fatty Acid-Enriched Diet-Impaired Mitochondrial Bioenergetics in Liver From Undernourished Rats During Critical Periods of Development. Cells 2019; 8:E335. [PMID: 30974751 PMCID: PMC6523252 DOI: 10.3390/cells8040335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 03/24/2019] [Accepted: 03/30/2019] [Indexed: 12/13/2022] Open
Abstract
The nutritional transition that the western population has undergone is increasingly associated with chronic metabolic diseases. In this work, we evaluated a diet rich in saturated fatty acids (hyperlipidic, HL) after weaning of the offspring rats submitted to maternal protein restriction on the hepatic mitochondrial bioenergetics. Wistar rats were mated and during gestation and lactation, mothers received control diets (NP, normal protein content 17%) or low protein (LP, 8% protein). After weaning, rats received either NL (normolipidic) or HL (+59% SFA) diets up to 90 days of life. It was verified that all respiratory states of hepatic mitochondria showed a reduction in the LP group submitted to the post-weaning HL diet. This group also presented greater mitochondrial swelling compared to controls, potentiated after Ca2+ addition and prevented in the presence of EGTA (calcium chelator) and cyclosporin A (mitochondrial permeability transition pore inhibitor). There was also an increase in liver protein oxidation and lipid peroxidation and reduction in catalase and glutathione peroxidase activities in the LP group fed HL diet after weaning. Our data suggest that adult rats subjected to maternal protein restriction were more susceptible to hepatic mitochondrial damage caused by a diet rich in saturated fatty acids post-weaning.
Collapse
Affiliation(s)
- Aiany C Simões-Alves
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition (CarMeN), INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, 69921 Oullins, France.
- Laboratory of General Biochemistry, Molecular Biology and Exercise, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
| | - Joao H Costa-Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition (CarMeN), INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, 69921 Oullins, France.
| | - Idelfonso B Barros-Junior
- Laboratory of General Biochemistry, Molecular Biology and Exercise, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
| | - Reginaldo C da Silva Filho
- Laboratory of General Biochemistry, Molecular Biology and Exercise, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
| | - Diogo A A Vasconcelos
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
| | - Hubert Vidal
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition (CarMeN), INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, 69921 Oullins, France.
| | - Béatrice Morio
- Laboratoire de Recherche en Cardiovasculaire, Métabolisme, Diabétologie et Nutrition (CarMeN), INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, 69921 Oullins, France.
| | - Mariana P Fernandes
- Laboratory of General Biochemistry, Molecular Biology and Exercise, Federal University of Pernambuco-UFPE, Vitória de Santo Antão, PE 55608-680, Brazil.
| |
Collapse
|
12
|
Zhang W, Sun Y, Liu W, Dong J, Chen J. SIRT1 mediates the role of RNA-binding protein QKI 5 in the synthesis of triglycerides in non-alcoholic fatty liver disease mice via the PPARα/FoxO1 signaling pathway. Int J Mol Med 2019; 43:1271-1280. [PMID: 30664220 PMCID: PMC6365049 DOI: 10.3892/ijmm.2019.4059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the consequence of insulin resistance, fatty acid accumulation, oxidative stress and lipotoxicity. The present study aimed to elucidate the effect of Quaking 5 (QKI 5) as mediated by Sirtuin 1 (SIRT1) on triglyceride (TG) synthesis in the liver of an NAFLD mouse model. A high-fat diet-induced NAFLD model was established in mice, and mouse hepatocytes were isolated to characterize the effects of QKI 5 mediated by SIRT1 on TG synthesis in the liver. Body weight and liver wet weight were recorded. In addition, serum levels of total cholesterol, TG, alanine aminotransferase and aspartate aminotransferase were assessed using an automatic biochemistry analyzer. Hematoxylin and eosin staining was performed to observe the histological morphological alterations of the liver tissues. The concentration of SIRT1 in the serum was also detected. The NAFLD activity score (NAS) was used to evaluate disease severity. The synthesis of TGs in cells or tissues was determined, and the protein levels of SIRT1, QKI 5, peroxisome proliferator-activated receptor (PPAR)α and Forkhead box protein O1 (FoxO1) were examined. The expression levels of SIRT1 or QKI 5, and the acetylation level of QKI 5 were decreased in the mouse model of NAFLD. QKI 5 was deacetylated by SIRT1, which contributed in suppressing the progression of NAFLD in the mice, and inhibiting TG synthesis in vivo and in vitro via the PPARα/FoxO1 signaling pathway. Taken together, the results of the present study demonstrated that SIRT1 deacetylated QKI 5, an RNA-binding protein significantly affecting the synthesis of TG in the liver of the NAFLD mouse model. Furthermore, it activated transcription factor FOXO1 through post-transcriptional regulation of the expression of PPARα and further inhibited the synthesis of TGs, thereby restraining the progression of NAFLD.
