1
|
Duan T, Rodriguez-Tirado F, Geyer PK. Immunohistochemical Analysis of Nuclear Lamina Structures in the Drosophila Ovary Using CRISPR-Tagged Genes. Methods Mol Biol 2023; 2626:109-134. [PMID: 36715902 DOI: 10.1007/978-1-0716-2970-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Drosophila ovary represents an outstanding model for investigating tissue homeostasis. Females continuously produce oocytes throughout their lifetime. However, as females age, fecundity declines, in part, due to changes in ovarian niche function and germline stem cell (GSC) homeostasis. Understanding the dynamics of GSC maintenance will provide needed insights into how coordinated tissue homeostasis is lost during aging. Critical regulators of GSC maintenance are proteins that reside in the nuclear lamina (NL), including the NL proteins emerin and Barrier-to-Autointegration Factor (BAF). Continued investigation of how emerin, BAF, and other NL proteins contribute to GSC function depends upon the availability of antibodies for NL proteins, a limiting resource. In this chapter, we discuss strategies for using clustered regularly interspaced short palindromic repeats (CRISPR) genomic editing to produce endogenously tagged NL genes to circumvent this obstacle, using the generation of the gfp-baf allele as an example. We describe strategies for validation of tagged alleles. Finally, we outline methods for immunohistochemical analysis of resulting tagged-NL proteins.
Collapse
Affiliation(s)
- Tingting Duan
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Felipe Rodriguez-Tirado
- Department of Biochemistry and Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Pamela K Geyer
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Nuclear Dynamics and Chromatin Structure: Implications for Pancreatic Cancer. Cells 2021; 10:cells10102624. [PMID: 34685604 PMCID: PMC8534098 DOI: 10.3390/cells10102624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Changes in nuclear shape have been extensively associated with the dynamics and functionality of cancer cells. In most normal cells, nuclei have a regular ellipsoid shape and minimal variation in nuclear size; however, an irregular nuclear contour and abnormal nuclear size is often observed in cancer, including pancreatic cancer. Furthermore, alterations in nuclear morphology have become the 'gold standard' for tumor staging and grading. Beyond the utility of altered nuclear morphology as a diagnostic tool in cancer, the implications of altered nuclear structure for the biology and behavior of cancer cells are profound as changes in nuclear morphology could impact cellular responses to physical strain, adaptation during migration, chromatin organization, and gene expression. Here, we aim to highlight and discuss the factors that regulate nuclear dynamics and their implications for pancreatic cancer biology.
Collapse
|
3
|
Drosophila female germline stem cells undergo mitosis without nuclear breakdown. Curr Biol 2021; 31:1450-1462.e3. [PMID: 33548191 DOI: 10.1016/j.cub.2021.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 02/02/2023]
Abstract
Stem cell homeostasis requires nuclear lamina (NL) integrity. In Drosophila germ cells, compromised NL integrity activates the ataxia telangiectasia and Rad3-related (ATR) and checkpoint kinase 2 (Chk2) checkpoint kinases, blocking germ cell differentiation and causing germline stem cell (GSC) loss. Checkpoint activation occurs upon loss of either the NL protein emerin or its partner barrier-to-autointegration factor, two proteins required for nuclear reassembly at the end of mitosis. Here, we examined how mitosis contributes to NL structural defects linked to checkpoint activation. These analyses led to the unexpected discovery that wild-type female GSCs utilize a non-canonical mode of mitosis, one that retains a permeable but intact nuclear envelope and NL. We show that the interphase NL is remodeled during mitosis for insertion of centrosomes that nucleate the mitotic spindle within the confines of the nucleus. We show that depletion or loss of NL components causes mitotic defects, including compromised chromosome segregation associated with altered centrosome positioning and structure. Further, in emerin mutant GSCs, centrosomes remain embedded in the interphase NL. Notably, these embedded centrosomes carry large amounts of pericentriolar material and nucleate astral microtubules, revealing a role for emerin in the regulation of centrosome structure. Epistasis studies demonstrate that defects in centrosome structure are upstream of checkpoint activation, suggesting that these centrosome defects might trigger checkpoint activation and GSC loss. Connections between NL proteins and centrosome function have implications for mechanisms associated with NL dysfunction in other stem cell populations, including NL-associated diseases, such as laminopathies.
Collapse
|
4
|
Loss of an H3K9me anchor rescues laminopathy-linked changes in nuclear organization and muscle function in an Emery-Dreifuss muscular dystrophy model. Genes Dev 2020; 34:560-579. [PMID: 32139421 PMCID: PMC7111258 DOI: 10.1101/gad.332213.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/14/2020] [Indexed: 12/30/2022]
Abstract
In this study, Harr et al. use C. elegans to investigate the consequences of a missense mutation (Y45C) in lamin A (encoded by LMNA) found in the human Emery-Dreifuss muscular dystrophy (EDMD) syndrome. Using muscle-specific emerin Dam-ID and other in vivo approaches, the authors report that they were able to counteract the dominant muscle-specific defects provoked by LMNA mutation by the ablation of a lamin-associated H3K9me anchor, suggesting a novel therapeutic pathway for treating EDMD. Mutations in the nuclear structural protein lamin A produce rare, tissue-specific diseases called laminopathies. The introduction of a human Emery-Dreifuss muscular dystrophy (EDMD)-inducing mutation into the C. elegans lamin (LMN-Y59C), recapitulates many muscular dystrophy phenotypes, and correlates with hyper-sequestration of a heterochromatic array at the nuclear periphery in muscle cells. Using muscle-specific emerin Dam-ID in worms, we monitored the effects of the mutation on endogenous chromatin. An increased contact with the nuclear periphery along chromosome arms, and an enhanced release of chromosomal centers, coincided with the disease phenotypes of reduced locomotion and compromised sarcomere integrity. The coupling of the LMN-Y59C mutation with the ablation of CEC-4, a chromodomain protein that anchors H3K9-methylated chromatin at the nuclear envelope (NE), suppressed the muscle-associated disease phenotypes. Deletion of cec-4 also rescued LMN-Y59C-linked alterations in chromatin organization and some changes in transcription. Sequences that changed position in the LMN-Y59C mutant, are enriched for E2F (EFL-2)-binding sites, consistent with previous studies suggesting that altered Rb-E2F interaction with lamin A may contribute to muscle dysfunction. In summary, we were able to counteract the dominant muscle-specific defects provoked by LMNA mutation by the ablation of a lamin-associated H3K9me anchor, suggesting a novel therapeutic pathway for EDMD.
