1
|
Chu LW, Chen JY, Chen YW, Hsieh S, Kung ML. Phytoconstituent-derived zingerone nanoparticles disrupt the cell adhesion mechanism and suppress cell motility in melanoma B16F10 cells. J Biotechnol 2024; 392:48-58. [PMID: 38906221 DOI: 10.1016/j.jbiotec.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.
Collapse
Affiliation(s)
- Li-Wen Chu
- Department of Nursing, and Department of Cosmetic Application and Management, Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan; Department of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Yun-Wen Chen
- Departments of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Guan X, Liu Y, An Y, Wang X, Wei L, Qi X. FAK Family Kinases: A Potential Therapeutic Target for Atherosclerosis. Diabetes Metab Syndr Obes 2024; 17:3151-3161. [PMID: 39220801 PMCID: PMC11363942 DOI: 10.2147/dmso.s465755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Atherosclerosis (AS) is a chronic progressive inflammatory disease of the vascular wall and the primary pathological basis of cardiovascular and cerebrovascular disease. Focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (Pyk2), two highly homologous members of the FAK family kinases, play critical roles in integrin signaling. They also serve as scaffolding proteins that contribute to the assembly of cellular signaling complexes that regulate cell survival, cell cycle progression, and cell motility. Research indicates that the FAK family kinases is involved in the gene regulation of vascular cells and that aberrant expression of this family is associated with pathological changes in vascular disease. These findings establish the FAK family kinases as a critical signaling mediator in atherosclerotic lesions and inhibition of its activity has the potential to attenuate the pathological progression of AS. This review highlights the indispensable role of the FAK family kinases in abnormal vascular smooth muscle cell proliferation, endothelial cell dysfunction, inflammation, and lipid metabolism associated with AS. We also summarize therapeutic targets against the FAK family kinases, providing valuable insights into therapeutic strategies for AS.
Collapse
Affiliation(s)
- Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Yue Liu
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, People’s Republic of China
| | - Yajuan An
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Xinshuang Wang
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Liping Wei
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, People’s Republic of China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, People’s Republic of China
| |
Collapse
|
3
|
Chiang WY, Yu HW, Wu MC, Huang YM, Chen YQ, Lin JW, Liu YW, You LR, Chiou A, Kuo JC. Matrix mechanics regulates muscle regeneration by modulating kinesin-1 activity. Biomaterials 2024; 308:122551. [PMID: 38593710 DOI: 10.1016/j.biomaterials.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Sarcopenia, a prevalent muscle disease characterized by muscle mass and strength reduction, is associated with impaired skeletal muscle regeneration. However, the influence of the biomechanical properties of sarcopenic skeletal muscle on the efficiency of the myogenic program remains unclear. Herein, we established a mouse model of sarcopenia and observed a reduction in stiffness within the sarcopenic skeletal muscle in vivo. To investigate whether the biomechanical properties of skeletal muscle directly impact the myogenic program, we established an in vitro system to explore the intrinsic mechanism involving matrix stiffness control of myogenic differentiation. Our findings identify the microtubule motor protein, kinesin-1, as a mechano-transduction hub that senses and responds to matrix stiffness, crucial for myogenic differentiation and muscle regeneration. Specifically, kinesin-1 activity is positively regulated by stiff matrices, facilitating its role in transporting mitochondria and enhancing translocation of the glucose transporter GLUT4 to the cell surface for glucose uptake. Conversely, the softer matrices significantly suppress kinesin-1 activity, leading to the accumulation of mitochondria around nuclei and hindering glucose uptake by inhibiting GLUT4 membrane translocation, consequently impairing myogenic differentiation. The insights gained from the in-vitro system highlight the mechano-transduction significance of kinesin-1 motor proteins in myogenic differentiation. Furthermore, our study confirms that enhancing kinesin-1 activity in the sarcopenic mouse model restores satellite cell expansion, myogenic differentiation, and muscle regeneration. Taken together, our findings provide a potential target for improving muscle regeneration in sarcopenia.
Collapse
Affiliation(s)
- Wan-Yu Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yi-Man Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yin-Quan Chen
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Jong-Wei Lin
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yen-Wenn Liu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Li-Ru You
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| |
Collapse
|
4
|
Zhang SN, Liu Q, Li XZ. Combination of omics, bioinformatics, molecular docking, and experimental validation to elucidate the hepatoprotective effects, mechanisms, and active compounds of Shandougen. Biomed Chromatogr 2024; 38:e5887. [PMID: 38751131 DOI: 10.1002/bmc.5887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024]
Abstract
Omics, bioinformatics, molecular docking, and experimental validation were used to elucidate the hepatoprotective effects, mechanisms, and active compounds of Shandougen (SDG) based on the biolabel-led research pattern. Integrated omics were used to explore the biolabels of SDG intervention in liver tissue. Subsequently, bioinformatics and molecular docking were applied to topologically analyze its therapeutic effects, mechanisms, and active compounds based on biolabels. Finally, an animal model was used to verify the biolabel analysis results. Omics, bioinformatics, and molecular docking revealed that SDG may exert therapeutic effects on liver diseases in the multicompound and multitarget synergistic modes, especially liver cirrhosis. In the validation experiment, SDG and its active compounds (betulinic acid and gallic acid) significantly improved the liver histopathological damage in the CCl4-induced liver cirrhosis model. Meanwhile, they also produced significant inhibitory effects on the focal adhesion pathway (integrin alpha-1, myosin regulatory light chain 2, laminin subunit gamma-1, etc.) and alleviated the associated pathological processes: focal adhesion (focal adhesion kinase 1)-extracellular matrix (collagen alpha-1(IV) chain, collagen alpha-1(VI) chain, and collagen alpha-2(VI) chain) dysfunction, carcinogenesis (alpha-fetoprotein, NH3, and acetylcholinesterase), inflammation (tumor necrosis factor alpha, interleukin-1 [IL-1], IL-6, and IL-10), and oxidative stress (reactive oxygen species, malonaldehyde, and superoxide dismutase). This study provides new evidence and insights for the hepatoprotective effects, mechanisms, and active compounds of SDG.
Collapse
Affiliation(s)
- Shuai-Nan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Xu-Zhao Li
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guian New Area, China
| |
Collapse
|
5
|
Haydak J, Azeloglu EU. Role of biophysics and mechanobiology in podocyte physiology. Nat Rev Nephrol 2024; 20:371-385. [PMID: 38443711 DOI: 10.1038/s41581-024-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.
Collapse
Affiliation(s)
- Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Safari F, Bararpour S, Omidi Chomachaei F. The suppression of cell motility through the reduction of FAK activity and expression of cell adhesion proteins by hAMSCs secretome in MDA-MB-231 breast cancer cells. Invest New Drugs 2024; 42:272-280. [PMID: 38536544 DOI: 10.1007/s10637-024-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/20/2024] [Indexed: 06/11/2024]
Abstract
Breast cancer is a leading cause of death in women worldwide. Cancer therapy based on stem cells is considered as a novel and promising platform. In the present study, we explore the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) through the reduction of focal adhesion kinase (FAK) activity, SHP-2, and cell adhesion proteins such as Paxillin, Vinculin, Fibronectin, Talin, and integrin αvβ3 expression in MDA-MB-231 breast cancer cells. For this purpose, we employed a co-culture system using 6-well plate transwell. After 72 h, hAMSCs-treated MDA-MB-231 breast cancer cells, the activity of focal adhesion kinase (FAK) and the expression of SHP-2 and cell adhesion proteins such as Paxillin, Vinculin, Fibronectin, Talin, and integrin αvβ3 expression were analyzed using western blot. The shape and migration of cells were also analyzed. Based on our results, a significant reduction in tumor cell motility through downregulation of the tyrosine phosphorylation level of FAK (at Y397 and Y576/577 sites) and cell adhesion expression in MDA-MB-231 breast cancer cells was demonstrated. Our findings indicate that hAMSCS secretome has therapeutic effects on cancer cell migration through downregulation of FAK activity and expression of cell adhesion proteins.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Setareh Bararpour
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | | |
Collapse
|
7
|
Solomatina ES, Kovaleva AV, Tvorogova AV, Vorobjev IA, Saidova AA. Effect of Focal Adhesion Kinase and Vinculin Expression on Migration Parameters of Normal and Tumor Epitheliocytes. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:474-486. [PMID: 38648767 DOI: 10.1134/s0006297924030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 04/25/2024]
Abstract
Focal adhesions (FAs) are mechanosensory structures that transform physical stimuli into chemical signals guiding cell migration. Comprehensive studies postulate correlation between the FA parameters and cell motility metrics for individual migrating cells. However, which properties of the FAs are critical for epithelial cell motility in a monolayer remains poorly elucidated. We used high-throughput microscopy to describe relationship between the FA parameters and cell migration in immortalized epithelial keratinocytes (HaCaT) and lung carcinoma cells (A549) with depleted or inhibited vinculin and focal adhesion kinase (FAK) FA proteins. To evaluate relationship between the FA morphology and cell migration, we used substrates with varying stiffness in the model of wound healing. Cells cultivated on fibronectin had the highest FA area values, migration rate, and upregulated expression of FAK and vinculin mRNAs, while the smallest FA area and slower migration rate to the wound were specific to cells cultivated on glass. Suppression of vinculin expression in both normal and tumor cells caused decrease of the FA size and fluorescence intensity but did not affect cell migration into the wound. In contrast, downregulation or inactivation of FAK did not affect the FA size but significantly slowed down the wound closure rate by both HaCaT and A549 cell lines. We also showed that the FAK knockdown results in the FA lifetime decrease for the cells cultivated both on glass and fibronectin. Our data indicate that the FA lifetime is the most important parameter defining migration of epithelial cells in a monolayer. The observed change in the cell migration rate in a monolayer caused by changes in expression/activation of FAK kinase makes FAK a promising target for anticancer therapy of lung carcinoma.
Collapse
Affiliation(s)
- Evgenia S Solomatina
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia V Kovaleva
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anna V Tvorogova
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Belozersky Research Institute of Physico-Chemical Biology, Moscow, 119991, Russia
| | - Ivan A Vorobjev
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
| | - Aleena A Saidova
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
8
|
Gao S, He L, Lam CK, Taylor MRG, Mestroni L, Lombardi R, Chen SN. Filamin C Deficiency Impairs Sarcomere Stability and Activates Focal Adhesion Kinase through PDGFRA Signaling in Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Cells 2024; 13:278. [PMID: 38334670 PMCID: PMC10854597 DOI: 10.3390/cells13030278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Truncating mutations in filamin C (FLNC) are associated with dilated cardiomyopathy and arrhythmogenic cardiomyopathy. FLNC is an actin-binding protein and is known to interact with transmembrane and structural proteins; hence, the ablation of FLNC in cardiomyocytes is expected to dysregulate cell adhesion, cytoskeletal organization, sarcomere structural integrity, and likely nuclear function. Our previous study showed that the transcriptional profiles of FLNC homozygous deletions in human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly comparable to the transcriptome profiles of hiPSC-CMs from patients with FLNC truncating mutations. Therefore, in this study, we used CRISPR-Cas-engineered hiPSC-derived FLNC knockout cardiac myocytes as a model of FLNC cardiomyopathy to determine pathogenic mechanisms and to examine structural changes caused by FLNC deficiency. RNA sequencing data indicated the significant upregulation of focal adhesion signaling and the dysregulation of thin filament genes in FLNC-knockout (FLNCKO) hiPSC-CMs compared to isogenic hiPSC-CMs. Furthermore, our findings suggest that the complete loss of FLNC in cardiomyocytes led to cytoskeletal defects and the activation of focal adhesion kinase. Pharmacological inhibition of PDGFRA signaling using crenolanib (an FDA-approved drug) reduced focal adhesion kinase activation and partially normalized the focal adhesion signaling pathway. The findings from this study suggest the opportunity in repurposing FDA-approved drug as a therapeutic strategy to treat FLNC cardiomyopathy.