Collapse
Affiliation(s)
- Weiyan Zhang
- Department of Infectious Disease, Huaxin Hospital, The First Hospital of Tsinghua University, Beijing 100016, P.R. China
| | - Yue Sun
- Department of Infectious Disease, Huaxin Hospital, The First Hospital of Tsinghua University, Beijing 100016, P.R. China
| | - Wei Liu
- Department of Infectious Disease, Huaxin Hospital, The First Hospital of Tsinghua University, Beijing 100016, P.R. China
| | - Jinling Dong
- Department of Infectious Disease, First People's Hospital Affiliated to Huzhou University Medical College, Huzhou, Zhejiang 313000, P.R. China
| | - Jinglong Chen
- Department of Oncology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
13
|
Almaida-Pagán PF, Ortega-Sabater C, Lucas-Sánchez A, Martinez-Nicolas A, Espinosa C, Esteban MA, Madrid JA, Rol M, Mendiola P, de Costa J. Impact of a shift work-like lighting schedule on the functioning of the circadian system in the short-lived fish Nothobranchius furzeri. Exp Gerontol 2018; 112:44-53. [PMID: 30184464 DOI: 10.1016/j.exger.2018.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 01/03/2023]
Abstract
Adult Nothobranchius furzeri of the MZM-04/10 strain were individually kept and subjected to a "5 + 2" shifting lighting schedule (SHIFT) for 8 weeks in order to evaluate the desynchronizing effects of a simulated human-like shift-work schedule on the functioning of the circadian system (CS). With this aim, sixteen 21-week-old N. furzeri were placed into a Morning, Night and Evening schedule (lights on from 08:00 to 16:00, 00:00 to 08:00 and 16:00 to 00:00 h, respectively) and fed once a day in the middle of the corresponding photophase (12:00, 04:00 and 20:00 h, respectively). Then, in the weekends (2 days), fish were always returned to the Morning shift. As controls, 16 fish were maintained under a non-shifting LD cycle condition (CONTROL) throughout the whole experiment, with lights on from 08:00 to 16:00 h. Rest-activity rhythm (RAR) of fish subjected to SHIFT showed several symptoms of chronodisruption, such as a decrease in the percentage of diurnal activity and a reduction of the relative amplitude and the circadian function index with time. When a periodogram analysis was performed, RAR of N. furzeri under SHIFT conditions showed up to three separate circadian components: one longer than 24 h (26.5 h) that followed the weekly 8 h delays; a short-period component (~23 h) that was related to the weekend's phase advances, and finally, a 24 h component. The shifting LD schedule also affected fish CS at a molecular level, with several significant differences in the expression of core genes of the molecular clock (bmal1, clock, rorα, rev-erbα) between SHIFT and CONTROL animals. RAR impairment along with changes in clock gene expression could be associated with high stress and accelerated aging in these fish.
Collapse
Affiliation(s)
- P F Almaida-Pagán
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| | - C Ortega-Sabater
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - A Lucas-Sánchez
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - A Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - C Espinosa
- Fish Innate Immune System Group, Department of Cell Biology and Histology, College of Biology, University of Murcia, Mare Nostrum Campus, Spain
| | - M A Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, College of Biology, University of Murcia, Mare Nostrum Campus, Spain
| | - J A Madrid
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - M Rol
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - P Mendiola
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - J de Costa
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| |
Collapse
|
14
|
Sundar IK, Sellix MT, Rahman I. Redox regulation of circadian molecular clock in chronic airway diseases. Free Radic Biol Med 2018; 119:121-128. [PMID: 29097215 PMCID: PMC5910271 DOI: 10.1016/j.freeradbiomed.2017.10.383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
At the cellular level, circadian timing is maintained by the molecular clock, a family of interacting clock gene transcription factors, nuclear receptors and kinases called clock genes. Daily rhythms in pulmonary function are dictated by the circadian timing system, including rhythmic susceptibility to the harmful effects of airborne pollutants, exacerbations in patients with chronic airway disease and the immune-inflammatory response to infection. Further, evidence strongly suggests that the circadian molecular clock has a robust reciprocal interaction with redox signaling and plays a considerable role in the response to oxidative/carbonyl stress. Disruption of the circadian timing system, particularly in airway cells, impairs pulmonary rhythms and lung function, enhances oxidative stress due to airway inhaled pollutants like cigarette smoke and airborne particulate matter and leads to enhanced inflammosenescence, inflammasome activation, DNA damage and fibrosis. Herein, we briefly review recent evidence supporting the role of the lung molecular clock and redox signaling in regulating inflammation, oxidative stress, and DNA damage responses in lung diseases and their exacerbations. We further describe the potential for clock genes as novel biomarkers and therapeutic targets for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
15
|
van Gastel J, Boddaert J, Jushaj A, Premont RT, Luttrell LM, Janssens J, Martin B, Maudsley S. GIT2-A keystone in ageing and age-related disease. Ageing Res Rev 2018; 43:46-63. [PMID: 29452267 DOI: 10.1016/j.arr.2018.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
Abstract
