1
|
Wang X, Zhou WT, Dong HH, Li CY, Jiang YY, Xie P, Xu ZY, Xie SH, Yang SX, Huang L, Chen H, Wang LY, Wei X, Huang YQ. Isobavachalcone: A redox antifungal agent impairs the mitochondria protein of Cryptococcus neoformans. Int J Antimicrob Agents 2024; 64:107253. [PMID: 38925229 DOI: 10.1016/j.ijantimicag.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Isobavachalcone (IBC) is a natural small molecule with various biological activities; however, its inhibitory effects on Cryptococcus neoformans remain unclear. In our study, IBC showed a good antifungal effect. Through in vitro experiments, its minimum inhibitory concentration was 0.5-1 µg/mL. It exhibited the same antifungal effect as Amphotericin B in brain and lung infections in in vivo experiments. IBC also showed a synergistic antifungal effect with emodin with lower toxicity, and C. neoformans did not develop drug resistance to IBC. In the mechanistic study, significantly damaged mitochondria of C. neoformans, a significant reduction in mitochondrial membrane potential and adenosine triphosphate production, and an increase in hydrogen peroxide (H2O2) caused by IBC were observed using transmission electron microscopy. Through drug affinity-responsive target stability combined with phenotype detection, riboflavin synthases of aconitase and succinate dehydrogenase were screened. Molecular docking, quantitative polymerase chain reaction experiments, target inhibitor and agonist intervention, molecular interaction measurements, and minimum inhibitory concentration detection of the constructed expression strains revealed that IBC targeted the activity of these two enzymes, interfered by the tricarboxylic acid cycle, inhibited the production of adenosine triphosphate, blocked electron transport, reduced mitochondrial membrane potential, and induced antioxidation imbalance and reactive oxygen species accumulation, thus producing an antifungal effect. Therefore, IBC is a promising lead drug and redox antifungal agent for C. neoformans.
Collapse
Affiliation(s)
- Xue Wang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Wen-Ting Zhou
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Hui-Hua Dong
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Chen-Yan Li
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Yu-Ying Jiang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Ping Xie
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Zhen-Yi Xu
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Shuo-Hua Xie
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China; Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Shi-Xian Yang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| | - Liang Huang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China
| | - Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu, China
| | - Lu-Yao Wang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China.
| | - Xian Wei
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China.
| | - Yan-Qiang Huang
- Guangxi Technology Innovation Cooperation Base of Prevention and Control Pathogenic Microbes with Drug Resistance, Youjiang Medical University for Nationalities, Baise, China; Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
2
|
Williams TJ, Allen MA, Ray AE, Benaud N, Chelliah DS, Albanese D, Donati C, Selbmann L, Coleine C, Ferrari BC. Novel endolithic bacteria of phylum Chloroflexota reveal a myriad of potential survival strategies in the Antarctic desert. Appl Environ Microbiol 2024; 90:e0226423. [PMID: 38372512 PMCID: PMC10952385 DOI: 10.1128/aem.02264-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 02/20/2024] Open
Abstract
The ice-free McMurdo Dry Valleys of Antarctica are dominated by nutrient-poor mineral soil and rocky outcrops. The principal habitat for microorganisms is within rocks (endolithic). In this environment, microorganisms are provided with protection against sub-zero temperatures, rapid thermal fluctuations, extreme dryness, and ultraviolet and solar radiation. Endolithic communities include lichen, algae, fungi, and a diverse array of bacteria. Chloroflexota is among the most abundant bacterial phyla present in these communities. Among the Chloroflexota are four novel classes of bacteria, here named Candidatus Spiritibacteria class. nov. (=UBA5177), Candidatus Martimicrobia class. nov. (=UBA4733), Candidatus Tarhunnaeia class. nov. (=UBA6077), and Candidatus Uliximicrobia class. nov. (=UBA2235). We retrieved 17 high-quality metagenome-assembled genomes (MAGs) that represent these four classes. Based on genome predictions, all these bacteria are inferred to be aerobic heterotrophs that encode enzymes for the catabolism of diverse sugars. These and other organic substrates are likely derived from lichen, algae, and fungi, as metabolites (including photosynthate), cell wall components, and extracellular matrix components. The majority of MAGs encode the capacity for trace gas oxidation using high-affinity uptake hydrogenases, which could provide energy and metabolic water required for survival and persistence. Furthermore, some MAGs encode the capacity to couple the energy generated from H2 and CO oxidation to support carbon fixation (atmospheric chemosynthesis). All encode mechanisms for the detoxification and efflux of heavy metals. Certain MAGs encode features that indicate possible interactions with other organisms, such as Tc-type toxin complexes, hemolysins, and macroglobulins.IMPORTANCEThe ice-free McMurdo Dry Valleys of Antarctica are the coldest and most hyperarid desert on Earth. It is, therefore, the closest analog to the surface of the planet Mars. Bacteria and other microorganisms survive by inhabiting airspaces within rocks (endolithic). We identify four novel classes of phylum Chloroflexota, and, based on interrogation of 17 metagenome-assembled genomes, we predict specific metabolic and physiological adaptations that facilitate the survival of these bacteria in this harsh environment-including oxidation of trace gases and the utilization of nutrients (including sugars) derived from lichen, algae, and fungi. We propose that such adaptations allow these endolithic bacteria to eke out an existence in this cold and extremely dry habitat.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle A Allen
- School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Angelique E Ray
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Devan S Chelliah
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Davide Albanese
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Laura Selbmann
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
- Mycological Section, Italian Antarctic National Museum (MNA), Genova, Italy
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, Viterbo, Italy
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Wang D, An B, Luo H, He C, Wang Q. Roles of CgEde1 and CgMca in Development and Virulence of Colletotrichum gloeosporioides. Int J Mol Sci 2024; 25:2943. [PMID: 38474190 DOI: 10.3390/ijms25052943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Anthracnose, induced by Colletotrichum gloeosporioides, poses a substantial economic threat to rubber tree yields and various other tropical crops. Ede1, an endocytic scaffolding protein, plays a crucial role in endocytic site initiation and maturation in yeast. Metacaspases, sharing structural similarities with caspase family proteases, are essential for maintaining cell fitness. To enhance our understanding of the growth and virulence of C. gloeosporioides, we identified a homologue of Ede1 (CgEde1) in C. gloeosporioides. The knockout of CgEde1 led to impairments in vegetative growth, conidiation, and pathogenicity. Furthermore, we characterized a weakly interacted partner of CgEde1 and CgMca (orthologue of metacaspase). Notably, both the single mutant ΔCgMca and the double mutant ΔCgEde1/ΔCgMca exhibited severe defects in conidiation and germination. Polarity establishment and pathogenicity were also disrupted in these mutants. Moreover, a significantly insoluble protein accumulation was observed in ΔCgMca and ΔCgEde1/ΔCgMca strains. These findings elucidate the mechanism by which CgEde1 and CgMca regulates the growth and pathogenicity of C. gloeosporioides. Their regulation involves influencing conidiation, polarity establishment, and maintaining cell fitness, providing valuable insights into the intricate interplay between CgEde1 and CgMca in C. gloeosporioides.
Collapse
Affiliation(s)
- Dan Wang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Bang An
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Hongli Luo
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chaozu He
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qiannan Wang
- Sanya Nanfan Research Institute of Hainan University, School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
4
|
Antifungal activity and potential mechanism of action of caspofungin in combination with ribavirin against Candida albicans. Int J Antimicrob Agents 2023; 61:106709. [PMID: 36640848 DOI: 10.1016/j.ijantimicag.2023.106709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The number of invasive fungal infections has increased dramatically, resulting in high morbidity and mortality among immunocompromised patients. With increasing use of caspofungin (CAS), resistant strains have emerged frequently and led to limitations in the treatment of patients with severe invasive Candida albicans infections. Combination therapy is an important method to deal with this issue. As such, this study investigated the activity of CAS in combination with ribavirin (RBV) against C. albicans. The results of this in-vitro study showed that the minimum inhibitory concentrations (MICs) of CAS and RBV when they were used as monotherapy were 0.5-1 μg/mL and 2-8 μg/mL, respectively, while the MIC of CAS decreased from 0.5-1 μg/mL to 0.0625-0.25 μg/mL when used in combination with RBV, with a fractional inhibitory concentration index (FICI) ≤0.5. In addition, the RBV + CAS combination group displayed synergistic effects against C. albicans biofilm over 4 h; the sessile MIC (sMIC) of CAS decreased from 0.5-1 µg/mL to 0.0625-0.25µg/mL and the sMIC of RBV decreased from 4-16 µg/mL to 1-2 µg/mL, with FICI <0.5. The survival of C. albicans-infected Galleria mellonella was prolonged, the fungal burden was decreased, and the area of tissue damage was reduced after combination therapy. Further study showed that the mechanisms of action of the synergistic effect were related to the inhibition of biofilm formation, the inhibition of hyphal growth, and the activation of metacaspases, but were not related to the accumulation of reactive oxygen species. It is hoped that these findings will contribute to the understanding of drug resistance in C. albicans, and provide new insights for the application of RBV.
