1
|
Yi X, Cao H, Liao J, Yu W, Hu G, Tang Z, Yang F. Metabolomics analysis reveals the effects of high dietary copper on mitochondria-mediated autophagy and apoptosis in spleen of broiler chicken. Avian Pathol 2024:1-11. [PMID: 39483061 DOI: 10.1080/03079457.2024.2423716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Copper (Cu) is a necessary micro-element and plays important roles in many biochemical processes. However, excessive Cu intake can lead to multi-organ toxicity, especially in the spleen. To gain further insights into the specific mechanisms of splenic toxicity associated with Cu-induced metabolic disorders, 192 one-day-old chickens were selected and randomly divided into four groups for this study. The broilers were fed with diets containing Cu at final concentrations of 11, 110, 220 and 330 mg/kg for 49 days. The results showed that high dietary Cu caused nuclear shrinkage and mitochondrial vacuolization in the spleen and induced splenic injury through regulating the glutathione metabolism, pentose and gluconate interconversion, tryptophan metabolism and glycerophosphatidylcholine metabolism pathways. Moreover, excess Cu could disorder the mitochondrial dynamics via up-regulating the levels of Drp1, Parkin PINK1, and Dynein, and down-regulating the levels of Mfn1, Mfn2 and OPA1. Cu treatment increased the levels of LC3A, LC3B, mTOR, Beclin1, and ATG5 and decreased the p62 level to promote autophagy of splenocytes. Meanwhile, a high dose of Cu promoted splenocyte apoptosis by increasing the levels of p53, BAK-1, Bax, Cyt C and Caspase-3 and decreasing the level of Bcl-2. These results demonstrated that high dietary Cu could cause autophagy and apoptosis via inducing metabolic disturbances and disordering mitochondrial dynamics in the spleen of broiler chicken.
Collapse
Affiliation(s)
- Xin Yi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, People's Republic of China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
2
|
Zhao X, Liu Z, Zhang Y, Pan Y, Wang T, Wang Z, Li Z, Zeng Q, Qian Y, Qiu J, Mu X. Developmental effects and lipid disturbances of zebrafish embryos exposed to three newly recognized bisphenol A analogues. ENVIRONMENT INTERNATIONAL 2024; 189:108795. [PMID: 38857550 DOI: 10.1016/j.envint.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Bisphenol G (BPG), bisphenol M (BPM) and bisphenol TMC (BPTMC), are newly recognized analogues of bisphenol A (BPA), which have been detected in multiple environmental media. However, the understanding of their negative impacts on environmental health is limited. In this study, zebrafish embryos were exposed to BPA and the three analogues (0.1, 10, and 1000 μg/L) to identify their developmental toxic effects. According to our results, all of the three analogues induced significant developmental disorders on zebrafish embryos including inhibited yolk sac absorption, altered heart rate, and teratogenic effects. Oil Red O staining indicated lipid accumulation in the yolk sac region of zebrafish after bisphenol analogues exposure, which was consistent with the delayed yolk uptake. Untargeted lipidomic analysis indicated the abundance of triacylglycerols, ceramides and fatty acids was significantly altered by the three analogues. The combined analysis of lipidomics and transcriptomics results indicated BPG and BPM affected lipid metabolism by disrupting peroxisome proliferator-activated receptor pathway and interfering with lipid homeostasis and transport. This partly explained the morphological changes of embryos after bisphenol exposure. In conclusion, our study reveals that BPG, BPM and BPTMC possess acute and developmental toxicity toward zebrafish, and the developmental abnormalities are associated with the disturbances in lipid metabolism.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zaiteng Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yining Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yecan Pan
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Tiancai Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zishuang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zishu Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qingxiao Zeng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Jiang X, Zhou W, Li D, Wang H, Yang Y, You J, Liu H, Ai L, Zhang M. Combined transcriptome and metabolome analyses reveal the effects of selenium on the growth and quality of Lilium lancifolium. FRONTIERS IN PLANT SCIENCE 2024; 15:1399152. [PMID: 38828223 PMCID: PMC11140108 DOI: 10.3389/fpls.2024.1399152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Lilium lancifolium Thunb (L. lancifolium) is an important medicinal and edible plant with outstanding functionality for selenium (Se) biofortification. However, the molecular response of L. lancifolium to exogenous Se has not been fully elucidated. In this study, the effects of different levels of Se on L. lancifolium growth and quality were explored by transcriptome, metabolome and biochemical analyses. The results showed that the total Se and organic Se content in L. lancifolium bulbs increased with increasing Se dosage (0-8.0 mmol/L). Moreover, Se stimulated the growth of L. lancifolium at low level (2.0 mmol/L) but showed an inhibitory effect at high levels (≥4.0 mmol/L). Metabolomic and biochemical analyses revealed that the bulb weight and the content of amino acid, soluble sugar, and soluble protein were significantly increased in the 2.0 mmol/L Se treatment compared with those in the control (0 mmol/L Se). Transcriptome and metabolome analyses revealed that the significant upregulation of the GPD1, GPAT and ADPRM genes promoted glycerophospholipid accumulation. Additionally, the significantly upregulated glyA and downregulated asnB, nadB, thrA and SAT genes coordinate to the regulation of amino acid biosynthesis. The significantly upregulated SUS, bgl B, BAM, and SGA1 genes were involved in soluble sugar accumulation under Se treatment. In summary, this study identified the optimal Se concentration (2.0 mmol/L), which significantly improved the growth and nutritional quality of L. lancifolium and contributed to understanding the combined effects of Se treatment on the expression of genes and the accumulation of metabolites in L. lancifolium bulbs.
Collapse
Affiliation(s)
| | - Wuxian Zhou
- *Correspondence: Wuxian Zhou, ; Lunqiang Ai, ; Meide Zhang,
| | | | | | | | | | | | - Lunqiang Ai
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agricultural and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| | - Meide Zhang
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agricultural and Rural Affairs, Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, China
| |
Collapse
|
4
|
He T, Xiong L, Lin K, Yi J, Duan C, Zhang J. Functional metabolomics reveals arsenic-induced inhibition of linoleic acid metabolism in mice kidney in drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123949. [PMID: 38636836 DOI: 10.1016/j.envpol.2024.123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/27/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
Arsenic (As) is a heavy metal known for its detrimental effects on the kidneys, but the precise mechanisms underlying its toxicity remain unclear. In this study, we employed an integrated approach combining traditional toxicology methods with functional metabolomics to explore the nephrotoxicity induced by As in mice. Our findings demonstrated that after 28 days of exposure to sodium arsenite, blood urea nitrogen, serum creatinine levels were significantly increased, and pathological examination of the kidneys revealed dilation of renal tubules and glomerular injury. Additionally, uric acid, total cholesterol, and low-density lipoprotein cholesterol levels were significant increased while triglyceride level was decreased, resulting in renal insufficiency and lipid disorders. Subsequently, the kidney metabolomics analysis revealed that As exposure disrupted 24 differential metabolites, including 14 up-regulated and 10 down-regulated differential metabolites. Ten metabolic pathways including linoleic acid and glycerophospholipid metabolism were significantly enriched. Then, 80 metabolic targets and 168 predicted targets were identified using metabolite network pharmacology analysis. Of particular importance, potential toxicity targets, such as glycine amidinotransferase, mitochondrial (GATM), and nitric oxide synthase, and endothelial (NOS3), were prioritized through the "metabolite-target-pathway" network. Receiver operating characteristics curve and molecular docking analyses suggested that 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, linoleic acid, and L-hydroxyarginine might be functional metabolites associated with GATM and NOS3. Moreover, targeted verification result showed that the level of linoleic acid in As group was 0.4951 μg/mL, which was significantly decreased compared with the control group. And in vivo and in vitro protein expression experiments confirmed that As exposure inhibited the expression of GATM and NOS3. In conclusion, these results suggest that As-induced renal injury may be associated with the inhibition of linoleic acid metabolism through the down-regulation of GATM and NOS3, resulting in decreased levels of linoleic acid, 1-palmitoyl-2-myristoyl-sn-glycero-3-PC, and L-hydroxyarginine metabolites.