Collapse
|
5
|
Bártová E, Legartová S, Krejčí J, Řezníčková P, Kovaříková AS, Suchánková J, Fedr R, Smirnov E, Hornáček M, Raška I. Depletion of A-type lamins and Lap2α reduces 53BP1 accumulation at UV-induced DNA lesions and Lap2α protein is responsible for compactness of irradiated chromatin. J Cell Biochem 2018; 119:8146-8162. [PMID: 29923310 DOI: 10.1002/jcb.26770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022]
Abstract
We studied how deficiency in lamins A/C and lamina-associated polypeptide 2α (Lap2α) affects DNA repair after irradiation. A-type lamins and Lap2α were not recruited to local DNA lesions and did not accumulate to γ-irradiation-induced foci (IRIF), as it is generally observed for well-known marker of DNA lesions, 53BP1 protein. At micro-irradiated chromatin of lmna double knockout (dn) and Lap2α dn cells, 53BP1 protein levels were reduced, compared to locally irradiated wild-type counterpart. Decreased levels of 53BP1 we also observed in whole populations of lmna dn and Lap2α dn cells, irradiated by UV light. We also studied distribution pattern of 53BP1 protein in a genome outside micro-irradiated region. In Lap2α deficient cells, identical fluorescence of mCherry-tagged 53BP1 protein was found at both microirradiated region and surrounding chromatin. However, a well-known marker of double strand breaks, γH2AX, was highly abundant in the lesion-surrounding genome of Lap2α deficient cells. Described changes, induced by irradiation in Lap2α dn cells, were not accompanied by cell cycle changes. In Lap2α dn cells, we additionally performed analysis by FLIM (Fluorescence Lifetime Imaging Microscopy) that showed different dynamic behavior of mCherry-tagged 53BP1 protein pools when it was compared with wild-type (wt) fibroblasts. This analysis revealed three different fractions of mCherry-53BP1 protein. Two of them showed identical exponential decay times (τ1 and τ3), but the decay rate of τ2 and amplitudes of fluorescence decays (A1-A3) were statistically different in wt and Lap2α dn fibroblasts. Moreover, γ-irradiation weakened an interaction between A-type lamins and Lap2α. Together, our results demonstrate how depletion of Lap2α affects DNA damage response (DDR) and how chromatin compactness is changed in Lap2α deficient cells exposed to radiation.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jana Krejčí
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petra Řezníčková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | | | - Jana Suchánková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Radek Fedr
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Evgeny Smirnov
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Matúš Hornáček
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Ivan Raška
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
6
|
Barton LJ, Duan T, Ke W, Luttinger A, Lovander KE, Soshnev AA, Geyer PK. Nuclear lamina dysfunction triggers a germline stem cell checkpoint. Nat Commun 2018; 9:3960. [PMID: 30262885 PMCID: PMC6160405 DOI: 10.1038/s41467-018-06277-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
LEM domain (LEM-D) proteins are conserved components of the nuclear lamina (NL) that contribute to stem cell maintenance through poorly understood mechanisms. The Drosophila emerin homolog Otefin (Ote) is required for maintenance of germline stem cells (GSCs) and gametogenesis. Here, we show that ote mutants carry germ cell-specific changes in nuclear architecture that are linked to GSC loss. Strikingly, we found that both GSC death and gametogenesis are rescued by inactivation of the DNA damage response (DDR) kinases, ATR and Chk2. Whereas the germline checkpoint draws from components of the DDR pathway, genetic and cytological features of the GSC checkpoint differ from the canonical pathway. Instead, structural deformation of the NL correlates with checkpoint activation. Despite remarkably normal oogenesis, rescued oocytes do not support embryogenesis. Taken together, these data suggest that NL dysfunction caused by Otefin loss triggers a GSC-specific checkpoint that contributes to maintenance of gamete quality. Otefin is a nuclear lamina protein required for survival of Drosophila germ stem cells. Here the authors show that nuclear lamina dysfunction resulting from loss of Otefin activates a DNA damage-independent germ stem cell-specific checkpoint, mediated by the ATR and Chk2 kinases, which ensures that healthy gametes are passed on to the next generation.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Cell Biology, Skirball Institute, NYU School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | - Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Wenfan Ke
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Amy Luttinger
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kaylee E Lovander
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexey A Soshnev
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
7
|
Sztacho M, Sobol M, Balaban C, Escudeiro Lopes SE, Hozák P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv Biol Regul 2018; 71:111-117. [PMID: 30249540 DOI: 10.1016/j.jbior.2018.09.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 02/08/2023]
Abstract
Nuclear phosphoinositides are recognized as regulators of many nuclear processes including chromatin remodeling, splicing, transcription, DNA repair and epigenetics. These processes are spatially organized in different nuclear compartments. Phase separation is involved in the formation of various nuclear compartments and molecular condensates separated from surrounding environment. The surface of such structures spatiotemporally coordinates formation of protein complexes. PI(4,5)P2 (PIP2) integration into phase-separated structures might provide an additional step in their spatial diversification by attracting certain proteins with affinity to PIP2. Our laboratory has recently identified novel membrane-free PIP2-containing structures, so called Nuclear Lipid Islets (NLIs). We provide an evidence that these structures are evolutionary conserved in different organisms. We hypothesize that NLIs serve as a scaffolding platform which facilitates the formation of transcription factories, thus participating in the formation of nuclear architecture competent for transcription. In this review we speculate on a possible role of NLIs in the integration of various processes linked to RNAPII transcription, chromatin remodeling, actin-myosin interaction, alternative splicing and lamin structures.
Collapse
Affiliation(s)
- Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Margarita Sobol
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Can Balaban
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Sara Eliana Escudeiro Lopes
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic; Department of Epigenetics of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., division BIOCEV, 25250, Vestec, Czech Republic; Microscopy Centre, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20, Prague, Czech Republic.
| |
Collapse
|
8
|
Harhouri K, Navarro C, Depetris D, Mattei MG, Nissan X, Cau P, De Sandre-Giovannoli A, Lévy N. MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol Med 2018; 9:1294-1313. [PMID: 28674081 PMCID: PMC5582415 DOI: 10.15252/emmm.201607315] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a lethal premature and accelerated aging disease caused by a de novo point mutation in LMNA encoding A‐type lamins. Progerin, a truncated and toxic prelamin A issued from aberrant splicing, accumulates in HGPS cells' nuclei and is a hallmark of the disease. Small amounts of progerin are also produced during normal aging. We show that progerin is sequestered into abnormally shaped promyelocytic nuclear bodies, identified as novel biomarkers in late passage HGPS cell lines. We found that the proteasome inhibitor MG132 induces progerin degradation through macroautophagy and strongly reduces progerin production through downregulation of SRSF‐1 and SRSF‐5 accumulation, controlling prelamin A mRNA aberrant splicing. MG132 treatment improves cellular HGPS phenotypes. MG132 injection in skeletal muscle of LmnaG609G/G609G mice locally reduces SRSF‐1 expression and progerin levels. Altogether, we demonstrate progerin reduction based on MG132 dual action and shed light on a promising class of molecules toward a potential therapy for children with HGPS.
