1
|
Sowinska W, Wawro M, Kochan J, Solecka A, Polak J, Kwinta B, Kasza A. Regnase-2 inhibits glioblastoma cell proliferation. Sci Rep 2024; 14:1574. [PMID: 38238463 PMCID: PMC10796923 DOI: 10.1038/s41598-024-51809-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Regnase-2 (Reg-2/MCPIP2/ZC3H12B) is uniquely expressed at a high level in the healthy brain and down-regulated in samples from patients with glioma, reaching the lowest level in high-grade glioblastoma multiforme (GBM). This RNase is involved in the regulation of neuroinflammation through the degradation of IL-6 and IL-1 mRNAs, key pro-inflammatory cytokines for GBM pathology. Reg-2 is a strong inhibitor of the proliferation of human glioblastoma cell lines and blocks their potential to form colonies. Here, we describe that overexpression of Reg-2 stalls glioblastoma cells in the G1 phase of the cell cycle and reduces the level of transcripts implicated in cell cycle progression. These newly identified targets include CCND1, CCNE1, CCNE2, CCNA2, CCNB1, and CCNB2, encoding the cyclins as well as AURKA and PLK1, encoding two important mitosis regulators. By RNA immunoprecipitation we confirmed the direct interaction of Reg-2 with the investigated transcripts. We also tested mRNA regions involved in their interaction with Reg-2 on the example of CCNE2. Reg-2 interacts with the 3'UTR of CCNE2 in a dose-dependent manner. In conclusion, our results indicate that Reg-2 controls key elements in GBM biology by restricting neuroinflammation and inhibiting cancer cell proliferation.
Collapse
Affiliation(s)
- Weronika Sowinska
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Aleksandra Solecka
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland
| | - Jarosław Polak
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Borys Kwinta
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Aneta Kasza
- Department of Cell Biochemistry, Faculty of Biotechnology, Biochemistry and Biophysics, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
2
|
Jerome MS, Nanjappa DP, Chakraborty A, Chakrabarty S. Molecular etiology of defective nuclear and mitochondrial ribosome biogenesis: Clinical phenotypes and therapy. Biochimie 2023; 207:122-136. [PMID: 36336106 DOI: 10.1016/j.biochi.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Ribosomopathies are rare congenital disorders associated with defective ribosome biogenesis due to pathogenic variations in genes that encode proteins related to ribosome function and biogenesis. Defects in ribosome biogenesis result in a nucleolar stress response involving the TP53 tumor suppressor protein and impaired protein synthesis leading to a deregulated translational output. Despite the accepted notion that ribosomes are omnipresent and essential for all cells, most ribosomopathies show tissue-specific phenotypes affecting blood cells, hair, spleen, or skin. On the other hand, defects in mitochondrial ribosome biogenesis are associated with a range of clinical manifestations affecting more than one organ. Intriguingly, the deregulated ribosomal function is also a feature in several human malignancies with a selective upregulation or downregulation of specific ribosome components. Here, we highlight the clinical conditions associated with defective ribosome biogenesis in the nucleus and mitochondria with a description of the affected genes and the implicated pathways, along with a note on the treatment strategies currently available for these disorders.
Collapse
Affiliation(s)
- Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India.
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Watt KE, Macintosh J, Bernard G, Trainor PA. RNA Polymerases I and III in development and disease. Semin Cell Dev Biol 2023; 136:49-63. [PMID: 35422389 PMCID: PMC9550887 DOI: 10.1016/j.semcdb.2022.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022]
Abstract
Ribosomes are macromolecular machines that are globally required for the translation of all proteins in all cells. Ribosome biogenesis, which is essential for cell growth, proliferation and survival, commences with transcription of a variety of RNAs by RNA Polymerases I and III. RNA Polymerase I (Pol I) transcribes ribosomal RNA (rRNA), while RNA Polymerase III (Pol III) transcribes 5S ribosomal RNA and transfer RNAs (tRNA) in addition to a wide variety of small non-coding RNAs. Interestingly, despite their global importance, disruptions in Pol I and Pol III function result in tissue-specific developmental disorders, with craniofacial anomalies and leukodystrophy/neurodegenerative disease being among the most prevalent. Furthermore, pathogenic variants in genes encoding subunits shared between Pol I and Pol III give rise to distinct syndromes depending on whether Pol I or Pol III function is disrupted. In this review, we discuss the global roles of Pol I and III transcription, the consequences of disruptions in Pol I and III transcription, disorders arising from pathogenic variants in Pol I and Pol III subunits, and mechanisms underpinning their tissue-specific phenotypes.