Since its discovery, G protein-coupled receptor kinase-interacting protein 2, GIT2, and its family member, GIT1, have received considerable interest concerning their potential key roles in regulating multiple inter-connected physiological and pathophysiological processes. GIT2 was first identified as a multifunctional protein that is recruited to G protein-coupled receptors (GPCRs) during the process of receptor internalization. Recent findings have demonstrated that perhaps one of the most important effects of GIT2 in physiology concerns its role in controlling multiple aspects of the complex ageing process. Ageing can be considered the most prevalent pathophysiological condition in humans, affecting all tissue systems and acting as a driving force for many common and intractable disorders. The ageing process involves a complex interplay among various deleterious activities that profoundly disrupt the body's ability to cope with damage, thus increasing susceptibility to pathophysiologies such as neurodegeneration, central obesity, osteoporosis, type 2 diabetes mellitus and atherosclerosis. The biological systems that control ageing appear to function as a series of interconnected complex networks. The inter-communication among multiple lower-complexity signaling systems within the global ageing networks is likely coordinated internally by keystones or hubs, which regulate responses to dynamic molecular events through protein-protein interactions with multiple distinct partners. Multiple lines of research have suggested that GIT2 may act as one of these network coordinators in the ageing process. Identifying and targeting keystones, such as GIT2, is thus an important approach in our understanding of, and eventual ability to, medically ameliorate or interdict age-related progressive cellular and tissue damage.
Collapse
|
16
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide and is present in a third of the general population and the majority of individuals with obesity and type 2 diabetes. Importantly, NAFLD can progress to severe nonalcoholic steatohepatitis (NASH), associated with liver failure and hepatocellular carcinoma. Recent research efforts have extensively focused on identifying factors contributing to the additional "hit" required to promote NALFD disease progression. The maternal diet, and in particular a high-fat diet (HFD), may be one such hit "priming" the development of severe fatty liver disease, a notion supported by the increasing incidence of NAFLD among children and adolescents in Westernized countries. In recent years, a plethora of key studies have used murine models of maternal obesity to identify fundamental mechanisms such as lipogenesis, mitochondrial function, inflammation, and fibrosis that may underlie the developmental priming of NAFLD. In this chapter, we will address key considerations for constructing experimental models and both conventional and advanced methods of quantifying NAFLD disease status.
Collapse
Affiliation(s)
- Kimberley D Bruce
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Karen R Jonscher
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Crew RC, Waddell BJ, Mark PJ. Obesity-induced changes in hepatic and placental clock gene networks in rat pregnancy†. Biol Reprod 2017; 98:75-88. [DOI: 10.1093/biolre/iox158] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
|
18
|
Siddiqui S, Lustig A, Carter A, Sankar M, Daimon CM, Premont RT, Etienne H, van Gastel J, Azmi A, Janssens J, Becker KG, Zhang Y, Wood W, Lehrmann E, Martin JG, Martin B, Taub DD, Maudsley S. Genomic deletion of GIT2 induces a premature age-related thymic dysfunction and systemic immune system disruption. Aging (Albany NY) 2017; 9:706-740. [PMID: 28260693 PMCID: PMC5391227 DOI: 10.18632/aging.101185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/19/2017] [Indexed: 12/12/2022]
Abstract
Recent research has proposed that GIT2 (G protein-coupled receptor kinase interacting protein 2) acts as an integrator of the aging process through regulation of 'neurometabolic' integrity. One of the commonly accepted hallmarks of the aging process is thymic involution. At a relatively young age, 12 months old, GIT2-/- mice present a prematurely distorted thymic structure and dysfunction compared to age-matched 12 month-old wild-type control (C57BL/6) mice. Disruption of thymic structure in GIT2-/- (GIT2KO) mice was associated with a significant reduction in the expression of the cortical thymic marker, Troma-I (cytokeratin 8). Double positive (CD4+CD8+) and single positive CD4+ T cells were also markedly reduced in 12 month-old GIT2KO mice compared to age-matched control wild-type mice. Coincident with this premature thymic disruption in GIT2KO mice was the unique generation of a novel cervical 'organ', i.e. 'parathymic lobes'. These novel organs did not exhibit classical peripheral lymph node-like characteristics but expressed high levels of T cell progenitors that were reflexively reduced in GIT2KO thymi. Using signaling pathway analysis of GIT2KO thymus and parathymic lobe transcriptomic data we found that the molecular signaling functions lost in the dysfunctional GIT2KO thymus were selectively reinstated in the novel parathymic lobe - suggestive of a compensatory effect for the premature thymic disruption. Broader inspection of high-dimensionality transcriptomic data from GIT2KO lymph nodes, spleen, thymus and parathymic lobes revealed a systemic alteration of multiple proteins (Dbp, Tef, Per1, Per2, Fbxl3, Ddit4, Sin3a) involved in the multidimensional control of cell cycle clock regulation, cell senescence, cellular metabolism and DNA damage. Altered cell clock regulation across both immune and non-immune tissues therefore may be responsible for the premature 'aging' phenotype of GIT2KO mice.