Collapse
Affiliation(s)
- Tianmu He
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| | - Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Jing Yi
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
5
|
Liu A, Kage F, Abdulkareem AF, Aguirre-Huamani MP, Sapp G, Aydin H, Higgs HN. Fatty acyl-coenzyme A activates mitochondrial division through oligomerization of MiD49 and MiD51. Nat Cell Biol 2024; 26:731-744. [PMID: 38594588 PMCID: PMC11404400 DOI: 10.1038/s41556-024-01400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Mitochondrial fission occurs in many cellular processes, but the regulation of fission is poorly understood. We show that long-chain acyl-coenzyme A (LCACA) activates two related mitochondrial fission proteins, MiD49 and MiD51, by inducing their oligomerization, which activates their ability to stimulate the DRP1 GTPase. The 1:1 stoichiometry of LCACA:MiD in the oligomer suggests interaction in the previously identified nucleotide-binding pocket, and a point mutation in this pocket reduces LCACA binding and LCACA-induced oligomerization for MiD51. In cells, this LCACA binding mutant does not assemble into puncta on mitochondria or rescue MiD49/51 knockdown effects on mitochondrial length and DRP1 recruitment. Furthermore, cellular treatment with BSA-bound oleic acid, which causes increased LCACA, promotes mitochondrial fission in an MiD49/51-dependent manner. These results suggest that LCACA is an endogenous ligand for MiDs, inducing mitochondrial fission and providing a potential mechanism for fatty-acid-induced mitochondrial division. Finally, MiD49 or MiD51 oligomers synergize with Mff, but not with actin filaments, in DRP1 activation, suggesting distinct pathways for DRP1 activation.
Collapse
Affiliation(s)
- Ao Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Asan F Abdulkareem
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Mac Pholo Aguirre-Huamani
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Gracie Sapp
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Halil Aydin
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
6
|
Jin Y, Shi H, Zhao Y, Dai J, Zhang K. Organophosphate ester cresyl diphenyl phosphate disrupts lipid homeostasis in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123149. [PMID: 38097162 DOI: 10.1016/j.envpol.2023.123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
As a new class of organophosphate ester, cresyl diphenyl phosphate (CDP) has been widely monitored in environmental matrices and human samples, nonetheless, its toxicity is not fully understood. Here we described an in-depth analysis of the disruptions in lipid homeostasis of zebrafish following exposure to CDP concentrations ranging from 2.0 to 313.0 μg/L. Nile red staining revealed significant alterations in lipid contents in 72 hpf zebrafish embryos at CDP concentrations of 5.3 μg/L and above. Lipidomic analysis unveiled substantial disruptions in lipid homeostasis. Notably, disruptive effects were detected in various lipid classes, including phospholipids (i.e. cardiolipin, lysophosphatidylcholine, and phosphatidylethanolamine), glycerolipids (triglycerides), and fatty acids (fatty acids (FA) and wax esters (WE)). These alterations were further supported by transcriptional changes, with remarkable shifts observed in genes associated with lipid synthesis, transport, and metabolism, encompassing phospholipids, glycerolipids, fatty acids, and sphingolipids. Furthermore, CDP exposure elicited a significant elevation in ATP content and swimming activity in embryos, signifying perturbed energy homeostasis. Taken together, the present findings underscore the disruptive effects of CDP on lipid homeostasis, thereby providing novel insights essential for advancing the health risk assessment of organophosphate flame retardants.
Collapse
Affiliation(s)
- Yiheng Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
7
|
Tian Z, Jiang S, Zhou J, Zhang W. Copper homeostasis and cuproptosis in mitochondria. Life Sci 2023; 334:122223. [PMID: 38084674 DOI: 10.1016/j.lfs.2023.122223] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Mitochondria serve as sites for energy production and are essential for regulating various forms of cell death induced by metal metabolism, targeted anticancer drugs, radiotherapy and immunotherapy. Cuproptosis is an autonomous form of cell death that depends on copper (Cu) and mitochondrial metabolism. Although the recent discovery of cuproptosis highlights the significance of Cu and mitochondria, there is still a lack of biological evidence and experimental verification for the underlying mechanism. We provide an overview of how Cu and cuproptosis affect mitochondrial morphology and function. Through comparison with ferroptosis, similarities and differences in mitochondrial metabolism between cuproptosis and ferroptosis have been identified. These findings provide implications for further exploration of cuproptotic mechanisms. Furthermore, we explore the correlation between cuproptosis and immunotherapy or radiosensitivity. Ultimately, we emphasize the therapeutic potential of targeting cuproptosis as a novel approach for disease treatment.
Collapse
Affiliation(s)
- Ziying Tian
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Su Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Jieyu Zhou
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Smith KR, Wang W, Miller MR, Boucher M, Reynold JE, Daurio NA, Li D, Hirenallur-Shanthappa D, Ahn Y, Beebe DA, Kelly KL, Ross TT, Bence KK, Wan M. GPAT1 Deficiency in Mice Modulates NASH Progression in a Model-Dependent Manner. Cell Mol Gastroenterol Hepatol 2023; 17:279-291. [PMID: 37844795 PMCID: PMC10829521 DOI: 10.1016/j.jcmgh.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD), and its more severe form, nonalcoholic steatohepatitis (NASH), is the leading cause for liver failure and liver cancer. Although the etiology is likely multifactorial, genes involved in regulating lipid metabolism are enriched in human NAFLD genome-wide association studies (GWAS), pointing to dysregulated lipid metabolism as a major pathogenic factor. Glycerol-3-phosphate acyltransferase 1 (GPAT1), encoded by GPAM, converts acyl-CoAs and glycerol-3-phosphate into lysophosphatidic acid and has been shown to regulate lipid accumulation in the liver. However, its role in mediating the progression from NAFLD to NASH has not been explored. METHODS GPAT1-deficient mice were generated and challenged with diets inducing hepatic steatosis and NASH. Effects of GPAT1 deficiency on lipid and systemic metabolic end points were evaluated. RESULTS Ablating GPAT1 globally or specifically in mouse hepatocytes reduced hepatic steatosis in the context of diet-induced or genetic obesity. Interestingly, blunting of progression from NAFLD to NASH in global GPAT1 knockout (KO) mice was model dependent. GPAT1 KO mice were protected from choline deficient, amino acid defined high-fat diet-induced NASH development, but not from the high fat, high carbohydrate, and high cholesterol diet-induced NASH. CONCLUSIONS Our preclinical data support the notion that lipid metabolism pathways regulated by GPAT1 in hepatocytes play an essential role in NASH progression, albeit in a model-dependent manner.
Collapse
Affiliation(s)
- Kathleen R Smith
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Wenshan Wang
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Melissa R Miller
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Magalie Boucher
- WRDM Drug Safety, Research and Development, Pfizer Inc, Groton, Connecticut
| | - Jessica E Reynold
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Natalie A Daurio
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Dongmei Li
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | | | - Youngwook Ahn
- WRDM Target Sciences, Pfizer Inc, Cambridge, Massachusetts
| | - David A Beebe
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kenneth L Kelly
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Trenton T Ross
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kendra K Bence
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Min Wan
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts.
| |
Collapse
|
9
|
Zhang L, Qiu J, Li Y, He L, Mao M, Wang T, Pan Y, Li Z, Mu X, Qian Y. Maternal transfer of florfenicol impacts development and disrupts metabolic pathways in F1 offspring zebrafish by destroying mitochondria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114597. [PMID: 36739738 DOI: 10.1016/j.ecoenv.2023.114597] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Maternal exposure to antibiotics existing in the environment is a predisposing factor for developmental malformation with metabolic disorders in offspring. In this study, female zebrafish (3 months) were exposed to 0.05 mg/L and 0.5 mg/L florfenicol (FF) for 28 days. After pairing and spawning with healthy male fish, F1 embryos were collected and developed to 5 d post-fertilization (dpf) in clear water. And the adverse effects on the F1 generation were examined thoroughly. The fecundity of F0 female fish and the hatchability, mortality, and body length of F1 larvae significantly decreased in the treatment group. Meanwhile, multi-malformation types were found in the exposure group, including delayed yolk sac absorption, lack of swim bladder, and spinal curvature. Metabolomic and transcriptomic results revealed alterations in metabolism with dysregulation in tricarboxylase acid cycle, amino acid metabolism, and disordered lipid metabolism with elevated levels of glycerophospholipid and sphingolipid. Accompanying these metabolic derangements, decreased levels of ATP and disordered oxidative-redox state were observed. These results were consistent with the damaged mitochondrial membrane potential and respiratory chain function, suggesting that the developmental toxicity and perturbed metabolic signaling in the F1 generation were related to the mitochondrial injury after exposing F0 female zebrafish to FF. Our findings highlighted the potential toxicity of FF to offspring generations even though they were not directly exposed to environmental contaminants.