Collapse
Affiliation(s)
- Kristin En Watt
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Julia Macintosh
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada; Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada; Departments of Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada; Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada.
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
4
|
Derksen M, Mertens V, Visser EA, Arts J, Vree Egberts W, Pruijn GJM. A novel experimental approach for the selective isolation and characterization of human RNase MRP. RNA Biol 2022; 19:305-312. [PMID: 35129080 PMCID: PMC8820802 DOI: 10.1080/15476286.2022.2027659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
RNase MRP is a ribonucleoprotein complex involved in the endoribonucleolytic cleavage of different RNAs. Mutations in the RNA component of the RNP are the cause of cartilage hair hypoplasia. Patients with cartilage hair hypoplasia are characterized by skeletal dysplasia. Biochemical purification of RNase MRP is desired to be able to study its biochemical function, composition and activity in both healthy and disease situations. Due to the high similarity with RNase P, a method to specifically isolate the RNase MRP complex is currently lacking. By fusing a streptavidin-binding RNA aptamer, the S1m-aptamer, to the RNase MRP RNA we have been able to compare the relative expression levels of wildtype and mutant MRP RNAs. Moreover, we were able to isolate active RNase MRP complexes. We observed that mutant MRP RNAs are expressed at lower levels and have lower catalytic activity compared to the wildtype RNA. The observation that a single nucleotide substitution at position 40 in the P3 domain but not in other domains of RNase MRP RNA severely reduced the binding of the Rpp25 protein subunit confirmed that the P3 region harbours the main binding site for this protein. Altogether, this study shows that the RNA aptamer tagging approach can be used to identify RNase MRP substrates, but also to study the effect of mutations on MRP RNA expression levels and RNase MRP composition and endoribonuclease activity.
Collapse
Affiliation(s)
- Merel Derksen
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Vicky Mertens
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Eline A. Visser
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Janine Arts
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Wilma Vree Egberts
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| | - Ger J. M. Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials (IMM), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Chabronova A, van den Akker GGH, Meekels-Steinbusch MMF, Friedrich F, Cremers A, Surtel DAM, Peffers MJ, van Rhijn LW, Lausch E, Zabel B, Caron MMJ, Welting TJM. Uncovering pathways regulating chondrogenic differentiation of CHH fibroblasts. Noncoding RNA Res 2022; 6:211-224. [PMID: 34988338 PMCID: PMC8688813 DOI: 10.1016/j.ncrna.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the non-coding snoRNA component of mitochondrial RNA processing endoribonuclease (RMRP) are the cause of cartilage-hair hypoplasia (CHH). CHH is a rare form of metaphyseal chondrodysplasia characterized by disproportionate short stature and abnormal growth plate development. The process of chondrogenic differentiation within growth plates of long bones is vital for longitudinal bone growth. However, molecular mechanisms behind impaired skeletal development in CHH patients remain unclear. We employed a transdifferentiation model (FDC) combined with whole transcriptome analysis to investigate the chondrogenic transdifferentiation capacity of CHH fibroblasts and to examine pathway regulation in CHH cells during chondrogenic differentiation. We established that the FDC transdifferentiation model is a relevant in vitro model of chondrogenic differentiation, with an emphasis on the terminal differentiation phase, which is crucial for longitudinal bone growth. We demonstrated that CHH fibroblasts are capable of transdifferentiating into chondrocyte-like cells, and show a reduced commitment to terminal differentiation. We also found a number of key factors of BMP, FGF, and IGF-1 signalling axes to be significantly upregulated in CHH cells during the chondrogenic transdifferentiation. Our results support postulated conclusions that RMRP has pleiotropic functions and profoundly affects multiple aspects of cell fate and signalling. Our findings shed light on the consequences of pathological CHH mutations in snoRNA RMRP during chondrogenic differentiation and the relevance and roles of non-coding RNAs in genetic diseases in general.
