1
|
Thomason PA, Corbyn R, Lilla S, Sumpton D, Gilbey T, Insall RH. Biogenesis of lysosome-related organelles complex-2 is an evolutionarily ancient proto-coatomer complex. Curr Biol 2024; 34:3564-3581.e6. [PMID: 39059394 DOI: 10.1016/j.cub.2024.06.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/06/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Hermansky-Pudlak syndrome (HPS) is an inherited disorder of intracellular vesicle trafficking affecting the function of lysosome-related organelles (LROs). At least 11 genes underlie the disease, encoding four protein complexes, of which biogenesis of lysosome-related organelles complex-2 (BLOC-2) is the last whose molecular action is unknown. We find that the unicellular eukaryote Dictyostelium unexpectedly contains a complete BLOC-2, comprising orthologs of the mammalian subunits HPS3, -5, and -6, and a fourth subunit, an ortholog of the Drosophila LRO-biogenesis gene, Claret. Lysosomes from Dictyostelium BLOC-2 mutants fail to mature, similar to LROs from HPS patients, but for all endolysosomes rather than a specialized subset. They also strongly resemble lysosomes from WASH mutants. Dictyostelium BLOC-2 localizes to the same compartments as WASH, and in BLOC-2 mutants, WASH is inefficiently recruited, accounting for their impaired lysosomal maturation. BLOC-2 is recruited to endolysosomes via its HPS3 subunit. Structural modeling suggests that all four subunits are proto-coatomer proteins, with important implications for BLOC-2's molecular function. The discovery of Dictyostelium BLOC-2 permits identification of orthologs throughout eukaryotes. BLOC-2 and lysosome-related organelles, therefore, pre-date the evolution of Metazoa and have broader and more conserved functions than previously thought.
Collapse
Affiliation(s)
- Peter A Thomason
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK.
| | - Ryan Corbyn
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David Sumpton
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Thomas Gilbey
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Robert H Insall
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK; Division of Cell & Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Han S, Lin M, Wu L, Lin X, Chen M, Hu C, Bao A, Fang Z, Zhu F. E2F1 modulates RCCD1 expression to participate in the initiation and progression of EMT in colorectal cancer. Pathol Res Pract 2024; 260:155429. [PMID: 39024731 DOI: 10.1016/j.prp.2024.155429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE Metastases in the advanced stages of colorectal cancer (CRC) present a major challenge to its treatment. Epithelial-Mesenchymal Transition (EMT) plays a crucial role in enhancing the metastasis and invasion ability of cancer cells. However, the progress of E2F transcription factor 1 (E2F1) and Regulator of chromatin condensation 1 (RCCD1) in CRC on EMT has not been studied. METHODS The CRC differential expression data from The Cancer Genome Atlas database were analyzed by Gene Set Enrichment Analysis to verify the difference in expression of E2F1 and RCCD1 in cancerous and para-cancerous tissues.DNA-pull down and dual luciferase experiments confirmed that E2F1 regulates RCCD1. Western-blot and q-PCR experiments confirmed that E2F1 regulates RCCD1 and participates in the EMT-related progress of CRC.EDU, Wound healing and Transwell experiments verified the effects of regulation of E2F1 and RCCD1 on the proliferation, migration and invasion of CRC cells. RESULTS E2F1 and RCCD1 are highly expressed in cancer tissues and cancer cells. E2F1 binds to the upstream promoter of RCCD1 to regulate RCCD1 and affect the expression of EMT-related targets in CRC cells. It also affects the proliferation, migration and invasion of CRC cells. CONCLUSIONS E2F1 regulates the involvement of RCCD1 in CRC EMT and affects the proliferation, migration and invasion ability of CRC cells.
Collapse
Affiliation(s)
- Shanshan Han
- Department of Laboratory Medicine,Sanmen People's Hospital, Sanmen 317100, China; Department of Laboratory Medicine, Sanmenwan Branch, the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen 317100, China
| | - Min Lin
- Central Laboratory,Sanmen People's Hospital Sanmen 317100, China
| | - Lili Wu
- Department of Laboratory Medicine, Longquan People's Hospital, Longquan 323700,China
| | - Xuedan Lin
- Department of Laboratory Medicine,Sanmen People's Hospital, Sanmen 317100, China
| | - Meiyun Chen
- Department of Laboratory Medicine,Sanmen People's Hospital, Sanmen 317100, China
| | - Chuancai Hu
- Department of Laboratory Medicine,Sanmen People's Hospital, Sanmen 317100, China
| | - Anni Bao
- Department of Laboratory Medicine,Sanmen People's Hospital, Sanmen 317100, China
| | - Zejun Fang
- Central Laboratory,Sanmen People's Hospital Sanmen 317100, China
| | - Fengjiao Zhu
- Department of Laboratory Medicine,Sanmen People's Hospital, Sanmen 317100, China.
| |
Collapse
|
3
|
Koldenhof P, Bemelmans MP, Ghosh B, Damm-Ganamet KL, van Vlijmen HWT, Pande V. Application of AlphaFold models in evaluating ligandable cysteines across E3 ligases. Proteins 2024; 92:819-829. [PMID: 38337153 DOI: 10.1002/prot.26675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Proteolysis Targeting Chimeras (PROTACs) are an emerging therapeutic modality and chemical biology tools for Targeted Protein Degradation (TPD). PROTACs contain a ligand targeting the protein of interest, a ligand recruiting an E3 ligase and a linker connecting these two ligands. There are over 600 E3 ligases known so far, but only a handful have been exploited for TPD applications. A key reason for this is the scarcity of ligands binding various E3 ligases and the paucity of structural data available, which complicates ligand design across the family. In this study, we aim to progress PROTAC discovery by proposing a shortlist of E3 ligases that can be prioritized for covalent targeting by performing systematic structural ligandability analysis on a chemoproteomic dataset of potentially reactive cysteines across hundreds of E3 ligases. One of the goals of this study is to apply AlphaFold (AF) models for ligandability evaluations, as for a vast majority of these ligases an experimental structure is not available in the protein data bank (PDB). Using a combination of pocket features, AF model quality and additional aspects, we propose a shortlist of E3 ligases and corresponding cysteines that can be prioritized to potentially discover covalent ligands and expand the PROTAC toolbox.
Collapse
Affiliation(s)
- Patrick Koldenhof
- Computer-Aided Drug Design, Janssen Pharmaceuticals, Beerse, Belgium
| | | | - Brahma Ghosh
- Discovery Chemistry, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
| | | | | | - Vineet Pande
- Computer-Aided Drug Design, Janssen Pharmaceuticals, Beerse, Belgium
| |
Collapse
|
4
|
Zhuang M, Li F, Liang H, Su Y, Cheng L, Lin B, Zhou J, Deng R, Chen L, Lyu P, Lu Z. Targeting RCC1 to block the human soft-tissue sarcoma by disrupting nucleo-cytoplasmic trafficking of Skp2. Cell Death Dis 2024; 15:241. [PMID: 38561375 PMCID: PMC10985091 DOI: 10.1038/s41419-024-06629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Soft-tissue sarcomas (STS) emerges as formidable challenges in clinics due to the complex genetic heterogeneity, high rates of local recurrence and metastasis. Exploring specific targets and biomarkers would benefit the prognosis and treatment of STS. Here, we identified RCC1, a guanine-nucleotide exchange factor for Ran, as an oncogene and a potential intervention target in STS. Bioinformatics analysis indicated that RCC1 is highly expressed and correlated with poor prognosis in STS. Functional studies showed that RCC1 knockdown significantly inhibited the cell cycle transition, proliferation and migration of STS cells in vitro, and the growth of STS xenografts in mice. Mechanistically, we identified Skp2 as a downstream target of RCC1 in STS. Loss of RCC1 substantially diminished Skp2 abundance by compromising its protein stability, resulting in the upregulation of p27Kip1 and G1/S transition arrest. Specifically, RCC1 might facilitate the nucleo-cytoplasmic trafficking of Skp2 via direct interaction. As a result, the cytoplasmic retention of Skp2 would further protect it from ubiquitination and degradation. Notably, recovery of Skp2 expression largely reversed the phenotypes induced by RCC1 knockdown in STS cells. Collectively, this study unveils a novel RCC1-Skp2-p27Kip1 axis in STS oncogenesis, which holds promise for improving prognosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mingzhi Zhuang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Fengyue Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Hong Liang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, P. R. China
| | - Yongfu Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Lei Cheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Bingkai Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jun Zhou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Runzhi Deng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Linying Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, P. R. China
| | - Peng Lyu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Zhonglei Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| |
Collapse
|
5
|
Kawato S, Nozaki R, Kondo H, Hirono I. Metagenome-assembled genomes of three Hepatoplasmataceae provide insights into isopod-mollicute symbiosis. Access Microbiol 2024; 6:000592.v3. [PMID: 38482369 PMCID: PMC10928387 DOI: 10.1099/acmi.0.000592.v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 01/08/2024] [Indexed: 11/07/2024] Open
Abstract
The digestive organs of terrestrial isopods harbour bacteria of the recently proposed mollicute family Hepatoplasmataceae. The only complete genome available so far for Hepatoplasmataceae is that of 'Candidatus Hepatoplasma crinochetorum'. The scarcity of genome sequences has hampered our understanding of the symbiotic relationship between isopods and mollicutes. Here, we present four complete metagenome-assembled genomes (MAGs) of uncultured Hepatoplasmataceae members identified from shotgun sequencing data of isopods. We propose genomospecies names for three MAGs that show substantial sequence divergence from any previously known Hepatoplamsataceae members: 'Candidatus Tyloplasma litorale' identified from the semiterrestrial isopod Tylos granuliferus, 'Candidatus Hepatoplasma vulgare' identified from the common pill bug Armadillidium vulgare, and 'Candidatus Hepatoplasma scabrum' identified from the common rough woodlouse Porcellio scaber. Phylogenomic analysis of 155 mollicutes confirmed that Hepatoplasmataceae is a sister clade of Metamycoplasmataceae in the order Mycoplasmoidales. The 16S ribosomal RNA gene sequences and phylogenomic analysis showed that 'Candidatus Tyloplasma litorale' and other semiterrestrial isopod-associated mollicutes represent the placeholder genus 'g_Bg2' in the r214 release of the Genome Taxonomy Database, warranting their assignment to a novel genus. Our analysis also revealed that Hepatoplasmataceae lack major metabolic pathways but has a likely intact type IIA CRISPR-Cas9 machinery. Although the localization of the Hepatoplasmatacae members have not been verified microscopically in this study, these genomic characteristics are compatible with the idea that these mollicutes have an ectosymbiotic lifestyle with high nutritional dependence on their host, as has been demonstrated for other members of the family. We could not find evidence that Hepatoplasmataceae encode polysaccharide-degrading enzymes that aid host digestion. If they are to provide nutritional benefits, it may be through extra-copy nucleases, peptidases, and a patatin-like lipase. Exploration of potential host-symbiont interaction-associated genes revealed large, repetitive open reading frames harbouring beta-sandwich domains, possibly involved with host cell adhesion. Overall, genomic analyses suggest that isopod-mollicute symbiosis is not characterized by carbohydrate degradation, and we speculate on their potential role as defensive symbionts through spatial competition with pathogens to prevent infection.