Collapse
|
5
|
Svandova E, Lesot H, Sharpe P, Matalova E. Making the head: Caspases in life and death. Front Cell Dev Biol 2023; 10:1075751. [PMID: 36712975 PMCID: PMC9880857 DOI: 10.3389/fcell.2022.1075751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The term apoptosis, as a way of programmed cell death, was coined a half century ago and since its discovery the process has been extensively investigated. The anatomy and physiology of the head are complex and thus apoptosis has mostly been followed in separate structures, tissues or cell types. This review aims to provide a comprehensive overview of recent knowledge concerning apoptosis-related molecules involved in the development of structures of head with a particular focus on caspases, cysteine proteases having a key position in apoptotic pathways. Since many classical apoptosis-related molecules, including caspases, are emerging in several non-apoptotic processes, these were also considered. The largest organ of the head region is the brain and its development has been extensively investigated, including the roles of apoptosis and related molecules. Neurogenesis research also includes sensory organs such as the eye and ear, efferent nervous system and associated muscles and glands. Caspases have been also associated with normal function of the skin and hair follicles. Regarding mineralised tissues within craniofacial morphogenesis, apoptosis in bones has been of interest along with palate fusion and tooth development. Finally, the role of apoptosis and caspases in angiogenesis, necessary for any tissue/organ development and maintenance/homeostasis, are discussed. Additionally, this review points to abnormalities of development resulting from improper expression/activation of apoptosis-related molecules.
Collapse
Affiliation(s)
- Eva Svandova
- Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Herve Lesot
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Paul Sharpe
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Eva Matalova
- Department of Physiology, University of Veterinary Sciences, Brno, Czechia
| |
Collapse
|
6
|
Wang H, Peng Z, Wang C, Zhu Y, Xia F, Sun H. Thymol and
trans
‐cinnamaldehyde induce apoptosis through a metacaspase‐dependent mitochondrial pathway in food‐spoilage yeast
Zygosaccharomyces rouxii. J Food Sci 2022; 87:4119-4136. [DOI: 10.1111/1750-3841.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Huxuan Wang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Zhonghua Peng
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Cong Wang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Yanan Zhu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Fei Xia
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Hongmin Sun
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| |
Collapse
|
7
|
Scariot FJ, Delamare APL, Echeverrigaray S. The effect of chlorothalonil on Saccharomyces cerevisiae under alcoholic fermentation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105032. [PMID: 35249653 DOI: 10.1016/j.pestbp.2021.105032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Chlorothalonil is a broad-spectrum fungicide largely used for the control of several diseases of grapevines. With a moderate persistence in plants, soil and, water, it can be carried to grape musts, particularly when applied to control grape rot diseases. This work aimed to determine the effect of chlorothalonil on Saccharomyces cerevisiae under fermentative conditions using a flow cytometry approach. Yeasts were cultivated in synthetic must with different concentrations of chlorothalonil (0 to 60 μM) and evaluated for culture-ability, membrane integrity, reactive oxygen species (ROS) accumulation, mitochondrial membrane potential, metacaspase activity, ATP, nonprotein SH and, SH-proteins. The results confirmed the oxidation of nonprotein SH, including glutathione, and the binding of the fungicide with sulfhydryl proteins, which led to changes in the cell and mitochondrial membranes that result in the necrotic death of part of the yeast population, and a reduction in metabolic activity. Moreover, the reduction in glutathione-SH concentration was responsible for the increase in ROS which in turn triggers metacaspase-dependent apoptotic cell death. Cells that escape death adapt and began to grow and ferment after a dose-dependent lag-phase period, exhibiting an almost normal fermentative behavior thereafter. Moreover, was observed unexpected protection of chlorothalonil sub-dosages on yeast cell membrane integrity during alcoholic fermentation. This study contributed insights into how chlorothalonil leads the non-target organism S. cerevisiae to cell death and explores the effect of the fungicide during alcoholic fermentation.
Collapse
Affiliation(s)
- Fernando Joel Scariot
- Laboratory of Enology and Applied Microbiology, Institute of Biotechnology, University of Caxias do Sul, Rua Fransisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, Brazil.
| | - Ana Paula Longaray Delamare
- Laboratory of Enology and Applied Microbiology, Institute of Biotechnology, University of Caxias do Sul, Rua Fransisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, Brazil
| | - Sergio Echeverrigaray
- Laboratory of Enology and Applied Microbiology, Institute of Biotechnology, University of Caxias do Sul, Rua Fransisco Getúlio Vargas, 1130, Caxias do Sul 95070-560, Brazil
| |
Collapse
|
8
|
Zhang WY, Zhan HL, Li MK, Wu GD, Liu Z, Wu LF. Long noncoding RNA Gas5 induces cell apoptosis and inhibits tumor growth via activating the CHOP-dependent endoplasmic reticulum stress pathway in human hepatoblastoma HepG2 cells. J Cell Biochem 2022; 123:231-247. [PMID: 34636091 DOI: 10.1002/jcb.30159] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 02/05/2023]
Abstract
In recent years, long noncoding RNAs (lncRNAs) have been demonstrated to be important tumor-associated regulatory factors. LncRNA growth arrest-specific transcript 5 (Gas5) acts as an anti-oncogene in most cancers. Whether Gas5 acts as an oncogene or anti-oncogene in hepatocellular carcinoma (HCC) remains unclear. In the present study, the expression and role of Gas5 in HCC were investigated in vitro and in vivo. Lower expression levels of Gas5 were determined in HCC tissues and cells by quantitative reverse transcription-polymerase chain reaction. Overexpressed Gas 5 lentiviral vectors were constructed to analyze their influence on cell viability, migration, invasion, and apoptosis. Fluorescence in situ hybridization was used to identify the subcellular localization of Gas5. Protein complexes that bound to Gas5 were isolated from HepG2 cells through pull-down experiments and analyzed by mass spectrometry. A series of novel Gas5-interacting proteins were identified and bioinformatics analysis was carried out. These included ribosomal proteins, proteins involved in protein folding, sorting, and transportation in the ER, some nucleases and protein enzymes involved in gene transcription, translation, and other proteins with various functions.78 kDa glucose-regulated protein (GRP78) was identified as a direct target of Gas5 by Rip-qPCR and Western blot analysis assay. Gas5 inhibited HepG2 cell growth and induced cell apoptosis via upregulating CHOP to activate the ER stress signaling pathway. Further studies indicated that the knockdown of CHOP by shRNA partially reversed Gas5-mediated apoptosis in HepG2 cells. Magnetic resonance imaging showed that the ectopic expression of Gas5 inhibited the growth of HCC in nude mice. These findings suggest that Gas5 functions as a tumor suppressor and induces apoptosis through activation of ER stress by targeting the CHOP signal pathway in HCC.
Collapse
Affiliation(s)
- Wei-Yi Zhang
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Hao-Lian Zhan
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Ming-Kai Li
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Guan-Di Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province, China
| | - Zhe Liu
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Ling-Fei Wu
- Department of Gastroenterology, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong Province, China
| |
Collapse
|
9
|
Chaves SR, Rego A, Martins VM, Santos-Pereira C, Sousa MJ, Côrte-Real M. Regulation of Cell Death Induced by Acetic Acid in Yeasts. Front Cell Dev Biol 2021; 9:642375. [PMID: 34249904 PMCID: PMC8264433 DOI: 10.3389/fcell.2021.642375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
Acetic acid has long been considered a molecule of great interest in the yeast research field. It is mostly recognized as a by-product of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, as well as of lignocellulosic biomass pretreatment. High acetic acid levels are commonly associated with arrested fermentations or with utilization as vinegar in the food industry. Due to its obvious interest to industrial processes, research on the mechanisms underlying the impact of acetic acid in yeast cells has been increasing. In the past twenty years, a plethora of studies have addressed the intricate cascade of molecular events involved in cell death induced by acetic acid, which is now considered a model in the yeast regulated cell death field. As such, understanding how acetic acid modulates cellular functions brought about important knowledge on modulable targets not only in biotechnology but also in biomedicine. Here, we performed a comprehensive literature review to compile information from published studies performed with lethal concentrations of acetic acid, which shed light on regulated cell death mechanisms. We present an historical retrospective of research on this topic, first providing an overview of the cell death process induced by acetic acid, including functional and structural alterations, followed by an in-depth description of its pharmacological and genetic regulation. As the mechanistic understanding of regulated cell death is crucial both to design improved biomedical strategies and to develop more robust and resilient yeast strains for industrial applications, acetic acid-induced cell death remains a fruitful and open field of study.
Collapse
Affiliation(s)
- Susana R Chaves
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - António Rego
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Vítor M Martins
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Cátia Santos-Pereira
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal.,Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Maria João Sousa
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Biological and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
10
|
Kwun MS, Lee HJ, Lee DG. β-amyrin-induced apoptosis in Candida albicans triggered by calcium. Fungal Biol 2021; 125:630-636. [PMID: 34281656 DOI: 10.1016/j.funbio.2021.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022]
Abstract
The emergence of drug-resistant pathogens has urged researchers to discover alternatives for traditional antibiotics. β-amyrin, which is included in the category of triterpenoids extracted from plants, is known for its antimicrobial activity, although the underlying mechanism has not yet been revealed. This study was conducted to elucidate the antifungal mode of action of β-amyrin against Candida albicans. Based on the relevance between triterpenoids and oxidative molecules, reactive oxygen species (ROS) concentrations were detected, which showed a noticeable increment. Disruption of Ca2+ homeostasis in the cytosol was additionally analyzed, which was supported by interactions between two. Subsequently, decrease in mitochondrial membrane potential, increment of mitochondrial Ca2+, and ROS concentration were monitored, which suggested mitochondrial dysfunction modulated by Ca2+. Further investigation confirmed oxidative damage through glutathione reduction and DNA fragmentation. Accumulation of lethal damages resulted in the activation of caspases and externalization of phosphatidylserine, indicating the induction of yeast apoptosis by β-amyrin in C. albicans.