Collapse
Affiliation(s)
- Alzbeta Chabronova
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Mandy M F Meekels-Steinbusch
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Franziska Friedrich
- Department of Pediatrics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Don A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Lodewijk W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Ekkehart Lausch
- Department of Pediatrics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Zabel
- Medical Faculty, Otto van Guericke University of Magdeburg, 39106, Magdeburg, Germany
| | - Marjolein M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, MUMC+, 6202, AZ, Maastricht, the Netherlands
| |
Collapse
|
6
|
Venturi G, Montanaro L. How Altered Ribosome Production Can Cause or Contribute to Human Disease: The Spectrum of Ribosomopathies. Cells 2020; 9:E2300. [PMID: 33076379 PMCID: PMC7602531 DOI: 10.3390/cells9102300] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
A number of different defects in the process of ribosome production can lead to a diversified spectrum of disorders that are collectively identified as ribosomopathies. The specific factors involved may either play a role only in ribosome biogenesis or have additional extra-ribosomal functions, making it difficult to ascribe the pathogenesis of the disease specifically to an altered ribosome biogenesis, even if the latter is clearly affected. We reviewed the available literature in the field from this point of view with the aim of distinguishing, among ribosomopathies, the ones due to specific alterations in the process of ribosome production from those characterized by a multifactorial pathogenesis.
Collapse
Affiliation(s)
- Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Lorenzo Montanaro
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Center for Applied Biomedical Research, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40138 Bologna, Italy
| |
Collapse
|
7
|
Vakkilainen S, Taskinen M, Mäkitie O. Immunodeficiency in cartilage-hair hypoplasia: Pathogenesis, clinical course and management. Scand J Immunol 2020; 92:e12913. [PMID: 32506568 DOI: 10.1111/sji.12913] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Cartilage-hair hypoplasia (CHH) is an autosomal recessive syndromic immunodeficiency with skeletal dysplasia, short stature, hypotrichosis, variable degree of immune dysfunction and increased incidence of anaemia, Hirschsprung disease and malignancy. CHH is caused by variants in the RMRP gene, encoding the untranslated RNA molecule of the mitochondrial RNA-processing endoribonuclease, which participates in for example cell cycle regulation and telomere maintenance. Recent studies have expanded our understanding of the complex pathogenesis of CHH. Immune dysfunction has a major impact on clinical course and prognosis. Clinical features of immune dysfunction are highly variable, progressive and include infections, lung disease, immune dysregulation and malignancy. Mortality is increased compared with the general population, due to infections, malignancy and pulmonary disease. Several risk factors for early mortality have been reported in the Finnish CHH cohort and can be used to guide management. Newborn screening for severe combined immunodeficiency can possibly be of prognostic value in CHH. Regular follow-up by a multidisciplinary team should be implemented to address immune dysfunction in all patients with CHH, also in asymptomatic cases. Haematopoietic stem cell transplantation can cure immune dysfunction, but its benefits in mildly symptomatic patients with CHH remain debatable. Further research is needed to understand the mechanisms behind the variability of clinical features, to search for potential molecular treatment targets, to examine and validate risk factors for early mortality outside the Finnish CHH cohort and to develop management guidelines. This review focuses on the pathogenesis, clinical course and management of CHH.
Collapse
Affiliation(s)
- Svetlana Vakkilainen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mervi Taskinen
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Folkhälsan Research Center, Institute of Genetics, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Complex disease and phenotype mapping in the domestic dog. Nat Commun 2016; 7:10460. [PMID: 26795439 PMCID: PMC4735900 DOI: 10.1038/ncomms10460] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022] Open
Abstract
The domestic dog is becoming an increasingly valuable model species in medical genetics, showing particular promise to advance our understanding of cancer and orthopaedic disease. Here we undertake the largest canine genome-wide association study to date, with a panel of over 4,200 dogs genotyped at 180,000 markers, to accelerate mapping efforts. For complex diseases, we identify loci significantly associated with hip dysplasia, elbow dysplasia, idiopathic epilepsy, lymphoma, mast cell tumour and granulomatous colitis; for morphological traits, we report three novel quantitative trait loci that influence body size and one that influences fur length and shedding. Using simulation studies, we show that modestly larger sample sizes and denser marker sets will be sufficient to identify most moderate- to large-effect complex disease loci. This proposed design will enable efficient mapping of canine complex diseases, most of which have human homologues, using far fewer samples than required in human studies. The domestic dog is an important model organism for our understanding of cancer and other diseases. Here the authors conduct a genome-wide association study across multiple breeds and identify novel loci significantly associated with several complex diseases and morphological traits.