Collapse
Affiliation(s)
- Shanshan Gao
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Lingaonan He
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Chi Keung Lam
- Department of Biological Sciences, University of Delaware, Newark, NE 19716, USA;
| | - Matthew R. G. Taylor
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| | - Raffaella Lombardi
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
- Department of Advanced Biomedical Sciences, “Federico II” University of Naples, 80138 Naples, Italy
| | - Suet Nee Chen
- University of Colorado Cardiovascular Institute, University of Colorado-Anschutz Medical and Boulder Campuses, Aurora, CO 80045, USA; (S.G.); (L.H.); (M.R.G.T.); (L.M.); (R.L.)
| |
Collapse
|
9
|
Wu HM, Chen LH, Chiu WJ, Tsai CL. Kisspeptin Regulates Cell Invasion and Migration in Endometrial Cancer. J Endocr Soc 2024; 8:bvae001. [PMID: 38264268 PMCID: PMC10805434 DOI: 10.1210/jendso/bvae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 01/25/2024] Open
Abstract
Kisspeptin (a product of the KISS1 gene and its receptor) plays an important role in obstetrics, gynecology, and cancer cell metastasis and behavior. In hypothalamic-pituitary-gonadal axis and placentation, Kisspeptin/Kisspeptin receptor affects hormone release and represses trophoblast invasion into maternal deciduae. Endometrial cancer is one of the common gynecological cancers and is usually accompanied by metastasis, the risk factor that causes death. Recently, research has demonstrated that Kisspeptin/Kisspeptin receptor expression in aggressive-stage endometrial cancer tissues. However, the detailed mechanism of Kisspeptin/Kisspeptin receptor in regulating the motility of endometrial cancers is not well understood. In this study, we use endometrial cancer cell lines RL95-2, Ishikawa, HEC-1-A, and HEC-1-B as models to explore the molecular mechanism of Kisspeptin on cell motility. First, we discovered that Kisspeptin/Kisspeptin receptor was expressed in endometrial cancer cells, and Kisspeptin significantly regulated the migration and invasion of endometrial cancer cells. Furthermore, we explored the epithelial-mesenchymal transition marker expression and the underlying signals were regulated on Kisspeptin treatment. In conclusion, we suggest that Kisspeptin regulates endometrial cancer cell motility via FAK and Src expression and the ERK1/2, N-Cadherin, E-Cadherin, beta-Catenin, Twist, and matrix metalloproteinase signaling pathways. We expect these molecules could be candidates for the development of new approaches and therapeutic targets.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Wei-Jung Chiu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Chia-Lung Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| |
Collapse
|
10
|
Prasad P, Billah Khair AM, Venkatesan K, Shahwan M, Shamsi A. Molecular and functional insight into focal adhesion kinases: Therapeutic implications for oral malignancies. Drug Discov Today 2024; 29:103852. [PMID: 38070702 DOI: 10.1016/j.drudis.2023.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Oral carcinoma is the sixth most common cancer globally, with one death occurring every hour. Focal adhesion kinase (FAK) is an intercellular protein tyrosine kinase, a key indicator of the development of oral cancer. FAK overexpression leads to the initiation and significant progression of metastasis in head and neck cancers, indicating its vital role in cancer progression and potential as a biomarker for early oral malignant transformation. The present review elaborates on FAK's function in oral malignancies since it could serve as a biomarker of the initial stages of oral malignant transformation and a possible predictive factor for risk assessment.
Collapse
Affiliation(s)
- Prathibha Prasad
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Al-Moutassem Billah Khair
- Basic Medical and Dental Sciences Department, College of Dentistry, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Moyad Shahwan
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
11
|
Mubtasim N, Gollahon L. The Effect of Adipocyte-Secreted Factors in Activating Focal Adhesion Kinase-Mediated Cell Signaling Pathway towards Metastasis in Breast Cancer Cells. Int J Mol Sci 2023; 24:16605. [PMID: 38068928 PMCID: PMC10706115 DOI: 10.3390/ijms242316605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Obesity-associated perturbations in the normal secretion of adipocytokines from white adipocytes can drive the metastatic progression of cancer. However, the association between obesity-induced changes in secretory factors of white adipocytes and subsequent transactivation of the downstream effector proteins impacting metastasis in breast cancer cells remains unclear. Focal adhesion kinase, a cytoplasmic signal transducer, regulates the biological phenomenon of metastasis by activating downstream targets such as beta-catenin and MMP9. Thus, the possible role of phosphorylated FAK in potentiating cancer cell migration was investigated. To elucidate this potential relationship, MCF7 (ER+), MDA-MB-231 (Triple Negative) breast cancer cells, and MCF-10A non-tumorigenic breast cells were exposed to in vitro murine adipocyte-conditioned medium derived from 3T3-L1 MBX cells differentiated to obesity with fatty acid supplementation. Our results show that the conditioned medium derived from these obese adipocytes enhanced motility and invasiveness of breast cancer cells. Importantly, no such changes were observed in the non-tumorigenic breast cells. Our results also show that increased FAK autophosphorylation was followed by increased expression of beta-catenin and MMP9 in the breast cancer cells when exposed to obese adipocyte-conditioned medium, but not in the MCF10A cells. These results indicate that adipocyte-derived secretory factors induced FAK activation through phosphorylation. This in turn increased breast cancer cell migration and invasion by activating its downstream effector proteins beta-catenin and MMP9.
Collapse
Affiliation(s)
- Noshin Mubtasim
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA;
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA;
- Obesity Research Institute, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| |
Collapse
|
12
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
13
|
Tarchi SM, Pernia Marin M, Hossain MM, Salvatore M. Breast stiffness, a risk factor for cancer and the role of radiology for diagnosis. J Transl Med 2023; 21:582. [PMID: 37649088 PMCID: PMC10466778 DOI: 10.1186/s12967-023-04457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023] Open
Abstract
Over the last five decades, breast density has been associated with increased risk of developing breast cancer. Mammographically dense breasts are considered those belonging to the heterogeneously dense breasts, and extremely dense breasts subgroups according to the American College of Radiology's Breast Imaging Reporting and Data System (BI-RADS). There is a statistically significant correlation between the increased mammographic density and the presence of more glandular tissue alone. However, the strength of this correlation is weak. Although the mechanisms driving breast density-related tumor initiation and progression are still unknown, there is evidence suggesting that certain molecular pathways participating in epithelial-stromal interactions may play a pivotal role in the deposition of fibrillar collagen, increased matrix stiffness, and cell migration that favor breast density and carcinogenesis. This article describes these molecular mechanisms as potential "landscapers" for breast density-related cancer. We also introduce the term "Breast Compactness" to reflect collagen density of breast tissue on chest CT scan and the use of breast stiffness measurements as imaging biomarkers for breast cancer screening and risk stratification.
Collapse
Affiliation(s)
- Sofia M Tarchi
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Monica Pernia Marin
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Md Murad Hossain
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Mary Salvatore
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
14
|
Woodbury SM, Swanson WB, Mishina Y. Mechanobiology-informed biomaterial and tissue engineering strategies for influencing skeletal stem and progenitor cell fate. Front Physiol 2023; 14:1220555. [PMID: 37520820 PMCID: PMC10373313 DOI: 10.3389/fphys.2023.1220555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Skeletal stem and progenitor cells (SSPCs) are the multi-potent, self-renewing cell lineages that form the hematopoietic environment and adventitial structures of the skeletal tissues. Skeletal tissues are responsible for a diverse range of physiological functions because of the extensive differentiation potential of SSPCs. The differentiation fates of SSPCs are shaped by the physical properties of their surrounding microenvironment and the mechanical loading forces exerted on them within the skeletal system. In this context, the present review first highlights important biomolecules involved with the mechanobiology of how SSPCs sense and transduce these physical signals. The review then shifts focus towards how the static and dynamic physical properties of microenvironments direct the biological fates of SSPCs, specifically within biomaterial and tissue engineering systems. Biomaterial constructs possess designable, quantifiable physical properties that enable the growth of cells in controlled physical environments both in-vitro and in-vivo. The utilization of biomaterials in tissue engineering systems provides a valuable platform for controllably directing the fates of SSPCs with physical signals as a tool for mechanobiology investigations and as a template for guiding skeletal tissue regeneration. It is paramount to study this mechanobiology and account for these mechanics-mediated behaviors to develop next-generation tissue engineering therapies that synergistically combine physical and chemical signals to direct cell fate. Ultimately, taking advantage of the evolved mechanobiology of SSPCs with customizable biomaterial constructs presents a powerful method to predictably guide bone and skeletal organ regeneration.