Collapse
Affiliation(s)
- Lin Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yameng Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Linjuan He
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Mingcai Mao
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Tiancai Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yecan Pan
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zishu Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiyan Mu
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
10
|
Structural basis of the acyl-transfer mechanism of human GPAT1. Nat Struct Mol Biol 2023; 30:22-30. [PMID: 36522428 DOI: 10.1038/s41594-022-00884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022]
Abstract
Glycerol-3-phosphate acyltransferase (GPAT)1 is a mitochondrial outer membrane protein that catalyzes the first step of de novo glycerolipid biosynthesis. Hepatic expression of GPAT1 is linked to liver fat accumulation and the severity of nonalcoholic fatty liver diseases. Here we present the cryo-EM structures of human GPAT1 in substrate analog-bound and product-bound states. The structures reveal an N-terminal acyltransferase domain that harbors important catalytic motifs and a tightly associated C-terminal domain that is critical for proper protein folding. Unexpectedly, GPAT1 has no transmembrane regions as previously proposed but instead associates with the membrane via an amphipathic surface patch and an N-terminal loop-helix region that contains a mitochondrial-targeting signal. Combined structural, computational and functional studies uncover a hydrophobic pathway within GPAT1 for lipid trafficking. The results presented herein lay a framework for rational inhibitor development for GPAT1.
Collapse
|
11
|
Chen C, Fang Y, Cui X, Zhou D. Effects of trace PFOA on microbial community and metabolisms: Microbial selectivity, regulations and risks. WATER RESEARCH 2022; 226:119273. [PMID: 36283234 DOI: 10.1016/j.watres.2022.119273] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Perfluorooctanoic acid (PFOA), a "forever chemical", is continuously discharged and mitigated in the environment despite its production and use being severely restricted globally. Due to the transformation, attachment, and adsorption of PFOA in aquatic environments, PFOA accumulates in the porous media of sediments, soils, and vadose regions. However, the impact of trace PFOA in the porous media on interstitial water and water safety is not clear. In this work, we simulated a porous media layer using a sand column and explored the effects of µg-level PFOA migration on microbial community alternation, microbial function regulation, and the generation and spread of microbial risks. After 60 days of PFOA stimulation, Proteobacteria became the dominant phylum with an abundance of 91.8%, since it carried 71% of the antibiotic resistance genes (ARGs). Meanwhile, the halogen-related Dechloromonas abundance increased from 0.4% to 10.6%. In addition, PFOA significantly stimulated protein (more than 1288%) and polysaccharides (more than 4417%) production by up-regulating amino acid metabolism (p< 0.001) and membrane transport (p < 0.001) to accelerate the microbial aggregation. More importantly, the rapidly forming biofilm immobilized and blocked PFOA. The more active antioxidant system repaired the damaged cell membrane by significantly up-regulating glycerophospholipid metabolism and peptidoglycan biosynthesis. It is worth noting that PFOA increased the abundance of antibiotic resistance genes (ARGs) and human bacterial pathogens (HBPs) in porous media by 30% and 106%. PFOA increased the proportion of vertical transmission ARGs (vARGs), and co-occurrence network analysis (r ≥ 0.8, p ≤ 0.01) verified that vARGs were mainly mediated by HBPs. A comprehensive understanding of PFOA interactions with its microecological environment is provided.
Collapse
Affiliation(s)
- Congli Chen
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Yuanping Fang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Xiaochun Cui
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
12
|
Middle-Aged Lpaatδ-Deficient Mice Have Altered Metabolic Measures. Life (Basel) 2022; 12:life12111717. [DOI: 10.3390/life12111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
Lysophosphatidic acid acyltransferases/acylglycerophosphate acyltransferases (LPAATs/AGPATs) are a group of homologous enzymes that catalyze the formation of phosphatidic acid (PA) from lysophosphatidic acid. We have previously reported that LPAATδ/AGPAT4 localizes to mitochondria, suggesting a potential role in energy metabolism. However, in prior studies of young Lpaatδ-deficient mice (age 9–12 weeks old), we found no differences in body weights, food intakes, activity levels, respiratory gas exchange, or energy expenditure compared to their wildtype (Wt) littermates. To test whether Lpaatδ−/− mice may develop differences in metabolic measures with advancing age, we recorded body weights and food intakes, and used metabolic chambers to assess ambulatory and locomotor activity levels, oxygen consumption (VO2), carbon dioxide production (VCO2), respiratory exchange ratio (RER), and total energy expenditure (heat). Fourteen-month-old Lpaatδ−/− mice had significantly lower mean body weights compared to Wt littermate controls (44.6 ± 1.08 g vs. 53.5 ± 0.42 g, respectively), but no significant differences in food intake or activity levels. This phenotypic difference was accompanied by significantly elevated 24 h daily, and 12 h light and dark photoperiod average VO2 (~20% higher) and VCO2 (~30% higher) measures, as well as higher RER and total energy expenditure (heat) values compared to Wt control littermates. Thus, an age-related metabolic phenotype is evident in Lpaatδ−/− mice. Future studies should examine the role of the lipid-modifying enzyme LPAATδ across the lifespan for greater insight into its role in normal and pathophysiology.
Collapse
|
13
|
Zhang LY, Shi HH, Wang CC, Wang YM, Wei ZH, Xue CH, Mao XZ, Zhang TT. Targeted Lipidomics Reveal the Effects of Different Phospholipids on the Phospholipid Profiles of Hepatic Mitochondria and Endoplasmic Reticulum in High-Fat/High-Fructose-Diet-Induced Nonalcoholic Fatty Liver Disease Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3529-3540. [PMID: 35212227 DOI: 10.1021/acs.jafc.1c07538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lipid alternation in mitochondria and endoplasmic reticulum (ER) might be indicative of their abnormal morphology and function, which contribute to development of nonalcoholic fatty liver disease (NAFLD). However, the influence of dietary phospholipids (PLs) on the PL composition of the organellar membrane is largely unknown. High-fat/high-fructose (HFHF)-diet-induced NAFLD mice were administrated with different PLs (2%, w/w) with specific fatty acids and headgroups, including eicosapentaenoic acid (EPA)-phosphatidylcholine (PC)/phosphatidylethanolamine (PE)/phosphatidylserine (PS), docosahexaenoic acid (DHA)-PC/PE/PS, egg-PC/PE/PS, and soy-PC/PE/PS. After 8 weeks of feeding, PLs dramatically decreased hepatic lipid accumulation, in which EPA/DHA-PS had the best efficiency. Furthermore, lipidomic analysis revealed that the HFHF diet narrowed the difference in PL composition between mitochondria and ER, significantly reduced the PC/PE ratio, and changed the unsaturation of cardiolipin in mitochondria. Dietary PLs reversed these alterations. Heatmap analysis indicated that dietary PL groups containing the same fatty acids clustered together. Moreover, dietary PLs significantly increased the ratio of PC/PE in both hepatic mitochondria and ER, especially EPA-PE. This study showed that fatty acid composition of PLs might represent greater impact on the PL composition of the organellar membrane than headgroups.