Collapse
|
9
|
Dhanraj S, Gunja SMR, Deveau AP, Nissbeck M, Boonyawat B, Coombs AJ, Renieri A, Mucciolo M, Marozza A, Buoni S, Turner L, Li H, Jarrar A, Sabanayagam M, Kirby M, Shago M, Pinto D, Berman JN, Scherer SW, Virtanen A, Dror Y. Bone marrow failure and developmental delay caused by mutations in poly(A)-specific ribonuclease (PARN). J Med Genet 2015; 52:738-48. [DOI: 10.1136/jmedgenet-2015-103292] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
|
10
|
Saito Y, Takeda J, Adachi K, Nobe Y, Kobayashi J, Hirota K, Oliveira DV, Taoka M, Isobe T. RNase MRP cleaves pre-tRNASer-Met in the tRNA maturation pathway. PLoS One 2014; 9:e112488. [PMID: 25401760 PMCID: PMC4234475 DOI: 10.1371/journal.pone.0112488] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/17/2014] [Indexed: 01/07/2023] Open
Abstract
Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNASer-Met. To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNASer-Met, suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry–based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute “Domain 1” in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.
Collapse
Affiliation(s)
- Yuichiro Saito
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Jun Takeda
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Kousuke Adachi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Yuko Nobe
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Junya Kobayashi
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Douglas V. Oliveira
- Division of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
11
|
van der Werf R, Wijmenga SS, Heus HA, Olsthoorn RC. Structural and thermodynamic signatures that define pseudotriloop RNA hairpins. RNA (NEW YORK, N.Y.) 2013; 19:1833-9. [PMID: 24158793 PMCID: PMC3884659 DOI: 10.1261/rna.039636.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pseudotriloop (PTL) structures in RNAs have been recognized as essential elements in RNA folding and recognition of proteins. PTL structures are derived from hexaloops by formation of a cross-loop base pair leaving a triloop and 3' bulged out residue. Despite their common presence and functional importance, insufficient structural and thermodynamic data are available that can be used to predict formation of PTLs from sequence alone. Using NMR spectroscopy and UV-melting data we established factors that contribute to the formation and stability of PTL structures derived from hepatitis B virus and human foamy virus. The NMR data show that, besides the cross-loop base pair, also a 3' pyrimidine bulge and a G-C loop-closing base pair are primary determinants of PTL formation. By changing the G-C closing base pair into C-G, the PTL switches into a hexaloop. Comparison of these rules with regular triloop hairpins and PTLs from other sources is discussed as well as the conservation of a PTL in human foamy virus and other spumaretroviruses.