Collapse
Affiliation(s)
- Karim Harhouri
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Claire Navarro
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Danielle Depetris
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Marie-Geneviève Mattei
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Xavier Nissan
- CECS, I-STEM, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, AFM, Evry, France
| | - Pierre Cau
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France.,AP-HM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France.,AP-HM, Hôpital la Timone, Département de Génétique Médicale, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France .,AP-HM, Hôpital la Timone, Département de Génétique Médicale, Marseille, France
| |
Collapse
|
9
|
Sakthivel KM, Sehgal P. A Novel Role of Lamins from Genetic Disease to Cancer Biomarkers. Oncol Rev 2016; 10:309. [PMID: 27994771 PMCID: PMC5136755 DOI: 10.4081/oncol.2016.309] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022] Open
Abstract
Lamins are the key components of the nuclear lamina and by virtue of their interactions with chromatin and binding partners act as regulators of cell proliferation and differentiation. Of late, the diverse roles of lamins in cellular processes have made them the topic of intense debate for their role in cancer progression. The observations about aberrant localization or misexpression of the nuclear lamins in cancerous tissues have often led to the speculative role of lamins as a cancer risk biomarker. Here we discuss the involvement of lamins in several cancer subtypes and their potential role in predicting the tumor progression.
Collapse
Affiliation(s)
| | - Poonam Sehgal
- Chemical and Biomolecular Engineering, University of Illinois , Urbana-Champaign, IL, USA
| |
Collapse
|
10
|
He S, Hou X, Xu X, Wan C, Yin P, Liu X, Chen Y, Shu B, Liu F, Xu J. Quantitative proteomic analysis reveals heat stress-induced injury in rat small intestine via activation of the MAPK and NF-κB signaling pathways. MOLECULAR BIOSYSTEMS 2015; 11:826-34. [DOI: 10.1039/c4mb00495g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We employed comparative proteomics to reveal a heat stress-induced injury mechanism in rat small intestine.
Collapse
|
11
|
Vadrot N, Duband-Goulet I, Cabet E, Attanda W, Barateau A, Vicart P, Gerbal F, Briand N, Vigouroux C, Oldenburg AR, Lund EG, Collas P, Buendia B. The p.R482W substitution in A-type lamins deregulates SREBP1 activity in Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 2014; 24:2096-109. [PMID: 25524705 DOI: 10.1093/hmg/ddu728] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nuclear lamins are involved in many cellular functions due to their ability to bind numerous partners including chromatin and transcription factors, and affect their properties. Dunnigan type familial partial lipodystrophy (FPLD2; OMIM#151660) is caused in most cases by the A-type lamin R482W mutation. We report here that the R482W mutation affects the regulatory activity of sterol response element binding protein 1 (SREBP1), a transcription factor that regulates hundreds of genes involved in lipid metabolism and adipocyte differentiation. Using in situ proximity ligation assays (PLA), reporter assays and biochemical and transcriptomic approaches, we show that interactions of SREBP1 with lamin A and lamin C occur at the nuclear periphery and in the nucleoplasm. These interactions involve the Ig-fold of A-type lamins and are favored upon SREBP1 binding to its DNA target sequences. We show that SREBP1, LMNA and sterol response DNA elements form ternary complexes in vitro. In addition, overexpression of A-type lamins reduces transcriptional activity of SREBP1. In contrast, both overexpression of LMNA R482W in primary human preadipocytes and endogenous expression of A-type lamins R482W in FPLD2 patient fibroblasts, reduce A-type lamins-SREBP1 in situ interactions and upregulate a large number of SREBP1 target genes. As this LMNA mutant was previously shown to inhibit adipogenic differentiation, we propose that deregulation of SREBP1 by mutated A-type lamins constitutes one underlying mechanism of the physiopathology of FPLD2. Our data suggest that SREBP1 targeting molecules could be considered in a therapeutic context.
Collapse
Affiliation(s)
- Nathalie Vadrot
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Isabelle Duband-Goulet
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Eva Cabet
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Wikayatou Attanda
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Alice Barateau
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Patrick Vicart
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France
| | - Fabien Gerbal
- Université Paris Diderot, Matière et Systèmes Complexes, CNRS UMR 7057, 10 rue Alice Domon et Leonie Duquet, Paris Cedex 13 75205, France, Physics Department, Université Pierre et Marie Curie, Paris UFR925, France
| | - Nolwenn Briand
- Faculté de Médecine Pierre et Marie Curie, Inserm, UMR S938, Centre de Recherche Saint-Antoine, 27 rue Chaligny, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 6, UMR S938, Paris F-75005, France, ICAN, Institute of Cardiometabolism and Nutrition, Paris F-75013, France
| | - Corinne Vigouroux
- Faculté de Médecine Pierre et Marie Curie, Inserm, UMR S938, Centre de Recherche Saint-Antoine, 27 rue Chaligny, Paris F-75012, France, Sorbonne Universités, UPMC Univ Paris 6, UMR S938, Paris F-75005, France, ICAN, Institute of Cardiometabolism and Nutrition, Paris F-75013, France, Laboratoire Commun de Biologie et Génétique Moléculaires, AP-HP, Hôpital Saint-Antoine, Paris F-75012, France and
| | - Anja R Oldenburg
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, Oslo 0317, Norway
| | - Eivind G Lund
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, Oslo 0317, Norway
| | - Philippe Collas
- Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, Oslo 0317, Norway
| | - Brigitte Buendia
- Unit of Functional and Adaptive Biology (BFA), Université Paris Diderot-Paris 7 Affiliated with CNRS, 4 rue Marie-Andrée Lagroua Weill-Halle, Paris Cedex 13 75205, France,
| |
Collapse
|
12
|
Phosphoinositide 3-kinase beta protects nuclear envelope integrity by controlling RCC1 localization and Ran activity. Mol Cell Biol 2014; 35:249-63. [PMID: 25348717 DOI: 10.1128/mcb.01184-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear envelope (NE) forms a barrier between the nucleus and the cytosol that preserves genomic integrity. The nuclear lamina and nuclear pore complexes (NPCs) are NE components that regulate nuclear events through interaction with other proteins and DNA. Defects in the nuclear lamina are associated with the development of laminopathies. As cells depleted of phosphoinositide 3-kinase beta (PI3Kβ) showed an aberrant nuclear morphology, we studied the contribution of PI3Kβ to maintenance of NE integrity. pik3cb depletion reduced the nuclear membrane tension, triggered formation of areas of lipid bilayer/lamina discontinuity, and impaired NPC assembly. We show that one mechanism for PI3Kβ regulation of NE/NPC integrity is its association with RCC1 (regulator of chromosome condensation 1), the activator of nuclear Ran GTPase. PI3Kβ controls RCC1 binding to chromatin and, in turn, Ran activation. These findings suggest that PI3Kβ regulates the nuclear envelope through upstream regulation of RCC1 and Ran.