Collapse
Affiliation(s)
- Ling-Yu Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, People's Republic of China
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Cheng-Cheng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Zi-Hao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Xiang-Zhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266237, People's Republic of China
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| |
Collapse
|
14
|
Hong H, Xu J, He H, Wang X, Yang L, Deng P, Yang L, Tan M, Zhang J, Xu Y, Tong T, Lin X, Pi H, Lu Y, Zhou Z. Cadmium perturbed metabolomic signature in pancreatic beta cells correlates with disturbed metabolite profile in human urine. ENVIRONMENT INTERNATIONAL 2022; 161:107139. [PMID: 35172228 DOI: 10.1016/j.envint.2022.107139] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Cd exposure has been demonstrated to induce a variety of metabolic disorders accompanied with imbalance of glucose and lipid homeostasis. The metabolic toxicity of Cd exposure at metabolome-wide level remains elusive. In our study, we demonstrated that Cd exposure via drinking water increased blood glucose levels, decreased serum insulin levels, led to glucose intolerance and suppressed insulin expression in the pancreas of C57/6J mice. Cd exposure significantly inhibited cell viability and suppressed insulin secretion in MIN6 cells in vitro. Since pancreatic β-cells are the only source of insulin production in the body and play a pivotal role in modulating glucose and lipid metabolisms, we further delineated the metabolomic signatures of Cd exposure in insulin-secreting MIN6 cells by using non-target metabolomics. PCA and OPLS-DA analysis clearly suggested that Cd exposure led to a marked metabolic alteration in MIN6 cells. 76 perturbed metabolites were identified after Cd exposure. Classification of metabolites suggested that Cd perturbed metabolites belong to nucleosides, nucleotides and analogues, organic acids and derivatives, and lipids and lipid-like molecules. 28 perturbed metabolites existed in mitochondrion, suggesting mitochondrion as the major target organelle in metabolic toxicity of Cd exposure. KEGG pathway analysis revealed that 20 metabolic pathways were disturbed by Cd exposure. Mitochondrial TCA cycle and glycerophospholipid metabolism were remarkably disturbed. The mRNA expressions of genes in mitochondrial TCA cycle and fatty acid oxidation in pancreas and MIN6 cells were significantly dysregulated by Cd exposure. Disturbances in mitochondrial TCA cycle and glycerophospholipid metabolism result in producing perturbed metabolites in pancreatic β-cells. Moreover, 14 perturbed metabolites identified in MIN6 cells co-existed in the urine of Cd exposed workers. 11 biomarkers of diabetes mellitus were also found to be significantly altered in the urine of Cd exposed workers. In conclusion, findings of this study greatly extend our understanding of metabolic toxicity of Cd exposure in pancreatic β-cells at metabolome-wide level and offer some new clues for linking Cd exposure to development of diabetes mellitus. Results of this study also support the notion that Cd induced metabolic toxicity could be monitored by examining perturbed urinary metabolites in humans and highlight the significance of reducing Cd exposure via drinking water at population level.
Collapse
Affiliation(s)
- Huihui Hong
- Department of Emergency Medicine, The First Affiliated Hospital and Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Wang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lu Yang
- Hunan Province Prevention and Treatment Hospital for Occupational Diseases, Hunan, China
| | - Miduo Tan
- Department of Galactophore, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Jingjing Zhang
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yudong Xu
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiqin Lin
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China.
| | - Yuanqiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhou Zhou
- Department of Emergency Medicine, The First Affiliated Hospital and Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
Guo C, Xue Y, Sun D, Yin Y, Hu F, Mao S. Transcriptome profiling of hepatic and renal mRNAs and lncRNAs under a nutritional restriction during pregnancy in a sheep model. Genomics 2021; 113:2769-2779. [PMID: 34147634 DOI: 10.1016/j.ygeno.2021.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to investigate the transcriptome profiles of liver and kidney in pregnant sheep under a nutritional restriction. Twenty Hu sheep were segregated into control group (CON) and severe feed restriction (FR) group. Results showed that the concentration of insulin decreased, whereas glucagon, epinephrine, and norepinephrine increased in the FR group. Histological morphology showed no apparent difference in terms of fat deposition in the kidney. In addition, FR significantly decreased the hepatic gene expression of gluconeogenic genes. However, in the kidney, the relative mRNA expression levels of gluconeogenic genes and glucose transporter 1 were observed to increase while the mRNA expression of sodium-glucose co-transporter 1 were decreased by FR. The differentially expressed genes in the liver were associated with fatty acid metabolism and inflammation. In the kidney, FR mainly activated the gluconeogenesis improving negative energy balance. These results provide a better understanding of the consequences of starvation during pregnancy.
Collapse
Affiliation(s)
- Changzheng Guo
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfeng Xue
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Daming Sun
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Fan Hu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China; National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China; Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Jabůrek M, Průchová P, Holendová B, Galkin A, Ježek P. Antioxidant Synergy of Mitochondrial Phospholipase PNPLA8/iPLA2γ with Fatty Acid-Conducting SLC25 Gene Family Transporters. Antioxidants (Basel) 2021; 10:antiox10050678. [PMID: 33926059 PMCID: PMC8146845 DOI: 10.3390/antiox10050678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Patatin-like phospholipase domain-containing protein PNPLA8, also termed Ca2+-independent phospholipase A2γ (iPLA2γ), is addressed to the mitochondrial matrix (or peroxisomes), where it may manifest its unique activity to cleave phospholipid side-chains from both sn-1 and sn-2 positions, consequently releasing either saturated or unsaturated fatty acids (FAs), including oxidized FAs. Moreover, iPLA2γ is directly stimulated by H2O2 and, hence, is activated by redox signaling or oxidative stress. This redox activation permits the antioxidant synergy with mitochondrial uncoupling proteins (UCPs) or other SLC25 mitochondrial carrier family members by FA-mediated protonophoretic activity, termed mild uncoupling, that leads to diminishing of mitochondrial superoxide formation. This mechanism allows for the maintenance of the steady-state redox status of the cell. Besides the antioxidant role, we review the relations of iPLA2γ to lipid peroxidation since iPLA2γ is alternatively activated by cardiolipin hydroperoxides and hypothetically by structural alterations of lipid bilayer due to lipid peroxidation. Other iPLA2γ roles include the remodeling of mitochondrial (or peroxisomal) membranes and the generation of specific lipid second messengers. Thus, for example, during FA β-oxidation in pancreatic β-cells, H2O2-activated iPLA2γ supplies the GPR40 metabotropic FA receptor to amplify FA-stimulated insulin secretion. Cytoprotective roles of iPLA2γ in the heart and brain are also discussed.
Collapse
Affiliation(s)
- Martin Jabůrek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
- Correspondence: ; Tel.: +420-296442789
| | - Pavla Průchová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| | - Blanka Holendová
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| | - Alexander Galkin
- Department of Pediatrics, Division of Neonatology, Columbia University William Black Building, New York, NY 10032, USA;
| | - Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1084, 14220 Prague, Czech Republic; (P.P.); (B.H.); (P.J.)