Collapse
Affiliation(s)
- Satoshi Kawato
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
6
|
Klongnoi B, Bhattarai BP, Juengsomjit R, Meesakul O, Poomsawat S, Janebodin K, Khovidhunkit SOP. Preliminary Study on the Expression of CLLD7 and CHC1L Proteins in Oral Squamous Cell Carcinoma. Eur J Dent 2024; 18:297-303. [PMID: 37311552 PMCID: PMC10959600 DOI: 10.1055/s-0043-1768468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVE This study aimed to preliminarily evaluate the expression of two putative tumor suppressor proteins, including chronic lymphocytic leukemia deletion gene 7 (CLLD7) and chromosome condensation 1-like (CHC1L) proteins in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS Expression of CLLD7 and CHC1L proteins was analyzed in 19 OSCC and 12 normal oral mucosa (NOM) using immunohistochemistry. The percentage of positive cells and intensity of staining were semiquantitatively assessed and expressed with an immunoreactive score. The number of positive cells at various subcellular localizations was evaluated and presented in percentages. The immunoreactivity scores and percentages of positive cells at various localizations were compared between the normal and OSCC groups with statistical significance at p-value less than 0.05. RESULTS According to immunohistochemical analysis, the immunoreactivity scores for both CLLD7 and CHC1L were higher in NOM than those of OSCC. Analysis of CLLD7 localization revealed predominant nuclear staining at basal and parabasal areas in NOM, whereas more cytoplasmic staining was observed in OSCC. For CHC1L, nuclear staining was prominent in NOM. In contrast, significantly increased plasma membrane staining was detected in OSCC. CONCLUSION The expression of CLLD7 and CHC1L proteins was reduced in OSCC. Alterations in the subcellular localization of these two proteins in OSCC were also demonstrated. These preliminary results suggest that CLLD7 and CHC1L are aberrantly expressed in OSCC. The precise mechanisms of these putative tumor suppressor proteins in OSCC require future studies.
Collapse
Affiliation(s)
- Boworn Klongnoi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Bishwa Prakash Bhattarai
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
- Department of Clinical Dentistry, Walailak University International College of Dentistry, Walailak University, Bangkok, Thailand
| | - Rachai Juengsomjit
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Ounruean Meesakul
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Sopee Poomsawat
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
7
|
Li X, Jiang Y. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria. Genes (Basel) 2024; 15:176. [PMID: 38397166 PMCID: PMC10887915 DOI: 10.3390/genes15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondria are important organelles that provide energy for the life of cells. Group II introns are usually found in the mitochondrial genes of land plants. Correct splicing of group II introns is critical to mitochondrial gene expression, mitochondrial biological function, and plant growth and development. Ancestral group II introns are self-splicing ribozymes that can catalyze their own removal from pre-RNAs, while group II introns in land plant mitochondria went through degenerations in RNA structures, and thus they lost the ability to self-splice. Instead, splicing of these introns in the mitochondria of land plants is promoted by nuclear- and mitochondrial-encoded proteins. Many proteins involved in mitochondrial group II intron splicing have been characterized in land plants to date. Here, we present a summary of research progress on mitochondrial group II intron splicing in land plants, with a major focus on protein splicing factors and their probable functions on the splicing of mitochondrial group II introns.
Collapse
Affiliation(s)
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
8
|
Peng Y, Liu X, Liu X, Cheng X, Xia L, Qin L, Guan S, Wang Y, Wu X, Wu J, Yan D, Liu J, Zhang Y, Sun L, Liang J, Shang Y. RCCD1 promotes breast carcinogenesis through regulating hypoxia-associated mitochondrial homeostasis. Oncogene 2023; 42:3684-3697. [PMID: 37903896 DOI: 10.1038/s41388-023-02877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023]
Abstract
Regulator of chromosome condensation domain-containing protein 1 (RCCD1), previously reported as a partner of histone H3K36 demethylase KDM8 involved in chromosome segregation, has been identified as a potential driver for breast cancer in a recent transcriptome-wide association study. We report here that, unexpectedly, RCCD1 is also localized in mitochondria. We show that RCCD1 resides in the mitochondrial matrix, where it interacts with the mitochondrial contact site/cristae organizing system (MICOS) and mitochondrial DNA (mtDNA) to regulate mtDNA transcription, oxidative phosphorylation, and the production of reactive oxygen species. Interestingly, RCCD1 is upregulated under hypoxic conditions, leading to decreased generation of reactive oxygen species and alleviated apoptosis favoring cancer cell survival. We show that RCCD1 promotes breast cancer cell proliferation in vitro and accelerates breast tumor growth in vivo. Indeed, RCCD1 is overexpressed in breast carcinomas, and its level of expression is associated with aggressive breast cancer phenotypes and poor patient survival. Our study reveals an additional dimension of RCCD1 functionality in regulating mitochondrial homeostasis, whose dysregulation inflicts pathologic states such as breast cancer.
Collapse
Affiliation(s)
- Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Leyi Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Sudun Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Dong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Jianying Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, 311121, Hangzhou, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
9
|
Misra G, Joshi-Saha A. Genetic mapping and transcriptome profiling of a chickpea (Cicer arietinum L.) mutant identifies a novel locus (CaEl) regulating organ size and early vigor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1401-1420. [PMID: 37638656 DOI: 10.1111/tpj.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/29/2023]
Abstract
Chickpea is among the top three legumes produced and consumed worldwide. Early plant vigor, characterized by good germination and rapid seedling growth, is an important agronomic trait in many crops including chickpea, and shows a positive correlation with seed size. In this study, we report a gamma-ray-induced chickpea mutant with a larger organ and seed size. The mutant (elm) exhibits increased early vigor and contains higher proline that contributes to a better tolerance under salt stress at germination, seedling, and early vegetative phase. The trait is governed as monogenic recessive, with wild-type allele being incompletely dominant over the mutant. Genetic mapping of this locus (CaEl) identified it as a previously uncharacterized gene (101503252) in chromosome 1 of the chickpea genome. There is a deletion of this gene in the mutant with a complete loss of expression. In silico analysis suggests that the gene is present as a single copy in chickpea and related legumes of the galegoid clade. In the mutant, cell division and expansion are affected. Transcriptome profiling identified differentially regulated transcripts related to cell division, expansion, cell wall organization, and metabolism in the mutant. The mutant can be exploited in chickpea breeding programs for increasing plant vigor and seed size.
Collapse
Affiliation(s)
- Golu Misra
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Archana Joshi-Saha
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
10
|
Awadh Hashem S, Georgiou M, Ali RR, Michaelides M. RPGR-Related Retinopathy: Clinical Features, Molecular Genetics, and Gene Replacement Therapy. Cold Spring Harb Perspect Med 2023; 13:a041280. [PMID: 37188525 PMCID: PMC10626266 DOI: 10.1101/cshperspect.a041280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Retinitis pigmentosa GTPase regulator (RPGR) gene variants are the predominant cause of X-linked retinitis pigmentosa (XLRP) and a common cause of cone-rod dystrophy (CORD). XLRP presents as early as the first decade of life, with impaired night vision and constriction of peripheral visual field and rapid progression, eventually leading to blindness. In this review, we present RPGR gene structure and function, molecular genetics, animal models, RPGR-associated phenotypes and highlight emerging potential treatments such as gene-replacement therapy.
Collapse
Affiliation(s)
- Shaima Awadh Hashem
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
- Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Robin R Ali
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
- Centre for Cell and Gene Therapy, King's College London, London WC2R 2LS, United Kingdom
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
| |
Collapse
|
11
|
Da Z, Guo R, Sun J, Wang A. Identification of osteoarthritis-characteristic genes and immunological micro-environment features through bioinformatics and machine learning-based approaches. BMC Med Genomics 2023; 16:236. [PMID: 37805587 PMCID: PMC10559406 DOI: 10.1186/s12920-023-01672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a multifaceted chronic joint disease characterized by complex mechanisms. It has a detrimental impact on the quality of life for individuals in the middle-aged and elderly population while also imposing a significant socioeconomic burden. At present, there remains a lack of comprehensive understanding regarding the pathophysiology of OA. The objective of this study was to examine the genes, functional pathways, and immune infiltration characteristics associated with the development and advancement of OA. METHODS The Gene Expression Omnibus (GEO) database was utilized to acquire gene expression profiles. The R software was employed to conduct the screening of differentially expressed genes (DEGs) and perform enrichment analysis on these genes. The OA-characteristic genes were identified using the Weighted Gene Co-expression Network Analysis (WGCNA) and the Lasso algorithm. In addition, the infiltration levels of immune cells in cartilage were assessed using single-sample gene set enrichment analysis (ssGSEA). Subsequently, a correlation analysis was conducted to examine the relationship between immune cells and the OA-characteristic genes. RESULTS A total of 80 DEGs were identified. As determined by functional enrichment, these DEGs were associated with chondrocyte metabolism, apoptosis, and inflammation. Three OA-characteristic genes were identified using WGCNA and the lasso algorithm, and their expression levels were then validated using the verification set. Finally, the analysis of immune cell infiltration revealed that T cells and B cells were primarily associated with OA. In addition, Tspan2, HtrA1 demonstrated a correlation with some of the infiltrating immune cells. CONCLUSIONS The findings of an extensive bioinformatics analysis revealed that OA is correlated with a variety of distinct genes, functional pathways, and processes involving immune cell infiltration. The present study has successfully identified characteristic genes and functional pathways that hold potential as biomarkers for guiding drug treatment and facilitating molecular-level research on OA.
Collapse
Affiliation(s)
- Zheng Da
- Xingtai People's Hospital Affiliated to Hebei Medical University, Xingtai City, Hebei Province, China
| | - Rui Guo
- Xingtai People's Hospital Affiliated to Hebei Medical University, Xingtai City, Hebei Province, China.
| | - Jianjian Sun
- Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo City, Zhejiang Province, China
| | - Ai Wang
- Zhongshan Hospital Affiliated to Fudan University, Shanghai City, China
| |
Collapse
|
12
|
Li JS, Chen X, Luo A, Chen D. TFRC-RNA interactions show the regulation of gene expression and alternative splicing associated with IgAN in human renal tubule mesangial cells. Front Genet 2023; 14:1176118. [PMID: 37547464 PMCID: PMC10397801 DOI: 10.3389/fgene.2023.1176118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: IgA nephropathy (IgAN) is the most common primary glomerular disease (PGD) which could progress to renal failure and is characterized by aberrant IgA immune complex deposition. Transferrin receptor1 (TFRC), an IgA receptor, is a potential RNA binding protein (RBP) which regulates expression of genes positively associated with the cell cycle and proliferation and is involved in IgAN. Molecular mechanisms by which TFRC affects IgAN development remain unclear. Methods: In this study, TFRC was overexpressed in human renal tubular mesangial cells (HRMCs) and RNA-sequencing (RNA-seq) and improved RNA immunoprecipitation sequencing (iRIP-seq) were performed. The aim was to identify potential RNA targets of TFRC at transcriptional and alternative splicing (AS) levels. Results: TFRC-regulated AS genes were enriched in mRNA splicing and DNA repair, consistent with global changes due to TFRC overexpression (TFRC-OE). Expression of TFRC-regulated genes potentially associated with IgAN, including CENPH, FOXM1, KIFC1, TOP2A, FABP4, ID1, KIF20A, ATF3, H19, IRF7, and H1-2, and with AS, CYGB, MCM7 and HNRNPH1, were investigated by RT-qPCR and iRIP-seq data analyzed to identify TFRC-bound RNA targets. RCC1 and RPPH1 were found to be TFRC-bound RNA targets involved in cell proliferation. Discussion: In conclusion, molecular TFRC targets were identified in HRMCs and TFRC found to regulate gene transcription and AS. TFRC is considered to have potential as a clinical therapeutic target.