Collapse
Affiliation(s)
- Ramon van der Werf
- Leiden Institute of Chemistry, University of Leiden, 2333 CC Leiden, The Netherlands
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
- Department of Radiology, Erasmus Medical Centre, 3015 CE Rotterdam, The Netherlands
| | - Sybren S. Wijmenga
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - Hans A. Heus
- Institute for Molecules and Materials, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
| | - René C.L. Olsthoorn
- Leiden Institute of Chemistry, University of Leiden, 2333 CC Leiden, The Netherlands
- Corresponding authorE-mail
| |
Collapse
|
12
|
Rogler LE, Kosmyna B, Moskowitz D, Bebawee R, Rahimzadeh J, Kutchko K, Laederach A, Notarangelo LD, Giliani S, Bouhassira E, Frenette P, Roy-Chowdhury J, Rogler CE. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Hum Mol Genet 2013; 23:368-82. [PMID: 24009312 DOI: 10.1093/hmg/ddt427] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional processing of some long non-coding RNAs (lncRNAs) reveals that they are a source of miRNAs. We show that the 268-nt non-coding RNA component of mitochondrial RNA processing endoribonuclease, (RNase MRP), is the source of at least two short (∼20 nt) RNAs designated RMRP-S1 and RMRP-S2, which function as miRNAs. Point mutations in RNase MRP cause human cartilage-hair hypoplasia (CHH), and several disease-causing mutations map to RMRP-S1 and -S2. SHAPE chemical probing identified two alternative secondary structures altered by disease mutations. RMRP-S1 and -S2 are significantly reduced in two fibroblast cell lines and a B-cell line derived from CHH patients. Tests of gene regulatory activity of RMRP-S1 and -S2 identified over 900 genes that were significantly regulated, of which over 75% were down-regulated, and 90% contained target sites with seed complements of RMRP-S1 and -S2 predominantly in their 3' UTRs. Pathway analysis identified regulated genes that function in skeletal development, hair development and hematopoietic cell differentiation including PTCH2 and SOX4 among others, linked to major CHH phenotypes. Also, genes associated with alternative RNA splicing, cell proliferation and differentiation were highly targeted. Therefore, alterations RMRP-S1 and -S2, caused by point mutations in RMRP, are strongly implicated in the molecular mechanism of CHH.
Collapse
|
13
|
Reiner R, Alfiya-Mor N, Berrebi-Demma M, Wesolowski D, Altman S, Jarrous N. RNA binding properties of conserved protein subunits of human RNase P. Nucleic Acids Res 2011; 39:5704-14. [PMID: 21450806 PMCID: PMC3141246 DOI: 10.1093/nar/gkr126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA in vitro. Rpp20 and Rpp25 bind jointly to H1 RNA, even though each protein can interact independently with this transcript. Nuclease footprinting analysis reveals that Rpp20 and Rpp25 recognize overlapping regions in the P2 and P3 domains of H1 RNA. Rpp21 and Rpp29, which are sufficient for reconstitution of the endonucleolytic activity, bind to separate regions in the catalytic domain of H1 RNA. Common themes and discrepancies in the RNA-protein interactions between human nuclear RNase P and its related yeast and archaeal counterparts provide a rationale for the assembly of the fully active form of this enzyme.
Collapse
Affiliation(s)
- Robert Reiner
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Thiel CT, Rauch A. The molecular basis of the cartilage-hair hypoplasia-anauxetic dysplasia spectrum. Best Pract Res Clin Endocrinol Metab 2011; 25:131-42. [PMID: 21396580 DOI: 10.1016/j.beem.2010.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cartilage-hair hypoplasia and anauxetic dysplasia are two autosomal recessive skeletal dysplasias characterized by different degrees from metaphyseal to spondylo-meta-epiphyseal dysplasia and variable additional features including predisposition to cancer, anemia, immunodeficiency, and gastrointestinal malabsorption and Hirschsprung's disease. Both are caused by mutations in the untranslated RMRP gene, which forms the RNA subunit of the RNase MRP complex. This complex is involved in the ribosome assembly by cleavage of 5.8S rRNA, cell cycle control by Cyclin B2 mRNA cleavage at the end of mitosis, processing the mitochondrial RNA, and forming a complex with hTERT suggesting a possible involvement in expression regulation by siRNA synthesis. The degree of skeletal dysplasia correlates mainly with the rRNA cleavage activity, whereas significantly diminished mRNA cleavage activity is a prerequisite for immunodeficiency. Thus, the clinical phenotype emerges in most cases of the combined effect on the respective effect on RNase MRP function.