| |
Collapse
|
17
|
Zhang F, Liu L, Wu P, Li S, Wei D. Overexpression of MAX dimerization protein 3 (MXD3) predicts poor prognosis in clear cell renal cell carcinoma. Transl Androl Urol 2021; 10:785-796. [PMID: 33718080 PMCID: PMC7947448 DOI: 10.21037/tau-20-1187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of malignant kidney tumor. The molecular mechanism of ccRCC is complicated, and few effective prognostic predictors have been applied to clinical practice. MAX dimerization protein 3 (MXD3) is generally considered a transcription factor of the MYC/MAX/MAD transcriptional network. This study aimed to investigate the impact of MXD3 in ccRCC. Methods Gene expression profiles and clinical data of ccRCC were downloaded from The Cancer Genome Atlas (TCGA) database. MXD3 expression levels between tumors and adjacent normal tissues were compared. The influence of MXD3 on overall survival (OS) was evaluated using the Kaplan-Meier method. Associations between MXD3 expression and clinical features were assessed with the Kruskal test and Wilcoxon test. Univariate and multivariate Cox analyses were performed to observe the impact of MXD3 expression and clinical features on prognosis. The correlation between MXD3 and ccRCC immune infiltration was estimated with TIMER. The DNA methylation levels of the MXD3 promoter were obtained from UALCAN. Gene set enrichment analysis (GSEA) was conducted to explore the biological signaling pathways. Results MXD3 was overexpressed in ccRCC tumor tissues compared with adjacent normal kidney tissues. High expression of MXD3 was significantly correlated with poor prognosis. MXD3 expression levels were associated with tumor grade, tumor stage, tumor (T) classification and metastasis (M) classification. Univariate and multivariate Cox analyses showed that high expression of MXD3 was an independent risk factor for OS in ccRCC. MXD3 expression was positively correlated with the infiltrating levels of B cells and myeloid dendritic cells, and negatively correlated with macrophages. The MXD3 promoter region tended to be hypomethylated in ccRCC compared with normal tissues. GSEA identified homologous recombination, base excision repair, and glycerophospholipid metabolism as differentially enriched in ccRCC with high MXD3 expression. Conclusions This study suggests that high expression of MXD3 is an independent risk factor for poor prognosis in ccRCC. MXD3 expression potentially contributes to regulation of immune infiltration and cell proliferation in ccRCC, and the aberrant expression of MXD3 in tumor tissues could be caused by hypomethylation of gene promoter. MXD3 could be an effective prognostic biomarker and potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Fangyuan Zhang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Liansheng Liu
- Key Laboratory of Regenerative Biology of the Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Pengjie Wu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shengwen Li
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Dong Wei
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Li Y, Yin W, Zhan Y, Jia Y, Cui D, Zhang W, Chang Y. Comparative metabolome analysis provides new insights into increased larval mortality under seawater acidification in the sea urchin Strongylocentrotus intermedius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141206. [PMID: 32777501 DOI: 10.1016/j.scitotenv.2020.141206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Mortality and metabolic responses of four-armed larvae of Strongylocentrotus intermedius under CO2-induced seawater acidification were investigated. Gametes of S. intermedius were fertilized and developed to the four-armed larval stage in either current natural seawater pH levels (as Control; pH = 7.99 ± 0.01) or laboratory-controlled acidified conditions (OA1: ΔpH = -0.3 units; OA2: ΔpH = -0.4 units; OA3: ΔpH = -0.5 units) according to the predictions of the Intergovernmental Panel on Climate Change (IPCC). The degrees of spicule exposure and asymmetry and mortality of four-armed larvae of S. intermedius were observed; each had a significant linearly increasing trend as the seawater pH level decreased. Comparative metabolome analysis identified a total of 87 significantly differentially expressed metabolites (SDMs, UP: 57, DOWN: 30) in OA-treated groups compared with the control group. Twenty-three SDMs, including carnitine, lysophosphatidylcholine (LPC) 18:3, lysophosphatidyl ethanolamine (LPE) 16:1, glutathione (GSH) and L-ascorbate, exhibited a linear increasing trend with decreasing seawater pH. Nine SDMs exhibited a linear decreasing trend as the seawater pH declined, including hypoxanthine, guanine and thymidine. Among all SDMs, we further mined 48 potential metabolite biomarkers responding to seawater acidification in four-armed larvae of S. intermedius. These potential metabolite biomarkers were mainly enriched in five pathways: glycerophospholipid metabolism, glutathione metabolism, purine metabolism, pyrimidine metabolism and the tricarboxylic acid cycle (TCA cycle). Our results will enrich our knowledge of the molecular mechanisms employed by sea urchins in response to CO2-induced seawater acidification.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Wenlu Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| | - Yujie Jia
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
19
|
Semba RD. Perspective: The Potential Role of Circulating Lysophosphatidylcholine in Neuroprotection against Alzheimer Disease. Adv Nutr 2020; 11:760-772. [PMID: 32190891 PMCID: PMC7360459 DOI: 10.1093/advances/nmaa024] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/02/2020] [Accepted: 02/19/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer disease (AD), the most common cause of dementia, is a progressive disorder involving cognitive impairment, loss of learning and memory, and neurodegeneration affecting wide areas of the cerebral cortex and hippocampus. AD is characterized by altered lipid metabolism in the brain. Lower concentrations of long-chain PUFAs have been described in the frontal cortex, entorhinal cortex, and hippocampus in the brain in AD. The brain can synthesize only a few fatty acids; thus, most fatty acids must enter the brain from the blood. Recent studies show that PUFAs such as DHA (22:6) are transported across the blood-brain barrier (BBB) in the form of lysophosphatidylcholine (LPC) via a specific LPC receptor at the BBB known as the sodium-dependent LPC symporter 1 (MFSD2A). Higher dietary PUFA intake is associated with decreased risk of cognitive decline and dementia in observational studies; however, PUFA supplementation, with fatty acids esterified in triacylglycerols did not prevent cognitive decline in clinical trials. Recent studies show that LPC is the preferred carrier of PUFAs across the BBB into the brain. An insufficient pool of circulating LPC containing long-chain fatty acids could potentially limit the supply of long-chain fatty acids to the brain, including PUFAs such as DHA, and play a role in the pathobiology of AD. Whether adults with low serum LPC concentrations are at greater risk of developing cognitive decline and AD remains a major gap in knowledge. Preventing and treating cognitive decline and the development of AD remain a major challenge. The LPC pathway is a promising area for future investigators to identify modifiable risk factors for AD.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Zhang X, Wang T, Song J, Deng J, Sun Z. Study on follicular fluid metabolomics components at different ages based on lipid metabolism. Reprod Biol Endocrinol 2020; 18:42. [PMID: 32398082 PMCID: PMC7216654 DOI: 10.1186/s12958-020-00599-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/24/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Follicular fluid is an important external environment for the growth and development of oocytes. A thorough identification of specific components in follicular fluid can better the existing understand of intracellular signal transduction and reveal potential biomarkers of oocyte health in women undergoing assisted reproductive therapy. To study on follicular fluid metabolomics components at different ages based on lipid metabolism, we have adopted a new method of SWATH to MRM(the sequential window acquisition of all theoretical fragment-ion spectra to multiple reaction monitor)metabolomics to provide extensive coverage and excellent quantitative data. This was done to investigate the differences in follicular fluid of patients undergoing in vitro fertilization (IVF) and embryo transfer in different age groups and to further explore the relationship between follicular fluid, age and reproductive function. METHOD A combination of Ultra-high-performance liquid chromatography and high resolution mass spectrometry techniques were used to analyze the follicular fluid of 230 patients enrolled for the IVF cycle. The patients were of different ages grouped into two groups:the younger and older patients.The obtained multidimensional chromatographic data were processed by principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). The charge ratios and mass numbers enabled for the identification of different fragments in the samples. Matching information obtained through database search and the fragment information obtained by fragment ion scan structurally identified substances in the samples. This was used to determine the differential compounds. RESULTS The quality of oocytes decline with age,and the lipid composition in follicular fluid also changes,The lipid metabolism that changes with age may be related to the quality of oocytes.The main differences were in lipid metabolites. Some were up-regulated: Arachidonate, LysoPC(16:1), LysoPC(20:4) and LysoPC(20:3) while others were down-regulated: LysoPC(18:3) and LysoPC(18:1). CONCLUSIONS Metabolomic analysis of follicular fluid revealed that with the increase in age, several differential metabolites are at play. Among these metabolites, lipid metabolism undergoes significant changes that affect the development of oocytes thus causing reduced fertility in older women. These differential metabolites related to follicular development may provide possible detection and treatment targets for promoting oocyte health, and provide scientific basis for understanding the environment of oocyte development.