Collapse
Affiliation(s)
- Sana Siddiqui
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA
| | - Ana Lustig
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Arnell Carter
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Mathavi Sankar
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | - Caitlin M Daimon
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | | | - Harmonie Etienne
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Jaana van Gastel
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Abdelkrim Azmi
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Jonathan Janssens
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| | - Kevin G Becker
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - William Wood
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, Research Resources Branch, NIA, NIH, Baltimore, MD 21224, USA
| | - James G Martin
- Research Institute of the MUHC, Centre for Translational Biology (CTB), Meakins-Christie Laboratories, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Bronwen Martin
- Metabolism Unit, Laboratory of Clinical Investigation, NIA, NIH, Baltimore, MD 21224, USA
| | - Dennis D Taub
- Laboratory of Molecular Biology and Immunology, NIA, NIH, Baltimore, MD 21224, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, Laboratory of Neurosciences, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD 21224, USA.,Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Belgium
| |
Collapse
|
19
|
Yang Z, Kim H, Ali A, Zheng Z, Zhang K. Interaction between stress responses and circadian metabolism in metabolic disease. LIVER RESEARCH 2017; 1:156-162. [PMID: 29430321 PMCID: PMC5805151 DOI: 10.1016/j.livres.2017.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circadian rhythms play crucial roles in orchestrating diverse physiological processes that are critical for health and disease. Dysregulated circadian rhythms are closely associated with various human metabolic diseases, including type 2 diabetes, cardiovascular disease, and non-alcoholic fatty liver disease. Modern lifestyles are frequently associated with an irregular circadian rhythm, which poses a significant risk to public health. While the central clock has a set periodicity, circadian oscillators in peripheral organs, particularly in the liver, can be entrained by metabolic alterations or stress cues. At the molecular level, the signal transduction pathways that mediate stress responses interact with, and are often integrated with, the key determinants of circadian oscillation, to maintain metabolic homeostasis under physiological or pathological conditions. In the liver, a number of nuclear receptors or transcriptional regulators, which are regulated by metabolites, hormones, the circadian clock, or environmental stressors, serve as direct links between stress responses and circadian metabolism. In this review, we summarize recent advances in the understanding of the interactions between stress responses (the endoplasmic reticulum (ER) stress response, the oxidative stress response, and the inflammatory response) and circadian metabolism, and the role of these interactions in the development of metabolic diseases.
Collapse
Affiliation(s)
- Zhao Yang
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Arushana Ali
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Ze Zheng
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, MI, USA,Department of Microbiology, Immunology, and Biochemistry, Wayne State University, MI, USA,Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA,Corresponding author. Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. (K. Zhang)
| |
Collapse
|
20
|
PPARs and Mitochondrial Metabolism: From NAFLD to HCC. PPAR Res 2016; 2016:7403230. [PMID: 28115925 PMCID: PMC5223052 DOI: 10.1155/2016/7403230] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 11/17/2022] Open
Abstract
Metabolic related diseases, such as type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease (NAFLD), are widespread threats which bring about a significant burden of deaths worldwide, mainly due to cardiovascular events and cancer. The pathogenesis of these diseases is extremely complex, multifactorial, and only partially understood. As the main metabolic organ, the liver is central to maintain whole body energetic homeostasis. At the cellular level, mitochondria are the metabolic hub connecting and integrating all the main biochemical, hormonal, and inflammatory signaling pathways to fulfill the energetic and biosynthetic demand of the cell. In the liver, mitochondria metabolism needs to cope with the energetic regulation of the whole body. The nuclear receptors PPARs orchestrate lipid and glucose metabolism and are involved in a variety of diseases, from metabolic disorders to cancer. In this review, focus is placed on the roles of PPARs in the regulation of liver mitochondrial metabolism in physiology and pathology, from NAFLD to HCC.
Collapse
|