Collapse
Affiliation(s)
- Christian T Thiel
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Schwabachanlage 10, Erlangen, Germany.
| | | |
Collapse
|
15
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
16
|
Mattijssen S, Welting TJM, Pruijn GJM. RNase MRP and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:102-16. [DOI: 10.1002/wrna.9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sandy Mattijssen
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Center Maastricht, The Netherlands
| | - Ger J. M. Pruijn
- Department of Biomolecular Chemistry, Nijmegen Center for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Hands-Taylor KLD, Martino L, Tata R, Babon JJ, Bui TT, Drake AF, Beavil RL, Pruijn GJM, Brown PR, Conte MR. Heterodimerization of the human RNase P/MRP subunits Rpp20 and Rpp25 is a prerequisite for interaction with the P3 arm of RNase MRP RNA. Nucleic Acids Res 2010; 38:4052-66. [PMID: 20215441 PMCID: PMC2896528 DOI: 10.1093/nar/gkq141] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Rpp20 and Rpp25 are two key subunits of the human endoribonucleases RNase P and MRP. Formation of an Rpp20–Rpp25 complex is critical for enzyme function and sub-cellular localization. We present the first detailed in vitro analysis of their conformational properties, and a biochemical and biophysical characterization of their mutual interaction and RNA recognition. This study specifically examines the role of the Rpp20/Rpp25 association in the formation of the ribonucleoprotein complex. The interaction of the individual subunits with the P3 arm of the RNase MRP RNA is revealed to be negligible whereas the 1:1 Rpp20:Rpp25 complex binds to the same target with an affinity of the order of nM. These results unambiguously demonstrate that Rpp20 and Rpp25 interact with the P3 RNA as a heterodimer, which is formed prior to RNA binding. This creates a platform for the design of future experiments aimed at a better understanding of the function and organization of RNase P and MRP. Finally, analyses of interactions with deletion mutant proteins constructed with successively shorter N- and C-terminal sequences indicate that the Alba-type core domain of both Rpp20 and Rpp25 contains most of the determinants for mutual association and P3 RNA recognition.
Collapse
Affiliation(s)
- Katherine L. D. Hands-Taylor
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Luigi Martino
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Renée Tata
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Jeffrey J. Babon
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Tam T. Bui
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Alex F. Drake
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Rebecca L. Beavil
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Ger J. M. Pruijn
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Paul R. Brown
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London SE1 1UL, UK, Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville 3052, VIC, Australia, Pharmaceutical Science Division, King’s College London, The Wolfson Wing, Hodgkin Building, Guy's Campus, London SE1 1UL, UK and Department of Biomolecular Chemistry, Nijmegen Centre for Molecular Life Sciences, Institute for Molecules and Materials, Radboud University of Nijmegen, Nijmegen, The Netherlands
- *To whom correspondence should be addressed. Tel: +44 20 7848 6194; Fax: +44 20 7848 6435;
| |
Collapse
|
18
|
Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain. EMBO J 2010; 29:761-9. [PMID: 20075859 DOI: 10.1038/emboj.2009.396] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/08/2009] [Indexed: 11/09/2022] Open
Abstract
Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.
Collapse
|
19
|
Freed EF, Bleichert F, Dutca LM, Baserga SJ. When ribosomes go bad: diseases of ribosome biogenesis. MOLECULAR BIOSYSTEMS 2010; 6:481-93. [PMID: 20174677 DOI: 10.1039/b919670f] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ribosomes are vital for cell growth and survival. Until recently, it was believed that mutations in ribosomes or ribosome biogenesis factors would be lethal, due to the essential nature of these complexes. However, in the last few decades, a number of diseases of ribosome biogenesis have been discovered. It remains a challenge in the field to elucidate the molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Emily F Freed
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
20
|
Cartilage-hair hypoplasia: molecular basis and heterogeneity of the immunological phenotype. Curr Opin Allergy Clin Immunol 2009; 8:534-9. [PMID: 18978468 DOI: 10.1097/aci.0b013e328310fe7d] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To report on the expanding clinical and immunological spectrum associated with ribonuclease mitochondrial RNA-processing mutations and to review the cellular and molecular mechanisms involved in the pathophysiology of cartilage-hair hypoplasia (CHH) and related disorders in humans. RECENT FINDINGS Different types of mutations are associated with skeletal or extraskeletal manifestations of CHH, respectively. In particular, severe immunodeficiency is mostly associated with mutations that alter cyclin B2 mRNA cleavage and thus are likely to reflect disturbances in cell cycle control. The first cases of ribonuclease mitochondrial RNA-processing mutations with severe immunodeficiency, but no skeletal abnormalities, have been identified. SUMMARY Abnormalities of ribosome biogenesis have been shown to cause distinct bone marrow failure syndromes, including CHH. However, the specific role of ribosomal and extraribosomal defects in the pathophysiology of the various phenotypic features of CHH remains undefined. Development of suitable animal models is needed to address this important issue.