Collapse
Affiliation(s)
- Min Seok Kwun
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Ha Jung Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
11
|
Gowsalya R, Ravi C, Nachiappan V. Human OVCA2 and its homolog FSH3-induced apoptosis in Saccharomyces cerevisiae. Curr Genet 2021; 67:631-640. [PMID: 33715035 DOI: 10.1007/s00294-021-01171-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 01/26/2023]
Abstract
Mammalian ovarian tumor suppressor candidate 2 (OVCA2) gene belongs to the family of serine hydrolase (FSH). This study aimed to elucidate the functional similarities of OVCA2 with its yeast homolog genes (FSH1, FSH2, and FSH3) regarding apoptosis. We found that the expression of OVCA2 in Saccharomyces cerevisiae increased production of reactive oxygen species (ROS), decreased cell growth, disturbed mitochondrial morphology, reduced membrane potential, increased chromatin condensation, and externalization of phosphatidylserine (PS) (annexin V/propidium iodide staining) indicating induced apoptotic cell death in yeast. We also showed that complementation of OVCA2 in fsh3Δ cells reduced cell growth and increased the apoptotic phenotypes. Collectively, our results suggest that complementation of human OVCA2 in fsh3Δ cells induced apoptosis in S. cerevisiae.
Collapse
Affiliation(s)
- Ramachandran Gowsalya
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620024, India
| | - Chidambaram Ravi
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620024, India
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tamil Nadu, Tiruchirappalli, 620024, India.
| |
Collapse
|
12
|
Polčic P, Machala Z. Effects of Non-Thermal Plasma on Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22052247. [PMID: 33668158 PMCID: PMC7956799 DOI: 10.3390/ijms22052247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/26/2022] Open
Abstract
Cold plasmas generated by various electrical discharges can affect cell physiology or induce cell damage that may often result in the loss of viability. Many cold plasma-based technologies have emerged in recent years that are aimed at manipulating the cells within various environments or tissues. These include inactivation of microorganisms for the purpose of sterilization, food processing, induction of seeds germination, but also the treatment of cells in the therapy. Mechanisms that underlie the plasma-cell interactions are, however, still poorly understood. Dissection of cellular pathways or structures affected by plasma using simple eukaryotic models is therefore desirable. Yeast Saccharomyces cerevisiae is a traditional model organism with unprecedented impact on our knowledge of processes in eukaryotic cells. As such, it had been also employed in studies of plasma-cell interactions. This review focuses on the effects of cold plasma on yeast cells.
Collapse
Affiliation(s)
- Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, Ilkovičova 6, 84215 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-60296-398
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 84248 Bratislava, Slovakia;
| |
Collapse
|
13
|
Su S, Shi X, Xu W, Li Y, Chen X, Jia S, Sun S. Antifungal Activity and Potential Mechanism of Panobinostat in Combination With Fluconazole Against Candida albicans. Front Microbiol 2020; 11:1584. [PMID: 32765454 PMCID: PMC7378535 DOI: 10.3389/fmicb.2020.01584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Invasive fungal infections are an emerging problem worldwide, which bring huge health challenges. Candida albicans, the most common opportunistic fungal pathogen, can cause bloodstream infections with high mortality in susceptible hosts. At present, available antifungal agents used in clinical practice are limited, and most of them also have some serious adverse effects. The emergence of drug resistance because of the wide use of antifungal agents is a new limitation to successful patient therapy. Drug combination therapy is increasingly becoming a way to enhance antifungal efficacy, and reduce drug resistance and potential toxicity. Panobinostat, as a pan-histone deacetylase inhibitor, has been approved by the United States Food and Drug Administration as novel antitumor agents. In this study, the antifungal effects and mechanisms of panobinostat combined with fluconazole (FLC) against C. albicans were explored for the first time. The results indicated that panobinostat could work synergistically with FLC against resistant C. albicans, the minimal inhibitory concentration (MIC) of panobinostat could decrease from 128 to 0.5–2 μg/ml and the MIC of FLC could decrease from >512 to 0.25–0.5 μg/ml, and the fractional inhibitory concentration index (FICI) value ranged from 0.0024 to 0.0166. It was not only synergized against planktonic cells but also against C. albicans biofilms performed ≤8 h when panobinostat is combined with fluconazole; the sessile MIC (sMIC) of panobinostat could decrease from >128 to 0.5–8 μg/ml and the sMIC of FLC from >1024 to 0.5–2 μg/ml, and the FICI value was <0.5. The Galleria mellonella infection model was used to evaluate the in vivo effect of the drug combination, and the result showed that the survival rate could be improved obviously. Finally, we explored the synergistic mechanisms of the drug combination. The hyphal growth, which plays roles in drug resistance, was found to be inhibited, and metacaspase which is related to cell apoptosis was activated (p < 0.01), whereas the synergistic effects were proven not to be related to the efflux pumps (p > 0.05). These findings might provide novel insights into the antifungal drug discovery and the treatment of candidiasis caused by C. albicans.
Collapse
Affiliation(s)
- Shan Su
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiaohong Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Wei Xu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yiman Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Shuang Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Sheppard S, Dikicioglu D. Dynamic modelling of the killing mechanism of action by virus-infected yeasts. J R Soc Interface 2020; 16:20190064. [PMID: 30890050 DOI: 10.1098/rsif.2019.0064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Killer yeasts are microorganisms, which can produce and secrete proteinaceous toxins, a characteristic gained via infection by a virus. These toxins are able to kill sensitive cells of the same or a related species. From a biotechnological perspective, killer yeasts are beneficial due to their antifungal/antimicrobial activity, but also regarded as problematic for large-scale fermentation processes, whereby those yeasts would kill starter cultures species and lead to stuck fermentations. Here, we propose a mechanistic model of the toxin-binding kinetics pertaining to the killer population coupled with the toxin-induced death kinetics of the sensitive population to study toxic action. The dynamic model captured the transient toxic activity starting from the introduction of killer cells into the culture at the time of inoculation through to induced cell death. The kinetics of K1/K2 activity via its primary pathway of toxicity was 5.5 times faster than its activity at low concentration inducing the apoptotic pathway in sensitive cells. Conversely, we showed that the primary pathway for K28 was approximately three times slower than its equivalent apoptotic pathway, indicating the particular relevance of K28 in biotechnological applications where the toxin concentration is rarely above those limits to trigger the primary pathway of killer activity.
Collapse
Affiliation(s)
- Sean Sheppard
- 1 St John's College , St John's Street, Cambridge , UK
| | - Duygu Dikicioglu
- 2 Department of Chemical Engineering and Biotechnology, University of Cambridge , Cambridge , UK
| |
Collapse
|
15
|
A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nat Commun 2020; 11:1608. [PMID: 32231209 PMCID: PMC7105494 DOI: 10.1038/s41467-020-14949-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
The emerging resistance of crop pathogens to fungicides poses a challenge to food security and compels discovery of new antifungal compounds. Here, we show that mono-alkyl lipophilic cations (MALCs) inhibit oxidative phosphorylation by affecting NADH oxidation in the plant pathogens Zymoseptoria tritici, Ustilago maydis and Magnaporthe oryzae. One of these MALCs, consisting of a dimethylsulfonium moiety and a long alkyl chain (C18-SMe2+), also induces production of reactive oxygen species at the level of respiratory complex I, thus triggering fungal apoptosis. In addition, C18-SMe2+ activates innate plant defense. This multiple activity effectively protects cereals against Septoria tritici blotch and rice blast disease. C18-SMe2+ has low toxicity in Daphnia magna, and is not mutagenic or phytotoxic. Thus, MALCs hold potential as effective and non-toxic crop fungicides. New fungicides are needed due to emerging resistance shown by crop pathogens. Here, the authors show that a mono-alkyl lipophilic cation protects plants from fungal pathogens by inhibiting fungal mitochondrial respiration, inducing production of reactive oxygen species, triggering fungal apoptosis, and activating innate plant defense.
Collapse
|
16
|
Moon JE, Heo W, Lee SH, Lee SH, Lee HG, Lee JH, Kim YJ. Trehalose Protects the Probiotic Yeast Saccharomyces boulardii against Oxidative Stress-Induced Cell Death. J Microbiol Biotechnol 2020; 30:54-61. [PMID: 31546305 PMCID: PMC9728326 DOI: 10.4014/jmb.1906.06041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Saccharomyces boulardii is the only probiotic yeast with US Food and Drug Administration approval. It is routinely used to prevent or treat acute diarrhea and other gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. The formation of reactive oxygen species (ROS), specifically H2O2 during normal aerobic metabolism, contributes to programmed cell death and represents a risk to the viability of the probiotic microbe. Moreover, a loss of viability reduces the efficacy of the probiotic treatment. Therefore, inhibiting the accumulation of ROS in the oxidant environment could improve the viability of the probiotic yeast and lead to more efficacious treatment. Here, we provide evidence that supplementation with a non-reducing disaccharide, namely trehalose, enhanced the viability of S. boulardii exposed to an oxidative environment by preventing metacaspase YCA1-mediated programmed cell death through inhibition of intracellular ROS production. Our results suggest that supplementation with S. boulardii together with trehalose could increase the viability of the organism, and thus improve its effectiveness as a probiotic and as a treatment for acute diarrhea and other gastrointestinal disorders.