Collapse
Affiliation(s)
- Seth M. Woodbury
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Chemistry, Ann Arbor, MI, United States
- University of Michigan College of Literature, Science, and Arts, Department of Physics, Ann Arbor, MI, United States
| | - W. Benton Swanson
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| | - Yuji Mishina
- Yuji Mishina Laboratory, University of Michigan School of Dentistry, Department of Biologic and Materials Science & Prosthodontics, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Jiang Y, Liu Y, Zhang Y, Ouyang J, Feng Y, Li S, Wang J, Zhang C, Tan L, Zhong J, Zou L. MicroRNA-142-3P suppresses the progression of papillary thyroid carcinoma by targeting FN1 and inactivating FAK/ERK/PI3K signaling. Cell Signal 2023:110792. [PMID: 37406787 DOI: 10.1016/j.cellsig.2023.110792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
OBJECTIVES miR-142-3P is a tumor suppressor in various malignant cancers. However, the function of miR-142-3P in papillary thyroid carcinoma (PTC) remains to be elucidated. The aim of this study was to explore the function and mechanism of miR-142-3P in PTC. METHODS Real Time Quantitative PCR (RT-qPCR) was used to assess the expression of miR-142-3P and Fibronectin 1 (FN1) in PTC. The correlation between FN1 and miR-142-3P expression was analyzed by Spearman's correlation analysis. Cell Counting Kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EDU) assay, cell migration and invasion assay and wound healing measures evaluated the effect of miR-142-3P and FN1 on cell proliferation, migration and invasion. Dural Luciferase reported gene assay evaluated the interaction between miR-142-3P and 3' untranslated region (UTR) of FN1. The Epithelial-Mesenchymal-Transition (EMT) and apoptosis related marker genes were measured using western blot analysis (WB). RESULTS miR-142-3P was significantly decreased in both PTC specimens and relevant cell lines. Functionally, miR-142-3P inhibited cell proliferation, migration, invasion and EMT, and induced the cell apoptosis in PTC. In addition, miR-142-3P bound directly with 3' UTR of FN1 and negatively regulated the expression of FN1 in PTC. FN1 expression is elevated in PTC, and its aberrant high correlated with declines in recurrence-free survival (RFS). Moreover, FN1 promoted cell proliferation, migration, invasion and EMT, induced cell apoptosis in PTC cells. Depletion of FN1 rescues the effect of miR-142-3P inhibitor on cell proliferation, invasion, apoptosis and EMT via inactivating Focal Adhesion Kinase (FAK)/Extracellular Signal-Regulated Kinase (ERK) / Phosphoinostide 3-kinase (P13K) signaling. CONCLUSION miR-142-3P suppressed cell proliferation, migration, invasion and EMT through modulating FN1/FAK/ERK/PI3K signaling in PTC, suggesting it as a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Yufei Jiang
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China; Aculty of Healty Science, University of Macau, Macau 999078, People's Republic of China
| | - Yarong Liu
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Yiyuan Zhang
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Jielin Ouyang
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Yang Feng
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Shumei Li
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan Province 410005, People's Republic of China; Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Jingjing Wang
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Chaojie Zhang
- Department of Papillary Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China
| | - Lihong Tan
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| | - Jie Zhong
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| | - Lianhong Zou
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province 410005, People's Republic of China.
| |
Collapse
|
16
|
Ignjatović Jocić V, Janković Miljuš J, Išić Denčić T, Živaljević V, Tatić S, Đorić I, Šelemetjev S. Expression of pY397-FAK and Its miR Regulators Drive Dedifferentiation in the Thyroid Neoplasia Spectrum. Cells 2023; 12:1721. [PMID: 37443754 PMCID: PMC10340340 DOI: 10.3390/cells12131721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Thyroid carcinomas are growing malignancies worldwide. They encompass several diagnostic categories with varying degrees of dedifferentiation. Focal adhesion kinase is involved in cellular communication and locomotion. It is regulated on a posttranscriptional level by miR-7, miR-135a, and miR-138 and on a posttranslational level by autophosphorylation at Y397 (pY397-FAK). We related regulators of FAK with histologic dedifferentiation, clinicopathological factors, and differential diagnosis in the thyroid neoplasia spectrum. We classified 82 cases into 5 groups with increasing aggressiveness: healthy tissue, follicular and classical variants of papillary thyroid carcinoma (PTC), dedifferentiated PTC, and anaplastic carcinoma. MiRs were analyzed by RT-qPCR. Protein expression of pY397-FAK was analyzed by immunohistochemistry (separately in the membrane, cytoplasm, and nuclear compartment) and Western blot. All three miRs were upregulated in healthy tissue compared to malignant, while pY397-FAK was downregulated. MiRs and pY397-FAK were not mutually correlated. MiR-135a-5p was decreasing while membranous and cytoplasmic pY397-FAK increased with dedifferentiation. Neither miR correlated with clinicopathological factors. MiR-135a-5p, miR-138-5p, and membranous and cytoplasmic pY397-FAK discriminated the follicular from the classical variant of PTC. Disturbances of FAK regulation on different levels contribute to neoplastic dedifferentiation. pY397-FAK exerts its oncogenic role in the membrane and cytoplasm. Diagnostically, miRs-135a-5p, miR-138-5p, and membranous and cytoplasmic pY397-FAK differentiated between classical and follicular PTC.
Collapse
Affiliation(s)
- Valentina Ignjatović Jocić
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia
| | - Jelena Janković Miljuš
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia
| | - Tijana Išić Denčić
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia
| | - Vladan Živaljević
- Center for Endocrine Surgery, University Clinical Center of Serbia, Doktora Subotića 13, 11000 Belgrade, Serbia
| | - Svetislav Tatić
- Institute for Pathology, Faculty of Medicine, University of Belgrade, Doktora Subotića Starijeg 1, 11000 Belgrade, Serbia
| | - Ilona Đorić
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia
| | - Sonja Šelemetjev
- Department of Endocrinology and Radioimmunology, Institute for the Application of Nuclear Energy—INEP, University of Belgrade, Banatska 31b, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Lee SJ, Kim JE, Jung JW, Choi YJ, Gong JE, Douangdeuane B, Souliya O, Choi YW, Seo SB, Hwang DY. Novel role of Dipterocarpus tuberculatus as a stimulator of focal cell adhesion through the regulation of MLC2/FAK/Akt signaling pathway. Cell Adh Migr 2022; 16:72-93. [PMID: 35615953 PMCID: PMC9154806 DOI: 10.1080/19336918.2022.2073002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To investigate a novel function of Dipterocarpus tuberculatus on focal cell adhesion stimulation, alterations to the regulation of focal cell adhesion-related factors were analyzed in NHDF cells and a calvarial defect rat model after treatment with methanol extracts of D. tuberculatus (MED). MED contained gallic acid, caffeic acid, ellagic acid, and naringenin in high concentrations. The proliferation activity, focal cell adhesion ability, adhesion receptors-mediated signaling pathway in NHDF cells were increased by MED. Also, a dense adhered tissue layer and adherent cells on MED-coated titanium plate (MEDTiP) surfaces were detected during regeneration of calvarial bone. The results of the present study provide novel evidence that MED may stimulate focal cell adhesion in NHDF cells and a calvarial defect rat model.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Jae Won Jung
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Jeong Eun Gong
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Bounleuane Douangdeuane
- Department of products development, Institute of Traditional Medicine, Ministry of Health, Vientiane, Lao PDR
| | - Onevilay Souliya
- Department of products development, Institute of Traditional Medicine, Ministry of Health, Vientiane, Lao PDR
| | - Young Whan Choi
- Department of Horticultural Bioscience, Pusan National University, Miryang, Republic of Korea
| | - Sung Baek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, Pusan National University, Miryang, Republic of Korea
| |
Collapse
|
18
|
Zhu K, Kazim N, Yue J, Yen A. Vacuolin-1 enhances RA-induced differentiation of human myeloblastic leukemia cells: evidence for involvement of a CD11b/FAK/LYN/SLP-76 axis subject to endosomal regulation that drives late differentiation steps. Cell Biosci 2022; 12:179. [PMID: 36329484 PMCID: PMC9635152 DOI: 10.1186/s13578-022-00911-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Retinoic acid(RA), an embryonic morphogen, regulates cell differentiation. Endocytosis regulates receptor signaling that governs such RA-directed cellular processes. Vacuolin-1 is a small molecule that disrupts endocytosis, motivating interest in its effect on RA-induced differentiation/arrest. In HL-60 myeloblastic-leukemia cells, RA causes differentiation evidenced by a progression of cell-surface and functional markers, CD38, CD11b, and finally reactive oxygen species(ROS) production and G1/0 cell cycle arrest in mature cells. RESULTS We found that Vacuolin-1 enhanced RA-induced CD11b, ROS and G1/0 arrest, albeit not CD38. Enhanced CD11b expression was associated with enhanced activation of Focal Adhesion Kinase(FAK). Adding vacuolin-1 enhanced RA-induced tyrosine phosphorylation of FAK, Src Family Kinases(SFKs), and the adaptor protein, SLP-76, expression of which is known to drive RA-induced differentiation. Depleting CD11b cripples late stages of progressive myeloid differentiation, namely G1/0 arrest and inducible ROS production, but not expression of CD38. Loss of NUMB, a protein that supports early endosome maturation, affected RA-induced ROS and G1/0 arrest, but not CD38 expression. CONCLUSION Hence there appears to be a novel CD11b/FAK/LYN/SLP-76 axis subject to endosome regulation which contributes to later stages of RA-induced differentiation. The effects of vacuolin-1 thus suggest a model where RA-induced differentiation consists of progressive stages driven by expression of sequentially-induced receptors.
Collapse
Affiliation(s)
- Kaiyuan Zhu
- grid.448631.c0000 0004 5903 2808Division of Natural and Applied Sciences, Synear Molecular Biology Lab, Duke Kunshan University, Kunshan, China ,grid.464255.4City University of Hong Kong Shenzhen Research Institute, ShenZhen, China
| | - Noor Kazim
- grid.5386.8000000041936877XDepartment of Biomedical Sciences, Cornell University, Ithaca, NY USA
| | - Jianbo Yue
- grid.5386.8000000041936877XDepartment of Biomedical Sciences, Cornell University, Ithaca, NY USA ,grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China ,grid.464255.4City University of Hong Kong Shenzhen Research Institute, ShenZhen, China
| | - Andrew Yen
- grid.5386.8000000041936877XDepartment of Biomedical Sciences, Cornell University, Ithaca, NY USA
| |
Collapse
|
19
|
Chen F, Zhong Z, Zhang C, Lu Y, Chan YT, Wang N, Zhao D, Feng Y. Potential Focal Adhesion Kinase Inhibitors in Management of Cancer: Therapeutic Opportunities from Herbal Medicine. Int J Mol Sci 2022; 23:13334. [PMID: 36362132 PMCID: PMC9659249 DOI: 10.3390/ijms232113334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/15/2024] Open
Abstract
Focal adhesion kinase (FAK) is a multifunctional protein involved in cellular communication, integrating and transducing extracellular signals from cell-surface membrane receptors. It plays a central role intracellularly and extracellularly within the tumor microenvironment. Perturbations in FAK signaling promote tumor occurrence and development, and studies have revealed its biological behavior in tumor cell proliferation, migration, and adhesion. Herein we provide an overview of the complex biology of the FAK family members and their context-dependent nature. Next, with a focus on cancer, we highlight the activities of FAK signaling in different types of cancer and how knowledge of them is being used for screening natural compounds used in herbal medicine to fight tumor development.
Collapse
Affiliation(s)
- Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yuanjun Lu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Di Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Lai C, Cheng M, Ning C, He Y, Zhou Z, Yin Z, Zhu P, Xu Y, Yu P, Xu S. Janus electro-microenvironment membrane with surface-selective osteogenesis/gingival healing ability for guided bone regeneration. Mater Today Bio 2022; 17:100491. [PMID: 36420051 PMCID: PMC9676210 DOI: 10.1016/j.mtbio.2022.100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022] Open
Abstract
Guided bone regeneration is widely applied in clinical practice to treat alveolar bone defects. However, the rate of healing of severe alveolar bone defects is slow, and there is a high incidence of soft tissue wound dehiscence. In this study, we propose a barrier membrane with a Janus electro-microenvironment (JEM) to achieve side-selective bone regeneration and soft tissue healing. The JEM membrane was constructed using a polarized polyvinylidene fluoride ferroelectric membrane with different surface potentials on either side. It promoted osteogenic differentiation and bone regeneration on the negatively polarized side (JEM-) and soft tissue regeneration on the positively polarized side (JEM+). Further investigation revealed that the JEM-mediated promotion of bone formation was related to mitochondrial autophagy, as indicated by depolarization of the mitochondrial membrane potential and the expression of LC3, Pink I, and Parkin. Moreover, the gingival healing promoted by JEM+ was related to oxidative phosphorylation in mitochondria, as indicated by the upregulation of mitochondrial complexes I–V and an increase in ATP generation. The design concept of the JEM provides a new avenue for regulating tissue regeneration between different tissue interfaces.