Collapse
Affiliation(s)
- Jian-Si Li
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Chen
- Heilongjiang Provincial Hospital Affiliated to Harbin Institute of Technology, Harbin, China
| | - Ailing Luo
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, China
| |
Collapse
|
13
|
Sala-Gaston J, Costa-Sastre L, Pedrazza L, Martinez-Martinez A, Ventura F, Rosa JL. Regulation of MAPK Signaling Pathways by the Large HERC Ubiquitin Ligases. Int J Mol Sci 2023; 24:ijms24054906. [PMID: 36902336 PMCID: PMC10003351 DOI: 10.3390/ijms24054906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Protein ubiquitylation acts as a complex cell signaling mechanism since the formation of different mono- and polyubiquitin chains determines the substrate's fate in the cell. E3 ligases define the specificity of this reaction by catalyzing the attachment of ubiquitin to the substrate protein. Thus, they represent an important regulatory component of this process. Large HERC ubiquitin ligases belong to the HECT E3 protein family and comprise HERC1 and HERC2 proteins. The physiological relevance of the Large HERCs is illustrated by their involvement in different pathologies, with a notable implication in cancer and neurological diseases. Understanding how cell signaling is altered in these different pathologies is important for uncovering novel therapeutic targets. To this end, this review summarizes the recent advances in how the Large HERCs regulate the MAPK signaling pathways. In addition, we emphasize the potential therapeutic strategies that could be followed to ameliorate the alterations in MAPK signaling caused by Large HERC deficiencies, focusing on the use of specific inhibitors and proteolysis-targeting chimeras.
Collapse
|
14
|
An X, Zhao S, Luo X, Chen C, Liu T, Li W, Zou L, Sun C. Genome-wide identification and expression analysis of the regulator of chromosome condensation 1 gene family in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1124905. [PMID: 36909424 PMCID: PMC9998523 DOI: 10.3389/fpls.2023.1124905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) is the world's most widely cultivated crop and an important staple food for humans, accounting for one-fifth of calories consumed. Proteins encoded by the regulator of chromosome condensation 1 (RCC1) are highly conserved among eukaryotes and consist of seven repeated domains that fold into a seven-bladed propeller structure. In this study, a total of 76 RCC1 genes of bread wheat were identified via a genome-wide search, and their phylogenetic relationship, gene structure, protein-conserved domain, chromosome localization, conserved motif, and transcription factor binding sites were systematically analyzed using the bioinformatics approach to indicate the evolutionary and functional features of these genes. The expression patterns of 76 TaRCC1 family genes in wheat under various stresses were further analyzed, and RT-PCR verified that RCC1-3A (TraesCS3A02G362800), RCC1-3B (TraesCS3B02G395200), and RCC1-3D (TraesCS3D02G35650) were significantly induced by salt, cold, and drought stresses. Additionally, the co-expression network analysis and binding site prediction suggested that Myb-7B (TraesCS7B02G188000) and Myb-7D (TraesCS7D02G295400) may bind to the promoter of RCC1-3A/3B and upregulate their expression in response to abiotic stresses in wheat. The results have furthered our understanding of the wheat RCC1 family members and will provide important information for subsequent studies and the use of RCC1 genes in wheat.
Collapse
Affiliation(s)
- Xia An
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuqi Zhao
- Cotton and Wheat Research Institute, Huanggang Academy of Agricultural Sciences, Huanggang, China
| | - Xiahong Luo
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Changli Chen
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tingting Liu
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenlue Li
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lina Zou
- Zhejiang Xiaoshan Institute of Cotton and Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chendong Sun
- The Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Gunther K, Imseis EM, Samuel JP, Hillman EA, Ojala TH, Jahnukainen T, Hillman PR. Renal-hepatic-pancreatic dysplasia type 2: Perinatal lethal condition or a multisystemic disorder with variable expressivity. Mol Genet Genomic Med 2023; 11:e2135. [PMID: 36756677 PMCID: PMC10094071 DOI: 10.1002/mgg3.2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Renal-hepatic-pancreatic dysplasia type 2 (RHPD2) is a rare condition that has been described in the literature disproportionately in perinatal losses. The main features of liver and kidney involvement are well described, with cardiac malformations and cardiomyopathy adding additional variation to the phenotype. Many patients reported are within larger cohorts of congenital anomalies of kidney and urinary tract (CAKUT) or liver failure, and with minimal phenotypic and clinical course data. METHODS An independent series of phenotypes and prognosis was aggregated from the literature. In this literature review, we describe an additional patient with RHPD2, provide a clinical update on the oldest known living patient, and report the cumulative phenotypes from the existing published patients. RESULTS With now examining the 17 known patients in the literature, 13 died within the perinatal period-pregnancy to one year of life. Of the four cases living past the first year of life, one case died at 5 years secondary to renal failure, the other at 30 months secondary to liver and kidney failure. Two are currently alive and well at one year and 13 years. Two cases have had transplantation with one resulting in long-term survival. CONCLUSIONS These patients serve to expand the existing phenotype of RHPD2 as a perinatal lethal condition into a pediatric disorder with variable expressivity. Additionally, we introduce the consideration of transplantation and outcomes within this cohort and future patients.
Collapse
Affiliation(s)
- Kathryn Gunther
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Essam M Imseis
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Joyce P Samuel
- Department of Pediatrics, Division of Nephrology, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Elizabeth A Hillman
- Department of Pediatrics, Division of Neonatology, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Tiina H Ojala
- Department of Pediatric Cardiology, Pediatric Research Center, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Jahnukainen
- Department of Pediatric Nephrology and Transplantation, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Paul R Hillman
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| |
Collapse
|
16
|
Cao L, Zhang H, Bai J, Wu T, Wang Y, Wang N, Huang C. HERC6 is upregulated in peripheral blood mononuclear cells of patients with systemic lupus erythematosus and promotes the disease progression. Autoimmunity 2022; 55:506-514. [PMID: 35880641 DOI: 10.1080/08916934.2022.2103800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Peripheral blood mononuclear cells (PBMCs) are any peripheral blood cell with round nuclei, including lymphocytes (T cells, B cells) and monocytes, whose physicochemical properties are randomized by obvious immune changes, and are a potentially effective source of SLE blood test samples and therapeutic targets. This study aimed to explore the upregulation molecules of PBMCs in patients with SLE and to explore their biological role. Homologous to the E6-AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain (RLD) containing E3 ubiquitin protein ligase family member 6 (HERC6) expression was found significantly upregulated in four Gene Expression Omnibus gene sets. Moreover, HERC6 expression was upregulated in PBMCs from SLE patients compared with that in PBMCs from normal donors. HERC6 was significantly associated with SLE clinical phenotypes such as complement C3 content, erythrocyte sedimentation rate, and SLE disease activity index. In vitro, knockdown of HERC6 inhibited PBMC apoptosis, inflammatory response, and janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling pathway, while overexpression of HERC6 led to the opposite results. In addition, AG490, a JAK/STAT pathway inhibitor, reversed the promoting effect of HERC6 overexpression on PBMC apoptosis and inflammation. In conclusion, the level of HERC6 in PBMCs in patients with SLE was upregulated. Overexpression of HERC6 promoted PBMC apoptosis and inflammatory response, which was involved in the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ling Cao
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Hui Zhang
- Cardiology Department, The First Hospital of Yulin, Yulin, PR China
| | - Jin Bai
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Tingting Wu
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Yingjuan Wang
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| | - Ning Wang
- Pediatric Department, Xi'an International Medical Center Hospital, Xi'an, PR China
| | - Caihong Huang
- Pediatric Department, The First Hospital of Yulin, Yulin, PR China
| |
Collapse
|
17
|
SaRCC1, a Regulator of Chromosome Condensation 1 (RCC1) Family Protein Gene from Spartina alterniflora, Negatively Regulates Salinity Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms23158172. [PMID: 35897748 PMCID: PMC9332369 DOI: 10.3390/ijms23158172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
A regulator of chromosome condensation 1 (RCC1) family protein has been functionally characterized to be involved in various cellular processes. In this study, one RCC1 gene named SaRCC1 was cloned from the full-length cDNA library of Spartinaalterniflora. The open reading frame (ORF) of SaRCC1 was 1440 bp, and it encoded 479 amino acids with a calculated molecular mass of 51.65 kDa. Multiple amino acid sequence alignments showed that SaRCC1 had high identity with other plant RCC1s, and the phylogenetic analysis indicated that SaRCC1 had a closer affinity to Zea mays RCC1 family protein (ZmRCC1). SaRCC1 gene was induced under salt stress conditions, and its encoded protein was located in peroxisome. In order to further investigate the function of SaRCC1, transgenic Arabidopsis plants ectopically both sense-overexpressing and antisense-overexpressing SaRCC1 were generated. SaRCC1-overexpressing lines exhibited an increased salt and ABA hypersensitivity and reduced resistance to salinity stress. On the other hand, the transcripts of some stress-responsive genes in the SaRCC1 transgenic plants were affected in response to salinity stress. Our results provide evidence for the involvement of SaRCC1, negatively regulating salt stress responses by affecting stress-related gene expression in Arabidopsis.
Collapse
|
18
|
Cannariato M, Miceli M, Deriu MA. In silico investigation of Alsin RLD conformational dynamics and phosphoinositides binding mechanism. PLoS One 2022; 17:e0270955. [PMID: 35849605 PMCID: PMC9292110 DOI: 10.1371/journal.pone.0270955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022] Open
Abstract
Alsin is a protein known for its major role in neuronal homeostasis and whose mutation is associated with early-onset neurodegenerative diseases. It has been shown that its relocalization from the cytoplasm to the cell membrane is crucial to induce early endosomes maturation. In particular, evidences suggest that the N-terminal regulator of chromosome condensation 1 like domain (RLD) is necessary for membrane association thanks to its affinity to phosphoinositides, membrane lipids involved in the regulation of several signaling processes. Interestingly, this domain showed affinity towards phosphatidylinositol 3-phosphate [PI(3)P], which is highly expressed in endosomes membrane. However, Alsin structure has not been experimentally resolved yet and molecular mechanisms associated with its biological functions are mostly unknown. In this work, Alsin RLD has been investigated through computational molecular modeling techniques to analyze its conformational dynamics and obtain a representative 3D model of this domain. Moreover, a putative phosphoinositide binding site has been proposed and PI(3)P interaction mechanism studied. Results highlight the substantial conformational stability of Alsin RLD secondary structure and suggest the role of one highly flexible region in the phosphoinositides selectivity of this domain.
Collapse
Affiliation(s)
- Marco Cannariato
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marcello Miceli
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- * E-mail:
| |
Collapse
|
19
|
Pereira J, Lupas AN. New β-Propellers Are Continuously Amplified From Single Blades in all Major Lineages of the β-Propeller Superfamily. Front Mol Biosci 2022; 9:895496. [PMID: 35755816 PMCID: PMC9218822 DOI: 10.3389/fmolb.2022.895496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
β-Propellers are toroidal folds, in which consecutive supersecondary structure units of four anti-parallel β-strands-called blades-are arranged radially around a central axis. Uniquely among toroidal folds, blades span the full range of sequence symmetry, from near identity to complete divergence, indicating an ongoing process of amplification and differentiation. We have proposed that the major lineages of β-propellers arose through this mechanism and that therefore their last common ancestor was a single blade, not a fully formed β-propeller. Here we show that this process of amplification and differentiation is also widespread within individual lineages, yielding β-propellers with blades of more than 60% pairwise sequence identity in most major β-propeller families. In some cases, the blades are nearly identical, indicating a very recent amplification event, but even in cases where such recently amplified β-propellers have more than 80% overall sequence identity to each other, comparison of their DNA sequence shows that the amplification occurred independently.