Collapse
Affiliation(s)
- Ji Eun Moon
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea
| | - Wan Heo
- Institutes of Natural Sciences, Korea University, Sejong 30019, Republic of Korea
| | - Sang Hoon Lee
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea
| | - Suk Hee Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Taegu 41566, Republic of Korea
| | - Hong Gu Lee
- Department of Animal Science and Technology, College of Animal Bioscience and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea,Corresponding authors J.H.L. Phone: +82-44-860-1764 Fax: +82-44-860-1430 E-mail:
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 3009, Republic of Korea,Y.J.K. Phone: +82-44-860-1435 Fax: +82-44-860-1780 E-mail:
| |
Collapse
|
17
|
Nanosecond duration pulsed electric field together with formic acid triggers caspase-dependent apoptosis in pathogenic yeasts. Bioelectrochemistry 2019; 128:148-154. [DOI: 10.1016/j.bioelechem.2019.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/13/2023]
|
18
|
FSH1 overexpression triggers apoptosis in Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 2019; 112:1775-1784. [DOI: 10.1007/s10482-019-01310-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/26/2019] [Indexed: 10/26/2022]
|
19
|
Lee W, Woo ER, Lee DG. Effect of apigenin isolated from Aster yomena against Candida albicans: apigenin-triggered apoptotic pathway regulated by mitochondrial calcium signaling. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:19-28. [PMID: 30408533 DOI: 10.1016/j.jep.2018.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/22/2018] [Accepted: 11/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aster yomena, a perennial herb that grows mainly in South Korea, has been employed in the traditional temple food for antibiotic efficacy. Recently, it was reported that apigenin isolated from A. yomena has a physical antifungal mechanism targeting membrane against Candida albicans. AIM OF THE STUDY Our study aimed to investigate the biochemical responses underlying the antifungal activity of apigenin isolated from A. yomena due to lack studies reporting the investigation of intracellular responses of apigenin in C. albicans. MATERIALS AND METHODS Apigenin was isolated from the aerial parts of A. yomena. To evaluate apigenin-induced inhibitory effects and membrane damages, the measurement of the cell viability assay and the flux of cytosolic components were performed with at various concentrations. Intracellular external potassium and calcium levels were assayed by an ion-selective electrode meter, Fura2-AM and Rhod2-AM, respectively. Mitochondrial dysfunctions were analyzed by using JC-1, Mitotracker Green FM, and MitoSOX Red dye. H2DCFDA, glutathione, and MDA assay were used to detect oxidative damage. Also, flow cytometry was carried out to detect apoptotic hallmarks using Annexin V-PI, TUNEL, and FITC-VAD-FMK staining. Tetraethylammoniumchloride (TEA), Ruthenium red (RR), and N-acetylcysteine (NAC) were used as a potassium channel blocker, mitochondrial calcium uptake inhibitor, and reactive oxygen species (ROS) scavenger, respectively. RESULTS We confirmed that there was no decrease of cell survival percentages in crude extracts of A. yomena treatment, however, only isolated apigenin has the antifungal effect in C. albicans. Apigenin triggered a dose-dependent mitochondrial calcium uptake followed by mitochondrial dysfunction, loss of the membrane potential and an increase in the mitochondrial mass and ROS. Apigenin also induced intracellular redox imbalance as indicated by the ROS accumulation, glutathione oxidation, and lipid peroxidation. Interestingly, NAC failed the restore the mitochondrial calcium levels and thus alleviate the mitochondrial damages, however, RR reduced the apigenin-induced redox imbalance. Furthermore, apigenin induced apoptosis activation marked by the phosphatidylserine exposure, DNA fragmentation, and caspase activation. The pro-apoptotic effect of apigenin was counteracted by RR and NAC pretreatment. In particular, RR significantly reduced the pro-apoptotic responses. CONCLUSIONS Apigenin isolated from A. yomena induced mitochondrial-mediated apoptotic pathway, and mitochondrial calcium signaling is main factor in its pathway in C. albicans.
Collapse
Affiliation(s)
- Wonjong Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Eun-Rhan Woo
- College of Pharmacy, Chosun University, 375 Seosukdong, Donggu, Gwangju 61452, Republic of Korea.
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| |
Collapse
|
20
|
Gowsalya R, Ravi C, Kannan M, Nachiappan V. FSH3 mediated cell death is dependent on NUC1 in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:5333309. [DOI: 10.1093/femsyr/foz017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 02/17/2019] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Family of Serine Hydrolases (FSH) members FSH1, FSH2 and FSH3 in Saccharomyces cerevisiae share conserved sequences with the human candidate tumor suppressor OVCA2. In this study, hydrogen peroxide (H2O2) exposure increased the expression of both mRNA and protein levels of FSH3 in wild-type (WT) yeast cells. The deletion of FSH3 improved the yeast growth rate under H2O2-induction as compared to WT control cells. The overexpression of FSH3 in WT yeast cells caused an apoptotic phenotype, including accumulation of reaction oxygen species, decreased cell viability and cell death. The double deletions fsh1Δ fsh2Δ, fsh1Δ fsh3Δ and fsh2Δ fsh3Δ displayed increased growth compared to WT cells. However, the overexpression of FSH3 effectively inhibited cell growth in all double deletions. Moreover, the overexpression of FSH3 in cells lacking NUC1 did not cause any growth defect in the presence or absence of H2O2. Our results suggest that FSH3 induced apoptosis of yeast in a NUC1 dependent manner.
Collapse
Affiliation(s)
- Ramachandran Gowsalya
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli – 620 024, Tamil Nadu, India
| | - Chidambaram Ravi
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli – 620 024, Tamil Nadu, India
| | - Muthukumar Kannan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Vasanthi Nachiappan
- Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli – 620 024, Tamil Nadu, India
| |
Collapse
|
21
|
Sousa CA, Soares HMVM, Soares EV. Nickel Oxide Nanoparticles Trigger Caspase- and Mitochondria-Dependent Apoptosis in the Yeast Saccharomyces cerevisiae. Chem Res Toxicol 2019; 32:245-254. [PMID: 30656935 DOI: 10.1021/acs.chemrestox.8b00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expansion of the industrial use of nickel oxide (NiO) nanoparticles (NPs) raises concerns about their potential adverse effects. Our work aimed to investigate the mechanisms of toxicity induced by NiO NPs, using the yeast Saccharomyces cerevisiae as a cell model. Yeast cells exposed to NiO NPs exhibited typical hallmarks of regulated cell death (RCD) by apoptosis [loss of cell proliferation capacity (cell viability), exposure of phosphatidylserine at the outer cytoplasmic membrane leaflet, nuclear chromatin condensation, and DNA damage] in a process that required de novo protein synthesis. The execution of yeast cell death induced by NiO NPs is Yca1p metacaspase-dependent. NiO NPs also induced a decrease in the mitochondrial membrane potential and an increase in the frequency of respiratory-deficient mutants, which supports the involvement of mitochondria in the cell death process. Cells deficient in the apoptosis-inducing factor ( aif1Δ) displayed higher tolerance to NiO NPs, which reinforces the involvement of mitochondria in RCD by apoptosis. In summary, this study shows that NiO NPs induce caspase- and mitochondria-dependent apoptosis in yeast. Our results warn about the possible harmful effects associated with the use of NiO NPs.
Collapse
Affiliation(s)
- Cátia A Sousa
- Bioengineering Laboratory-CIETI, Chemical Engineering Department , ISEP-School of Engineering of Polytechnic Institute of Porto , Rua Dr António Bernardino de Almeida, 431 , 4249-015 Porto , Portugal.,CEB-Centre of Biological Engineering , University of Minho, Campus de Gualtar , 4710-057 Braga , Portugal.,REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia , Universidade do Porto , rua Dr. Roberto Frias , 4200-465 Porto , Portugal
| | - Helena M V M Soares
- REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia , Universidade do Porto , rua Dr. Roberto Frias , 4200-465 Porto , Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory-CIETI, Chemical Engineering Department , ISEP-School of Engineering of Polytechnic Institute of Porto , Rua Dr António Bernardino de Almeida, 431 , 4249-015 Porto , Portugal.,CEB-Centre of Biological Engineering , University of Minho, Campus de Gualtar , 4710-057 Braga , Portugal
| |
Collapse
|
22
|
Falcone C, Mazzoni C. RNA stability and metabolism in regulated cell death, aging and diseases. FEMS Yeast Res 2018; 18:4978431. [DOI: 10.1093/femsyr/foy050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Claudio Falcone
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185-Rome, Italy
| | - Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185-Rome, Italy
| |
Collapse
|
23
|
Chou ES, Abidi SZ, Teye M, Leliwa-Sytek A, Rask TS, Cobbold SA, Tonkin-Hill GQ, Subramaniam KS, Sexton AE, Creek DJ, Daily JP, Duffy MF, Day KP. A high parasite density environment induces transcriptional changes and cell death in Plasmodium falciparum blood stages. FEBS J 2018; 285:848-870. [PMID: 29281179 DOI: 10.1111/febs.14370] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 12/01/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
Abstract
Transient regulation of Plasmodium numbers below the density that induces fever has been observed in chronic malaria infections in humans. This species transcending control cannot be explained by immunity alone. Using an in vitro system we have observed density dependent regulation of malaria population size as a mechanism to possibly explain these in vivo observations. Specifically, Plasmodium falciparum blood stages from a high but not low-density environment exhibited unique phenotypic changes during the late trophozoite (LT) and schizont stages of the intraerythrocytic cycle. These included in order of appearance: failure of schizonts to mature and merozoites to replicate, apoptotic-like morphological changes including shrinking, loss of mitochondrial membrane potential, and blebbing with eventual release of aberrant parasites from infected erythrocytes. This unique death phenotype was triggered in a stage-specific manner by sensing of a high-density culture environment. Conditions of glucose starvation, nutrient depletion, and high lactate could not induce the phenotype. A high-density culture environment induced rapid global changes in the parasite transcriptome including differential expression of genes involved in cell remodeling, clonal antigenic variation, metabolism, and cell death pathways including an apoptosis-associated metacaspase gene. This transcriptional profile was also characterized by concomitant expression of asexual and sexual stage-specific genes. The data show strong evidence to support our hypothesis that density sensing exists in P. falciparum. They indicate that an apoptotic-like mechanism may play a role in P. falciparum density regulation, which, as in yeast, has features quite distinguishable from mammalian apoptosis. DATABASE Gene expression data are available in the GEO databases under the accession number GSE91188.