Collapse
Affiliation(s)
- Chunhua Lai
- Center of Oral Implantology, Stomatological Hospital Southern Medical University, Guangzhou, 510280, China
| | - Mingwei Cheng
- Center of Oral Implantology, Stomatological Hospital Southern Medical University, Guangzhou, 510280, China
| | - Chengyun Ning
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yiheng He
- Center of Oral Implantology, Stomatological Hospital Southern Medical University, Guangzhou, 510280, China
| | - Zhengnan Zhou
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhaoyi Yin
- School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Peijun Zhu
- Center of Oral Implantology, Stomatological Hospital Southern Medical University, Guangzhou, 510280, China
| | - Yan Xu
- Center of Oral Implantology, Stomatological Hospital Southern Medical University, Guangzhou, 510280, China
| | - Peng Yu
- School of Material Science and Engineering, South China University of Technology, Guangzhou, 510641, China
- Corresponding author.
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital Southern Medical University, Guangzhou, 510280, China
- Corresponding author.
| |
Collapse
|
21
|
Stelling-Férez J, Gabaldón JA, Nicolás FJ. Oleanolic acid stimulation of cell migration involves a biphasic signaling mechanism. Sci Rep 2022; 12:15065. [PMID: 36064555 PMCID: PMC9445025 DOI: 10.1038/s41598-022-17553-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Cell migration is a critical process for wound healing, a physiological phenomenon needed for proper skin restoration after injury. Wound healing can be compromised under pathological conditions. Natural bioactive terpenoids have shown promising therapeutic properties in wound healing. Oleanolic acid (OA), a triterpenoid, enhances in vitro and in vivo cell migration. However, the underlying signaling mechanisms and pathways triggered by OA are poorly understood. We have previously shown that OA activates epidermal growth factor receptor (EGFR) and downstream effectors such as mitogen-activated protein (MAP) kinase cascade and c-Jun N-terminal kinase (JNK), leading to c-Jun transcription factor phosphorylation, all of which are involved in migration. We performed protein expression or migration front protein subcellular localization assays, which showed that OA induces c-Jun activation and its nuclear translocation, which precisely overlaps at wound-edge cells. Furthermore, c-Jun phosphorylation was independent of EGFR activation. Additionally, OA promoted actin cytoskeleton and focal adhesion (FA) dynamization. In fact, OA induced the recruitment of regulator proteins to FAs to dynamize these structures during migration. Moreover, OA changed paxillin distribution and activated focal adhesion kinase (FAK) at focal adhesions (FAs). The molecular implications of these observations are discussed.
Collapse
Affiliation(s)
- Javier Stelling-Férez
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos nº135, Guadalupe, 30107, Murcia, Spain.,Regeneration, Molecular Oncology and TGF-ß, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - José Antonio Gabaldón
- Department of Nutrition and Food Technology, Health Sciences PhD Program, Universidad Católica de Murcia (UCAM), Campus de los Jerónimos nº135, Guadalupe, 30107, Murcia, Spain
| | - Francisco José Nicolás
- Regeneration, Molecular Oncology and TGF-ß, Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain.
| |
Collapse
|
22
|
Pittman M, Iu E, Li K, Wang M, Chen J, Taneja N, Jo MH, Park S, Jung WH, Liang L, Barman I, Ha T, Gaitanaros S, Liu J, Burnette D, Plotnikov S, Chen Y. Membrane Ruffling is a Mechanosensor of Extracellular Fluid Viscosity. NATURE PHYSICS 2022; 18:1112-1121. [PMID: 37220497 PMCID: PMC10202009 DOI: 10.1038/s41567-022-01676-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/17/2022] [Indexed: 05/25/2023]
Abstract
Cell behaviour is affected by the physical forces and mechanical properties of the cells and of their microenvironment. The viscosity of extracellular fluid - a component of the cellular microenvironment - can vary by orders of magnitude, but its effect on cell behaviour remains largely unexplored. Using bio-compatible polymers to increase the viscosity of the culture medium, we characterize how viscosity affects cell behaviour. We find that multiple types of adherent cells respond in an unexpected but similar manner to elevated viscosity. In a highly viscous medium, cells double their spread area, exhibit increased focal adhesion formation and turnover, generate significantly greater traction forces, and migrate nearly two times faster. We observe that when cells are immersed in regular medium, these viscosity-dependent responses require an actively ruffling lamellipodium - a dynamic membrane structure at the front of the cell. We present evidence that cells utilize membrane ruffling to sense changes in extracellular fluid viscosity and to trigger adaptive responses.
Collapse
Affiliation(s)
- Matthew Pittman
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Ernest Iu
- Department of Cell & Systems Biology, University of Toronto
| | - Keva Li
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Mingjiu Wang
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University
| | | | - Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| | - Le Liang
- Department of Mechanical Engineering, Johns Hopkins University
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University
| | | | - Jian Liu
- Department of Cell Biology, Johns Hopkins University School of Medicine
| | - Dylan Burnette
- Department of Cell and Developmental Biology, Vanderbilt University
| | | | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University
- Institute for NanoBioTechnology, Johns Hopkins University
- Center for Cell Dynamics, Johns Hopkins University
| |
Collapse
|
23
|
Zhang X, Yao Z, Xue Z, Wang S, Liu X, Hu Y, Zhang Y, Wang J, Li X, Chen A. Resibufogenin Targets the ATP1A1 Signaling Cascade to Induce G2/M Phase Arrest and Inhibit Invasion in Glioma. Front Pharmacol 2022; 13:855626. [PMID: 35656311 PMCID: PMC9152115 DOI: 10.3389/fphar.2022.855626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Resibufogenin (RB) is a major active ingredient in the traditional Chinese medicine Chansu and has garnered considerable attention for its efficacy in the treatment of cancer. However, the anticancer effects and underlying mechanisms of RB on glioblastoma (GBM) remain unknown. Here, we found that RB induced G2/M phase arrest and inhibited invasion in a primary GBM cell line, P3#GBM, and two GBM cell lines, U251 and A172. Subsequently, we demonstrated that RB-induced G2/M phase arrest occurred through downregulation of CDC25C and upregulation of p21, which was caused by activation of the MAPK/ERK pathway, and that RB inhibited GBM invasion by elevating intercellular Ca2+ to suppress the Src/FAK/Paxillin focal adhesion pathway. Intriguingly, we confirmed that upon RB binding to ATP1A1, Na+-K+-ATPase was activated as a receptor and then triggered the intracellular MAPK/ERK pathway and Ca2+-mediated Src/FAK/Paxillin focal adhesion pathway, which led to G2/M phase arrest and inhibited the invasion of GBM cells. Taken together, our findings reveal the antitumor mechanism of RB by targeting the ATP1A1 signaling cascade and two key signaling pathways and highlight the potential of RB as a new class of promising anticancer agents.
Collapse
Affiliation(s)
- Xun Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Zhong Yao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Shuai Wang
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Xuemeng Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yaotian Hu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Yan Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.,Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling and Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
24
|
Gomes DA, Joubert AM, Visagie MH. In Vitro Effects of Papaverine on Cell Migration and Vascular Endothelial Growth Factor in Cancer Cell Lines. Int J Mol Sci 2022; 23:4654. [PMID: 35563045 PMCID: PMC9104338 DOI: 10.3390/ijms23094654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Papaverine (PPV) is a benzylisoquinoline alkaloid isolated from Papaver somniferum that exerts antiproliferative activity. However, several questions remain regarding the biochemical pathways affected by PPV in tumourigenic cells. In this study, the influence of PPV on cell migration (light microscopy), expression of vascular endothelial growth factor (VEGF) B, VEGF R1, VEGF R2, and phosphorylated focal adhesion kinase (pFAK) were investigated using spectrophotometry in MDA-MB-231-, A549- and DU145 cell lines. The migration assay revealed that, after 48 h, PPV (100 µM) reduced cell migration to 81%, 91%, and 71% in MDA-MB-231-, A549-, and DU145 cells, respectively. VEGF B expression was reduced to 0.79-, 0.71-, and 0.73-fold after 48 h of exposure to PPV in MDA-MB-231-, A549- and DU145 cells, while PPV exposure of 48 h increased VEGF R1 expression in MDA-MB-231- and DU145 cells to 1.38 and 1.46. A fold decrease in VEGF R1 expression was observed in A549 cells to 0.90 after exposure to 150 µM. No statistically significant effects were observed on VEGF R2- and FAK expression after exposure to PPV. This study contributes to the understanding of the effects of a phytomedicinal alkaloid compound in cancer cells and may provide novel approaches to the application of non-addictive alkaloids.
Collapse
Affiliation(s)
| | | | - Michelle Helen Visagie
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa; (D.A.G.); (A.M.J.)
| |
Collapse
|
25
|
Phosphorylation of Focal Adhesion Kinase at Y925: Role in Glia-Dependent and Independent Migration through Regulating Cofilin and N-Cadherin. Mol Neurobiol 2022; 59:3467-3484. [PMID: 35325397 DOI: 10.1007/s12035-022-02773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
The adult neocortex is a six-layered structure, consisting of nearly continuous layers of neurons that are generated in a temporally strictly coordinated order. During development, cortical neurons originating from the ventricular zone migrate toward the Reelin-containing marginal zone in an inside-out arrangement. Focal adhesion kinase (FAK), one tyrosine kinase localizing to focal adhesions, has been shown to be phosphorylated at tyrosine 925 (Y925) by Src, an important downstream molecule of Reelin signaling. Up to date, the precise molecular mechanisms of FAK and its phosphorylation at Y925 during neuronal migration are still unclear. Combining in utero electroporation with immunohistochemistry and live imaging, we examined the function of FAK in regulating neuronal migration. We show that phosphorylated FAK is colocalized with Reelin positive Cajal-Retzius cells in the developing neocortex and hippocampus. Phosphorylation of FAK at Y925 is significantly reduced in reeler mice. Overexpression and dephosphorylation of FAK impair locomotion and translocation, resulting in migration inhibition and dislocation of both late-born and early-born neurons. These migration defects are highly correlated to the function of FAK in regulating cofilin phosphorylation and N-Cadherin expression, both are involved in Reelin signaling pathway. Thus, fine-tuned phosphorylation of focal adhesion kinase at Y925 is crucial for both glia-dependent and independent neuronal migration.