Collapse
Affiliation(s)
- Joana Pereira
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| |
Collapse
|
20
|
Cova MM, Lamarque MH, Lebrun M. How Apicomplexa Parasites Secrete and Build Their Invasion Machinery. Annu Rev Microbiol 2022; 76:619-640. [PMID: 35671531 DOI: 10.1146/annurev-micro-041320-021425] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apicomplexa are obligatory intracellular parasites that sense and actively invade host cells. Invasion is a conserved process that relies on the timely and spatially controlled exocytosis of unique specialized secretory organelles termed micronemes and rhoptries. Microneme exocytosis starts first and likely controls the intricate mechanism of rhoptry secretion. To assemble the invasion machinery, micronemal proteins-associated with the surface of the parasite-interact and form complexes with rhoptry proteins, which in turn are targeted into the host cell. This review covers the molecular advances regarding microneme and rhoptry exocytosis and focuses on how the proteins discharged from these two compartments work in synergy to drive a successful invasion event. Particular emphasis is given to the structure and molecular components of the rhoptry secretion apparatus, and to the current conceptual framework of rhoptry exocytosis that may constitute an unconventional eukaryotic secretory machinery closely related to the one described in ciliates. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Mauld H Lamarque
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions (LPHI), CNRS, University of Montpellier, Montpellier, France;
| |
Collapse
|
21
|
Dudin O, Wielgoss S, New AM, Ruiz-Trillo I. Regulation of sedimentation rate shapes the evolution of multicellularity in a close unicellular relative of animals. PLoS Biol 2022; 20:e3001551. [PMID: 35349578 PMCID: PMC8963540 DOI: 10.1371/journal.pbio.3001551] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 01/03/2023] Open
Abstract
Significant increases in sedimentation rate accompany the evolution of multicellularity. These increases should lead to rapid changes in ecological distribution, thereby affecting the costs and benefits of multicellularity and its likelihood to evolve. However, how genetic and cellular traits control this process, their likelihood of emergence over evolutionary timescales, and the variation in these traits as multicellularity evolves are still poorly understood. Here, using isolates of the ichthyosporean genus Sphaeroforma-close unicellular relatives of animals with brief transient multicellular life stages-we demonstrate that sedimentation rate is a highly variable and evolvable trait affected by at least 2 distinct physical mechanisms. First, we find extensive (>300×) variation in sedimentation rates for different Sphaeroforma species, mainly driven by size and density during the unicellular-to-multicellular life cycle transition. Second, using experimental evolution with sedimentation rate as a focal trait, we readily obtained, for the first time, fast settling and multicellular Sphaeroforma arctica isolates. Quantitative microscopy showed that increased sedimentation rates most often arose by incomplete cellular separation after cell division, leading to clonal "clumping" multicellular variants with increased size and density. Strikingly, density increases also arose by an acceleration of the nuclear doubling time relative to cell size. Similar size- and density-affecting phenotypes were observed in 4 additional species from the Sphaeroforma genus, suggesting that variation in these traits might be widespread in the marine habitat. By resequencing evolved isolates to high genomic coverage, we identified mutations in regulators of cytokinesis, plasma membrane remodeling, and chromatin condensation that may contribute to both clump formation and the increase in the nuclear number-to-volume ratio. Taken together, this study illustrates how extensive cellular control of density and size drive sedimentation rate variation, likely shaping the onset and further evolution of multicellularity.
Collapse
Affiliation(s)
- Omaya Dudin
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Sébastien Wielgoss
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Aaron M. New
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
22
|
Martyn JE, Gomez-Valero L, Buchrieser C. The evolution and role of eukaryotic-like domains in environmental intracellular bacteria: the battle with a eukaryotic cell. FEMS Microbiol Rev 2022; 46:6529235. [DOI: 10.1093/femsre/fuac012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Intracellular pathogens that are able to thrive in different environments, such as Legionella spp. which preferentially live in protozoa in aquatic environments or environmental Chlamydiae which replicate either within protozoa or a range of animals, possess a plethora of cellular biology tools to influence their eukaryotic host. The host manipulation tools that evolved in the interaction with protozoa, confer these bacteria the capacity to also infect phylogenetically distinct eukaryotic cells, such as macrophages and thus they can also be human pathogens. To manipulate the host cell, bacteria use protein secretion systems and molecular effectors. Although these molecular effectors are encoded in bacteria, they are expressed and function in a eukaryotic context often mimicking or inhibiting eukaryotic proteins. Indeed, many of these effectors have eukaryotic-like domains. In this review we propose that the main pathways environmental intracellular bacteria need to subvert in order to establish the host eukaryotic cell as a replication niche are chromatin remodelling, ubiquitination signalling, and modulation of protein-protein interactions via tandem repeat domains. We then provide mechanistic insight into how these proteins might have evolved as molecular weapons. Finally, we highlight that in environmental intracellular bacteria the number of eukaryotic-like domains and proteins is considerably higher than in intracellular bacteria specialised to an isolated niche, such as obligate intracellular human pathogens. As mimics of eukaryotic proteins are critical components of host pathogen interactions, this distribution of eukaryotic-like domains suggests that the environment has selected them.
Collapse
Affiliation(s)
- Jessica E Martyn
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires and CNRS UMR 3525, Paris, France
| |
Collapse
|
23
|
Connected function of PRAF/RLD and GNOM in membrane trafficking controls intrinsic cell polarity in plants. Nat Commun 2022; 13:7. [PMID: 35013279 PMCID: PMC8748900 DOI: 10.1038/s41467-021-27748-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cell polarity is a fundamental feature underlying cell morphogenesis and organismal development. In the Arabidopsis stomatal lineage, the polarity protein BASL controls stomatal asymmetric cell division. However, the cellular machinery by which this intrinsic polarity site is established remains unknown. Here, we identify the PRAF/RLD proteins as BASL physical partners and mutating four PRAF members leads to defects in BASL polarization. Members of PRAF proteins are polarized in stomatal lineage cells in a BASL-dependent manner. Developmental defects of the praf mutants phenocopy those of the gnom mutants. GNOM is an activator of the conserved Arf GTPases and plays important roles in membrane trafficking. We further find PRAF physically interacts with GNOM in vitro and in vivo. Thus, we propose that the positive feedback of BASL and PRAF at the plasma membrane and the connected function of PRAF and GNOM in endosomal trafficking establish intrinsic cell polarity in the Arabidopsis stomatal lineage.
Collapse
|
24
|
Miceli M, Exertier C, Cavaglià M, Gugole E, Boccardo M, Casaluci RR, Ceccarelli N, De Maio A, Vallone B, Deriu MA. ALS2-Related Motor Neuron Diseases: From Symptoms to Molecules. BIOLOGY 2022; 11:77. [PMID: 35053075 PMCID: PMC8773251 DOI: 10.3390/biology11010077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 11/27/2022]
Abstract
Infantile-onset Ascending Hereditary Spastic Paralysis, Juvenile Primary Lateral Sclerosis and Juvenile Amyotrophic Lateral Sclerosis are all motor neuron diseases related to mutations on the ALS2 gene, encoding for a 1657 amino acids protein named Alsin. This ~185 kDa multi-domain protein is ubiquitously expressed in various human tissues, mostly in the brain and the spinal cord. Several investigations have indicated how mutations within Alsin's structured domains may be responsible for the alteration of Alsin's native oligomerization state or Alsin's propensity to interact with protein partners. In this review paper, we propose a description of differences and similarities characterizing the above-mentioned ALS2-related rare neurodegenerative disorders, pointing attention to the effects of ALS2 mutation from molecule to organ and at the system level. Known cases were collected through a literature review and rationalized to deeply elucidate the neurodegenerative clinical outcomes as consequences of ALS2 mutations.
Collapse
Affiliation(s)
- Marcello Miceli
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Cécile Exertier
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (C.E.); (E.G.); (B.V.)
| | - Marco Cavaglià
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Elena Gugole
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (C.E.); (E.G.); (B.V.)
| | - Marta Boccardo
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Rossana Rita Casaluci
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Noemi Ceccarelli
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Alessandra De Maio
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| | - Beatrice Vallone
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy; (C.E.); (E.G.); (B.V.)
| | - Marco A. Deriu
- PolitoBIOMedLab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy; (M.M.); (M.C.); (M.B.); (R.R.C.); (N.C.); (A.D.M.)
| |
Collapse
|
25
|
Wang M, Zhou S, Lu J, Xu A, Huang Y, Bie Z, Cheng F. CmRCC1 Gene From Pumpkin Confers Cold Tolerance in Tobacco by Modulating Root Architecture and Photosynthetic Activity. FRONTIERS IN PLANT SCIENCE 2021; 12:765302. [PMID: 34925414 PMCID: PMC8678530 DOI: 10.3389/fpls.2021.765302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Low-temperature stress is the main limiting factor of cucurbit crop cultivation as it affects crop yield and quality. The identification of genes involved in cold tolerance is a crucial aspect of pumpkin rootstock breeding. Here, we examined the function of a pumpkin Regulator of Chromosome Condensation 1 (CmRCC1) gene in the root development and cold stress responses of tobacco (Nicotiana benthamiana). CmRCC1 expression was differentially induced in pumpkin root, stem, and leaf under cold stress. Transient transformation showed that CmRCC1 is located in the nucleus. CmRCC1 overexpression in tobacco increased the gravitropic set-point angle in lateral roots, as well as root diameter and volume. The expression of auxin polar transport factors, PIN1 and PIN3, decreased and increased in CmRCC1-overexpressed plants, respectively. Yeast two-hybrid verification and luciferase complementation imaging assay showed that CmRCC1 interacts with CmLAZY1. Furthermore, the decreases in maximum quantum yield of PS II, the effective quantum yield of PS II, and electron transfer rate and the increases in quantum yield of nonregulated energy dissipation and malondialdehyde content were compromised in transgenic plants compared with wild-type plants under cold stress. The results suggest that CmRCC1 plays an important role in the regulation of root architecture and positively modulates cold tolerance.
Collapse
|
26
|
Proust B, Radić M, Vidaček NŠ, Cottet C, Attia S, Lamarche F, Ačkar L, Mikulčić VG, Tokarska-Schlattner M, Ćetković H, Schlattner U, Bosnar MH. NME6 is a phosphotransfer-inactive, monomeric NME/NDPK family member and functions in complexes at the interface of mitochondrial inner membrane and matrix. Cell Biosci 2021; 11:195. [PMID: 34789336 PMCID: PMC8597243 DOI: 10.1186/s13578-021-00707-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background NME6 is a member of the nucleoside diphosphate kinase (NDPK/NME/Nm23) family which has key roles in nucleotide homeostasis, signal transduction, membrane remodeling and metastasis suppression. The well-studied NME1-NME4 proteins are hexameric and catalyze, via a phospho-histidine intermediate, the transfer of the terminal phosphate from (d)NTPs to (d)NDPs (NDP kinase) or proteins (protein histidine kinase). For the NME6, a gene/protein that emerged early in eukaryotic evolution, only scarce and partially inconsistent data are available. Here we aim to clarify and extend our knowledge on the human NME6. Results We show that NME6 is mostly expressed as a 186 amino acid protein, but that a second albeit much less abundant isoform exists. The recombinant NME6 remains monomeric, and does not assemble into homo-oligomers or hetero-oligomers with NME1-NME4. Consequently, NME6 is unable to catalyze phosphotransfer: it does not generate the phospho-histidine intermediate, and no NDPK activity can be detected. In cells, we could resolve and extend existing contradictory reports by localizing NME6 within mitochondria, largely associated with the mitochondrial inner membrane and matrix space. Overexpressing NME6 reduces ADP-stimulated mitochondrial respiration and complex III abundance, thus linking NME6 to dysfunctional oxidative phosphorylation. However, it did not alter mitochondrial membrane potential, mass, or network characteristics. Our screen for NME6 protein partners revealed its association with NME4 and OPA1, but a direct interaction was observed only with RCC1L, a protein involved in mitochondrial ribosome assembly and mitochondrial translation, and identified as essential for oxidative phosphorylation. Conclusions NME6, RCC1L and mitoribosomes localize together at the inner membrane/matrix space where NME6, in concert with RCC1L, may be involved in regulation of the mitochondrial translation of essential oxidative phosphorylation subunits. Our findings suggest new functions for NME6, independent of the classical phosphotransfer activity associated with NME proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00707-0.