Collapse
Affiliation(s)
- Evelyn S Chou
- Bio21 Institute for Molecular Science and Biotechnology and School of BioSciences, University of Melbourne, Parkville, VIC., Australia
| | - Sabia Z Abidi
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marian Teye
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, NY, USA
| | - Aleksandra Leliwa-Sytek
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, NY, USA
| | - Thomas S Rask
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, NY, USA
| | - Simon A Cobbold
- Bio21 Institute for Molecular Science and Biotechnology and School of BioSciences, University of Melbourne, Parkville, VIC., Australia
| | - Gerry Q Tonkin-Hill
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC., Australia
| | - Krishanthi S Subramaniam
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Anna E Sexton
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC., Australia
| | - Darren J Creek
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC., Australia
| | - Johanna P Daily
- Department of Medicine, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael F Duffy
- Bio21 Institute for Molecular Science and Biotechnology and School of BioSciences, University of Melbourne, Parkville, VIC., Australia
| | - Karen P Day
- Bio21 Institute for Molecular Science and Biotechnology and School of BioSciences, University of Melbourne, Parkville, VIC., Australia
| |
Collapse
|
24
|
Nabili M, Moazeni M, Hedayati MT, Aryamlo P, Abdollahi Gohar A, Madani SM, Fathi H. Glabridin induces overexpression of two major apoptotic genes, MCA1 and NUC1 , in Candida albicans. J Glob Antimicrob Resist 2017; 11:52-56. [DOI: 10.1016/j.jgar.2017.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 07/05/2017] [Accepted: 08/09/2017] [Indexed: 02/01/2023] Open
|
25
|
Zhao RY. Yeast for virus research. MICROBIAL CELL (GRAZ, AUSTRIA) 2017; 4:311-330. [PMID: 29082230 PMCID: PMC5657823 DOI: 10.15698/mic2017.10.592] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/27/2017] [Indexed: 12/25/2022]
Abstract
Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented.
Collapse
Affiliation(s)
- Richard Yuqi Zhao
- Department of Pathology, Department of Microbiology and Immunology, Institute of Global Health, and Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
26
|
Yeast caspase-dependent apoptosis in Saccharomyces cerevisiae BY4742 induced by antifungal and potential antitumor agent clotrimazole. Arch Microbiol 2017; 200:97-106. [PMID: 28819786 DOI: 10.1007/s00203-017-1425-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
Abstract
Clotrimazole is an antifungal medication commonly used in the treatment of fungal infections. There is also promising research on using clotrimazole against other diseases such as malaria, beriberi, tineapedis and cancer. It was aimed to investigate the apoptotic phenotype in Saccharomyces cerevisiae induced by clotrimazole. The exposure of S. cerevisiae to 10 µM clotrimazole for 3, 6 and 9 h caused to decrease in cell viability by 24.82 ± 0.81, 56.00 ± 1.54 and 77.59 ± 0.53%, respectively. It was shown by Annexin V-PI assay that 110 µM clotrimazole treatment caused to death by 35.5 ± 2.48% apoptotic and only 13.1 ± 0.08% necrotic pathway within 30 min. The occurrence of DNA strand breaks and condensation could be visualised by the TUNEL and DAPI stainings, respectively. Yeast caspase activity was induced 12.34 ± 0.71-fold after 110 µM clotrimazole treatment for 30 min compared to the control. The dependency of clotrimazole-induced apoptosis to caspase was also shown using Δyca1 mutant.
Collapse
|
27
|
Moazeni M, Hedayati MT, Nabili M, Mousavi SJ, Abdollahi Gohar A, Gholami S. Glabridin triggers over-expression of MCA1 and NUC1 genes in Candida glabrata: Is it an apoptosis inducer? J Mycol Med 2017; 27:369-375. [PMID: 28595940 DOI: 10.1016/j.mycmed.2017.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 12/23/2022]
Abstract
The growing trends of emergence of antifungal-resistant Candida strains has recently been inspired the researchers to design new antifungal agents with novel mechanisms of action. Glabridin is an originally natural substrate with multiple biological activities which propose it as a novel anticancer, antimicrobial and antifungal agent. In the present study, the antifungal effect of glabridin against Candida glabrata isolates and its possible mechanism of action were investigated. The minimum inhibitory concentrations (MIC) for glabridin against fluconazole-resistant and fluconazole-SDD strains of C. glabrata were investigated using the Clinical and laboratory standards institute document M27-A3 and M27-S4 as a guideline. Possible alternations in the expression of two critical genes involved in yeast apoptosis, MCA1 and NUC1, were assayed by real-time PCR. DNA damage and chromatin condensation was investigated using DAPI staining. Although glabridin led to a significant decrease in MICs against fluconazole-resistant C. glabrata (MIC50: 8μg/mL), no significant decreased was shown for fluconazole-SDD strains. Therefore, a distinct azole-independent mechanism could be responsible for the inhibitory activity of glabridin. Overexpression of MCA1 and NUC1 genes in addition to DNA damage and chromatin condensation suggesting the involvement of apoptosis signaling in C. glabrata stains exposed to glabridin. This study suggests that glabridin might be considered as a novel naturally originated agent to fight against fluconazole-resistance C. glabrata strains.
Collapse
Affiliation(s)
- M Moazeni
- Invasive fungi research centre, Mazandaran university of medical sciences, Sari, Iran; Department of medical mycology and parasitology, school of medicine, Mazandaran university of medical sciences, 18th Km, Khazar abad road, 4847191971 Sari, Iran.
| | - M T Hedayati
- Invasive fungi research centre, Mazandaran university of medical sciences, Sari, Iran; Department of medical mycology and parasitology, school of medicine, Mazandaran university of medical sciences, 18th Km, Khazar abad road, 4847191971 Sari, Iran
| | - M Nabili
- Department of medical laboratory sciences, Sari branch, Islamic Azad university, Sari, Iran
| | - S J Mousavi
- Department of community medicine, Imam Khomeini hospital, Mazandaran university of medical sciences, Sari, Iran
| | - A Abdollahi Gohar
- Department of medical laboratory sciences, Sari branch, Islamic Azad university, Sari, Iran
| | - S Gholami
- Invasive fungi research centre, Mazandaran university of medical sciences, Sari, Iran; Department of medical mycology and parasitology, school of medicine, Mazandaran university of medical sciences, 18th Km, Khazar abad road, 4847191971 Sari, Iran
| |
Collapse
|
28
|
Nerol triggers mitochondrial dysfunction and disruption via elevation of Ca2+ and ROS in Candida albicans. Int J Biochem Cell Biol 2017; 85:114-122. [DOI: 10.1016/j.biocel.2017.02.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/20/2023]
|
29
|
Role of potassium channels in chlorogenic acid-induced apoptotic volume decrease and cell cycle arrest in Candida albicans. Biochim Biophys Acta Gen Subj 2017; 1861:585-592. [DOI: 10.1016/j.bbagen.2016.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 11/20/2022]
|
30
|
Scolopendin, an antimicrobial peptide from centipede, attenuates mitochondrial functions and triggers apoptosis in Candida albicans. Biochem J 2017; 474:635-645. [PMID: 28008133 DOI: 10.1042/bcj20161039] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/23/2023]
Abstract
Centipedes, a type of arthropod, reportedly produce antimicrobial peptides as part of an innate immune response. Scolopendin (SPSEKAGLQPVGRIGRMLKK) is a novel antimicrobial peptide derived from Scolopendra subspinipes mutilans Many antifungal agents have more than one type of cell death mechanism. Although scolopendin is involved in membrane perturbation, the corresponding intracellular changes require further investigation. Therefore, we assessed the cell morphology and calcium ion concentration of the cytosol and mitochondria of scolopendin-treated cells. The treated cells were shrunken, and calcium ion homeostasis was disrupted in both the cytosol and mitochondria. These conditions attenuated mitochondrial homeostasis, disrupting mitochondrial membrane potential and cytochrome c levels. Fungal cells treated with scolopendin exhibited various apoptotic phenotypes such as reactive oxygen species accumulation, phosphatidylserine exposure, chromatin condensation, and nuclear fragmentation. Scolopendin-induced cell death also triggered metacaspase activation. In conclusion, treatment of Candida albicans with scolopendin induced the apoptotic response, which in turn led to mitochondrial dysfunction, metacaspase activation, and cell death. The antimicrobial peptide scolopendin from the centipede S.s. mutilans demonstrated a novel apoptotic mechanism as an antifungal agent.