Collapse
Affiliation(s)
- Xingxing Zhang
- Maternity and Child Health Care of ZaoZhuang, ZaoZhuang, 277100, Shandong, China
| | - Tianqi Wang
- Traditional Chinese Medicine History and Literature, Institute for Literature and Culture of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jingyan Song
- Department of Gynecology and Obstetrics of Traditional Chinese Medicine, The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jifeng Deng
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhengao Sun
- Reproductive and Genetic Center of Integrated Traditional and Western Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.
| |
Collapse
|
21
|
Balla T, Kim YJ, Alvarez-Prats A, Pemberton J. Lipid Dynamics at Contact Sites Between the Endoplasmic Reticulum and Other Organelles. Annu Rev Cell Dev Biol 2020; 35:85-109. [PMID: 31590585 DOI: 10.1146/annurev-cellbio-100818-125251] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
22
|
Schlame M, Xu Y. The Function of Tafazzin, a Mitochondrial Phospholipid-Lysophospholipid Acyltransferase. J Mol Biol 2020; 432:5043-5051. [PMID: 32234310 DOI: 10.1016/j.jmb.2020.03.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Tafazzin is a mitochondrial enzyme that exchanges fatty acids between phospholipids by phospholipid-lysophospholipid transacylation. The reaction alters the molecular species composition and, as a result, the physical properties of lipids. In vivo, the most important substrate of tafazzin is the mitochondria-specific lipid cardiolipin. Tafazzin mutations cause the human disease Barth syndrome, which presents with cardiomyopathy, skeletal muscle weakness, fatigue, and other symptoms, probably all related to mitochondrial dysfunction. The reason why mitochondria require tafazzin is still not known, but recent evidence suggests that tafazzin may lower the energy cost associated with protein crowding in the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Michael Schlame
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | - Yang Xu
- Departments of Anesthesiology and Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
23
|
Changes of Differential Urinary Metabolites after High-Intensive Training in Teenage Football Players. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2073803. [PMID: 32258106 PMCID: PMC7109581 DOI: 10.1155/2020/2073803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
Objective The mechanism underlying the fatigue of football players is closely related to the energy depletion and accumulation of metabolites; the present study tries to explore the metabolic mechanism in teenage football players during exercise-induced fatigue. Methods 12 teenage football players were subjected to three groups of combined training by using a cycle ergometer, with the subjective Rating of Perceived Exertion (RPE) as a fatigue criterion. The following indicators were measured in each group after training: maximum oxygen uptake (VO2max), anaerobic power, and average anaerobic power. Urine samples were collected before and after the training. Gas chromatography-mass spectrometry (GC-MS) was performed for the metabonomics analysis of the samples. The metabolism data was analyzed by using principal component analysis (PCA) and orthogonal partial least squares analysis (OPLS-DA), through the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to confirm the potential differences between metabolites, and the MetPA database was used to analyze the related metabolic pathways. Results There was no significant difference between the maximal oxygen uptakes among the three groups. Compared with group 1, the maximum and average anaerobic power in group 3 significantly decreased (p < 0.05) at the end of training. GC-MS detected 635 metabolites in the urine samples. Through PCA, OPLS-DA analysis, and KEGG matching, 25 different metabolites (3↑22↓) that met the conditions were finally selected. These different metabolites belonged to 5 metabolic pathways: glycine-serine-threonine metabolism, citrate cycle, tyrosine metabolism, nitrogen metabolism, and glycerophospholipid metabolism. Conclusions During the combined exercise of aerobic and anaerobic metabolism, teenage football players show a significant decrease in anaerobic capacity after fatigue. The metabolic mechanism of exercise fatigue was related to disorders in amino acid and energy metabolism.
Collapse
|
24
|
Lipidomic Analysis of the Protective Effects of Shenling Baizhu San on Non-Alcoholic Fatty Liver Disease in Rats. Molecules 2019; 24:molecules24213943. [PMID: 31683679 PMCID: PMC6864612 DOI: 10.3390/molecules24213943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Shenling Baizhu San (SLBZS), a famous traditional Chinese medicine, has been demonstrated to exert protective effects against non-alcoholic fatty liver disease (NAFLD), but its exact mechanisms have not been well understood. The aim of this study was to investigate the mechanisms underlying the protective effects of SLBZS in a rat model of NAFLD using lipidomics and to evaluate the role of Sirtuin 1 (SIRT1) in the mechanism of SLBZS against NAFLD. The rat model of NAFLD was induced by high-fat feeding. An ultra-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based untargeted lipidomics approach was applied to analyze hepatic lipid alterations, and the SIRT1-selective inhibitor EX 527 was used to inhibit SIRT expression in the liver. The results of body and biochemical parameters, as well as histological changes, indicated that SLBZS administration exerted protective effects against NAFLD. Lipidomic analysis showed that 30 lipid species were effectively regulated by SLBZS administration in rats fed a high-fat diet. Pathway analysis indicated that glycerophospholipid metabolism and glycerolipid metabolism were potential target pathways closely involved in the mechanism of SLBZS against NAFLD. Moreover, the beneficial effects of SLBZS on hepatic steatosis, some biochemical parameters and hepatic lipid species were partly diminished by SIRT1 inhibition. In conclusion, our results suggested that SLBZS administration could effectively alter some hepatic lipid species in rats fed a high-fat diet, which was mainly associated with the regulation of glycerophospholipid and glycerolipid metabolism. Furthermore, the beneficial effects of SLBZS on hepatic lipid metabolism may be at least partly attributed to SIRT1 activation in the liver.
Collapse
|
25
|
Balla T, Sengupta N, Kim YJ. Lipid synthesis and transport are coupled to regulate membrane lipid dynamics in the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158461. [PMID: 31108203 DOI: 10.1016/j.bbalip.2019.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 11/27/2022]
Abstract
Structural lipids are mostly synthesized in the endoplasmic reticulum (ER), from which they are actively transported to the membranes of other organelles. Lipids can leave the ER through vesicular trafficking or non-vesicular lipid transfer and, curiously, both processes can be regulated either by the transported lipid cargos themselves or by different secondary lipid species. For most structural lipids, transport out of the ER membrane is a key regulatory component controlling their synthesis. Distribution of the lipids between the two leaflets of the ER bilayer or between the ER and other membranes is also critical for maintaining the unique membrane properties of each cellular organelle. How cells integrate these processes within the ER depends on fine spatial segregation of the molecular components and intricate metabolic channeling, both of which we are only beginning to understand. This review will summarize some of these complex processes and attempt to identify the organizing principles that start to emerge. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nivedita Sengupta
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Semba RD, Moaddel R, Zhang P, Ramsden CE, Ferrucci L. Tetra-linoleoyl cardiolipin depletion plays a major role in the pathogenesis of sarcopenia. Med Hypotheses 2019; 127:142-149. [PMID: 31088638 DOI: 10.1016/j.mehy.2019.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Abstract
Sarcopenia, the progressive loss of muscle mass, strength, and physical performance that occurs during aging, is highly prevalent among the elderly. Sarcopenia increases the risk of falls, disability, and death. The biological basis for sarcopenia is not well understood. There are no specific preventive or therapeutic strategies for sarcopenia except exercise. The elucidation of biological pathways and identification of therapeutic targets for treating or preventing sarcopenia remain a high priority in aging research. Mitochondria play a critical role in skeletal muscle by providing energy in the form of ATP, regulation of signaling, calcium homeostasis, autophagy, and other functions. Cardiolipin, a unique dimeric phospholipid specific to mitochondria and an essential component of mitochondrial membranes, is involved in mitochondrial protein transport, maintaining structural organization of mitochondrial membranes, cellular signaling, regulating enzymes involved in β-oxidation of fatty acids, and facilitating normal electron transport chain (ETC) function and generation of ATP. The fatty acid species composition of cardiolipin is critical to mitochondrial bioenergetics, as cardiolipin affects membrane biophysical properties, binds and stabilizes ETC protein complexes, and shapes the curvature of the mitochondrial cristae. Tetra-linoleoyl cardiolipin (18:2)4 comprises ∼80% of cardiolipin in mitochondria in normal human skeletal and cardiac muscle and is optimal for effective ETC function and ATP generation. Aging is associated with a decrease in cardiolipin content, decrease in tetra-linoleoyl cardiolipin (18:2)4 and replacement of linoleic acid (18:2) with other fatty acids in cardiolipin composition, decline of ETC function, and increased generation of reactive oxygen species in muscle. Together, these findings from the literature prompt the hypothesis that depletion of the cardiolipin (18:2)4 species may be at the root of mitochondrial dysfunction with aging, in turn leading to sarcopenia. Corroboration of the tetra-linoleoyl cardiolipin depletion hypothesis suggests new leads for the prevention and treatment of sarcopenia by enhancing the biosynthesis, accretion, and integrity of tetra-linoleoyl cardiolipin.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Christopher E Ramsden
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States; National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
27
|
Lee J, Ridgway ND. Substrate channeling in the glycerol-3-phosphate pathway regulates the synthesis, storage and secretion of glycerolipids. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158438. [PMID: 30959116 DOI: 10.1016/j.bbalip.2019.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/16/2023]
Abstract
The successive acylation of glycerol-3-phosphate (G3P) by glycerol-3-phosphate acyltransferases and acylglycerol-3-phosphate acyltransferases produces phosphatidic acid (PA), a precursor for CDP-diacylglycerol-dependent phospholipid synthesis. PA is further dephosphorylated by LIPINs to produce diacylglycerol (DG), a substrate for the synthesis of triglyceride (TG) by DG acyltransferases and a precursor for phospholipid synthesis via the CDP-choline and CDP-ethanolamine (Kennedy) pathways. The channeling of fatty acids into TG for storage in lipid droplets and secretion in lipoproteins or phospholipids for membrane biogenesis is dependent on isoform expression, activity and localization of G3P pathway enzymes, as well as dietary and hormonal and tissue-specific factors. Here, we review the mechanisms that control partitioning of substrates into lipid products of the G3P pathway.