Collapse
|
21
|
Alcorn JL, Merritt TM, Farach-Carson MC, Wang HH, Hecht JT. Ribozyme-mediated reduction of wild-type and mutant cartilage oligomeric matrix protein (COMP) mRNA and protein. RNA (NEW YORK, N.Y.) 2009; 15:686-695. [PMID: 19237461 PMCID: PMC2661830 DOI: 10.1261/rna.1335909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 12/23/2008] [Indexed: 05/27/2023]
Abstract
Dominant-negative mutations in the homopentameric extracellular matrix glycoprotein cartilage oligomeric matrix protein (COMP) result in inappropriate intracellular retention of misfolded COMP in the rough endoplasmic reticulum of chondrocytes, causing chondrocyte cell death, which leads to two skeletal dysplasias: pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1). COMP null mice show no adverse effects on normal bone development and growth, suggesting a possible therapy involving removal of COMP mRNA. The goal of this study was to assess the ability of a hammerhead ribozyme (Ribo56, designed against the D469del mutation) to reduce COMP mRNA expression. In COS7 cells transfected with plasmids that overexpress wild-type or mutant COMP mRNA and Ribo56, the ribozyme reduced overexpressed normal COMP mRNA by 46% and mutant COMP mRNA by 56% in a dose-dependent manner. Surprisingly, the use of recombinant adenoviruses to deliver wild-type or mutant COMP mRNA and Ribo56 simultaneously into COS7 cells proved problematic for the activity of the ribozyme to reduce COMP expression. However, in normal human costochondral cells (hCCCs) infected only with adenoviruses expressing Ribo56, expression of endogenous wild-type COMP mRNA was reduced in a dose-dependent manner by 50%. In chondrocytes that contain heterozygous COMP mutations (D469del, G427E and D511Y) that cause PSACH, Ribo56 was more effective at reducing COMP mRNA (up to 70%). These results indicate that Ribo56 is effective at reducing mutant and wild-type COMP levels in cells and suggests a possible mode of therapy to reduce the mutant protein load.
Collapse
Affiliation(s)
- Joseph L Alcorn
- The Department of Pediatrics, The University of Texas Medical School at Houston, 77030, USA
| | | | | | | | | |
Collapse
|
22
|
Rider NL, Morton DH, Puffenberger E, Hendrickson CL, Robinson DL, Strauss KA. Immunologic and clinical features of 25 Amish patients with RMRP 70 A-->G cartilage hair hypoplasia. Clin Immunol 2009; 131:119-28. [PMID: 19150606 DOI: 10.1016/j.clim.2008.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/05/2008] [Accepted: 11/05/2008] [Indexed: 11/25/2022]
Abstract
Cartilage-hair hypoplasia is a short limbed skeletal dysplasia associated with impairments in host-defense. To better understand the clinical heterogeneity of this disorder, we studied 25 Amish patients with homozygous mutations in RMRP (RMRP 70 A>G). Despite mutation homogeneity, eight (32%) patients had severe or recurrent infections, two (8%) of these children underwent bone-marrow transplantation for combined immunodeficiency, and the remainder were healthy. Features distinguishing patients who underwent bone marrow transplantation from others were shorter birth length, and lower serum IgG, undetectable serum IgA, and elevated circulating NK cells before 2 years of age. Irrespective of clinical phenotype, most patients had lymphopenia and reduced lymphocyte proliferation to mitogens in vitro. Our cohort analysis suggests that many patients with cartilage-hair hypoplasia are at risk for infection susceptibility particularly during the first 2 years of life. Gauging this risk is difficult, and thus careful monitoring of all patients with cartilage-hair hypoplasia is warranted.
Collapse
Affiliation(s)
- Nicholas L Rider
- Penn State Hershey Medical Center, Division of Allergy and Immunology, Hershey, PA 17033, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Current World Literature. Curr Opin Allergy Clin Immunol 2008; 8:590-3. [DOI: 10.1097/aci.0b013e32831ceb82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|