Collapse
|
31
|
Yun DG, Lee DG. Silibinin triggers yeast apoptosis related to mitochondrial Ca 2+ influx in Candida albicans. Int J Biochem Cell Biol 2016; 80:1-9. [PMID: 27639679 DOI: 10.1016/j.biocel.2016.09.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/03/2016] [Accepted: 09/09/2016] [Indexed: 02/01/2023]
Abstract
Candida albicans is a common yeast that resides in the human body, but can occasionally cause systemic fungal infection, namely candidiasis. As this infection rate is gradually increasing, it is becoming a major problem to public health. Accordingly, we for the first time investigated the antifungal activity and mode of action of silibinin, a natural product extracted from Silybum marianum (milk thistle), against C. albicans. On treatment with 100μM silibinin, generation of reactive oxygen species (ROS) from mitochondria, which can cause yeast apoptosis via oxidative stress, was increased by 24.17% compared to that in untreated cells. Subsequently, we found disturbances in ion homeostasis such as release of intracellular K+ and accumulation of cytoplasmic and mitochondrial Ca2+. Among these phenomena, mitochondrial Ca2+ overload particularly plays a crucial role in the process of apoptosis, promoting the activation of pro-apoptotic factors. Therefore, we investigated the significance of mitochondrial Ca2+ in apoptosis by employing 20mM ruthenium red (RR). Additional apoptosis hallmarks such as mitochondrial membrane depolarization, cytochrome c release, caspase activation, phosphatidylserine (PS) exposure, and DNA damage were observed in response to silibinin treatment, whereas RR pre-treatment seemed to block these responses. In summary, our results suggest that silibinin induces yeast apoptosis mediated by mitochondrial Ca2+ signaling in C. albicans.
Collapse
Affiliation(s)
- Dae Gyu Yun
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
32
|
Yun J, Lee DG. A novel fungal killing mechanism of propionic acid. FEMS Yeast Res 2016; 16:fow089. [PMID: 27707757 DOI: 10.1093/femsyr/fow089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2016] [Indexed: 01/26/2023] Open
Abstract
Propionic acid (PPA) is a weak acid that has been used in food products as a preservative because of its inhibitory effect on microorganisms. In the present study, we investigated the PPA fungal killing mechanism, which showed apoptotic features. First, reactive oxygen species (ROS) accumulation and metacaspase activation were detected by 2',7'-dichlorodihydrofluorescein diacetate and CaspACE FITC-VAD-FMK staining, respectively. Increased fluorescence intensities were observed following exposure to PPA, indicating that PPA produced an oxidative environment through the generation of ROS and activation of metacaspase, which can promote apoptosis signaling. We also examined phosphatidylserine externalization (an early apoptosis marker) and DNA and nuclear fragmentation (late apoptosis markers) after exposure to PPA. Based on the results, we determined that PPA exerts its antifungal effect by inducing apoptotic cell death. Moreover, three additional mitochondrial experiments showed mitochondrial membrane depolarization, calcium accumulation and cytochrome c release after cells were exposed to PPA, indicating that the PPA-induced apoptosis pathway is mediated by mitochondria. In conclusion, PPA induces fungal cell death through mitochondria-mediated apoptosis. Results of this study contribute to a deeper understanding of the preservative effects of PPA.
Collapse
Affiliation(s)
- JiEun Yun
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| |
Collapse
|
33
|
Deng MY, Sun YH, Li P, Fu B, Shen D, Lu YJ. The phytopathogenic virulent effector protein RipI induces apoptosis in budding yeast Saccharomyces cerevisiae. Toxicon 2016; 121:109-118. [DOI: 10.1016/j.toxicon.2016.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
|
34
|
Petitjean M, Teste MA, Léger-Silvestre I, François JM, Parrou JL. RETRACTED:A new function for the yeast trehalose-6P synthase (Tps1) protein, as key pro-survival factor during growth, chronological ageing, and apoptotic stress. Mech Ageing Dev 2016; 161:234-246. [PMID: 27507670 DOI: 10.1016/j.mad.2016.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
This article has been retracted at the request of Marie-Ange Teste, Isabelle Léger-Silvestre, Jean M François and Jean-Luc Parrou. Marjorie Petitjean could not be reached.
The corresponding author identified major issues and brought them to the attention of the Journal.
These issues span from significant errors in the Material and Methods section of the article and major flaws in cytometry data analysis to data fabrication on the part of one of the authors.
Given these errors, the retracting authors state that the only responsible course of action would be to retract the article, to respect scientific integrity and maintain the standards and rigor of literature from the retracting authors' group as well as the Journal.
The retracting authors sincerely apologize to the readers and editors.
Collapse
Affiliation(s)
| | - Marie-Ange Teste
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Isabelle Léger-Silvestre
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS, Université de Toulouse, 118 route de Narbonne, F-31000 Toulouse, France
| | - Jean M François
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | - Jean-Luc Parrou
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France.
| |
Collapse
|
35
|
Balandin SV, Ovchinnikova TV. Antimicrobial peptides of invertebrates. Part 2. biological functions and mechanisms of action. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s106816201604004x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Laprade DJ, Brown MS, McCarthy ML, Ritch JJ, Austriaco N. Filamentation protects Candida albicans from amphotericin B-induced programmed cell death via a mechanism involving the yeast metacaspase, MCA1. MICROBIAL CELL 2016; 3:285-292. [PMID: 27683660 PMCID: PMC5036395 DOI: 10.15698/mic2016.07.512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The budding yeast Candida albicans is one of the most
significant fungal pathogens worldwide. It proliferates in two distinct cell
types: blastopores and filaments. Only cells that are able to transform from one
cell type into the other are virulent in mouse disease models. Programmed cell
death is a controlled form of cell suicide that occurs when C.
albicans cells are exposed to fungicidal drugs like amphotericin B
and caspofungin, and to other stressful conditions. We now provide evidence that
suggests that programmed cell death is cell-type specific in yeast: Filamentous
C. albicans cells are more resistant to amphotericin B- and
caspofungin-induced programmed cell death than their blastospore counterparts.
Finally, our genetic data suggests that this phenomenon is mediated by a
protective mechanism involving the yeast metacaspase, MCA1.
Collapse
Affiliation(s)
- David J Laprade
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - Melissa S Brown
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - Morgan L McCarthy
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - James J Ritch
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| | - Nicanor Austriaco
- Department of Biology, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, U.S.A
| |
Collapse
|
37
|
Yun J, Lee DG. Cecropin A-induced apoptosis is regulated by ion balance and glutathione antioxidant system inCandida albicans. IUBMB Life 2016; 68:652-62. [DOI: 10.1002/iub.1527] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/04/2016] [Indexed: 12/19/2022]
Affiliation(s)
- JiEun Yun
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group; College of Natural Sciences, Kyungpook National University; 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group; College of Natural Sciences, Kyungpook National University; 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| |
Collapse
|
38
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kurcz A. Effects of Selenium on Morphological Changes in Candida utilis ATCC 9950 Yeast Cells. Biol Trace Elem Res 2016; 169:387-93. [PMID: 26166197 PMCID: PMC4717171 DOI: 10.1007/s12011-015-0415-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/15/2015] [Indexed: 01/27/2023]
Abstract
This paper presents the results of microscopic examinations of the yeast cells cultured in yeast extract-peptone-dextrose (YPD) media supplemented with sodium selenite(IV). The analysis of the morphological changes in yeast cells aimed to determine whether the selected selenium doses and culturing time may affect this element accumulation in yeast cell structures in a form of inorganic or organic compounds, as a result of detoxification processes. The range of characteristic morphological changes in yeasts cultivated in experimental media with sodium selenite(IV) was observed, including cell shrinkage and cytoplasm thickening of the changes within vacuole structure. The processes of vacuole disintegration were observed in aging yeast cells in culturing medium, which may indicate the presence of so-called ghost cells lacking intracellular organelles The changes occurring in the morphology of yeasts cultured in media supplemented with sodium selenite were typical for stationary phase of yeast growth. From detailed microscopic observations, larger surface area of the cell (6.03 μm(2)) and yeast vacuole (2.17 μm(2)) were noticed after 24-h culturing in the medium with selenium of 20 mg Se(4+)/L. The coefficient of shape of the yeast cells cultured in media enriched with sodium selenite as well as in the control YPD medium ranged from 1.02 to 1.22. Elongation of cultivation time (up to 48 and 72 h) in the media supplemented with sodium selenite caused a reduction in the surface area of the yeast cell and vacuole due to detoxification processes.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Anna Bzducha-Wróbel
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Agnieszka Kurcz
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| |
Collapse
|
39
|
Acosta-Zaldívar M, Andrés MT, Rego A, Pereira CS, Fierro JF, Côrte-Real M. Human lactoferrin triggers a mitochondrial- and caspase-dependent regulated cell death in Saccharomyces cerevisiae. Apoptosis 2015; 21:163-73. [DOI: 10.1007/s10495-015-1199-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Richard VR, Beach A, Piano A, Leonov A, Feldman R, Burstein MT, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Baptista S, Campbell C, Goncharov D, Pannu S, Patrinos D, Sadri B, Svistkova V, Victor A, Titorenko VI. Mechanism of liponecrosis, a distinct mode of programmed cell death. Cell Cycle 2015; 13:3707-26. [PMID: 25483081 DOI: 10.4161/15384101.2014.965003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA) elicits "liponecrosis," a mode of programmed cell death (PCD) which differs from the currently known PCD subroutines. Here, we report the following mechanism for liponecrotic PCD. Exogenously added POA is incorporated into POA-containing phospholipids that then amass in the endoplasmic reticulum membrane, mitochondrial membranes and the plasma membrane. The buildup of the POA-containing phospholipids in the plasma membrane reduces the level of phosphatidylethanolamine in its extracellular leaflet, thereby increasing plasma membrane permeability for small molecules and committing yeast to liponecrotic PCD. The excessive accumulation of POA-containing phospholipids in mitochondrial membranes impairs mitochondrial functionality and causes the excessive production of reactive oxygen species in mitochondria. The resulting rise in cellular reactive oxygen species above a critical level contributes to the commitment of yeast to liponecrotic PCD by: (1) oxidatively damaging numerous cellular organelles, thereby triggering their massive macroautophagic degradation; and (2) oxidatively damaging various cellular proteins, thus impairing cellular proteostasis. Several cellular processes in yeast exposed to POA can protect cells from liponecrosis. They include: (1) POA oxidation in peroxisomes, which reduces the flow of POA into phospholipid synthesis pathways; (2) POA incorporation into neutral lipids, which prevents the excessive accumulation of POA-containing phospholipids in cellular membranes; (3) mitophagy, a selective macroautophagic degradation of dysfunctional mitochondria, which sustains a population of functional mitochondria needed for POA incorporation into neutral lipids; and (4) a degradation of damaged, dysfunctional and aggregated cytosolic proteins, which enables the maintenance of cellular proteostasis.