Collapse
Affiliation(s)
- Jonghwa Lee
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Neale D Ridgway
- Atlantic Research Center, Depts. of Pediatrics and Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
28
|
Semba RD, Zhang P, Adelnia F, Sun K, Gonzalez‐Freire M, Salem N, Brennan N, Spencer RG, Fishbein K, Khadeer M, Shardell M, Moaddel R, Ferrucci L. Low plasma lysophosphatidylcholines are associated with impaired mitochondrial oxidative capacity in adults in the Baltimore Longitudinal Study of Aging. Aging Cell 2019; 18:e12915. [PMID: 30719830 PMCID: PMC6413748 DOI: 10.1111/acel.12915] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 12/04/2018] [Accepted: 12/30/2018] [Indexed: 01/21/2023] Open
Abstract
The decrease in skeletal muscle mitochondrial oxidative capacity with age adversely affects muscle strength and physical performance. Factors that are associated with this decrease have not been well characterized. Low plasma lysophosphatidylcholines (LPC), a major class of systemic bioactive lipids, are predictive of aging phenotypes such as cognitive impairment and decline of gait speed in older adults. Therefore, we tested the hypothesis that low plasma LPC are associated with impaired skeletal muscle mitochondrial oxidative capacity. Skeletal muscle mitochondrial oxidative capacity was measured using in vivo phosphorus magnetic resonance spectroscopy (31P‐MRS) in 385 participants (256 women, 129 men), aged 24–97 years (mean 72.5) in the Baltimore Longitudinal Study of Aging. Postexercise recovery rate of phosphocreatine (PCr), kPCr, was used as a biomarker of mitochondrial oxidative capacity. Plasma LPC were measured using liquid chromatography–tandem mass spectrometry. Adults in the highest quartile of kPCr had higher plasma LPC 16:0 (p = 0.04), 16:1 (p = 0.004), 17:0 (p = 0.01), 18:1 (p = 0.0002), 18:2 (p = 0.002), and 20:3 (p = 0.0007), but not 18:0 (p = 0.07), 20:4 (p = 0.09) compared with those in the lower three quartiles in multivariable linear regression models adjusting for age, sex, and height. Multiple machine‐learning algorithms showed an area under the receiver operating characteristic curve of 0.638 (95% confidence interval, 0.554, 0.723) comparing six LPC in adults in the lower three quartiles of kPCr with the highest quartile. Low plasma LPC are associated with impaired mitochondrial oxidative capacity in adults.
Collapse
Affiliation(s)
- Richard D. Semba
- Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore Maryland
| | - Pingbo Zhang
- Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore Maryland
| | - Fatemeh Adelnia
- National Institute on Aging, National Institutes of Health Baltimore Maryland
| | - Kai Sun
- Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore Maryland
| | | | | | - Nicholas Brennan
- National Institute on Aging, National Institutes of Health Baltimore Maryland
| | - Richard G. Spencer
- National Institute on Aging, National Institutes of Health Baltimore Maryland
| | - Kenneth Fishbein
- National Institute on Aging, National Institutes of Health Baltimore Maryland
| | - Mohammed Khadeer
- National Institute on Aging, National Institutes of Health Baltimore Maryland
| | - Michelle Shardell
- National Institute on Aging, National Institutes of Health Baltimore Maryland
| | - Ruin Moaddel
- National Institute on Aging, National Institutes of Health Baltimore Maryland
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health Baltimore Maryland
| |
Collapse
|
29
|
Transcriptional Regulation of Acyl-CoA:Glycerol- sn-3-Phosphate Acyltransferases. Int J Mol Sci 2019; 20:ijms20040964. [PMID: 30813330 PMCID: PMC6412627 DOI: 10.3390/ijms20040964] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:glycerol-sn-3-phosphate acyltransferase (GPAT) is an enzyme responsible for the rate-limiting step in the synthesis of glycerophospholipids and triacylglycerol (TAG). The enzymes of mammalian species are classified into four isoforms; GPAT1 and GPAT2 are localized in the mitochondrial outer membrane, whereas GPAT3 and GPAT4 are localized in the endoplasmic reticulum membrane. The activity of each enzyme expressed is associated with physiological and pathological functions. The transcriptional regulation is well known, particularly in GPAT1. GPAT1 mRNA expression is mainly regulated by the binding of the transcriptional factor SREBP-1c to the specific element (the sterol regulatory element) flanking the GPAT1 promoter. The TAG level is controlled by the insulin-induced transcriptional expression of GPAT1, which occupies most of the GPAT activity in the liver. The transcriptional regulation of the other three GPAT isoforms remains undetermined in detail. It is predicted that retinoic acid serves as a transcription factor in the GPAT2 promoter. PPARγ (peroxisome proliferator-activated receptor γ) increases the mRNA expression of GPAT3, which is associated with TAG synthesis in adipose tissues. Although GPAT has been considered to be a key enzyme in the production of TAG, unexpected functions have recently been reported, particularly in GPAT2. It is likely that GPAT2 is associated with tumorigenesis and normal spermatogenesis. In this review, the physiological and pathophysiological roles of the four GPAT isoforms are described, alongside the transcriptional regulation of these enzymes.
Collapse
|
30
|
Lei L, Su J, Chen J, Chen W, Chen X, Peng C. The role of lysophosphatidic acid in the physiology and pathology of the skin. Life Sci 2018; 220:194-200. [PMID: 30584899 DOI: 10.1016/j.lfs.2018.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/25/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Lysophosphatidic acid (LPA) is the simplest phospholipid found in nature. LPA is mainly biosynthesized in tissues and cells by autotoxin and PA-PLA1α/PA-PLA1β and is degraded by lipid phosphate phosphatases (LPPs). It is an important component of biofilm, an extracellular signal transmitter and intracellular second messenger. After targeting to endothelial differentiation gene (Edg) family LPA receptors (LPA1, LPA2, LPA3) and non-Edg family LPA receptors (LPA4, LPA5, LPA6), LPA mediates physiological and pathological processes such as embryonic development, angiogenesis, tumor progression, fibrogenesis, wound healing, ischemia/reperfusion injury, and inflammatory reactions. These processes are induced through signaling pathways including mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase (PI3K)/Akt, protein kinase C (PKC)-GSK3β-β-catenin, Rho, Stat, and hypoxia-inducible factor 1-alpha (HIF-1α). LPA is involved in multiple physiological and pathological processes in the skin. It not only regulates skin function but also plays an important role in hair follicle development, skin wound healing, pruritus, skin tumors, and scleroderma. Pharmacological inhibition of LPA synthesis or antagonization of LPA receptors is a new strategy for the treatment of various skin disorders. This review focuses on the current understanding of the pathophysiologic role of LPA in the skin.