Collapse
|
13
|
Mijaljica D, Prescott M, Devenish RJ. The intricacy of nuclear membrane dynamics during nucleophagy. Nucleus 2014. [DOI: 10.4161/nucl.11738] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Datta S, Snow CJ, Paschal BM. A pathway linking oxidative stress and the Ran GTPase system in progeria. Mol Biol Cell 2014; 25:1202-15. [PMID: 24523287 PMCID: PMC3982987 DOI: 10.1091/mbc.e13-07-0430] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Maintaining the Ran GTPase at a proper concentration in the nucleus is important for nucleocytoplasmic transport. Previously we found that nuclear levels of Ran are reduced in cells from patients with Hutchinson-Gilford progeria syndrome (HGPS), a disease caused by constitutive attachment of a mutant form of lamin A (termed progerin) to the nuclear membrane. Here we explore the relationship between progerin, the Ran GTPase, and oxidative stress. Stable attachment of progerin to the nuclear membrane disrupts the Ran gradient and results in cytoplasmic localization of Ubc9, a Ran-dependent import cargo. Ran and Ubc9 disruption can be induced reversibly with H2O2. CHO cells preadapted to oxidative stress resist the effects of progerin on Ran and Ubc9. Given that HGPS-patient fibroblasts display elevated ROS, these data suggest that progerin inhibits nuclear transport via oxidative stress. A drug that inhibits pre-lamin A cleavage mimics the effects of progerin by disrupting the Ran gradient, but the effects on Ran are observed before a substantial ROS increase. Moreover, reducing the nuclear concentration of Ran is sufficient to induce ROS irrespective of progerin. We speculate that oxidative stress caused by progerin may occur upstream or downstream of Ran, depending on the cell type and physiological setting.
Collapse
Affiliation(s)
- Sutirtha Datta
- Center for Cell Signaling, Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903
| | | | | |
Collapse
|
15
|
Wu D, Flannery AR, Cai H, Ko E, Cao K. Nuclear localization signal deletion mutants of lamin A and progerin reveal insights into lamin A processing and emerin targeting. Nucleus 2014; 5:66-74. [PMID: 24637396 PMCID: PMC4028357 DOI: 10.4161/nucl.28068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lamin A is a major component of the lamina, which creates a dynamic network underneath the nuclear envelope. Mutations in the lamin A gene (LMNA) cause severe genetic disorders, one of which is Hutchinson-Gilford progeria syndrome (HGPS), a disease triggered by a dominant mutant named progerin. Unlike the wild-type lamin A, whose farnesylated C-terminus is excised during post-translational processing, progerin retains its farnesyl tail and accumulates on the nuclear membrane, resulting in abnormal nuclear morphology during interphase. In addition, membrane-associated progerin forms visible cytoplasmic aggregates in mitosis. To examine the potential effects of cytoplasmic progerin, nuclear localization signal (NLS) deleted progerin and lamin A (PGΔNLS and LAΔNLS, respectively) have been constructed. We find that both ΔNLS mutants are farnesylated in the cytosol and associate with a sub-domain of the ER via their farnesyl tails. While the farnesylation on LAΔNLS can be gradually removed, which leads to its subsequent release from the ER into the cytoplasm, PGΔNLS remains permanently farnesylated and membrane-bounded. Moreover, both ΔNLS mutants dominantly affect emerin’s nuclear localization. These results reveal new insights into lamin A biogenesis and lamin A-emerin interaction.
Collapse
Affiliation(s)
- Di Wu
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park, MD USA
| | - Andrew R Flannery
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park, MD USA
| | - Helen Cai
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park, MD USA
| | - Eunae Ko
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park, MD USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics; University of Maryland; College Park, MD USA
| |
Collapse
|
16
|
Waldeck W, Mueller G, Glatting KH, Hotz-Wagenblatt A, Diessl N, Chotewutmonti S, Langowski J, Semmler W, Wiessler M, Braun K. Spatial localization of genes determined by intranuclear DNA fragmentation with the fusion proteins lamin KRED and histone KRED und visible light. Int J Med Sci 2013; 10:1136-48. [PMID: 23869190 PMCID: PMC3714390 DOI: 10.7150/ijms.6121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/06/2013] [Indexed: 12/02/2022] Open
Abstract
The highly organized DNA architecture inside of the nuclei of cells is accepted in the scientific world. In the human genome about 3 billion nucleotides are organized as chromatin in the cell nucleus. In general, they are involved in gene regulation and transcription by histone modification. Small chromosomes are localized in a central nuclear position whereas the large chromosomes are peripherally positioned. In our experiments we inserted fusion proteins consisting of a component of the nuclear lamina (lamin B1) and also histone H2A, both combined with the light inducible fluorescence protein KillerRed (KRED). After activation, KRED generates reactive oxygen species (ROS) producing toxic effects and may cause cell death. We analyzed the spatial damage distribution in the chromatin after illumination of the cells with visible light. The extent of DNA damage was strongly dependent on its localization inside of nuclei. The ROS activity allowed to gain information about the location of genes and their functions via sequencing and data base analysis of the double strand breaks of the isolated DNA. A connection between the damaged gene sequences and some diseases was found.
Collapse
Affiliation(s)
- Waldemar Waldeck
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Gabriele Mueller
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Karl-Heinz Glatting
- 3. German Cancer Research Center, Genomics Proteomics Core Facility HUSAR Bioinformatics Lab, INF 580, D-69120 Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- 3. German Cancer Research Center, Genomics Proteomics Core Facility HUSAR Bioinformatics Lab, INF 580, D-69120 Heidelberg, Germany
| | - Nicolle Diessl
- 4. German Cancer Research Center, Genomics and Proteomics Core Facility High Throughput Sequencing, INF 580, D-69120 Heidelberg, Germany
| | - Sasithorn Chotewutmonti
- 4. German Cancer Research Center, Genomics and Proteomics Core Facility High Throughput Sequencing, INF 580, D-69120 Heidelberg, Germany
| | - Jörg Langowski
- 1. German Cancer Research Center, Dept. of Biophysics of Macromolecules, INF 580, D-69120 Heidelberg, Germany
| | - Wolfhard Semmler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Manfred Wiessler
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| | - Klaus Braun
- 2. German Cancer Research Center, Dept. of Medical Physics in Radiology, INF 280, D-69120 Heidelberg, Germany
| |
Collapse
|
17
|
Maresca G, Natoli M, Nardella M, Arisi I, Trisciuoglio D, Desideri M, Brandi R, D’Aguanno S, Nicotra MR, D’Onofrio M, Urbani A, Natali PG, Bufalo DD, Felsani A, D’Agnano I. LMNA knock-down affects differentiation and progression of human neuroblastoma cells. PLoS One 2012; 7:e45513. [PMID: 23049808 PMCID: PMC3458895 DOI: 10.1371/journal.pone.0045513] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022] Open
Abstract
Background Neuroblastoma (NB) is one of the most aggressive tumors that occur in childhood. Although genes, such as MYCN, have been shown to be involved in the aggressiveness of the disease, the identification of new biological markers is still desirable. The induction of differentiation is one of the strategies used in the treatment of neuroblastoma. A-type lamins are components of the nuclear lamina and are involved in differentiation. We studied the role of Lamin A/C in the differentiation and progression of neuroblastoma. Methodology/Principal Findings Knock-down of Lamin A/C (LMNA-KD) in neuroblastoma cells blocked retinoic acid-induced differentiation, preventing neurites outgrowth and the expression of neural markers. The genome-wide gene-expression profile and the proteomic analysis of LMNA-KD cells confirmed the inhibition of differentiation and demonstrated an increase of aggressiveness-related genes and molecules resulting in augmented migration/invasion, and increasing the drug resistance of the cells. The more aggressive phenotype acquired by LMNA-KD cells was also maintained in vivo after injection into nude mice. A preliminary immunohistochemistry analysis of Lamin A/C expression in nine primary stages human NB indicated that this protein is poorly expressed in most of these cases. Conclusions/Significance We demonstrated for the first time in neuroblastoma cells that Lamin A/C plays a central role in the differentiation, and that the loss of this protein gave rise to a more aggressive tumor phenotype.