Collapse
Key Words
- CFU, colony forming units
- CL, cardiolipin
- Cvt, cytoplasm-to-vacuole pathway
- ER, endoplasmic reticulum
- IMM, inner mitochondrial membrane
- LD, lipid droplets
- NL, neutral lipids
- PA, phosphatidic acid
- PC, phosphatidylcholine
- PCD, programmed cell death
- PE, phosphatidylethanolamine
- PI, phosphatidylinositol
- PL, phospholipids
- PM, plasma membrane
- POA, palmitoleic acid
- PS, phosphatidylserine
- ROS, reactive oxygen species
- TAG, triacylglycerols
- WT, wild-type
- apoptosis
- autophagy
- cellular proteostasis
- lipid metabolism in cellular organelles
- mechanisms of programmed cell death
- mitochondria,
- mitophagy
- plasma membrane
- signal transduction
- yeast
Collapse
Affiliation(s)
- Vincent R Richard
- a Department of Biology ; Concordia University ; Montreal , QC Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cyclopalladated Compound 7a Induces Apoptosis- and Autophagy-Like Mechanisms in Paracoccidioides and Is a Candidate for Paracoccidioidomycosis Treatment. Antimicrob Agents Chemother 2015; 59:7214-23. [PMID: 26349827 DOI: 10.1128/aac.00512-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022] Open
Abstract
Paracoccidioidomycosis (PCM), caused by Paracoccidioides species, is the main cause of death due to systemic mycoses in Brazil and other Latin American countries. Therapeutic options for PCM and other systemic mycoses are limited and time-consuming, and there are high rates of noncompliance, relapses, toxic side effects, and sequelae. Previous work has shown that the cyclopalladated 7a compound is effective in treating several kinds of cancer and parasitic Chagas disease without significant toxicity in animals. Here we show that cyclopalladated 7a inhibited the in vitro growth of Paracoccidioides lutzii Pb01 and P. brasiliensis isolates Pb18 (highly virulent), Pb2, Pb3, and Pb4 (less virulent) in a dose-response manner. Pb18 was the most resistant. Opportunistic Candida albicans and Cryptococcus neoformans were also sensitive. BALB/c mice showed significantly lighter lung fungal burdens when treated twice a day for 20 days with a low cyclopalladated 7a dose of 30 μg/ml/day for 30 days after intratracheal infection with Pb18. Electron microscopy images suggested that apoptosis- and autophagy-like mechanisms are involved in the fungal killing mechanism of cyclopalladated 7a. Pb18 yeast cells incubated with the 7a compound showed remarkable chromatin condensation, DNA degradation, superoxide anion production, and increased metacaspase activity suggestive of apoptosis. Autophagy-related killing mechanisms were suggested by increased autophagic vacuole numbers and acidification, as indicated by an increase in LysoTracker and monodansylcadaverine (MDC) staining in cyclopalladated 7a-treated Pb18 yeast cells. Considering that cyclopalladated 7a is highly tolerated in vivo and affects yeast fungal growth through general apoptosis- and autophagy-like mechanisms, it is a novel promising drug for the treatment of PCM and other mycoses.
Collapse
|
42
|
Longo V, Ždralević M, Guaragnella N, Giannattasio S, Zolla L, Timperio AM. Proteome and metabolome profiling of wild-type and YCA1-knock-out yeast cells during acetic acid-induced programmed cell death. J Proteomics 2015; 128:173-88. [PMID: 26269384 DOI: 10.1016/j.jprot.2015.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/03/2015] [Accepted: 08/05/2015] [Indexed: 01/13/2023]
Abstract
UNLABELLED Caspase proteases are responsible for the regulated disassembly of the cell into apoptotic bodies during mammalian apoptosis. Structural homologues of the caspase family (called metacaspases) are involved in programmed cell death in single-cell eukaryotes, yet the molecular mechanisms that contribute to death are currently undefined. Recent evidence revealed that a programmed cell death process is induced by acetic acid (AA-PCD) in Saccharomyces cerevisiae both in the presence and absence of metacaspase encoding gene YCA1. Here, we report an unexpected role for the yeast metacaspase in protein quality and metabolite control. By using an "omics" approach, we focused our attention on proteins and metabolites differentially modulated en route to AA-PCD either in wild type or YCA1-lacking cells. Quantitative proteomic and metabolomic analyses of wild type and Δyca1 cells identified significant alterations in carbohydrate catabolism, lipid metabolism, proteolysis and stress-response, highlighting the main roles of metacaspase in AA-PCD. Finally, deletion of YCA1 led to AA-PCD pathway through the activation of ceramides, whereas in the presence of the gene yeast cells underwent an AA-PCD pathway characterized by the shift of the main glycolytic pathway to the pentose phosphate pathway and a proteolytic mechanism to cope with oxidative stress. SIGNIFICANCE The yeast metacaspase regulates both proteolytic activities through the ubiquitin-proteasome system and ceramide metabolism as revealed by proteome and metabolome profiling of YCA1-knock-out cells during acetic-acid induced programmed cell death.
Collapse
Affiliation(s)
- Valentina Longo
- Department of Ecology and Biology, "La Tuscia" University, Viterbo, Italy
| | - Maša Ždralević
- Institute of Biomembrane and Bioenergetics, CNR, Bari, Italy
| | | | | | - Lello Zolla
- Department of Ecology and Biology, "La Tuscia" University, Viterbo, Italy.
| | | |
Collapse
|
43
|
Citterio B, Albertini MC, Ghibelli L, Falcieri E, Battistelli M, Canonico B, Rocchi MBL, Teodori L, Ciani M, Piatti E. Multiparameter analysis of apoptosis in puromycin-treated Saccharomyces cerevisiae. Arch Microbiol 2015; 197:773-80. [PMID: 25868793 DOI: 10.1007/s00203-015-1110-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/07/2023]
Abstract
In Saccharomyces cerevisiae, a typical apoptotic phenotype is induced by some stress factors such as sugars, acetic acid, hydrogen peroxide, aspirin and age. Nevertheless, no data have been reported for apoptosis induced by puromycin, a damaging agent known to induce apoptosis in mammalian cells. We treated S. cerevisiae with puromycin to induce apoptosis and evaluated the percentage of dead cells by using Hoechst 33342 staining, transmission electron microscopy (TEM) and Annexin V flow cytometry (FC) analysis. Hoechst 33342 fluorescence images were processed to acquire parameters to use for multiparameter analysis [and perform a principal component analysis, (PCA)]. Cell viability was evaluated by Rhodamine 123 (Rh 123) and Acridine Orange microscope fluorescence staining. The results show puromycin-induced apoptosis in S. cerevisiae, and the PCA analysis indicated that the increasing percentage of apoptotic cells delineated a well-defined graph profile. The results were supported by TEM and FC. This study gives new insights into yeast apoptosis using puromycin as inducer agent, and PCA analysis may complement molecular analysis facilitating further studies to its detection.
Collapse
Affiliation(s)
- Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Raju KK, Natarajan S, Kumar NS, Kumar DA, NM R. Role of cytoplasmic deadenylation and mRNA decay factors in yeast apoptosis. FEMS Yeast Res 2015; 15:fou006. [DOI: 10.1093/femsyr/fou006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
45
|
Khakhina S, Cooper KF, Strich R. Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C. Mol Biol Cell 2014; 25:2807-16. [PMID: 25057017 PMCID: PMC4161515 DOI: 10.1091/mbc.e14-05-0953] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In response to oxidative stress, cyclin C translocates from the nucleus to the cytoplasm, where it interacts with the mitochondrial fission machinery and induces extensive fragmentation of this organelle. Med13p is identified as the anchor protein that retains cyclin C in the nucleus. The yeast cyclin C-Cdk8 kinase forms a complex with Med13p to repress the transcription of genes involved in the stress response and meiosis. In response to oxidative stress, cyclin C displays nuclear to cytoplasmic relocalization that triggers mitochondrial fission and promotes programmed cell death. In this report, we demonstrate that Med13p mediates cyclin C nuclear retention in unstressed cells. Deleting MED13 allows aberrant cytoplasmic cyclin C localization and extensive mitochondrial fragmentation. Loss of Med13p function resulted in mitochondrial dysfunction and hypersensitivity to oxidative stress–induced programmed cell death that were dependent on cyclin C. The regulatory system controlling cyclin C-Med13p interaction is complex. First, a previous study found that cyclin C phosphorylation by the stress-activated MAP kinase Slt2p is required for nuclear to cytoplasmic translocation. This study found that cyclin C-Med13p association is impaired when the Slt2p target residue is substituted with a phosphomimetic amino acid. The second step involves Med13p destruction mediated by the 26S proteasome and cyclin C-Cdk8p kinase activity. In conclusion, Med13p maintains mitochondrial structure, function, and normal oxidative stress sensitivity through cyclin C nuclear retention. Releasing cyclin C from the nucleus involves both its phosphorylation by Slt2p coupled with Med13p destruction.