Collapse
Affiliation(s)
- Li Lei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Junchen Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha 410008, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
31
|
Lacunza E, Montanaro MA, Salvati A, Memoli D, Rizzo F, Henning MF, Quiroga IY, Guillou H, Abba MC, Gonzalez-Baro MDR, Weisz A, Pellon-Maison M. Small non-coding RNA landscape is modified by GPAT2 silencing in MDA-MB-231 cells. Oncotarget 2018; 9:28141-28154. [PMID: 29963267 PMCID: PMC6021339 DOI: 10.18632/oncotarget.25582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/28/2018] [Indexed: 01/13/2023] Open
Abstract
Glycerol-3-phosphate acyltransferase-2 is a member of "cancer-testis gene" family. Initially linked to lipid metabolism, this gene has been recently found involved also in PIWI-interacting RNAs biogenesis in germline stem cells. To investigate its role in piRNA metabolism in cancer, the gene was silenced in MDA-MB-231 breast cancer cells and small RNA sequencing was applied. PIWI-interacting RNAs and tRNA-derived fragments expression profiles showed changes following GPAT2 silencing. Interestingly, a marked shift in length distribution for both small RNAs was detected in GPAT2-silenced cells. Most downregulated PIWI-interacting RNAs are single copy in the genome, intragenic, hosted in snoRNAs and previously found to be upregulated in cancer cells. Putative targets of these PIWI-interacting RNAs are linked to lipid metabolism. Downregulated tRNA derived fragments derived from, so-called 'differentiation tRNAs', whereas upregulated ones derived from proliferation-linked tRNAs. miRNA amounts decrease after Glycerol-3-phosphate acyltransferase-2 silencing and functional enrichment analysis of deregulated miRNA putative targets point to mitochondrial biogenesis, IGF1R signaling and oxidative metabolism of lipids and lipoproteins. In addition, miRNAs known to be overexpressed in breast cancer tumors with poor prognosis where found downregulated in GPAT2-silenced cells. In conclusion, GPAT2 silencing quantitatively and qualitatively affects the population of PIWI-interacting RNAs, tRNA derived fragments and miRNAs which, in combination, result in a more differentiated cancer cell phenotype.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mauro Aldo Montanaro
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Genomix4Life, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Maria Florencia Henning
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Ivana Yoseli Quiroga
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Hervé Guillou
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Martín Carlos Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Del Rosario Gonzalez-Baro
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Genomix4Life, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Magalí Pellon-Maison
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
32
|
Update on glycerol-3-phosphate acyltransferases: the roles in the development of insulin resistance. Nutr Diabetes 2018; 8:34. [PMID: 29799006 PMCID: PMC5968029 DOI: 10.1038/s41387-018-0045-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 01/16/2023] Open
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) is the rate-limiting enzyme in the de novo pathway of glycerolipid synthesis. It catalyzes the conversion of glycerol-3-phosphate and long-chain acyl-CoA to lysophosphatidic acid. In mammals, four isoforms of GPATs have been identified based on subcellular localization, substrate preferences, and NEM sensitivity, and they have been classified into two groups, one including GPAT1 and GPAT2, which are localized in the mitochondrial outer membrane, and the other including GPAT3 and GPAT4, which are localized in the endoplasmic reticulum membrane. GPATs play a pivotal role in the regulation of triglyceride and phospholipid synthesis. Through gain-of-function and loss-of-function experiments, it has been confirmed that GPATs play a critical role in the development of obesity, hepatic steatosis, and insulin resistance. In line with this, the role of GPATs in metabolism was supported by studies using a GPAT inhibitor, FSG67. Additionally, the functional characteristics of GPATs and the relation between three isoforms (GPAT1, 3, and 4) and insulin resistance has been described in this review.
Collapse
|
33
|
Kalsbeek A, Veenstra J, Westra J, Disselkoen C, Koch K, McKenzie KA, O’Bott J, Vander Woude J, Fischer K, Shearer GC, Harris WS, Tintle NL. A genome-wide association study of red-blood cell fatty acids and ratios incorporating dietary covariates: Framingham Heart Study Offspring Cohort. PLoS One 2018; 13:e0194882. [PMID: 29652918 PMCID: PMC5898718 DOI: 10.1371/journal.pone.0194882] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 03/12/2018] [Indexed: 02/07/2023] Open
Abstract
Recent analyses have suggested a strong heritable component to circulating fatty acid (FA) levels; however, only a limited number of genes have been identified which associate with FA levels. In order to expand upon a previous genome wide association study done on participants in the Framingham Heart Study Offspring Cohort and FA levels, we used data from 2,400 of these individuals for whom red blood cell FA profiles, dietary information and genotypes are available, and then conducted a genome-wide evaluation of potential genetic variants associated with 22 FAs and 15 FA ratios, after adjusting for relevant dietary covariates. Our analysis found nine previously identified loci associated with FA levels (FADS, ELOVL2, PCOLCE2, LPCAT3, AGPAT4, NTAN1/PDXDC1, PKD2L1, HBS1L/MYB and RAB3GAP1/MCM6), while identifying four novel loci. The latter include an association between variants in CALN1 (Chromosome 7) and eicosapentaenoic acid (EPA), DHRS4L2 (Chromosome 14) and a FA ratio measuring delta-9-desaturase activity, as well as two loci associated with less well understood proteins. Thus, the inclusion of dietary covariates had a modest impact, helping to uncover four additional loci. While genome-wide association studies continue to uncover additional genes associated with circulating FA levels, much of the heritable risk is yet to be explained, suggesting the potential role of rare genetic variation, epistasis and gene-environment interactions on FA levels as well. Further studies are needed to continue to understand the complex genetic picture of FA metabolism and synthesis.
Collapse
Affiliation(s)
- Anya Kalsbeek
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Jenna Veenstra
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Jason Westra
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Craig Disselkoen
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Kristin Koch
- Department of Statistics, Baylor University, Waco, TX, United States of America
| | - Katelyn A. McKenzie
- Department of Statistics, Duke University, Durham, NC, United States of America
| | - Jacob O’Bott
- Department of Mathematics and Statistics, University of Maryland- Baltimore County, Baltimore, MD, United States of America
| | - Jason Vander Woude
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Karen Fischer
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
| | - Greg C. Shearer
- Department of Nutritional Sciences, Penn State University, State College, PA, United States of America
| | | | - Nathan L. Tintle
- Department of Mathematics, Statistics and Computer Science, Dordt College, Sioux Center, Iowa, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wang H, Airola MV, Reue K. How lipid droplets "TAG" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1131-1145. [PMID: 28642195 PMCID: PMC5688854 DOI: 10.1016/j.bbalip.2017.06.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Triacylglycerols (TAG) serve as the predominant form of energy storage in mammalian cells, and TAG synthesis influences conditions such as obesity, fatty liver, and insulin resistance. In most tissues, the glycerol 3-phosphate pathway enzymes are responsible for TAG synthesis, and the regulation and function of these enzymes is therefore important for metabolic homeostasis. Here we review the sites and regulation of glycerol-3-phosphate acyltransferase (GPAT), acylglycerol-3-phosphate acyltransferase (AGPAT), lipin phosphatidic acid phosphatase (PAP), and diacylglycerol acyltransferase (DGAT) enzyme action. We highlight the critical roles that these enzymes play in human health by reviewing Mendelian disorders that result from mutation in the corresponding genes. We also summarize the valuable insights that genetically engineered mouse models have provided into the cellular and physiological roles of GPATs, AGPATs, lipins and DGATs. Finally, we comment on the status and feasibility of therapeutic approaches to metabolic disease that target enzymes of the glycerol 3-phosphate pathway. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States.
| |
Collapse
|
35
|
Daum G. Preface. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:1-2. [PMID: 27826110 DOI: 10.1016/j.bbalip.2016.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|