Collapse
|
26
|
MCPIP1 regulates focal adhesion kinase and rho GTPase-dependent migration in clear cell renal cell carcinoma. Eur J Pharmacol 2022; 922:174804. [DOI: 10.1016/j.ejphar.2022.174804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/18/2022]
|
27
|
Leng J, Dai X, Cheng X, Zhou H, Wang D, Zhao J, Ma K, Cui C, Wang L, Guo Z. Biomimetic Cucurbitacin B-Polydopamine Nanoparticles for Synergistic Chemo-Photothermal Therapy of Breast Cancer. Front Bioeng Biotechnol 2022; 10:841186. [PMID: 35223801 PMCID: PMC8864241 DOI: 10.3389/fbioe.2022.841186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer is the most common malignant tumor in women. Researchers have found that the combined use of multiple methods to treat tumors is a promising strategy. Here, we have developed a biomimetic nano-platform PDA@MB for tumor targeted photothermal therapy (PTT) combined with chemotherapy. The 4T1 cell membrane loaded with cucurbitacin B (CuB) was used to coat polydopamine (PDA) nanoparticles, which gave PDA@MB nanoparticles the ability to target tumors and escape immune cells from phagocytosis. PDA@MB showed excellent photothermal performance including high photothermal conversion efficiency and photostability, and exhibited outstanding in vitro PTT effect under NIR laser irradiation. The high temperature ruptured the PDA@MB membrane to release CuB, which changed the tumor hypoxic environment, down-regulated the FAK/MMP signaling pathway, and significantly inhibited the metastasis and proliferation of tumor cells. The results of in vivo experiments indicated that the tumor growth of the 4T1 mouse tumor model was significantly inhibited. Additionally, toxicity studies showed that PDA@MB had good biocompatibility and safety. In conclusion, this study provides a promising chemo-photothermal therapy (CPT) nano-platform for precise and effective breast cancer therapy.
Collapse
Affiliation(s)
- Junke Leng
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiaofeng Dai
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiao Cheng
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Hao Zhou
- School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Dong Wang
- Panjin People’s Hospital, Panjin, China
| | - Jing Zhao
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Kun Ma
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Changhao Cui
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Li Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Zhaoming Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
- *Correspondence: Zhaoming Guo,
| |
Collapse
|
28
|
Villanueva AA, Sanchez-Gomez P, Muñoz-Palma E, Puvogel S, Casas BS, Arriagada C, Peña-Villalobos I, Lois P, Ramírez Orellana M, Lubieniecki F, Casco Claro F, Gallegos I, García-Castro J, Torres VA, Palma V. The Netrin-1-Neogenin-1 signaling axis controls neuroblastoma cell migration via integrin-β1 and focal adhesion kinase activation. Cell Adh Migr 2021; 15:58-73. [PMID: 33724150 PMCID: PMC7971226 DOI: 10.1080/19336918.2021.1892397] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
Neuroblastoma is a highly metastatic tumor that emerges from neural crest cell progenitors. Focal Adhesion Kinase (FAK) is a regulator of cell migration that binds to the receptor Neogenin-1 and is upregulated in neuroblastoma. Here, we show that Netrin-1 ligand binding to Neogenin-1 leads to FAK autophosphorylation and integrin β1 activation in a FAK dependent manner, thus promoting neuroblastoma cell migration. Moreover, Neogenin-1, which was detected in all tumor stages and was required for neuroblastoma cell migration, was found in a complex with integrin β1, FAK, and Netrin-1. Importantly, Neogenin-1 promoted neuroblastoma metastases in an immunodeficient mouse model. Taken together, these data show that Neogenin-1 is a metastasis-promoting protein that associates with FAK, activates integrin β1 and promotes neuroblastoma cell migration.
Collapse
Affiliation(s)
- Andrea A. Villanueva
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| | - Pilar Sanchez-Gomez
- Neurooncology Unit, Unidad Funcional de Investigación en Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ernesto Muñoz-Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| | - Sofía Puvogel
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| | - Bárbara S. Casas
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| | - Cecilia Arriagada
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Olivos 943, Independencia, Santiago, Chile
| | - Isaac Peña-Villalobos
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| | - Pablo Lois
- Postgraduate in Education Department, Faculty of Humanities, Universidad Mayor. Santiago, Chile
| | - Manuel Ramírez Orellana
- Postgraduate in Education Department, Faculty of Humanities, Universidad Mayor. Santiago, Chile
| | | | | | - Iván Gallegos
- Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Javier García-Castro
- Cellular Biotechnology Unit, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, ISCIII, Madrid, Spain
| | - Vicente A. Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Olivos 943, Independencia, Santiago, Chile
| | - Verónica Palma
- Laboratory of Stem Cells and Developmental Biology, Faculty of Sciences. Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inorganic nanoparticles have emerged as an attractive theranostic tool applied to different pathologies such as cancer. However, the increment in inorganic nanoparticle application in biomedicine has prompted the scientific community to assess their potential toxicities, often preventing them from entering clinical settings. Cytoskeleton network and the related adhesomes nest are present in most cellular processes such as proliferation, migration, and cell death. The nanoparticle treatment can interfere with the cytoskeleton and adhesome dynamics, thus inflicting cellular damage. Therefore, it is crucial dissecting the molecular mechanisms involved in nanoparticle cytotoxicity. This review will briefly address the main characteristics of different adhesion structures and focus on the most relevant effects of inorganic nanoparticles with biomedical potential on cellular adhesome dynamics. Besides, the review put into perspective the use of inorganic nanoparticles for cytoskeleton targeting or study as a versatile tool. The dissection of the molecular mechanisms involved in the nanoparticle-driven interference of adhesome dynamics will facilitate the future development of nanotheranostics targeting cytoskeleton and adhesomes to tackle several diseases, such as cancer.
Collapse
|
30
|
Brullo C, Tasso B. New Insights on Fak and Fak Inhibitors. Curr Med Chem 2021; 28:3318-3338. [PMID: 33143618 DOI: 10.2174/0929867327666201103162239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Focal adhesion kinase (Fak) is a cytoplasmic protein tyrosine kinase overexpressed and activated in different solid cancers; it has shown an important role in metastasis formation, cell migration, invasion and angiogenesis and consequently it has been proposed as a potential target in cancer therapy, particularly in a metastatic phase. In recent years, different investigations have highlighted the importance of new Fak inhibitors as potential anti-cancer drugs, but other studies evidenced its role in different pathologies related to the cardiac function or viral infection. METHODS An extensive bibliographic research (104 references) has been done concerning the structure of Fak, its importance in tumor development, but also in other pathologies currently under study. The compounds currently subjected to clinical studies were therefore treated using the appropriate databases. Finally, the main chemical scaffolds currently under preclinical investigation were analyzed, focusing on their molecular structures and on the activity structure relationships (SAR). RESULTS At the moment, only a few reversible ATP-competitive inhibitors are under investigation in pre-clinical studies and clinical trials. Other compounds, with different chemical scaffolds, are investigated to obtain more active and selective Fak inhibitors. This mini-review is a summary of different Fak functions in cancer and other pathologies; the compounds today in clinical trials and the recent chemical scaffolds (also included in patents) giving the most interesting results are investigated. In addition, PROTAC molecules are reported. CONCLUSION All reported results evidenced that additional studies are necessary to design and synthesize new selective and more active compounds, although promising information has been obtained from associations between Fak inhibitors and other different anti- cancer drugs. In addition, the other important roles evidenced, both at the nuclear level and in non-cancerous cells, make this protein an increasingly important target in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Chiara Brullo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| | - Bruno Tasso
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| |
Collapse
|
31
|
Abdollahiyan P, Oroojalian F, Baradaran B, de la Guardia M, Mokhtarzadeh A. Advanced mechanotherapy: Biotensegrity for governing metastatic tumor cell fate via modulating the extracellular matrix. J Control Release 2021; 335:596-618. [PMID: 34097925 DOI: 10.1016/j.jconrel.2021.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022]
Abstract
Mechano-transduction is the procedure of mechanical stimulus translation via cells, among substrate shear flow, topography, and stiffness into a biochemical answer. TAZ and YAP are transcriptional coactivators which are recognized as relay proteins that promote mechano-transduction within the Hippo pathway. With regard to healthy cells in homeostasis, mechano-transduction regularly restricts proliferation, and TAZ and YAP are totally inactive. During cancer development a YAP/TAZ - stimulating positive response loop is formed between the growing tumor and the stiffening ECM. As tumor developments, local stromal and cancerous cells take advantage of mechanotransduction to enhance proliferation, induce their migratory into remote tissues, and promote chemotherapeutic resistance. As a newly progresses paradigm, nanoparticle-conjunctions (such as magnetic nanoparticles, and graphene derivatives nanoparticles) hold significant promises for remote regulation of cells and their relevant events at molecular scale. Despite outstanding developments in employing nanoparticles for drug targeting studies, the role of nanoparticles on cellular behaviors (proliferation, migration, and differentiation) has still required more evaluations in the field of mechanotherapy. In this paper, the in-depth contribution of mechano-transduction is discussed during tumor progression, and how these consequences can be evaluated in vitro.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Šimoliūnas E, Ivanauskienė I, Bagdzevičiūtė L, Rinkūnaitė I, Alksnė M, Baltriukienė D. Surface stiffness depended gingival mesenchymal stem cell sensitivity to oxidative stress. Free Radic Biol Med 2021; 169:62-73. [PMID: 33862162 DOI: 10.1016/j.freeradbiomed.2021.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) are widely used in the fields of cell therapy and tissue engineering, due to their wide spectrum of differentiation potential, immunomodulation function and ongoing oxidative stress (OS) reduction. Nevertheless, OS impact is often overlooked in these research fields. It is not only responsible for the induction and development of many ailments, e.g., diabetes, lung fibrosis, and cancer, moreover, OS causes stem cell death and senescence during cell therapy and tissue engineering practices. As MSCs are used to treat various tissues, they interact with different tissue-specific mechanical environments, thus it is important to understand how the mechanical environment impacts MSC sensitivity to OS. In this work, for the first time, as known to the authors, it was shown that gingival MSCs (GMSCs) sensitivity to OS depends on the stiffness of the surface, on which the cells are grown. Furthermore, the activity and expression of mitogen activated protein kinases ERK, JNK, and p38 were surface stiffness dependent. GMSCs isolated from intermediate/stiff gingiva tissue (~20 kPa) have shown the best proliferative and survival properties, then grown on the stiffest tissues mimicking polyacrylamide hydrogels (40 kPa). Therefore, MSC source might determine their sensitivity to OS in different stiffness environments and should be accounted when developing a treatment strategy.