Collapse
Affiliation(s)
- Giovanna Maresca
- CNR-Institute of Cell Biology and Neurobiology, Santa Lucia Foundation-IRCCS, Rome, Italy
| | - Manuela Natoli
- CNR-Institute of Cell Biology and Neurobiology, Santa Lucia Foundation-IRCCS, Rome, Italy
| | - Marta Nardella
- CNR-Institute of Cell Biology and Neurobiology, Santa Lucia Foundation-IRCCS, Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute, EBRI-Neurogenomics IIT Unit, Rome, Italy
| | - Daniela Trisciuoglio
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Marianna Desideri
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Brandi
- European Brain Research Institute, EBRI-Neurogenomics IIT Unit, Rome, Italy
| | - Simona D’Aguanno
- Department of Internal Medicine, University of Tor Vergata, Laboratory of Proteomics, Santa Lucia Foundation-IRCCS, Rome, Italy
| | | | - Mara D’Onofrio
- European Brain Research Institute, EBRI-Neurogenomics IIT Unit, Rome, Italy
| | - Andrea Urbani
- Department of Internal Medicine, University of Tor Vergata, Laboratory of Proteomics, Santa Lucia Foundation-IRCCS, Rome, Italy
| | | | - Donatella Del Bufalo
- Experimental Chemotherapy Laboratory, Regina Elena National Cancer Institute, Rome, Italy
| | - Armando Felsani
- CNR-Institute of Cell Biology and Neurobiology, Santa Lucia Foundation-IRCCS, Rome, Italy
- * E-mail: (ID); (AF)
| | - Igea D’Agnano
- CNR-Institute of Cell Biology and Neurobiology, Santa Lucia Foundation-IRCCS, Rome, Italy
- * E-mail: (ID); (AF)
| |
Collapse
|
18
|
Houben F, De Vos WH, Krapels IPC, Coorens M, Kierkels GJJ, Kamps MAF, Verstraeten VLRM, Marcelis CLM, van den Wijngaard A, Ramaekers FCS, Broers JLV. Cytoplasmic localization of PML particles in laminopathies. Histochem Cell Biol 2012; 139:119-34. [PMID: 22918509 DOI: 10.1007/s00418-012-1005-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2012] [Indexed: 01/01/2023]
Abstract
There is growing evidence that laminopathies, diseases associated with mutations in the LMNA gene, are caused by a combination of mechanical and gene regulatory distortions. Strikingly, there is a large variability in disease symptoms between individual patients carrying an identical LMNA mutation. This is why classical genetic screens for mutations appear to have limited predictive value for disease development. Recently, the widespread occurrence of repetitive nuclear ruptures has been described in fibroblast cultures from various laminopathy patients. Since this phenomenon was strongly correlated with disease severity, the identification of biomarkers that report on these rupture events could have diagnostic relevance. One such candidate marker is the PML nuclear body, a structure that is normally confined to the nuclear interior, but leaks out of the nucleus upon nuclear rupture. Here, we show that a variety of laminopathies shows the presence of these cytoplasmic PML particles (PML CPs), and that the amount of these protein aggregates increases with severity of the disease. In addition, between clinically healthy individuals, carrying LMNA mutations, significant differences can be found. Therefore, we postulate that detection of PML CPs in patient fibroblasts could become a valuable marker for diagnosis of disease development.
Collapse
Affiliation(s)
- F Houben
- Department of Molecular Cell Biology, CARIM, School for Cardiovascular Diseases, Maastricht University Medical Center, UNS50 Box 17, P.O. Box 616, NL-6200 MD, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Demmerle J, Koch AJ, Holaska JM. The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J Biol Chem 2012; 287:22080-8. [PMID: 22570481 PMCID: PMC3381166 DOI: 10.1074/jbc.m111.325308] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 05/07/2012] [Indexed: 11/06/2022] Open
Abstract
Organization of the genome is critical for maintaining cell-specific gene expression, ensuring proper cell function. It is well established that the nuclear lamina preferentially associates with repressed chromatin. However, the molecular mechanisms underlying repressive chromatin formation and maintenance at the nuclear lamina remain poorly understood. Here we show that emerin binds directly to HDAC3, the catalytic subunit of the nuclear co-repressor (NCoR) complex, and recruits HDAC3 to the nuclear periphery. Emerin binding stimulated the catalytic activity of HDAC3, and emerin-null cells exhibit increased H4K5 acetylation, which is the preferred target of the NCoR complex. Emerin-null cells exhibit an epigenetic signature similar to that seen in HDAC3-null cells. Emerin-null cells also had significantly less HDAC3 at the nuclear lamina. Collectively, these data support a model whereby emerin facilitates repressive chromatin formation at the nuclear periphery by increasing the catalytic activity of HDAC3.