Collapse
Affiliation(s)
- Svetlana Khakhina
- Department of Molecular Biology, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084
| | - Katrina F Cooper
- Department of Molecular Biology, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084
| | - Randy Strich
- Department of Molecular Biology, Rowan University-School of Osteopathic Medicine, Stratford, NJ 08084
| |
Collapse
|
46
|
Biswas C, Zuo X, Chen SCA, Schibeci SD, Forwood JK, Jolliffe KA, Sorrell TC, Djordjevic JT. Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects. Fungal Genet Biol 2014; 67:71-81. [PMID: 24731805 DOI: 10.1016/j.fgb.2014.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/27/2014] [Accepted: 04/06/2014] [Indexed: 01/11/2023]
Abstract
Miltefosine (MI) is a novel, potential antifungal agent with activity against some yeast and filamentous fungal pathogens. We previously demonstrated in the model yeast, Saccharomyces cerevisiae, that MI causes disruption of mitochondrial membrane potential and apoptosis-like cell death via interaction with the Cox9p sub-unit of cytochrome c oxidase (COX). To identify additional mechanisms of antifungal action, MI resistance was induced in S. cerevisiae by exposure to the mutagen, ethyl methanesulfonate, and gene mutation(s) responsible for resistance were investigated. An MI-resistant haploid strain (H-C101) was created. Resistance was retained in the diploid strain (D-C101) following mating, confirming dominant inheritance. Phenotypic assessment of individual D-C101 tetrads revealed that only one mutant gene contributed to the MI-resistance phenotype. To identify this gene, the genome of H-C101 was sequenced and 17 mutated genes, including metacaspase-encoding MCA1, were identified. The MCA1 mutation resulted in substitution of asparagine (N) with aspartic acid (D) at position 164 (MCA1(N164D)). MI resistance was found to be primarily due to MCA1(N164D), as single-copy episomal expression of MCA1(N164D), but not two other mutated genes (FAS1(T1417I) and BCK2(T104A)), resulted in MI resistance in the wild-type strain. Furthermore, an MCA1 deletion mutant (mca1Δ) was MI-resistant. MI treatment led to accumulation of reactive oxygen species (ROS) in MI-resistant (MCA1(N164D)-expressing and mca1Δ) strains and MI-susceptible (MCA1-expressing) strains, but failed to activate Mca1 in the MI-resistant strains, demonstrating that ROS accumulation does not contribute to the fungicidal effect of MI. In conclusion, functional disruption of Mca1, leads to MI resistance and inability to mediate MI-induced apoptotic effects. Mca1-mediated apoptosis is therefore a major mechanism of MI-induced antifungal action.
Collapse
Affiliation(s)
- Chayanika Biswas
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145, Australia
| | - Xiaoming Zuo
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, NSW 2145, Australia
| | - Stephen D Schibeci
- Institute for Immunology and Allergy Research, Westmead Millennium Institute, NSW 2145, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | | | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW 2006, Australia
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
47
|
Wang CQ, Li X, Wang MQ, Qian J, Zheng K, Bian HW, Han N, Wang JH, Pan JW, Zhu MY. Protective effects of ETC complex III and cytochrome c against hydrogen peroxide-induced apoptosis in yeast. Free Radic Res 2014; 48:435-44. [PMID: 24437935 DOI: 10.3109/10715762.2014.885116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In mammals, the mitochondrial electron transfer components (ETC) complex III and cytochrome c (cyt c) play essential roles in reactive oxygen species (ROS)-induced apoptosis. However, in yeast, the functions of cyt c and other ETC components remain unclear. In this study, three ETC-defective yeast mutants qcr7Δ, cyc1Δcyc7Δ, and cox12Δ, lacking cyt c oxidoreductase (complex III), cyt c, and cyt c oxidase (complex IV), respectively, were used to test the roles of these proteins in the response of cells to hydrogen peroxide (H₂O₂). Mutants qcr7Δ and cyc1Δcyc7Δ displayed greater H₂O₂ sensitivity than the wild-type or cox12Δ mutant. Consistent with this, qcr7Δ and cyc1Δcyc7Δ produced higher ROS levels, displayed derepressed expression of the proapoptotic genes AIF1, NUC1, and NMA111, but not YCA1, at the mRNA level, and were more vulnerable to H₂O₂-induced apoptosis. Interestingly, mutants lacking these proapoptotic genes displayed enhanced H₂O₂ tolerance, but unaffected ROS accumulation. Furthermore, the overexpression of antiapoptotic genes (Bcl-2, Ced-9, AtBI-1, and PpBI-1) reduced the levels of AIF1, NUC1, and NMA111 mRNAs, and reduced H₂O₂-induced cell death. Our findings identify two ETC components as early-inhibitory members of the ROS-mediated apoptotic pathway, suggesting their essential roles in metabolizing H₂O₂, probably by providing reduced cyt c, allowing cyt c peroxidase to remove H₂O₂ from the cells.
Collapse
Affiliation(s)
- Chao-qun Wang
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University , Hangzhou , P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fujita KI, Tatsumi M, Ogita A, Kubo I, Tanaka T. Anethole induces apoptotic cell death accompanied by reactive oxygen species production and DNA fragmentation in Aspergillus fumigatus and Saccharomyces cerevisiae. FEBS J 2014; 281:1304-13. [PMID: 24393541 DOI: 10.1111/febs.12706] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 12/17/2013] [Accepted: 12/23/2013] [Indexed: 11/28/2022]
Abstract
trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum, and antimicrobial activity that is weaker than that of other antibiotics on the market. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to possess significant synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the antifungal mechanism of anethole has not been completely determined. We found that anethole stimulated cell death of a human opportunistic pathogenic fungus, Aspergillus fumigatus, in addition to S. cerevisiae. The anethole-induced cell death was accompanied by reactive oxygen species production, metacaspase activation, and DNA fragmentation. Several mutants of S. cerevisiae, in which genes related to the apoptosis-initiating execution signals from mitochondria were deleted, were resistant to anethole. These results suggest that anethole-induced cell death could be explained by oxidative stress-dependent apoptosis via typical mitochondrial death cascades in fungi, including A. fumigatus and S. cerevisiae.
Collapse
|
49
|
Chin C, Donaghey F, Helming K, McCarthy M, Rogers S, Austriaco N. Deletion of AIF1 but not of YCA1/MCA1 protects Saccharomyces cerevisiae and Candida albicans cells from caspofungin-induced programmed cell death. MICROBIAL CELL 2014; 1:58-63. [PMID: 28357223 PMCID: PMC5348969 DOI: 10.15698/mic2014.01.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Caspofungin was the first member of a new class of antifungals called echinocandins to be approved by a drug regulatory authority. Like the other echinocandins, caspofungin blocks the synthesis of β(1,3)-D-glucan of the fungal cell wall by inhibiting the enzyme, β(1,3)-D-glucan synthase. Loss of β(1,3)-D-glucan leads to osmotic instability and cell death. However, the precise mechanism of cell death associated with the cytotoxicity of caspofungin was unclear. We now provide evidence that Saccharomyces cerevisiae cells cultured in media containing caspofungin manifest the classical hallmarks of programmed cell death (PCD) in yeast, including the generation of reactive oxygen species (ROS), the fragmentation of mitochondria, and the production of DNA strand breaks. Our data also suggests that deleting AIF1 but not YCA1/MCA1 protects S. cerevisiae and Candida albicans from caspofungin-induced cell death. This is not only the first time that AIF1 has been specifically tied to cell death in Candida but also the first time that caspofungin resistance has been linked to the cell death machinery in yeast.
Collapse
Affiliation(s)
- Christopher Chin
- Department of Biology, Providence College, Providence, RI 02918, U.S.A. ; Current address: University of Massachusetts School of Medicine, 55 Lake Ave. N., Worcester, MA 01655, U.S.A
| | - Faith Donaghey
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Katherine Helming
- Department of Biology, Providence College, Providence, RI 02918, U.S.A. ; Current address: Dana-Farber Cancer Institute, 44 Binney St., Boston, MA 02115, U.S.A
| | - Morgan McCarthy
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Stephen Rogers
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Nicanor Austriaco
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| |
Collapse
|
50
|
Lin SJ, Austriaco N. Aging and cell death in the other yeasts, Schizosaccharomyces pombe and Candida albicans. FEMS Yeast Res 2013; 14:119-35. [PMID: 24205865 DOI: 10.1111/1567-1364.12113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/18/2013] [Accepted: 10/10/2013] [Indexed: 12/22/2022] Open
Abstract
How do cells age and die? For the past 20 years, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to uncover the genes that regulate lifespan and cell death. More recently, investigators have begun to interrogate the other yeasts, the fission yeast, Schizosaccharomyces pombe, and the human fungal pathogen, Candida albicans, to determine if similar longevity and cell death pathways exist in these organisms. After summarizing the longevity and cell death phenotypes in S. cerevisiae, this mini-review surveys the progress made in the study of both aging and programed cell death (PCD) in the yeast models, with a focus on the biology of S. pombe and C. albicans. Particular emphasis is placed on the similarities and differences between the two types of aging, replicative aging, and chronological aging, and between the three types of cell death, intrinsic apoptosis, autophagic cell death, and regulated necrosis, found in these yeasts. The development of the additional microbial models for aging and PCD in the other yeasts may help further elucidate the mechanisms of longevity and cell death regulation in eukaryotes.
Collapse
Affiliation(s)
- Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA, USA
| | | |
Collapse
|