Collapse
Affiliation(s)
- Bastien Proust
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Martina Radić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Nikolina Škrobot Vidaček
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia.,Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Cécile Cottet
- Laboratory of Fundamental and Applied Bioenergetics, Univ. Grenoble Alpes and Inserm U1055, Grenoble, France
| | - Stéphane Attia
- Laboratory of Fundamental and Applied Bioenergetics, Univ. Grenoble Alpes and Inserm U1055, Grenoble, France
| | - Frédéric Lamarche
- Laboratory of Fundamental and Applied Bioenergetics, Univ. Grenoble Alpes and Inserm U1055, Grenoble, France
| | - Lucija Ačkar
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Vlatka Godinić Mikulčić
- The Miroslav Krleža Institute of Lexicography, 10000, Zagreb, Croatia.,Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | | | - Helena Ćetković
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Uwe Schlattner
- Univ. Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France, and Institut Universitaire de France (IUF), Paris, France
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
27
|
Duarte GT, Pandey PK, Vaid N, Alseekh S, Fernie AR, Nikoloski Z, Laitinen RAE. Plasticity of rosette size in response to nitrogen availability is controlled by an RCC1-family protein. PLANT, CELL & ENVIRONMENT 2021; 44:3398-3411. [PMID: 34228823 DOI: 10.1111/pce.14146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 05/12/2023]
Abstract
Nitrogen (N) is fundamental to plant growth, development and yield. Genes underlying N utilization and assimilation are well-characterized, but mechanisms underpinning plasticity of different phenotypes in response to N remain elusive. Here, using Arabidopsis thaliana accessions, we dissected the genetic architecture of plasticity in early and late rosette diameter, flowering time and yield, in response to three levels of N in the soil. Furthermore, we found that the plasticity in levels of primary metabolites were related with the plasticities of the studied traits. Genome-wide association analysis identified three significant associations for phenotypic plasticity, one for early rosette diameter and two for flowering time. We confirmed that the gene At1g19880, hereafter named as PLASTICITY OF ROSETTE TO NITROGEN 1 (PROTON1), encoding for a regulator of chromatin condensation 1 (RCC1) family protein, conferred plasticity of rosette diameter in response to N. Treatment of PROTON1 T-DNA line with salt implied that the reduced plasticity of early rosette diameter was not a general growth response to stress. We further showed that plasticities of growth and flowering-related traits differed between environmental cues, indicating decoupled genetic programs regulating these traits. Our findings provide a prospective to identify genes that stabilize performance under fluctuating environments.
Collapse
Affiliation(s)
- Gustavo Turqueto Duarte
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Prashant K Pandey
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- National Research Council Canada (NRC-CNRC), Aquatic and Crop Resource Development (ACRD), Saskatoon, Saskatchewan, Canada
| | - Neha Vaid
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Saleh Alseekh
- Central Metabolism - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Plant Metabolomics, Center of Plant Systems Biology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Central Metabolism - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Plant Metabolomics, Center of Plant Systems Biology, Plovdiv, Bulgaria
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Department of Bioinformatics and Mathematical Modeling, Center of Plant Systems Biology, Plovdiv, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Roosa A E Laitinen
- Molecular Mechanisms of Plant Adaptation - group, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Structure, Activity and Function of the Protein Arginine Methyltransferase 6. Life (Basel) 2021; 11:life11090951. [PMID: 34575100 PMCID: PMC8470942 DOI: 10.3390/life11090951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the protein arginine methyltransferase (PRMT) family methylate the arginine residue(s) of several proteins and regulate a broad spectrum of cellular functions. Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that asymmetrically dimethylates the arginine residues of numerous substrate proteins. PRMT6 introduces asymmetric dimethylation modification in the histone 3 at arginine 2 (H3R2me2a) and facilitates epigenetic regulation of global gene expression. In addition to histones, PRMT6 methylates a wide range of cellular proteins and regulates their functions. Here, we discuss (i) the biochemical aspects of enzyme kinetics, (ii) the structural features of PRMT6 and (iii) the diverse functional outcomes of PRMT6 mediated arginine methylation. Finally, we highlight how dysregulation of PRMT6 is implicated in various types of cancers and response to viral infections.
Collapse
|
29
|
Wu C, Duan Y, Gong S, Kallendrusch S, Schopow N, Osterhoff G. Integrative and Comprehensive Pancancer Analysis of Regulator of Chromatin Condensation 1 (RCC1). Int J Mol Sci 2021; 22:ijms22147374. [PMID: 34298996 PMCID: PMC8305170 DOI: 10.3390/ijms22147374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Regulator of Chromatin Condensation 1 (RCC1) is the only known guanine nucleotide exchange factor that acts on the Ras-like G protein Ran and plays a key role in cell cycle regulation. Although there is growing evidence to support the relationship between RCC1 and cancer, detailed pancancer analyses have not yet been performed. In this genome database study, based on The Cancer Genome Atlas, Genotype-Tissue Expression and Gene Expression Omnibus databases, the potential role of RCC1 in 33 tumors' entities was explored. The results show that RCC1 is highly expressed in most human malignant neoplasms in contrast to healthy tissues. RCC1 expression is closely related to the prognosis of a broad variety of tumor patients. Enrichment analysis showed that some tumor-related pathways such as "cell cycle" and "RNA transport" were involved in the functional mechanism of RCC1. In particular, the conducted analysis reveals the relation of RCC1 to multiple immune checkpoint genes and suggests that the regulation of RCC1 is closely related to tumor infiltration of cancer-associated fibroblasts and CD8+ T cells. Coherent data demonstrate the association of RCC1 with the tumor mutation burden and microsatellite instability in various tumors. These findings provide new insights into the role of RCC1 in oncogenesis and tumor immunology in various tumors and indicate its potential as marker for therapy prognosis and targeted treatment strategies.
Collapse
Affiliation(s)
- Changwu Wu
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, 04103 Leipzig, Germany;
| | - Siming Gong
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
- Correspondence:
| | - Sonja Kallendrusch
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
| | - Nikolas Schopow
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany; (C.W.); (S.K.); (N.S.)
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Georg Osterhoff
- Sarcoma Center, Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| |
Collapse
|
30
|
Mathieu NA, Paparisto E, Barr SD, Spratt DE. HERC5 and the ISGylation Pathway: Critical Modulators of the Antiviral Immune Response. Viruses 2021; 13:1102. [PMID: 34207696 PMCID: PMC8228270 DOI: 10.3390/v13061102] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023] Open
Abstract
Mammalian cells have developed an elaborate network of immunoproteins that serve to identify and combat viral pathogens. Interferon-stimulated gene 15 (ISG15) is a 15.2 kDa tandem ubiquitin-like protein (UBL) that is used by specific E1-E2-E3 ubiquitin cascade enzymes to interfere with the activity of viral proteins. Recent biochemical studies have demonstrated how the E3 ligase HECT and RCC1-containing protein 5 (HERC5) regulates ISG15 signaling in response to hepatitis C (HCV), influenza-A (IAV), human immunodeficiency virus (HIV), SARS-CoV-2 and other viral infections. Taken together, the potent antiviral activity displayed by HERC5 and ISG15 make them promising drug targets for the development of novel antiviral therapeutics that can augment the host antiviral response. In this review, we examine the emerging role of ISG15 in antiviral immunity with a particular focus on how HERC5 orchestrates the specific and timely ISGylation of viral proteins in response to infection.
Collapse
Affiliation(s)
- Nicholas A. Mathieu
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| | - Ermela Paparisto
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St., London, ON N6A 5C1, Canada; (E.P.); (S.D.B.)
| | - Stephen D. Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St., London, ON N6A 5C1, Canada; (E.P.); (S.D.B.)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
31
|
A novel mutation of the RPGR gene in a Chinese X-linked retinitis pigmentosa family and possible involvement of X-chromosome inactivation. Eye (Lond) 2021; 35:1688-1696. [PMID: 32839555 PMCID: PMC8169654 DOI: 10.1038/s41433-020-01150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 08/13/2020] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES The objective of this study is to investigate the molecular mechanisms and genotype-phenotype correlations of a Chinese family with X-linked retinitis pigmentosa (XLRP). METHODS A four-generation family with a total of 41 individuals including 7 affected males was recruited. All subjects in this pedigree underwent a complete ophthalmic examination. Targeted capture and next-generation sequencing were performed on the proband using a multigene panel containing 57 known causative genes of retinitis pigmentosa (RP), including RP1, RP2, RPGR, RHO, PRPH2, CRB1 among others. All variants were verified in the remaining family members by polymerase chain reaction amplification and Sanger sequencing. Blood DNA was used for X-chromosome inactivation analysis in female carriers. RESULTS All the affected individuals were diagnosed with RP. The affected males showed symptoms from the first decade, while the female carriers had onset in the second decade or later. A frameshift mutation c.345_348delTGAA in the RPGR gene was identified in all affected males and female carriers. By XCI analysis, we found that there was little correlation between their phenotype and the methylation status of their X chromosomes. CONCLUSIONS A novel mutation c.345_348delTGAA of the RPGR gene was identified, expanding the spectrum of RPGR mutations causing XLRP. In this pedigree, the phenotype extended to female carriers, in whom RP was milder and its onset delayed compared to hemizygous males. Although lack of strong correlation between X-inactivation and the severity of the disease, the milder, variable effects in female carriers still could reflect X-inactivation patterns in the retina of each individual.
Collapse
|
32
|
Sparvoli D, Lebrun M. Unraveling the Elusive Rhoptry Exocytic Mechanism of Apicomplexa. Trends Parasitol 2021; 37:622-637. [PMID: 34045149 DOI: 10.1016/j.pt.2021.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Apicomplexan parasites are unicellular eukaryotes that invade the cells in which they proliferate. The development of genetic tools in Toxoplasma, and then in Plasmodium, in the 1990s allowed the first description of the molecular machinery used for motility and invasion, revealing a crucial role for two different secretory organelles, micronemes and rhoptries. Rhoptry proteins are injected directly into the host cytoplasm not only to promote invasion but also to manipulate host functions. Nonetheless, the injection machinery has remained mysterious, a major conundrum in the field. Here we review recent progress in uncovering structural components and proteins implicated in rhoptry exocytosis and explain how revisiting early findings and considering the evolutionary origins of Apicomplexa contributed to some of these discoveries.