Collapse
Affiliation(s)
| | - Adam J. Koch
- the Committee on Genetics, Genomics and Systems Biology, and
| | - James M. Holaska
- From the Department of Medicine, Section of Cardiology
- the Committee on Genetics, Genomics and Systems Biology, and
- the Committee on Developmental, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
20
|
Structures of the lamin A/C R335W and E347K mutants: Implications for dilated cardiolaminopathies. Biochem Biophys Res Commun 2012; 418:217-21. [DOI: 10.1016/j.bbrc.2011.12.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 12/25/2011] [Indexed: 11/19/2022]
|
21
|
Grossman E, Dahan I, Stick R, Goldberg MW, Gruenbaum Y, Medalia O. Filaments assembly of ectopically expressed Caenorhabditis elegans lamin within Xenopus oocytes. J Struct Biol 2012; 177:113-8. [DOI: 10.1016/j.jsb.2011.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/21/2011] [Accepted: 11/01/2011] [Indexed: 12/23/2022]
|
22
|
Bertrand AT, Chikhaoui K, Ben Yaou R, Bonne G. [Laminopathies: one gene, several diseases]. Biol Aujourdhui 2011; 205:147-62. [PMID: 21982404 DOI: 10.1051/jbio/2011017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Indexed: 01/03/2023]
Abstract
Lamins A and C, encoded by the LMNA gene, are nuclear proteins expressed in all post-mitotic cells. Together with B-type lamins, they form a meshwork of proteins beneath the inner nuclear membrane, the lamina, in connection with the cytoskeleton. Lamins A/C also interact with chromatin and numerous proteins, including transcription factors. Mutations in LMNA are responsible for more than ten different disorders, commonly called "laminopathies". These diseases affect tissues in a specific (striated muscle, adipose tissue, peripheral nerve) or in a systemic manner (premature ageing syndromes). This wide spectrum of phenotypes is associated to a wide variety of mutations. This large clinical and genetic heterogeneity, unique to the LMNA gene, makes genotype-phenotype relations particularly difficult to establish. However, correlations have been obtained in several cases. Hence, LMNA mutations identified in premature ageing syndromes lead to the accumulation of immature proteins with a toxic effect for cells. Mutations in laminopathies of the adipose tissue mainly localize in the Ig-like domain of the proteins, potentially affecting the interaction with the SREBP-1 transcription factor. In laminopathies of the striated muscles, the mutations are spread throughout the gene. These mutations are thought to induce structural modifications of the proteins, thereby affecting their polymerization into nuclear lamina. Such defect would lead to a mechanical weakness of the nuclear lamina and of the cells, particularly in striated muscles continuously stretching. The exploration of pathophysiological mechanisms of LMNA mutations largely benefits from the numerous mouse models created, which have been widely used to analyze affected molecular pathways and to test putative therapeutic treatments.
Collapse
|
23
|
Mattout A, Pike BL, Towbin BD, Bank EM, Gonzalez-Sandoval A, Stadler MB, Meister P, Gruenbaum Y, Gasser SM. An EDMD mutation in C. elegans lamin blocks muscle-specific gene relocation and compromises muscle integrity. Curr Biol 2011; 21:1603-14. [PMID: 21962710 DOI: 10.1016/j.cub.2011.08.030] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/30/2011] [Accepted: 08/12/2011] [Indexed: 11/15/2022]
Abstract
BACKGROUND In worms, as in other organisms, many tissue-specific promoters are sequestered at the nuclear periphery when repressed and shift inward when activated. It has remained unresolved, however, whether the association of facultative heterochromatin with the nuclear periphery, or its release, has functional relevance for cell or tissue integrity. RESULTS Using ablation of the unique lamin gene in C. elegans, we show that lamin is necessary for the perinuclear positioning of heterochromatin. We then express at low levels in otherwise wild-type worms a lamin carrying a point mutation, Y59C, which in humans is linked to an autosomal-dominant form of Emery-Dreifuss muscular dystrophy. Using embryos and differentiated tissues, we track the subnuclear position of integrated heterochromatic arrays and their expression. In LMN-1 Y59C-expressing worms, we see abnormal retention at the nuclear envelope of a gene array bearing a muscle-specific promoter. This correlates with impaired activation of the array-borne myo-3 promoter and altered expression of a number of muscle-specific genes. However, an equivalent array carrying the intestine-specific pha-4 promoter is expressed normally and shifts inward when activated in gut cells of LMN-1 Y59C worms. Remarkably, adult LMN-1 Y59C animals have selectively perturbed body muscle ultrastructure and reduced muscle function. CONCLUSION Lamin helps sequester heterochromatin at the nuclear envelope, and wild-type lamin permits promoter release following tissue-specific activation. A disease-linked point mutation in lamin impairs muscle-specific reorganization of a heterochromatic array during tissue-specific promoter activation in a dominant manner. This dominance and the correlated muscle dysfunction in LMN-1 Y59C worms phenocopies Emery-Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Anna Mattout
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
De Vos WH, Houben F, Kamps M, Malhas A, Verheyen F, Cox J, Manders EMM, Verstraeten VLRM, van Steensel MAM, Marcelis CLM, van den Wijngaard A, Vaux DJ, Ramaekers FCS, Broers JLV. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum Mol Genet 2011; 20:4175-86. [PMID: 21831885 DOI: 10.1093/hmg/ddr344] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The nuclear lamina provides structural support to the nucleus and has a central role in nuclear organization and gene regulation. Defects in its constituents, the lamins, lead to a class of genetic diseases collectively referred to as laminopathies. Using live cell imaging, we observed the occurrence of intermittent, non-lethal ruptures of the nuclear envelope in dermal fibroblast cultures of patients with different mutations of lamin A/C. These ruptures, which were absent in normal fibroblasts, could be mimicked by selective knockdown as well as knockout of LMNA and were accompanied by the loss of cellular compartmentalization. This was demonstrated by the influx of cytoplasmic transcription factor RelA and regulatory protein Cyclin B1 into the nucleus, and efflux of nuclear transcription factor OCT1 and nuclear structures containing the promyelocytic leukemia (PML) tumour suppressor protein to the cytoplasm. While recovery of enhanced yellow fluorescent protein-tagged nuclear localization signal in the nucleus demonstrated restoration of nuclear membrane integrity, part of the mobile PML structures became permanently translocated to the cytoplasm. These satellite PML structures were devoid of the typical PML body components, such as DAXX, SP100 or SUMO1. Our data suggest that nuclear rupture and loss of compartmentalization may add to cellular dysfunction and disease development in various laminopathies.
Collapse
Affiliation(s)
- Winnok H De Vos
- Department of Molecular Cell Biology, CARIM-School for Cardiovascular Diseases, Maastricht University Medical Center, PO Box 616, NL-6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Rodríguez J, Calvo F, González JM, Casar B, Andrés V, Crespo P. ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes. ACTA ACUST UNITED AC 2011; 191:967-79. [PMID: 21115804 PMCID: PMC2995174 DOI: 10.1083/jcb.201004067] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
When in the nucleus, ERK1/2 dislodges the retinoblastoma protein from lamin A, facilitating its rapid phosphorylation. As orchestrators of essential cellular processes like proliferation, ERK1/2 mitogen-activated protein kinase signals impact on cell cycle regulation. A-type lamins are major constituents of the nuclear matrix that also control the cell cycle machinery by largely unknown mechanisms. In this paper, we disclose a functional liaison between ERK1/2 and lamin A whereby cell cycle progression is regulated. We demonstrate that lamin A serves as a mutually exclusive dock for ERK1/2 and the retinoblastoma (Rb) protein. Our results reveal that, immediately after their postactivation entrance in the nucleus, ERK1/2 dislodge Rb from its interaction with lamin A, thereby facilitating its rapid phosphorylation and consequently promoting E2F activation and cell cycle entry. Interestingly, these effects are independent of ERK1/2 kinase activity. We also show that cellular transformation and tumor cell proliferation are dependent on the balance between lamin A and nuclear ERK1/2 levels, which determines Rb accessibility for phosphorylation/inactivation.