Collapse
Affiliation(s)
- Egidijus Šimoliūnas
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Indrė Ivanauskienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Lina Bagdzevičiūtė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ieva Rinkūnaitė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Milda Alksnė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
33
|
Lehman CE, Spencer A, Hall S, Shaw JJP, Wulfkuhle J, Petricoin EF, Bekiranov S, Jameson MJ, Gioeli D. IGF1R and Src inhibition induce synergistic cytotoxicity in HNSCC through inhibition of FAK. Sci Rep 2021; 11:10826. [PMID: 34031486 PMCID: PMC8144381 DOI: 10.1038/s41598-021-90289-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
Head and neck cancer is the sixth most common cancer worldwide with a 5-year survival of only 65%. Targeting compensatory signaling pathways may improve therapeutic responses and combat resistance. Utilizing reverse phase protein arrays (RPPA) to assess the proteome and explore mechanisms of synergistic growth inhibition in HNSCC cell lines treated with IGF1R and Src inhibitors, BMS754807 and dasatinib, respectively, we identified focal adhesion signaling as a critical node. Focal Adhesion Kinase (FAK) and Paxillin phosphorylation were decreased as early as 15 min after treatment, and treatment with a FAK inhibitor, PF-562,271, was sufficient to decrease viability in vitro. Treatment of 3D spheroids demonstrated robust cytotoxicity suggesting that the combination of BMS754807 and dasatinib is effective in multiple experimental models. Furthermore, treatment with BMS754807 and dasatinib significantly decreased cell motility, migration, and invasion in multiple HNSCC cell lines. Most strikingly, treatment with BMS754807 and dasatinib, or a FAK inhibitor alone, significantly increased cleaved-PARP in human ex-vivo HNSCC patient tissues demonstrating a potential clinical utility for targeting FAK or the combined targeting of the IGF1R with Src. This ex-vivo result further confirms FAK as a vital signaling node of this combinatorial treatment and demonstrates therapeutic potential for targeting FAK in HNSCC patients.
Collapse
Affiliation(s)
- Christine E Lehman
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Adam Spencer
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah Hall
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jeremy J P Shaw
- Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mark J Jameson
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
- UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Daniel Gioeli
- Department of Microbiology Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
34
|
Hypoxia-inducible factor-dependent ADAM12 expression mediates breast cancer invasion and metastasis. Proc Natl Acad Sci U S A 2021; 118:2020490118. [PMID: 33952697 DOI: 10.1073/pnas.2020490118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer patients with increased expression of hypoxia-inducible factors (HIFs) in primary tumor biopsies are at increased risk of metastasis, which is the major cause of breast cancer-related mortality. The mechanisms by which intratumoral hypoxia and HIFs regulate metastasis are not fully elucidated. In this paper, we report that exposure of human breast cancer cells to hypoxia activates epidermal growth factor receptor (EGFR) signaling that is mediated by the HIF-dependent expression of a disintegrin and metalloprotease 12 (ADAM12), which mediates increased ectodomain shedding of heparin-binding EGF-like growth factor, an EGFR ligand, leading to EGFR-dependent phosphorylation of focal adhesion kinase. Inhibition of ADAM12 expression or activity decreased hypoxia-induced breast cancer cell migration and invasion in vitro, and dramatically impaired lung metastasis after orthotopic implantation of MDA-MB-231 human breast cancer cells into the mammary fat pad of immunodeficient mice.
Collapse
|
35
|
Meagher PB, Lee XA, Lee J, Visram A, Friedberg MK, Connelly KA. Cardiac Fibrosis: Key Role of Integrins in Cardiac Homeostasis and Remodeling. Cells 2021; 10:cells10040770. [PMID: 33807373 PMCID: PMC8066890 DOI: 10.3390/cells10040770] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is a common finding that is associated with the progression of heart failure (HF) and impacts all chambers of the heart. Despite intense research, the treatment of HF has primarily focused upon strategies to prevent cardiomyocyte remodeling, and there are no targeted antifibrotic strategies available to reverse cardiac fibrosis. Cardiac fibrosis is defined as an accumulation of extracellular matrix (ECM) proteins which stiffen the myocardium resulting in the deterioration cardiac function. This occurs in response to a wide range of mechanical and biochemical signals. Integrins are transmembrane cell adhesion receptors, that integrate signaling between cardiac fibroblasts and cardiomyocytes with the ECM by the communication of mechanical stress signals. Integrins play an important role in the development of pathological ECM deposition. This review will discuss the role of integrins in mechano-transduced cardiac fibrosis in response to disease throughout the myocardium. This review will also demonstrate the important role of integrins as both initiators of the fibrotic response, and modulators of fibrosis through their effect on cardiac fibroblast physiology across the various heart chambers.
Collapse
Affiliation(s)
- Patrick B. Meagher
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Xavier Alexander Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Joseph Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Aylin Visram
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Mark K. Friedberg
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Labatt Family Heart Center and Department of Paediatrics, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kim A. Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +141-686-45201
| |
Collapse
|
36
|
Gao WJ, Liu JX, Xie Y, Luo P, Liu ZQ, Liu L, Zhou H. Suppression of macrophage migration by down-regulating Src/FAK/P130Cas activation contributed to the anti-inflammatory activity of sinomenine. Pharmacol Res 2021; 167:105513. [PMID: 33617975 DOI: 10.1016/j.phrs.2021.105513] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/01/2023]
Abstract
A large number of macrophages in inflamed sites not only amplify the severity of inflammatory responses but also contribute to the deleterious progression of many chronic inflammatory diseases, autoimmune diseases and cancers. Macrophage migration is a prerequisite for their entry into inflammatory sites and their participation of macrophages in the pathologic processes. Inhibition of macrophage migration is therefore a potential anti-inflammatory mechanism. Moreover, alleviation of inflammation also prevents the macrophages infiltration. Sinomenine (SIN) is an alkaloid derived from the Chinese medicinal plant Sinomenium acutum. It has multiple pharmacological effects, including anti-inflammation, immunosuppression, and anti-arthritis. However, its anti-inflammatory molecular mechanisms and effect on macrophage migration are not fully understood. The purpose of this research was to investigate the pharmacological effects and the molecular mechanism of SIN on macrophage migration in vivo and in vitro as well as to elucidate its anti-inflammatory mechanisms associated with macrophage migration. Our results showed that SIN reduced the number of RAW264.7 cells migrating into inflammatory paws and blocked lipopolysaccharide (LPS)-induced RAW264.7 cells and bone marrow-derived macrophages (BMDMs) migration in vitro. Furthermore, SIN attenuated the 3D mesenchymal migration of BMDMs. The absence of macrophage migration after circulatory and periphery macrophages depletion led to a reduction in the severity of inflammatory response. In macrophages depleted (macrophages-/-) mice, as inflammatory severity decreased, RAW264.7 cells migration was suppressed. A non-obvious effect of SIN on the inflammatory response was found in macrophages-/- mice, while the inhibitory effect of SIN on RAW264.7 cells migration was still observed. Furthermore, the migration of RAW264.7 cells pre-treated with SIN was suppressed in normal mice. Finally, Src/focal adhesion kinase (FAK)/P130Cas axis activation, which supports macrophages mesenchymal migration, and iNOS expression, NO production, integrin αV and in integrin β3 expressions, which promote Src/FAK/P130Cas activation, were down-regulated by SIN. However, SIN had no obvious effect on the expression of the monocyte chemoattractant protein-1 (MCP-1), which is an important chemokine for macrophage migration. These results indicated that SIN significantly inhibited macrophage mesenchymal migration by down-regulating on Src/FAK/P130Cas axis activation. There was a mutual regulatory correlation between the inflammatory response and macrophage migration, and the effects of SIN on macrophage migration were involved in its anti-inflammatory activity.
Collapse
Affiliation(s)
- Wan-Jiao Gao
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua City, Hunan Province, PR China
| | - Yie Xie
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Pei Luo
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Liang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, PR China; Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
37
|
Dexamethasone accelerates muscle regeneration by modulating kinesin-1-mediated focal adhesion signals. Cell Death Discov 2021; 7:35. [PMID: 33597503 PMCID: PMC7889929 DOI: 10.1038/s41420-021-00412-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 01/11/2023] Open
Abstract
During differentiation, skeletal muscle develops mature multinucleated muscle fibers, which could contract to exert force on a substrate. Muscle dysfunction occurs progressively in patients with muscular dystrophy, leading to a loss of the ability to walk and eventually to death. The synthetic glucocorticoid dexamethasone (Dex) has been used therapeutically to treat muscular dystrophy by an inhibition of inflammation, followed by slowing muscle degeneration and stabilizing muscle strength. Here, in mice with muscle injury, we found that Dex significantly promotes muscle regeneration via promoting kinesin-1 motor activity. Nevertheless, how Dex promotes myogenesis through kinesin-1 motors remains unclear. We found that Dex directly increases kinesin-1 motor activity, which is required for the expression of a myogenic marker (muscle myosin heavy chain 1/2), and also for the process of myoblast fusion and the formation of polarized myotubes. Upon differentiation, kinesin-1 mediates the recruitment of integrin β1 onto microtubules allowing delivery of the protein into focal adhesions. Integrin β1-mediated focal adhesion signaling then guides myoblast fusion towards a polarized morphology. By imposing geometric constrains via micropatterns, we have proved that cell adhesion is able to rescue the defects caused by kinesin-1 inhibition during the process of myogenesis. These discoveries reveal a mechanism by which Dex is able to promote myogenesis, and lead us towards approaches that are more efficient in improving skeletal muscle regeneration.
Collapse
|
38
|
Sanookpan K, Nonpanya N, Sritularak B, Chanvorachote P. Ovalitenone Inhibits the Migration of Lung Cancer Cells via the Suppression of AKT/mTOR and Epithelial-to-Mesenchymal Transition. Molecules 2021; 26:molecules26030638. [PMID: 33530617 PMCID: PMC7866203 DOI: 10.3390/molecules26030638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer metastasis is the major cause of about 90% of cancer deaths. As epithelial-to-mesenchymal transition (EMT) is known for potentiating metastasis, this study aimed to elucidate the effect of ovalitenone on the suppression of EMT and metastasis-related behaviors, including cell movement and growth under detached conditions, and cancer stem cells (CSCs), of lung cancer cells. Methods: Cell viability and cell proliferation were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazo-liumbromide (MTT) and colony formation assays. Cell migration and invasion were analyzed using a wound-healing assay and Boyden chamber assay, respectively. Anchorage-independent cell growth was determined. Cell protrusions (filopodia) were detected by phalloidin-rhodamine staining. Cancer stem cell phenotypes were assessed by spheroid formation. The proteins involved in cell migration and EMT were evaluated by Western blot analysis and immunofluorescence staining. Results: Ovalitenone was used at concentrations of 0–200 μM. While it caused no cytotoxic effects on lung cancer H460 and A549 cells, ovalitenone significantly suppressed anchorage-independent growth, CSC-like phenotypes, colony formation, and the ability of the cancer to migrate and invade cells. The anti-migration activity was confirmed by the reduction of filopodia in the cells treated with ovalitenone. Interestingly, we found that ovalitenone could significantly decrease the levels of N-cadherin, snail, and slug, while it increased E-cadherin, indicating EMT suppression. Additionally, the regulatory signaling of focal adhesion kinase (FAK), ATP-dependent tyrosine kinase (AKT), the mammalian target of rapamycin (mTOR), and cell division cycle 42 (Cdc42) was suppressed by ovalitenone. Conclusions: The results suggest that ovalitenone suppresses EMT via suppression of the AKT/mTOR signaling pathway. In addition, ovalitenone exhibited potential for the suppression of CSC phenotypes. These data reveal the anti-metastasis potential of the compound and support the development of ovalitenone treatment for lung cancer therapy.