Collapse
Affiliation(s)
- Daniela Sparvoli
- LPHI UMR5235, Univ Montpellier, CNRS, F-34095 Montpellier, France
| | - Maryse Lebrun
- LPHI UMR5235, Univ Montpellier, CNRS, F-34095 Montpellier, France.
| |
Collapse
|
33
|
Aquilini E, Cova MM, Mageswaran SK, Dos Santos Pacheco N, Sparvoli D, Penarete-Vargas DM, Najm R, Graindorge A, Suarez C, Maynadier M, Berry-Sterkers L, Urbach S, Fahy PR, Guérin AN, Striepen B, Dubremetz JF, Chang YW, Turkewitz AP, Lebrun M. An Alveolata secretory machinery adapted to parasite host cell invasion. Nat Microbiol 2021; 6:425-434. [PMID: 33495622 PMCID: PMC8886610 DOI: 10.1038/s41564-020-00854-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/14/2020] [Indexed: 01/29/2023]
Abstract
Apicomplexa are unicellular eukaryotes and obligate intracellular parasites, including Plasmodium (the causative agent of malaria) and Toxoplasma (one of the most widespread zoonotic pathogens). Rhoptries, one of their specialized secretory organelles, undergo regulated exocytosis during invasion1. Rhoptry proteins are injected directly into the host cell to support invasion and subversion of host immune function2. The mechanism by which they are discharged is unclear and appears distinct from those in bacteria, yeast, animals and plants. Here, we show that rhoptry secretion in Apicomplexa shares structural and genetic elements with the exocytic machinery of ciliates, their free-living relatives. Rhoptry exocytosis depends on intramembranous particles in the shape of a rosette embedded into the plasma membrane of the parasite apex. Formation of this rosette requires multiple non-discharge (Nd) proteins conserved and restricted to Ciliata, Dinoflagellata and Apicomplexa that together constitute the superphylum Alveolata. We identified Nd6 at the site of exocytosis in association with an apical vesicle. Sandwiched between the rosette and the tip of the rhoptry, this vesicle appears as a central element of the rhoptry secretion machine. Our results describe a conserved secretion system that was adapted to provide defence for free-living unicellular eukaryotes and host cell injection in intracellular parasites.
Collapse
Affiliation(s)
- Eleonora Aquilini
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Marta Mendonça Cova
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Dos Santos Pacheco
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Daniela Sparvoli
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | | | - Rania Najm
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Arnault Graindorge
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Catherine Suarez
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Marjorie Maynadier
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Laurence Berry-Sterkers
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Serge Urbach
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS and INSERM, Montpellier, France
| | - Pilar Ruga Fahy
- Pôle Facultaire de Microscopie Ultrastructurale, Geneva, Switzerland
| | - Amandine N Guérin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean-François Dubremetz
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Maryse Lebrun
- Laboratory of Pathogen Host Interactions UMR 5235, Université de Montpellier and CNRS, Montpellier, France.
| |
Collapse
|
34
|
Hadalin V, Šuštar M, Volk M, Maver A, Sajovic J, Jarc-Vidmar M, Peterlin B, Hawlina M, Fakin A. Cone Dystrophy Associated with a Novel Variant in the Terminal Codon of the RPGR- ORF15. Genes (Basel) 2021; 12:genes12040499. [PMID: 33805381 PMCID: PMC8066792 DOI: 10.3390/genes12040499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/30/2022] Open
Abstract
Mutations in RPGRORF15 are associated with rod-cone or cone/cone-rod dystrophy, the latter associated with mutations at the distal end. We describe the phenotype associated with a novel variant in the terminal codon of the RPGRORF15 c.3457T>A (Ter1153Lysext*38), which results in a C-terminal extension. Three male patients from two families were recruited, aged 31, 35, and 38 years. Genetic testing was performed by whole exome sequencing. Filtered variants were analysed according to the population frequency, ClinVar database, the variant’s putative impact, and predicted pathogenicity; and were classified according to the ACMG guidelines. Examination included visual acuity (Snellen), colour vision (Ishihara), visual field, fundus autofluorescence (FAF), optical coherence tomography (OCT), and electrophysiology. All patients were myopic, and had central scotoma and reduced colour vision. Visual acuities on better eyes were counting fingers, 0.3 and 0.05. Electrophysiology showed severely reduced cone-specific responses and macular dysfunction, while the rod-specific response was normal. FAF showed hyperautofluorescent ring centred at the fovea encompassing an area of photoreceptor loss approximately two optic discs in diameter (3462–6342 μm). Follow up after 2–11 years showed enlargement of the diameter (avg. 100 μm/year). The novel c.3457T>A (Ter1153Lysext*38) mutation in the terminal RPGRORF15 codon is associated with cone dystrophy, which corresponds to the previously described phenotypes associated with mutations in the distal end of the RPGRORF15. Minimal progression during follow-up years suggests a relatively stable disease after the initial loss of the central cones.
Collapse
Affiliation(s)
- Vlasta Hadalin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Maja Šuštar
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Marija Volk
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Šlajmerjeva ulica 4, 1000 Ljubljana, Slovenia; (M.V.); (A.M.); (B.P.)
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Šlajmerjeva ulica 4, 1000 Ljubljana, Slovenia; (M.V.); (A.M.); (B.P.)
| | - Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Martina Jarc-Vidmar
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Šlajmerjeva ulica 4, 1000 Ljubljana, Slovenia; (M.V.); (A.M.); (B.P.)
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, Grablovičeva 46, 1000 Ljubljana, Slovenia; (V.H.); (M.Š.); (J.S.); (M.J.-V.); (M.H.)
- Correspondence:
| |
Collapse
|
35
|
Huang T, Yang Y, Song X, Wan X, Wu B, Sastry N, Horbinski CM, Zeng C, Tiek D, Goenka A, Liu F, Brennan CW, Kessler JA, Stupp R, Nakano I, Sulman EP, Nishikawa R, James CD, Zhang W, Xu W, Hu B, Cheng SY. PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells. Mol Cell 2021; 81:1276-1291.e9. [PMID: 33539787 PMCID: PMC7979509 DOI: 10.1016/j.molcel.2021.01.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.
Collapse
Affiliation(s)
- Tianzhi Huang
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yongyong Yang
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xuechao Wan
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bingli Wu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Namratha Sastry
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Craig M Horbinski
- Department of Pathology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chang Zeng
- Department of Preventive Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anshika Goenka
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Fabao Liu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Cameron W Brennan
- Human Oncology and Pathogenesis Program, Department of Neurosurgery, Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John A Kessler
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Roger Stupp
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ichiro Nakano
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Saitama 350-1298, Japan
| | - Charles David James
- Department of Neurological Surgery, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wei Zhang
- Department of Preventive Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
36
|
Guo K, Zhao C, Lang B, Wang H, Zheng H, Zhang F. Regulator of Chromosome Condensation 2 Modulates Cell Cycle Progression, Tumorigenesis, and Therapeutic Resistance. Front Mol Biosci 2021; 7:620973. [PMID: 33521058 PMCID: PMC7838589 DOI: 10.3389/fmolb.2020.620973] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/08/2020] [Indexed: 01/03/2023] Open
Abstract
Accurate regulation of cell cycle is important for normal tissue development and homeostasis. RCC2 (Regulator of Chromosome Condensation 2) play a role as chromosomal passenger complex (CPC) implicated in all cell cycle phases. RCC2 was initially identified as Ran guanine exchange factor (GEF) for small G proteins. Therefore, RCC2 plays a key role in oncogenesis of most cancers. RCC2 is implicated in Colorectal Cancer (CRC), Lung Adenocarcinoma (LUAD), breast cancer, and ovarian cancer. Expression level of RCC2 protein determines regulation of tumor cell proliferation, invasion, metastasis, and radio-chemotherapeutic resistance. In this review, we explored proteins that interact with RCC2 to modulate tumor development and cancer therapeutic resistance by regulation of cell cycle process through various signaling pathways.
Collapse
Affiliation(s)
- Kun Guo
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Cheng Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Bin Lang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Huiqin Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hang Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Feng Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
37
|
Cao SK, Liu R, Sayyed A, Sun F, Song R, Wang X, Xiu Z, Li X, Tan BC. Regulator of Chromosome Condensation 1-Domain Protein DEK47 Functions on the Intron Splicing of Mitochondrial Nad2 and Seed Development in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:695249. [PMID: 34408760 PMCID: PMC8365749 DOI: 10.3389/fpls.2021.695249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
In flowering plants, mitochondrial genes contain approximately 20-26 introns. Splicing of these introns is essential for mitochondrial gene expression and function. Recent studies have revealed that both nucleus- and mitochondrion-encoded factors are required for intron splicing, but the mechanism of splicing remains largely unknown. Elucidation of the mechanism necessitates a complete understanding of the splicing factors. Here, we report the identification of a regulator of chromosome condensation 1 (RCC1)-domain protein DEK47 that is required for mitochondrial intron splicing and seed development in maize. Loss of function in Dek47 severely arrests embryo and endosperm development, resulting in a defective kernel (dek) phenotype. DEK47 harbors seven RCC1 domains and is targeted to mitochondria. Null mutation of DEK47 causes a deficiency in the splicing of all four nad2 introns, abolishing the production of mature nad2 transcript and resulting in the disassembly and severely reduced activity of mitochondrial complex I. In response, the expression of the alternative oxidase AOX2 is sharply increased in dek47. These results indicate that Dek47 is required for the splicing of all the nad2 introns in mitochondria, and essential for complex I assembly, and kernel development in maize.
Collapse
Affiliation(s)
- Shi-Kai Cao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Rui Liu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Ruolin Song
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhihui Xiu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaojie Li
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Bao-Cai Tan,
| |
Collapse
|
38
|
Mylemans B, Noguchi H, Deridder E, Lescrinier E, Tame JRH, Voet ARD. Influence of circular permutations on the structure and stability of a six-fold circular symmetric designer protein. Protein Sci 2020; 29:2375-2386. [PMID: 33006397 DOI: 10.1002/pro.3961] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 11/09/2022]
Abstract
The β-propeller fold is adopted by a sequentially diverse family of repeat proteins with apparent rotational symmetry. While the structure is mostly stabilized by hydrophobic interactions, an additional stabilization is provided by hydrogen bonds between the N-and C-termini, which are almost invariably part of the same β-sheet. This feature is often referred to as the "Velcro" closure. The positioning of the termini within a blade is variable and depends on the protein family. In order to investigate the influence of this location on protein structure, folding and stability, we created different circular permutants, and a circularized version, of the designer propeller protein named Pizza. This protein is perfectly symmetrical, possessing six identical repeats. While all mutants adopt the same structure, the proteins lacking the "Velcro" closure were found to be significantly less resistant to thermal and chemical denaturation. This could explain why such proteins are rarely observed in nature. Interestingly the most common "Velcro" configuration for this protein family was not the most stable among the Pizza variants tested. The circularized version shows dramatically improved stability, which could have implications for future applications.
Collapse
Affiliation(s)
| | | | - Els Deridder
- Department of Chemistry, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
39
|
Abstract
Through coevolution with host cells, microorganisms have acquired mechanisms to avoid the detection by the host surveillance system and to use the cell's supplies to establish themselves. Indeed, certain pathogens have evolved proteins that imitate specific eukaryotic cell proteins, allowing them to manipulate host pathways, a phenomenon termed molecular mimicry. Bacterial "eukaryotic-like proteins" are a remarkable example of molecular mimicry. They are defined as proteins that strongly resemble eukaryotic proteins or that carry domains that are predominantly present in eukaryotes and that are generally absent from prokaryotes. The widest diversity of eukaryotic-like proteins known to date can be found in members of the bacterial genus Legionella, some of which cause a severe pneumonia in humans. The characterization of a number of these proteins shed light on their importance during infection. The subsequent identification of eukaryotic-like genes in the genomes of other amoeba-associated bacteria and bacterial symbionts suggested that eukaryotic-like proteins are a common means of bacterial evasion and communication, shaped by the continuous interactions between bacteria and their protozoan hosts. In this review, we discuss the concept of molecular mimicry using Legionella as an example and show that eukaryotic-like proteins effectively manipulate host cell pathways. The study of the function and evolution of such proteins is an exciting field of research that is leading us toward a better understanding of the complex world of bacterium-host interactions. Ultimately, this knowledge will teach us how host pathways are manipulated and how infections may possibly be tackled.