Collapse
Affiliation(s)
- Javier Rodríguez
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas, Investigación Desarrollo e Innovación Cantabria, Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
26
|
N-terminal Pro brain natriuretic peptide is a reliable biomarker of reduced myocardial contractility in patients with lamin A/C gene mutations. Int J Cardiol 2010; 151:160-3. [PMID: 20627339 DOI: 10.1016/j.ijcard.2010.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 04/06/2010] [Accepted: 05/13/2010] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recently, concerns have been raised about a possible lack of sensitivity of biomarkers to detect left ventricular (LV) dysfunction in patients with myopathies. We examined the ability of the N-terminal brain natriuretic peptide (NT-proBNP) to detect LV or right ventricular (RV) dysfunction in patients with lamin A/C (LMNA) gene mutations. METHODS We prospectively measured plasma NT-proBNP in consecutive patients with documented LMNA mutations and age-sex matched controls. All patients underwent standard echocardiography implemented by pulsed tissue-Doppler echocardiography (TDE). RESULTS Twenty-three patients were included (10 males, mean age 39.2 ± 18.9 years);10 had previous atrial arrhythmias, 8 had been implanted with cardioverter defibrillator for primary prevention of sudden death, 5 patients were of NYHA class II and 18 of NHYA class I. Sinus rhythm was recorded in all. NT-proBNP was increased in LMNA patients versus controls (123 ± 229 versus 26 ± 78 pg/ml, p=0.0004); 7 patients had depressed LV and/or RV contractility. Patients with reduced LV or RV contractility had increased mean NT-proBNP (341 ± 1032 pg/ml versus 80 ± 79 pg/ml in patients with normal myocardial contractility, p=0.004). Receiver-operating-characteristics analysis shows that NT-proBNP reliably detected depressed contractility (area under the curve 0.889 [0.697-1.000]). Sensitivity and specificity were 88% and 83% respectively, applying manufacturer's recommended cut-off concentration of 125 pg/ml. CONCLUSION NT-proBNP reliably detected the presence of reduced LV/RV contractility in LMNA patients.
Collapse
|
27
|
Mijaljica D, Prescott M, Devenish RJ. The intricacy of nuclear membrane dynamics during nucleophagy. Nucleus 2010; 1:213-23. [PMID: 21327066 PMCID: PMC3027025 DOI: 10.4161/nucl.1.3.11738] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 12/17/2022] Open
Abstract
The cell nucleus is an organelle bounded by a double-membrane which undergoes drastic reorganization during major cellular events such as cell division and apoptosis. Maintenance of proper nuclear structure, function and dynamics is central to organelle vitality. Over recent years growing evidence has shown that parts of the nucleus can be specifically degraded by an autophagic process termed nucleophagy. The process is best described in the yeast, Saccharomyces cerevisiae, where piecemeal microautophagy of the nucleus or nucleophagy (micronucleophagy) requires direct interaction of the nuclear membrane with that of the vacuole (the yeast lytic compartment). Here, we review the process of nucleophagy in the context of nuclear membrane dynamics, and examine the evidence for autophagic degradation of the nucleus in mammalian cells. Finally, we discuss the importance of nucleophagy as a 'housecleaning' mechanism for the nucleus under both normal and disease conditions.
Collapse
Affiliation(s)
- Dalibor Mijaljica
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | | | | |
Collapse
|
28
|
Abstract
A- and B-type lamins are the major intermediate filaments of the nucleus. Lamins engage in a plethora of stable and transient interactions, near the inner nuclear membrane and throughout the nucleus. Lamin-binding proteins serve an amazingly diverse range of functions. Numerous inner-membrane proteins help anchor lamin filaments to the nuclear envelope, serving as part of the nuclear "lamina" network that is essential for nuclear architecture and integrity. Certain lamin-binding proteins of the inner membrane bind partners in the outer membrane and mechanically link lamins to the cytoskeleton. Inside the nucleus, lamin-binding proteins appear to serve as the "adaptors" by which the lamina organizes chromatin, influences gene expression and epigenetic regulation, and modulates signaling pathways. Transient interactions of lamins with key components of the transcription and replication machinery may provide an additional level of regulation or support to these essential events.
Collapse
Affiliation(s)
- Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
29
|
Andrés V, González JM. Role of A-type lamins in signaling, transcription, and chromatin organization. ACTA ACUST UNITED AC 2010; 187:945-57. [PMID: 20038676 PMCID: PMC2806284 DOI: 10.1083/jcb.200904124] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A-type lamins (lamins A and C), encoded by the LMNA gene, are major protein constituents of the mammalian nuclear lamina, a complex structure that acts as a scaffold for protein complexes that regulate nuclear structure and functions. Interest in these proteins has increased in recent years with the discovery that LMNA mutations cause a variety of human diseases termed laminopathies, including progeroid syndromes and disorders that primarily affect striated muscle, adipose, bone, and neuronal tissues. In this review, we discuss recent research supporting the concept that lamin A/C and associated nuclear envelope proteins regulate gene expression in health and disease through interplay with signal transduction pathways, transcription factors, and chromatin-associated proteins.
Collapse
Affiliation(s)
- Vicente Andrés
- Department of Atherothrombosis and Cardiovascular Imaging, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain.
| | | |
Collapse
|
30
|
Schulze SR, Curio-Penny B, Speese S, Dialynas G, Cryderman DE, McDonough CW, Nalbant D, Petersen M, Budnik V, Geyer PK, Wallrath LL. A comparative study of Drosophila and human A-type lamins. PLoS One 2009; 4:e7564. [PMID: 19855837 PMCID: PMC2762312 DOI: 10.1371/journal.pone.0007564] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 10/04/2009] [Indexed: 11/24/2022] Open
Abstract
Nuclear intermediate filament proteins, called lamins, form a meshwork that lines the inner surface of the nuclear envelope. Lamins contain three domains: an N-terminal head, a central rod and a C-terminal tail domain possessing an Ig-fold structural motif. Lamins are classified as either A- or B-type based on structure and expression pattern. The Drosophila genome possesses two genes encoding lamins, Lamin C and lamin Dm0, which have been designated A- and B-type, respectively, based on their expression profile and structural features. In humans, mutations in the gene encoding A-type lamins are associated with a spectrum of predominantly tissue-specific diseases known as laminopathies. Linking the disease phenotypes to cellular functions of lamins has been a major challenge. Drosophila is being used as a model system to identify the roles of lamins in development. Towards this end, we performed a comparative study of Drosophila and human A-type lamins. Analysis of transgenic flies showed that human lamins localize predictably within the Drosophila nucleus. Consistent with this finding, yeast two-hybrid data demonstrated conservation of partner-protein interactions. Drosophila lacking A-type lamin show nuclear envelope defects similar to those observed with human laminopathies. Expression of mutant forms of the A-type Drosophila lamin modeled after human disease-causing amino acid substitutions revealed an essential role for the N-terminal head and the Ig-fold in larval muscle tissue. This tissue-restricted sensitivity suggests a conserved role for lamins in muscle biology. In conclusion, we show that (1) localization of A-type lamins and protein-partner interactions are conserved between Drosophila and humans, (2) loss of the Drosophila A-type lamin causes nuclear defects and (3) muscle tissue is sensitive to the expression of mutant forms of A-type lamin modeled after those causing disease in humans. These studies provide new insights on the role of lamins in nuclear biology and support Drosophila as a model for studies of human laminopathies involving muscle dysfunction.