Collapse
Affiliation(s)
- Kittipong Sanookpan
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (N.N.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nongyao Nonpanya
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (N.N.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pithi Chanvorachote
- Cell-Based Drug and Health Product Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (N.N.)
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8344
| |
Collapse
|
39
|
The Role of Csmd1 during Mammary Gland Development. Genes (Basel) 2021; 12:genes12020162. [PMID: 33530646 PMCID: PMC7912059 DOI: 10.3390/genes12020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022] Open
Abstract
The Cub Sushi Multiple Domains-1 (CSMD1) protein is a tumour suppressor which has been shown to play a role in regulating human mammary duct development in vitro. CSMD1 knockdown in vitro demonstrated increased cell proliferation, invasion and motility. However, the role of Csmd1 in vivo is poorly characterised when it comes to ductal development and is therefore an area which warrants further exploration. In this study a Csmd1 knockout (KO) mouse model was used to identify the role of Csmd1 in regulating mammary gland development during puberty. Changes in duct development and protein expression patterns were analysed by immunohistochemistry. This study identified increased ductal development during the early stages of puberty in the KO mice, characterised by increased ductal area and terminal end bud number at 6 weeks. Furthermore, increased expression of various proteins (Stat1, Fak, Akt, Slug/Snail and Progesterone receptor) was shown at 4 weeks in the KO mice, followed by lower expression levels from 6 weeks in the KO mice compared to the wild type mice. This study identifies a novel role for Csmd1 in mammary gland development, with Csmd1 KO causing significantly more rapid mammary gland development, suggesting an earlier adult mammary gland formation.
Collapse
|
40
|
Kaewmeesri P, Kukongviriyapan V, Prawan A, Kongpetch S, Senggunprai L. Cucurbitacin B Diminishes Metastatic Behavior of Cholangiocarcinoma Cells by Suppressing Focal Adhesion Kinase. Asian Pac J Cancer Prev 2021; 22:219-225. [PMID: 33507702 PMCID: PMC8184164 DOI: 10.31557/apjcp.2021.22.1.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/24/2021] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Cholangiocarcinoma (CCA) is a malignant tumor with aggressive metastatic property resulted from dysregulation of metastasis-regulated signaling pathways. The aim of this study was to investigate the effect of cucurbitacin B on metastatic behavior of CCA cells through modulation of focal adhesion kinase (FAK) protein. METHODS KKU-452 cells were treated with a specific FAK inhibitor, FAK inhibitor-14, or cucurbitacin B at various concentrations for 24 h. Cell viability was assessed by sulforhodamine B assay. The migratory and invasive abilities of the cells were investigated using wound healing and transwell invasion assays, respectively. The fibronectin-coated plate was used for adhesion assay. The effects of the test compounds on FAK activation and the expression of metastasis-associated proteins were determined by Western blot analysis. The amount of MMP-9 was evaluated using a commercial ELISA Kit. RESULTS FAK inhibitor-14 and cucurbitacin B at concentrations which minimally affected KKU-452 cell viability could suppress FAK activation, evidently by decreased level of phospho-FAK protein after exposure to the compound. At these conditions, cucurbitacin B suppressed metastatic behavior including migration, invasion and adhesion abilities of CCA cells similar to FAK inhibitor-14. Further molecular studies demonstrated that FAK inhibitor-14 and cucurbitacin B downregulated the expression of metastasis-associated proteins including MMP-9, ICAM-1 and VEGF. Consequently, exposure to cucurbitacin B inhibited the production of MMP-9 enzyme in CCA cells similar to FAK inhibitor-14 treatment. CONCLUSION FAK participated in regulation of metastatic behavior of KKU-452 CCA cells. Cucurbitacin B suppressed FAK activation in the cells which was associated with inhibition of metastasis essential steps and their related metastatic proteins. The compound may be developed as a novel therapeutic agent for CCA metastasis therapy. .
Collapse
Affiliation(s)
| | | | | | | | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, and Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
41
|
Alexander RA, Lot I, Saha K, Abadie G, Lambert M, Decosta E, Kobayashi H, Beautrait A, Borrull A, Asnacios A, Bouvier M, Scott MGH, Marullo S, Enslen H. Beta-arrestins operate an on/off control switch for focal adhesion kinase activity. Cell Mol Life Sci 2020; 77:5259-5279. [PMID: 32040695 PMCID: PMC11104786 DOI: 10.1007/s00018-020-03471-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins β-arrestins and G proteins. Depletion of β-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that β-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK-β-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor AT1AR and subsequent translocation of the FAK-β-arrestin complex to the plasma membrane, β-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient β-arrestin and by a specific inhibitor of β-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of β-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.
Collapse
Affiliation(s)
- Revu Ann Alexander
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Isaure Lot
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Kusumika Saha
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Guillaume Abadie
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Mireille Lambert
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Eleonore Decosta
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hiroyuki Kobayashi
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Alexandre Beautrait
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Aurélie Borrull
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Michel Bouvier
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Mark G H Scott
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Stefano Marullo
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hervé Enslen
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| |
Collapse
|
42
|
Jeong KY, Park M, Sim JJ, Kim HM. Combination Antitumor Effect of Sorafenib via Calcium-Dependent Deactivation of Focal Adhesion Kinase Targeting Colorectal Cancer Cells. Molecules 2020; 25:molecules25225299. [PMID: 33202899 PMCID: PMC7697278 DOI: 10.3390/molecules25225299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Sorafenib has been recently used for the treatment of patients with advanced colorectal cancer (CRC) and is recognized for its therapeutic value. However, the continuous use of sorafenib may cause resistance in the treatment of cancer patients. In this study, we investigated whether sorafenib exerts an enhanced anticancer effect on CRC cells via the calcium-mediated deactivation of the focal adhesion kinase (FAK) signaling pathways. The appropriate dose of sorafenib and lactate calcium salt (CaLa) for a combination treatment were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Then, cell cycle analysis was performed following treatment with 2.5 μM sorafenib and/or 2.5 mM CaLa. CRC cells were found to be in the G1 phase by sorafenib treatment, and they accumulated in the sub-G1 phase with CaLa treatment. Western blots and enzyme-linked immunosorbent assays were performed to analyze the elements of the recombinant activated factor (RAF) and focal adhesion kinase (FAK) signaling cascades. Sorafenib-inhibited RAF-dependent signaling in CRC cells, however, either did not affect the expression of Akt or increased it. As the upstream signaling of FAK was suppressed by CaLa, we observed that the expression of the sub-signaling phospho (p) AKT and p-mammalian target of rapamycin was also suppressed. Treatment with a combination of sorafenib and CaLa enhanced the antitumor activity of CRC cells. The % viability of CRC cells was significantly decreased compared to the single treatment with sorafenib or CaLa, and the accumulation of Sub G1 of CRC cells was clearly confirmed. The migration ability of CRC cells was significantly reduced. The findings of this study indicate that sorafenib will show further improved antitumor efficacy against CRC due to overcoming resistance through the use of CaLa.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- R&D Center, Metimedi Pharmaceuticals, 263, Central-ro, Yeonsu-gu, Incheon 22006, Korea; (M.P.); (J.-J.S.)
- Correspondence: (K.-Y.J.); (H.M.K.)
| | - Minhee Park
- R&D Center, Metimedi Pharmaceuticals, 263, Central-ro, Yeonsu-gu, Incheon 22006, Korea; (M.P.); (J.-J.S.)
| | - Jae-Jun Sim
- R&D Center, Metimedi Pharmaceuticals, 263, Central-ro, Yeonsu-gu, Incheon 22006, Korea; (M.P.); (J.-J.S.)
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Korea
- Correspondence: (K.-Y.J.); (H.M.K.)
| |
Collapse
|
43
|
Combination Antitumor Effect of Sorafenib via Calcium-Dependent Deactivation of Focal Adhesion Kinase Targeting Colorectal Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2020. [PMID: 33202899 DOI: 10.3390/molecules25225299.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sorafenib has been recently used for the treatment of patients with advanced colorectal cancer (CRC) and is recognized for its therapeutic value. However, the continuous use of sorafenib may cause resistance in the treatment of cancer patients. In this study, we investigated whether sorafenib exerts an enhanced anticancer effect on CRC cells via the calcium-mediated deactivation of the focal adhesion kinase (FAK) signaling pathways. The appropriate dose of sorafenib and lactate calcium salt (CaLa) for a combination treatment were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Then, cell cycle analysis was performed following treatment with 2.5 μM sorafenib and/or 2.5 mM CaLa. CRC cells were found to be in the G1 phase by sorafenib treatment, and they accumulated in the sub-G1 phase with CaLa treatment. Western blots and enzyme-linked immunosorbent assays were performed to analyze the elements of the recombinant activated factor (RAF) and focal adhesion kinase (FAK) signaling cascades. Sorafenib-inhibited RAF-dependent signaling in CRC cells, however, either did not affect the expression of Akt or increased it. As the upstream signaling of FAK was suppressed by CaLa, we observed that the expression of the sub-signaling phospho (p) AKT and p-mammalian target of rapamycin was also suppressed. Treatment with a combination of sorafenib and CaLa enhanced the antitumor activity of CRC cells. The % viability of CRC cells was significantly decreased compared to the single treatment with sorafenib or CaLa, and the accumulation of Sub G1 of CRC cells was clearly confirmed. The migration ability of CRC cells was significantly reduced. The findings of this study indicate that sorafenib will show further improved antitumor efficacy against CRC due to overcoming resistance through the use of CaLa.
Collapse
|
44
|
RNA binding proteins: Linking mechanotransduction and tumor metastasis. Cancer Lett 2020; 496:30-40. [PMID: 33007411 DOI: 10.1016/j.canlet.2020.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/17/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023]
Abstract
Mechanotransduction is the leading cellular process that mammalian cells adopted to receive and respond to various mechanical cues from their local microenvironment. Increasing evidence suggests that mechano-transduction is involved in many physiological and disease conditions, ranging from early embryonic development, organogenesis, to a variety of human diseases including cancer. Mechanotransduction is mediated through several classes of senor proteins on the cell surface, intracellular signaling mediators, and core transcriptional regulation networks. Dissecting the molecular mechanisms regulating mechanotransduction and their association with cancer metastasis has received much attention in recent years. RNA binding proteins (RBPs) are a special group of nucleic acid interacting factors that participate in many important cellular processes. In this review, we would like to summarize recent research progresses in understanding the role of RBPs-mediated regulation in mechanotransduction and cancer metastasis. Those intriguing findings will provide novel insights for the disease and guide the potential development of new therapeutic approaches.