Collapse
|
40
|
Reyes A, Favia P, Vidoni S, Petruzzella V, Zeviani M. RCC1L (WBSCR16) isoforms coordinate mitochondrial ribosome assembly through their interaction with GTPases. PLoS Genet 2020; 16:e1008923. [PMID: 32735630 PMCID: PMC7423155 DOI: 10.1371/journal.pgen.1008923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/12/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial translation defects can be due to mutations affecting mitochondrial- or nuclear-encoded components. The number of known nuclear genes involved in mitochondrial translation has significantly increased in the past years. RCC1L (WBSCR16), a putative GDP/GTP exchange factor, has recently been described to interact with the mitochondrial large ribosomal subunit. In humans, three different RCC1L isoforms have been identified that originate from alternative splicing but share the same N-terminus, RCC1LV1, RCC1LV2 and RCC1LV3. All three isoforms were exclusively localized to mitochondria, interacted with its inner membrane and could associate with homopolymeric oligos to different extent. Mitochondrial immunoprecipitation experiments showed that RCC1LV1 and RCC1LV3 associated with the mitochondrial large and small ribosomal subunit, respectively, while no significant association was observed for RCC1LV2. Overexpression and silencing of RCC1LV1 or RCC1LV3 led to mitoribosome biogenesis defects that resulted in decreased translation. Indeed, significant changes in steady-state levels and distribution on isokinetic sucrose gradients were detected not only for mitoribosome proteins but also for GTPases, (GTPBP10, ERAL1 and C4orf14), and pseudouridylation proteins, (TRUB2, RPUSD3 and RPUSD4). All in all, our data suggest that RCC1L is essential for mitochondrial function and that the coordination of at least two isoforms is essential for proper ribosomal assembly.
Collapse
Affiliation(s)
- Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Paola Favia
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso - Università degli Studi Aldo Moro, Piazza G. Cesare, Bari, Italy
| | - Sara Vidoni
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Vittoria Petruzzella
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso - Università degli Studi Aldo Moro, Piazza G. Cesare, Bari, Italy
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Sala-Gaston J, Martinez-Martinez A, Pedrazza L, Lorenzo-Martín LF, Caloto R, Bustelo XR, Ventura F, Rosa JL. HERC Ubiquitin Ligases in Cancer. Cancers (Basel) 2020; 12:cancers12061653. [PMID: 32580485 PMCID: PMC7352365 DOI: 10.3390/cancers12061653] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
HERC proteins are ubiquitin E3 ligases of the HECT family. The HERC subfamily is composed of six members classified by size into large (HERC1 and HERC2) and small (HERC3-HERC6). HERC family ubiquitin ligases regulate important cellular processes, such as neurodevelopment, DNA damage response, cell proliferation, cell migration, and immune responses. Accumulating evidence also shows that this family plays critical roles in cancer. In this review, we provide an integrated view of the role of these ligases in cancer, highlighting their bivalent functions as either oncogenes or tumor suppressors, depending on the tumor type. We include a discussion of both the molecular mechanisms involved and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Joan Sala-Gaston
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Rubén Caloto
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
- Correspondence:
| |
Collapse
|
42
|
Burette M, Allombert J, Lambou K, Maarifi G, Nisole S, Di Russo Case E, Blanchet FP, Hassen-Khodja C, Cabantous S, Samuel J, Martinez E, Bonazzi M. Modulation of innate immune signaling by a Coxiella burnetii eukaryotic-like effector protein. Proc Natl Acad Sci U S A 2020; 117:13708-13718. [PMID: 32482853 PMCID: PMC7306807 DOI: 10.1073/pnas.1914892117] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Q fever agent Coxiella burnetii uses a defect in organelle trafficking/intracellular multiplication (Dot/Icm) type 4b secretion system (T4SS) to silence the host innate immune response during infection. By investigating C. burnetii effector proteins containing eukaryotic-like domains, here we identify NopA (nucleolar protein A), which displays four regulator of chromosome condensation (RCC) repeats, homologous to those found in the eukaryotic Ras-related nuclear protein (Ran) guanine nucleotide exchange factor (GEF) RCC1. Accordingly, NopA is found associated with the chromatin nuclear fraction of cells and uses the RCC-like domain to interact with Ran. Interestingly, NopA triggers an accumulation of Ran-GTP, which accumulates at nucleoli of transfected or infected cells, thus perturbing the nuclear import of transcription factors of the innate immune signaling pathway. Accordingly, qRT-PCR analysis on a panel of cytokines shows that cells exposed to the C. burnetii nopA::Tn or a Dot/Icm-defective dotA::Tn mutant strain present a functional innate immune response, as opposed to cells exposed to wild-type C. burnetii or the corresponding nopA complemented strain. Thus, NopA is an important regulator of the innate immune response allowing Coxiella to behave as a stealth pathogen.
Collapse
Affiliation(s)
- Melanie Burette
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Julie Allombert
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Karine Lambou
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Elizabeth Di Russo Case
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807-3260
| | - Fabien P Blanchet
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Cedric Hassen-Khodja
- Montpellier Ressources Imagerie (MRI), BioCampus Montpellier, CNRS, INSERM, Université de Montpellier, 34293 Montpellier, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse, INSERM, Université Paul Sabatier-Toulouse III, CNRS, 31037 Toulouse, France
| | - James Samuel
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807-3260
| | - Eric Martinez
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM) UMR 9004, CNRS, Université de Montpellier, 34293 Montpellier, France;
| |
Collapse
|
43
|
Díaz-Olmos Y, Batista M, Ludwig A, Marchini FK. Characterising ISWI chromatin remodeler in Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2020; 115:e190457. [PMID: 32428081 PMCID: PMC7233268 DOI: 10.1590/0074-02760190457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/23/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Imitation SWItch (ISWI) ATPase is the catalytic subunit in diverse chromatin remodeling complexes. These complexes modify histone-DNA interactions and therefore play a pivotal role in different DNA-dependent processes. In Trypanosoma cruzi, a protozoan that controls gene expression principally post-transcriptionally, the transcriptional regulation mechanisms mediated by chromatin remodeling are poorly understood. OBJECTIVE To characterise the ISWI remodeler in T. cruzi (TcISWI). METHODS A new version of pTcGW vectors was constructed to express green fluorescent protein (GFP)-tagged TcISWI. CRISPR-Cas9 system was used to obtain parasites with inactivated TcISWI gene and we determined TcISWI partners by cryomilling-affinity purification-mass spectrometry (MS) assay as an approximation to start to unravel the function of this protein. FINDINGS Our approach identified known ISWI partners [nucleoplasmin-like protein (NLP), regulator of chromosome condensation 1-like protein (RCCP) and phenylalanine/tyrosine-rich protein (FYRP)], previously characterised in T. brucei, and new components in TcISWI complex [DRBD2, DHH1 and proteins containing a domain characteristic of structural maintenance of chromosomes (SMC) proteins]. Data are available via ProteomeXchange with identifier PXD017869. MAIN CONCLUSIONS In addition to its participation in transcriptional silencing, as it was reported in T. brucei, the data generated here provide a framework that suggests a role for TcISWI chromatin remodeler in different nuclear processes in T. cruzi, including mRNA nuclear export control and chromatin compaction. Further work is necessary to clarify the TcISWI functional diversity that arises from this protein interaction study.
Collapse
Affiliation(s)
- Yirys Díaz-Olmos
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brazil
| | - Michel Batista
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brazil
| | - Adriana Ludwig
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brazil
| | - Fabricio K Marchini
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR, Brazil
| |
Collapse
|
44
|
Agudelo-Romero P, Fortes AM, Suárez T, Lascano HR, Saavedra L. Evolutionary insights into FYVE and PHOX effector proteins from the moss Physcomitrella patens. PLANTA 2020; 251:62. [PMID: 32040768 DOI: 10.1007/s00425-020-03354-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Genome-wide identification, together with gene expression patterns and promoter region analysis of FYVE and PHOX proteins in Physcomitrella patens, emphasized their importance in regulating mainly developmental processes in P. patens. Phosphatidylinositol 3-phosphate (PtdIns3P) is a signaling phospholipid, which regulates several aspects of plant growth and development, as well as responses to biotic and abiotic stresses. The mechanistic insights underlying PtdIns3P mode of action, specifically through effector proteins have been partially explored in plants, with main focus on Arabidopsis thaliana. In this study, we searched for genes coding for PtdIns3P-binding proteins such as FYVE and PHOX domain-containing sequences from different photosynthetic organisms to gather evolutionary insights on these phosphoinositide binding domains, followed by an in silico characterization of the FYVE and PHOX gene families in the moss Physcomitrella patens. Phylogenetic analysis showed that PpFYVE proteins can be grouped in 7 subclasses, with an additional subclass whose FYVE domain was lost during evolution to higher plants. On the other hand, PpPHOX proteins are classified into 5 subclasses. Expression analyses based on RNAseq data together with the analysis of cis-acting regulatory elements and transcription factor (TF) binding sites in promoter regions suggest the importance of these proteins in regulating stress responses but mainly developmental processes in P. patens. The results provide valuable information and robust candidate genes for future functional analysis aiming to further explore the role of this signaling pathway mainly during growth and development of tip growing cells and during the transition from 2 to 3D growth. These studies would identify ancestral regulatory players undertaken during plant evolution.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- The UWA Institute of Agriculture, The University of Western Australia, M082, Perth, 6009, Australia
- The ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, M316 Perth, Perth, 6009, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Ana Margarida Fortes
- Faculdade de Ciências, BioISI-Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Trinidad Suárez
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Hernán Ramiro Lascano
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- CONICET-Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | - Laura Saavedra
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
45
|
Furutani M, Hirano Y, Nishimura T, Nakamura M, Taniguchi M, Suzuki K, Oshida R, Kondo C, Sun S, Kato K, Fukao Y, Hakoshima T, Morita MT. Polar recruitment of RLD by LAZY1-like protein during gravity signaling in root branch angle control. Nat Commun 2020; 11:76. [PMID: 31900388 PMCID: PMC6941992 DOI: 10.1038/s41467-019-13729-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 11/13/2019] [Indexed: 01/07/2023] Open
Abstract
In many plant species, roots maintain specific growth angles relative to the direction of gravity, known as gravitropic set point angles (GSAs). These contribute to the efficient acquisition of water and nutrients. AtLAZY1/LAZY1-LIKE (LZY) genes are involved in GSA control by regulating auxin flow toward the direction of gravity in Arabidopsis. Here, we demonstrate that RCC1-like domain (RLD) proteins, identified as LZY interactors, are essential regulators of polar auxin transport. We show that interaction of the CCL domain of LZY with the BRX domain of RLD is important for the recruitment of RLD from the cytoplasm to the plasma membrane by LZY. A structural analysis reveals the mode of the interaction as an intermolecular β-sheet in addition to the structure of the BRX domain. Our results offer a molecular framework in which gravity signal first emerges as polarized LZY3 localization in gravity-sensing cells, followed by polar RLD1 localization and PIN3 relocalization to modulate auxin flow.