Collapse
Affiliation(s)
- Sandra R. Schulze
- Department of Biology, Western Washington University, Bellingham, Washington, United States of America
| | - Beatrice Curio-Penny
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Sean Speese
- Department of Neurobiology, University of Massachusetts, Wochester, Massachusetts, United States of America
| | - George Dialynas
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Diane E. Cryderman
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Caitrin W. McDonough
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Demet Nalbant
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Melissa Petersen
- Department of Biology, Western Washington University, Bellingham, Washington, United States of America
| | - Vivian Budnik
- Department of Neurobiology, University of Massachusetts, Wochester, Massachusetts, United States of America
| | - Pamela K. Geyer
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Lori L. Wallrath
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
31
|
Chi YH, Chen ZJ, Jeang KT. The nuclear envelopathies and human diseases. J Biomed Sci 2009; 16:96. [PMID: 19849840 PMCID: PMC2770040 DOI: 10.1186/1423-0127-16-96] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 10/22/2009] [Indexed: 12/30/2022] Open
Abstract
The nuclear envelope (NE) consists of two membrane layers that segregate the nuclear from the cytoplasmic contents. Recent progress in our understanding of nuclear-lamina associated diseases has revealed intriguing connections between the envelope components and nuclear processes. Here, we review the functions of the nuclear envelope in chromosome organization, gene expression, DNA repair and cell cycle progression, and correlate deficiencies in envelope function with human pathologies.
Collapse
Affiliation(s)
- Ya-Hui Chi
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan, Republic of China
| | - Zi-Jie Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 35053, Taiwan, Republic of China
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Building 4, Room 306, 9000 Rockville Pike, Bethesda, MD 20892-0460, USA
| |
Collapse
|
32
|
González JM, Navarro-Puche A, Casar B, Crespo P, Andrés V. Fast regulation of AP-1 activity through interaction of lamin A/C, ERK1/2, and c-Fos at the nuclear envelope. ACTA ACUST UNITED AC 2008; 183:653-66. [PMID: 19015316 PMCID: PMC2582892 DOI: 10.1083/jcb.200805049] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sequestration of c-Fos at the nuclear envelope (NE) through interaction with A-type lamins suppresses AP-1–dependent transcription. We show here that c-Fos accumulation within the extraction-resistant nuclear fraction (ERNF) and its interaction with lamin A are reduced and enhanced by gain-of and loss-of ERK1/2 activity, respectively. Moreover, hindering ERK1/2-dependent phosphorylation of c-Fos attenuates its release from the ERNF induced by serum and promotes its interaction with lamin A. Accordingly, serum stimulation rapidly releases preexisting c-Fos from the NE via ERK1/2-dependent phosphorylation, leading to a fast activation of AP-1 before de novo c-Fos synthesis. Moreover, lamin A–null cells exhibit increased AP-1 activity and reduced levels of c-Fos phosphorylation. We also find that active ERK1/2 interacts with lamin A and colocalizes with c-Fos and A-type lamins at the NE. Thus, NE-bound ERK1/2 functions as a molecular switch for rapid mitogen-dependent AP-1 activation through phosphorylation-induced release of preexisting c-Fos from its inhibitory interaction with lamin A/C.
Collapse
Affiliation(s)
- José María González
- Laboratory of Vascular Biology, Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Cientificas (CSIC), Valencia, Spain
| | | | | | | | | |
Collapse
|
33
|
Pereira S, Bourgeois P, Navarro C, Esteves-Vieira V, Cau P, De Sandre-Giovannoli A, Lévy N. HGPS and related premature aging disorders: from genomic identification to the first therapeutic approaches. Mech Ageing Dev 2008; 129:449-59. [PMID: 18513784 DOI: 10.1016/j.mad.2008.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/27/2008] [Accepted: 04/06/2008] [Indexed: 01/25/2023]
Abstract
Progeroid syndromes are heritable human disorders displaying features that recall premature ageing. In these syndromes, premature aging is defined as "segmental" since only some of its features are accelerated. A number of cellular biological pathways have been linked to aging, including regulation of the insulin/growth hormone axis, pathways involving ROS metabolism, caloric restriction, and DNA repair. The number of identified genes associated with progeroid syndromes has increased in recent years, possibly shedding light as well on mechanisms underlying ageing in general. Among these, premature aging syndromes related to alterations of the LMNA gene have recently been identified. This review focuses on Hutchinson-Gilford Progeria syndrome and Restrictive Dermopathy, two well-characterized Lamin-associated premature aging syndromes, pointing out the current knowledge concerning their pathophysiology and the development of possible therapeutic approaches.
Collapse
Affiliation(s)
- Sandrine Pereira
- INSERM U910, Faculté de Médecine la Timone, 27 Boulevard Jean Moulin, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 2008; 22:832-53. [PMID: 18381888 PMCID: PMC2732390 DOI: 10.1101/gad.1652708] [Citation(s) in RCA: 735] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few years it has become evident that the intermediate filament proteins, the types A and B nuclear lamins, not only provide a structural framework for the nucleus, but are also essential for many aspects of normal nuclear function. Insights into lamin-related functions have been derived from studies of the remarkably large number of disease-causing mutations in the human lamin A gene. This review provides an up-to-date overview of the functions of nuclear lamins, emphasizing their roles in epigenetics, chromatin organization, DNA replication, transcription, and DNA repair. In addition, we discuss recent evidence supporting the importance of lamins in viral infections.
Collapse
Affiliation(s)
- Thomas Dechat
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Katrin Pfleghaar
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Kaushik Sengupta
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Takeshi Shimi
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Dale K. Shumaker
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Liliana Solimando
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | - Robert D. Goldman
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
35
|
|
36
|
Foisner R, Aebi U, Bonne G, Gruenbaum Y, Novelli G. 141st ENMC International Workshop Inaugural Meeting of the EURO-Laminopathies Project Nuclear Envelope-linked Rare Human Diseases: From Molecular Pathophysiology towards Clinical Applications 10–12 March 2006, Naarden, The Netherlands. Neuromuscul Disord 2007; 17:655-60. [PMID: 17587579 DOI: 10.1016/j.nmd.2007.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/10/2007] [Accepted: 04/17/2007] [Indexed: 11/18/2022]
Affiliation(s)
- Roland Foisner
- Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|