Collapse
|
45
|
Chen J, Zhou Y, Liu S, Li C. Biomechanical signal communication in vascular smooth muscle cells. J Cell Commun Signal 2020; 14:357-376. [PMID: 32780323 DOI: 10.1007/s12079-020-00576-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
Biomechanical stresses are closely associated with cardiovascular development and diseases. In vivo, vascular smooth muscle cells are constantly stimulated by biomechanical factors caused by increased blood pressure leading to the non-specific activation of cell transmembrane proteins. Thus, various intracellular signal molecules are simultaneously activated via signaling cascades, which are closely related to alterations in the differentiation, phenotype, inflammation, migration, pyroptosis, calcification, proliferation, and apoptosis of vascular smooth muscle cells. Meanwhile, mechanical stress-induced miRNAs and epigenetics modification on vascular smooth muscle cells play critical roles as well. Eventually, the overall pathophysiology of the cells is altered, resulting in the development of many major clinical diseases, including hypertension, atherosclerosis, grafted venous atherosclerosis, and aneurysm, among others. In this paper, important advances in mechanical signal communication in vascular smooth muscle cells are reviewed.
Collapse
Affiliation(s)
- Jingbo Chen
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Zhou
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuying Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Chaohong Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Ke FY, Chen WY, Lin MC, Hwang YC, Kuo KT, Wu HC. Novel monoclonal antibody against integrin α3 shows therapeutic potential for ovarian cancer. Cancer Sci 2020; 111:3478-3492. [PMID: 32648337 PMCID: PMC7541015 DOI: 10.1111/cas.14566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer has a high recurrence rate after platinum‐based chemotherapy. To improve the treatment of ovarian cancer and identify ovarian cancer‐specific antibodies, we immunized mice with the human ovarian carcinoma cell line, SKOV‐3, and generated hybridoma clones. Several rounds of screening yielded 30 monoclonal antibodies (mAbs) with no cross‐reactivity to normal cells. Among these mAbs, OV‐Ab 30‐7 was found to target integrin α3 and upregulate p53 and p21, while stimulating the apoptosis of cancer cells. We further found that binding of integrin α3 by OV‐Ab 30‐7 impaired laminin‐induced focal adhesion kinase phosphorylation. The mAb alone or in combination with carboplatin and paclitaxel inhibited tumor progression and prolonged survival of tumor‐bearing mice. Moreover, immunohistochemical staining of ovarian patient specimens revealed higher levels of integrin α3 in cancer cells compared with normal cells. By querying online clinical databases, we found that elevated ITGA3 expression in ovarian cancer is associated with poor prognosis. Taken together, our data suggest that the novel mAb, OV‐Ab 30‐7, may be considered as a potential therapeutic for ovarian cancer.
Collapse
Affiliation(s)
- Feng-Yi Ke
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Chieh Lin
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chyi Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Kuan-Ting Kuo
- Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Biomedical Park Branch, Hsinchu County, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Wu HM, Huang HY, Soong YK, Leung PCK, Wang HS. Kisspeptin regulation of human decidual stromal cells motility via FAK-Src intracellular tyrosine kinases. Hum Reprod 2020; 34:1291-1301. [PMID: 31188433 DOI: 10.1093/humrep/dez061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
STUDY QUESTION Can of Clinical Genetics, Maastricht University Medical Centre, Maastricht kisspeptin and its analogues regulate the motility of human decidual stromal cells and what intracellular signaling pathways are involved? SUMMARY ANSWER Kisspeptin analogue-mediated cell motility in human decidual stromal cells via the focal adhesion kinase (FAK)-steroid receptor coactivator (Src) pathway suggesting that kisspeptin may modulate embryo implantation and decidual programming in human pregnancy. WHAT IS KNOWN ALREADY The extravillous trophoblast invades the maternal decidua during embryo implantation and placentation. The motile behavior and invasive potential of decidual stromal cells regulate embryo implantation and programming of human pregnancy. STUDY DESIGN, SIZE, DURATION Human decidual stromal cells were isolated from healthy women undergoing elective termination of a normal pregnancy at 6- to 12-week gestation, after informed consent. PARTICIPANTS/MATERIALS, SETTING, METHODS Kisspeptin analogues were synthetic peptides. Cell motility was estimated by an invasion and migration assay. Immunoblot analysis was performed to investigate the expression of kisspeptin receptor and the effects of kisspeptin analogues on the phosphorylation of FAK and Src. Small interfering RNAs (siRNAs) were used to knock down the expression of kisspeptin receptor, FAK, Src, matrix metallo-proteinases (MMPs) 2 and 9, and extracellular signal-regulated protein kinase (ERK) 1/2. MAIN RESULTS AND THE ROLE OF CHANCE The kisspeptin receptor was expressed in human decidual stromal cells. Kisspeptin agonist decreased, but antagonist increased, cell motility. Kisspeptin agonist decreased the phosphorylation of FAK and Src tyrosine kinases, whereas antagonist increased it. These effects on phosphorylation were abolished by kisspeptin receptor siRNA. The activation of cell motility by kisspeptin analogues was suppressed by siRNA knockdown of endogenous FAK (decreased 66%), Src (decreased 60%), kisspeptin receptor (decreased 26%), MMP-2 (decreased 36%), MMP-9 (decreased 23%), and ERK 1/2 inhibitor (decreased 27%). LIMITATIONS, REASONS FOR CAUTION Human decidual stromal cells were obtained from women having terminations after 6-12 weeks of pregnancy and differences in timing could affect their properties. WIDER IMPLICATIONS OF THE FINDINGS Kisspeptin acting within the endometrium has a potential modulatory role on embryo implantation and decidual programming of human pregnancy. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grant NSC-104-2314-B-182A-146-MY2 (to H.-M.W.) from the Ministry of Science and Technology, Taiwan, and grants CMRPG3E0401 and CMRPG3E0402 (to H.-M.W.). This work was also supported by grants from the Canadian Institutes of Health Research to P.C.K.L. P.C.K.L. is the recipient of a Child & Family Research Institute Distinguished Investigator Award. The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- H-M Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan, R.O.C
| | - H-Y Huang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan, R.O.C
| | - Y-K Soong
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan, R.O.C
| | - P C K Leung
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - H-S Wang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University School of Medicine, Taoyuan, Taiwan, R.O.C.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
48
|
Blaine J, Dylewski J. Regulation of the Actin Cytoskeleton in Podocytes. Cells 2020; 9:cells9071700. [PMID: 32708597 PMCID: PMC7408282 DOI: 10.3390/cells9071700] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Podocytes are an integral part of the glomerular filtration barrier, a structure that prevents filtration of large proteins and macromolecules into the urine. Podocyte function is dependent on actin cytoskeleton regulation within the foot processes, structures that link podocytes to the glomerular basement membrane. Actin cytoskeleton dynamics in podocyte foot processes are complex and regulated by multiple proteins and other factors. There are two key signal integration and structural hubs within foot processes that regulate the actin cytoskeleton: the slit diaphragm and focal adhesions. Both modulate actin filament extension as well as foot process mobility. No matter what the initial cause, the final common pathway of podocyte damage is dysregulation of the actin cytoskeleton leading to foot process retraction and proteinuria. Disruption of the actin cytoskeleton can be due to acquired causes or to genetic mutations in key actin regulatory and signaling proteins. Here, we describe the major structural and signaling components that regulate the actin cytoskeleton in podocytes as well as acquired and genetic causes of actin dysregulation.
Collapse
Affiliation(s)
- Judith Blaine
- Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - James Dylewski
- Renal Division, University of Colorado Anschutz Medical Campus and Denver Health Medical Center, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +303-724-4841
| |
Collapse
|
49
|
Conforti F, Ridley R, Brereton C, Alzetani A, Johnson B, Marshall BG, Fletcher SV, Ottensmeier CH, Richeldi L, Skipp P, Wang Y, Jones MG, Davies DE. Paracrine SPARC signaling dysregulates alveolar epithelial barrier integrity and function in lung fibrosis. Cell Death Discov 2020; 6:54. [PMID: 32637156 PMCID: PMC7327077 DOI: 10.1038/s41420-020-0289-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic scarring disease in which aging, environmental exposure(s) and genetic susceptibility have been implicated in disease pathogenesis, however, the causes and mechanisms of the progressive fibrotic cascade are still poorly understood. As epithelial-mesenchymal interactions are essential for normal wound healing, through human 2D and 3D in vitro studies, we tested the hypothesis that IPF fibroblasts (IPFFs) dysregulate alveolar epithelial homeostasis. Conditioned media from IPFFs exaggerated the wound-healing response of primary human Type II alveolar epithelial cells (AECs). Furthermore, AECs co-cultured with IPFFs exhibited irregular epithelialization compared with those co-cultured with control fibroblasts (NHLFs) or AECs alone, suggesting that epithelial homeostasis is dysregulated in IPF as a consequence of the abnormal secretory phenotype of IPFFs. Secretome analysis of IPFF conditioned media and functional studies identified the matricellular protein, SPARC, as a key mediator in the epithelial-mesenchymal paracrine signaling, with increased secretion of SPARC by IPFFs promoting persistent activation of alveolar epithelium via an integrin/focal adhesion/cellular-junction axis resulting in disruption of epithelial barrier integrity and increased macromolecular permeability. These findings suggest that in IPF fibroblast paracrine signaling promotes persistent alveolar epithelial activation, so preventing normal epithelial repair responses and restoration of tissue homeostasis. Furthermore, they identify SPARC-mediated paracrine signaling as a potential therapeutic target to promote the restoration of lung epithelial homoestasis in IPF patients.
Collapse
Affiliation(s)
- Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD UK
| | - Robert Ridley
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
| | - Christopher Brereton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD UK
| | - Aiman Alzetani
- Department of Thoracic Surgery, University Hospital Southampton, Southampton, SO16 6YD UK
- University Hospital Southampton, Southampton, SO16 6YD UK
| | - Benjamin Johnson
- Cancer Sciences & NIHR and CRUK Experimental Cancer Sciences Unit, University of Southampton, Southampton, SO16 6YD UK
| | - Ben G. Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD UK
- University Hospital Southampton, Southampton, SO16 6YD UK
| | - Sophie V. Fletcher
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD UK
- University Hospital Southampton, Southampton, SO16 6YD UK
| | - Christian H. Ottensmeier
- University Hospital Southampton, Southampton, SO16 6YD UK
- Cancer Sciences & NIHR and CRUK Experimental Cancer Sciences Unit, University of Southampton, Southampton, SO16 6YD UK
| | - Luca Richeldi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD UK
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Paul Skipp
- Centre for Proteomic Research, Institute for Life Sciences University of Southampton, Southampton, SO17 1BJ UK
| | - Yihua Wang
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ UK
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD UK
- University Hospital Southampton, Southampton, SO16 6YD UK
| | - Donna E. Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, SO16 6YD UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ UK
| |
Collapse
|
50
|
Tao X, Du P, Li L, Lin J, Shi Y, Wang PY. Human Platelet Lysate Supports Mouse Skeletal Myoblast Growth but Suppresses Cell Fusion on Nanogrooves. ACS APPLIED BIO MATERIALS 2020; 3:3594-3604. [DOI: 10.1021/acsabm.0c00230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|