Collapse
Affiliation(s)
- Masahiko Furutani
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant System Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yoshinori Hirano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeshi Nishimura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
| | - Moritaka Nakamura
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
| | - Masatoshi Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Kanako Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryuichiro Oshida
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Chiemi Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Song Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center, Fujian Provincial Key Laboratory of Haixia Applied Plant System Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Kagayaki Kato
- Laboratory of Biological Diversity, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan
- Bioimage Informatics Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Myodaiji, Okazaki, 444-8585, Japan
| | - Yoichiro Fukao
- Department of Bioinformatics, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Toshio Hakoshima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101, Japan
| | - Miyo Terao Morita
- Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki, 444-8556, Japan.
| |
Collapse
|
46
|
García-Cano J, Martinez-Martinez A, Sala-Gaston J, Pedrazza L, Rosa JL. HERCing: Structural and Functional Relevance of the Large HERC Ubiquitin Ligases. Front Physiol 2019; 10:1014. [PMID: 31447701 PMCID: PMC6692442 DOI: 10.3389/fphys.2019.01014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
Homologous to the E6AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain-containing proteins (HERCs) belong to the superfamily of ubiquitin ligases. HERC proteins are divided into two subfamilies, Large and Small HERCs. Despite their similarities in terms of both structure and domains, these subfamilies are evolutionarily very distant and result from a convergence phenomenon rather than from a common origin. Large HERC genes, HERC1 and HERC2, are present in most metazoan taxa. They encode very large proteins (approximately 5,000 amino acid residues in a single polypeptide chain) that contain more than one RCC1-like domain as a structural characteristic. Accumulating evidences show that these unusually large proteins play key roles in a wide range of cellular functions which include neurodevelopment, DNA damage repair, and cell proliferation. To better understand the origin, evolution, and function of the Large HERC family, this minireview provides with an integrated overview of their structure and function and details their physiological implications. This study also highlights and discusses how dysregulation of these proteins is associated with severe human diseases such as neurological disorders and cancer.
Collapse
Affiliation(s)
- Jesús García-Cano
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Arturo Martinez-Martinez
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Joan Sala-Gaston
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Leonardo Pedrazza
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| | - Jose Luis Rosa
- Ubiquitylation and Cell Signalling Lab, IDIBELL, Departament de Ciències Fisiològiques, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
47
|
Mawatari G, Fujinami K, Liu X, Yang L, Yokokawa YF, Komori S, Ueno S, Terasaki H, Katagiri S, Hayashi T, Kuniyoshi K, Miyake Y, Tsunoda K, Yoshitake K, Iwata T, Nao-i N. Clinical and genetic characteristics of 14 patients from 13 Japanese families with RPGR-associated retinal disorder: report of eight novel variants. Hum Genome Var 2019; 6:34. [PMID: 31645972 PMCID: PMC6804603 DOI: 10.1038/s41439-019-0065-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/21/2019] [Accepted: 06/30/2019] [Indexed: 01/08/2023] Open
Abstract
Variants in the retinitis pigmentosa GTPase regulator (RPGR) gene are a major cause of X-linked inherited retinal disorder (IRD). We herein describe the clinical and genetic features of 14 patients from 13 Japanese families harboring RPGR variants in a nationwide cohort. Comprehensive ophthalmological examinations were performed to classify the patients into one of the phenotype subgroups: retinitis pigmentosa (RP) and cone rod dystrophy (CORD). The mean age of onset/at examination was 13.8/38.1 years (range, 0-50/11-72), respectively. The mean visual acuity in the right/left eye was 0.43/0.43 (range, 0.1-1.7/-0.08-1.52) LogMAR unit. Eight patients had RP, and six had CORD. Whole-exome sequencing with target analyses identified 13 RPGR variants in 730 families with IRD, including 8 novel variants. An association between the phenotype subgroup and the position of variants (cutoff of amino acid 950) was revealed. To conclude, the clinical and genetic spectrum of RPGR-associated retinal disorder was first illustrated in a Japanese population, with a high proportion of novel variants. These results suggest the distinct genetic background of RPGR in the Japanese population, in which the genotype-phenotype association was affirmed. This evidence should be helpful monitoring and counseling patients and in selecting patients for future therapeutic trials.
Collapse
Affiliation(s)
- Go Mawatari
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Xiao Liu
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
| | - Lizhu Yang
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yu-Fujinami Yokokawa
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Graduate School of Health Management, Keio University, Tokyo, Japan
- Division of Public Health, Yokokawa Clinic, Suita, Osaka, Japan
| | - Shiori Komori
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi Japan
| | - Shinji Ueno
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi Japan
| | - Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
| | - Kazuki Kuniyoshi
- Department of Ophthalmology, Kinki University Faculty of Medicine, Osaka-Sayama City, Osaka, Japan
| | - Yozo Miyake
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Kobe Eye Center, Next Vision, Kobe, Hyogo, Japan
| | - Kazushige Tsunoda
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Nobuhisa Nao-i
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - on behalf of the JEGC study group
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
- Graduate School of Health Management, Keio University, Tokyo, Japan
- Division of Public Health, Yokokawa Clinic, Suita, Osaka, Japan
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi Japan
- Department of Ophthalmology, The Jikei University School of Medicine, Nishi-Shimbashi, Minato-ku, Tokyo, Japan
- Department of Ophthalmology, Kinki University Faculty of Medicine, Osaka-Sayama City, Osaka, Japan
- Kobe Eye Center, Next Vision, Kobe, Hyogo, Japan
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| |
Collapse
|
48
|
Ji H, Wang S, Cheng C, Li R, Wang Z, Jenkins GI, Kong F, Li X. The RCC1 family protein SAB1 negatively regulates ABI5 through multidimensional mechanisms during postgermination in Arabidopsis. THE NEW PHYTOLOGIST 2019; 222:907-922. [PMID: 30570158 DOI: 10.1111/nph.15653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/13/2018] [Indexed: 05/25/2023]
Abstract
Abscisic acid-insensitive 5 (ABI5) is an essential and conserved plant basic leucine zipper transcription factor whose level controls seed germination and postgerminative development. It has been demonstrated that activity of ABI5 is transcriptionally and post-translationally regulated. However, transcriptional regulation of ABI5 is not fully understood. Here, we identified SAB1 (Sensitive to ABA 1) as a novel negative regulator of ABI5 that simultaneously regulates its stability, promoter binding activity and histone methylation-mediated gene silencing of ABI5. SAB1 encodes a Regulator of Chromatin Condensation 1 (RCC1) family protein and is expressed in an opposite pattern to that of ABI5 during early seedling growth in response to abscisic acid (ABA). SAB1 mutation results in enhanced ABA sensitivity and acts upstream of ABI5. SAB1 physically interacts with ABI5 at phosphoamino acid Ser-145, and reduces the phosphorylation of ABI5 and the protein stability. SAB1 reduces ABI5 binding activity to its own promoter, leading to reduced transcriptional level of ABI5. SAB1 inactivates ABI5 transcription by increasing the level of histone H3K27me2 in the ABI5 promoter. Our findings have identified SAB1 as a crucial new component of ABA signaling which modulates early development of plant by precisely controlling ABI5 activity through multiple mechanisms.
Collapse
Affiliation(s)
- Hongtao Ji
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangfeng Wang
- Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei, 050021, China
| | - Chunhong Cheng
- Center for Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei, 050021, China
| | - Ran Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhijuan Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gareth I Jenkins
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Fanjiang Kong
- The Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
49
|
Yang J, Guo Y, Lu C, Zhang R, Wang Y, Luo L, Zhang Y, Chu CH, Wang KJ, Obbad S, Yan W, Li X. Inhibition of Karyopherin beta 1 suppresses prostate cancer growth. Oncogene 2019; 38:4700-4714. [PMID: 30742095 PMCID: PMC6565446 DOI: 10.1038/s41388-019-0745-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/10/2018] [Accepted: 01/26/2019] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) initiation and progression requires activation of numerous oncogenic signaling pathways. Nuclear-cytoplasmic transport of oncogenic factors is mediated by Karyopherin proteins during cell transformation. However, the role of nuclear transporter proteins in PCa progression has not been well defined. Here, we report that the KPNB1, a key member of Karyopherin beta subunits, is highly expressed in advanced prostate cancers. Further study showed that targeting KPNB1 suppressed the proliferation of prostate cancer cells. The knockdown of KPNB1 reduced nuclear translocation of c-Myc, the expression of downstream cell cycle modulators, and phosphorylation of regulator of chromatin condensation 1 (RCC1), a key protein for spindle assembly during mitosis. Meanwhile, CHIP assay demonstrated the binding of c-Myc to KPNB1 promoter region, which indicated a positive feedback regulation of KPNB1 expression mediated by the c-Myc. In addition, NF-κB subunit p50 translocation to nuclei was blocked by KPNB1 inhibition, which led to an increase in apoptosis and a decrease in tumor sphere formation of PCa cells. Furthermore, subcutaneous xenograft tumor models with a stable knockdown of KPNB1 in C42B PCa cells validated that the inhibition of KPNB1 could suppress the growth of prostate tumor in vivo. Moreover, the intravenously administration of importazole, a specific inhibitor for KPNB1, effectively reduced PCa tumor size and weight in mice inoculated with PC3 PCa cells. In summary, our data established the functional link between KPNB1 and PCa prone c-Myc, NF-kB, and cell cycle modulators. More importantly, inhibition of KPNB1 could be a new therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Jian Yang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yuqi Guo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Cuijie Lu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Ruohan Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yaoyu Wang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Liang Luo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yanli Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Catherine H Chu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Katherine J Wang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Sabrine Obbad
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Wenbo Yan
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Xin Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA. .,Department of Urology, New York University Langone Medical Center, New York, NY, 10016, USA. .,Perlmutter Cancer Institute, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
50
|
Lenne A, De Witte C, Tellier G, Hollin T, Aliouat EM, Martoriati A, Cailliau K, Saliou JM, Khalife J, Pierrot C. Characterization of a Protein Phosphatase Type-1 and a Kinase Anchoring Protein in Plasmodium falciparum. Front Microbiol 2018; 9:2617. [PMID: 30429842 PMCID: PMC6220109 DOI: 10.3389/fmicb.2018.02617] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022] Open
Abstract
With its multiple regulatory partners, the conserved Protein Phosphatase type-1 (PP1) plays a central role in many functions of the biology of eukaryotic cells, including Plasmodium falciparum. Here, we characterized a protein named PfRCC-PIP, as a major partner of PfPP1. We established its direct interaction in vitro and its presence in complex with PfPP1 in the parasite. The use of Xenopus oocyte model revealed that RCC-PIP can interact with the endogenous PP1 and act in synergy with suboptimal doses of progesterone to trigger oocyte maturation, suggesting a regulatory effect on PP1. Reverse genetic studies suggested an essential role for RCC-PIP since no viable knock-out parasites could be obtained. Further, we demonstrated the capacity of protein region containing RCC1 motifs to interact with the parasite kinase CDPK7. These data suggest that this protein is both a kinase and a phosphatase anchoring protein that could provide a platform to regulate phosphorylation/dephosphorylation processes.
Collapse
Affiliation(s)
- Astrid Lenne
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Caroline De Witte
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Géraldine Tellier
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Thomas Hollin
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - El Moukhtar Aliouat
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Alain Martoriati
- CNRS, INRA, UMR 8576-Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
| | - Katia Cailliau
- CNRS, INRA, UMR 8576-Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Lille, France
| | - Jean-Michel Saliou
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Jamal Khalife
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Christine Pierrot
- INSERM U1019-CNRS UMR 8204, Center for Infection and Immunity of Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| |
Collapse
|