1
|
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:341. [PMID: 37691066 PMCID: PMC10493228 DOI: 10.1038/s41392-023-01561-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 09/12/2023] Open
Abstract
CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.
Collapse
Affiliation(s)
- Dun Niu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Yaran Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jiqin Lian
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), 400038, Chongqing, China.
| |
Collapse
|
2
|
Eizirik DL, Szymczak F, Mallone R. Why does the immune system destroy pancreatic β-cells but not α-cells in type 1 diabetes? Nat Rev Endocrinol 2023; 19:425-434. [PMID: 37072614 DOI: 10.1038/s41574-023-00826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/20/2023]
Abstract
A perplexing feature of type 1 diabetes (T1D) is that the immune system destroys pancreatic β-cells but not neighbouring α-cells, even though both β-cells and α-cells are dysfunctional. Dysfunction, however, progresses to death only for β-cells. Recent findings indicate important differences between these two cell types. First, expression of BCL2L1, a key antiapoptotic gene, is higher in α-cells than in β-cells. Second, endoplasmic reticulum (ER) stress-related genes are differentially expressed, with higher expression levels of pro-apoptotic CHOP in β-cells than in α-cells and higher expression levels of HSPA5 (which encodes the protective chaperone BiP) in α-cells than in β-cells. Third, expression of viral recognition and innate immune response genes is higher in α-cells than in β-cells, contributing to the enhanced resistance of α-cells to coxsackievirus infection. Fourth, expression of the immune-inhibitory HLA-E molecule is higher in α-cells than in β-cells. Of note, α-cells are less immunogenic than β-cells, and the CD8+ T cells invading the islets in T1D are reactive to pre-proinsulin but not to glucagon. We suggest that this finding is a result of the enhanced capacity of the α-cell to endure viral infections and ER stress, which enables them to better survive early stressors that can cause cell death and consequently amplify antigen presentation to the immune system. Moreover, the processing of the pre-proglucagon precursor in enteroendocrine cells might favour immune tolerance towards this potential self-antigen compared to pre-proinsulin.
Collapse
Affiliation(s)
- Decio L Eizirik
- Université Libre de Bruxelles (ULB) Center for Diabetes Research and Welbio, Medical Faculty, Brussels, Belgium.
| | - Florian Szymczak
- Université Libre de Bruxelles (ULB) Center for Diabetes Research and Welbio, Medical Faculty, Brussels, Belgium
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
- Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| |
Collapse
|
3
|
Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:1-80. [PMID: 33832648 DOI: 10.1016/bs.ircmb.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic β-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic β-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in β-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in β-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and β-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.
Collapse
|
4
|
Chattopadhyay S, Sen GC. dsRNA-activation of TLR3 and RLR signaling: gene induction-dependent and independent effects. J Interferon Cytokine Res 2015; 34:427-36. [PMID: 24905199 DOI: 10.1089/jir.2014.0034] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Double-stranded (ds) RNA has diverse roles in host defense and disease prevention. dsRNA, produced by viral replication, elicits strong antiviral responses in host; similar protective responses can also be triggered by cellular dsRNA produced by necrotic, apoptotic, or otherwise stressed, uninfected cells. dsRNA is recognized in the cell by a large family of dsRNA-binding proteins, among which are the pattern recognition receptors (PRRs), toll-like receptor 3 (TLR3), and retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). TLR3 signals from the endosomal membrane where it senses extracellular dsRNA that has been endocytosed, whereas RLRs signal from the cytoplasm using a mitochondrial adaptor protein. In this review, we will summarize the signaling pathways used by these 2 PRRs, which lead to the activation of specific transcription factors and the induction of many proinflammatory and antiviral genes. However, it is becoming increasingly clear that all host responses are not mediated by the products of these induced genes; signal-dependent post-translational modifications of existing proteins can also profoundly change cellular properties. We will discuss how Src activation by TLR3 changes cell migration, adhesion, and proliferation rates and how IRF-3 activation by RLR triggers a gene induction-independent pro-apoptotic pathway that provides strong antiviral protection.
Collapse
Affiliation(s)
- Saurabh Chattopadhyay
- Department of Molecular Genetics, Lerner Research Institute , Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
5
|
Abstract
Innate immune detection and subsequent immune responses rely on the initial recognition of pathogen specific molecular motifs. Foreign nucleic acids are key structures recognised by the immune system, recognition of which occurs mainly through the use of nucleic acid receptors including members of the Toll-like receptors, AIM2-like receptors, RIG-I-like receptors and intracellular DNA receptors. While the immune system is critically important in protecting the host from infection, it is of utmost importance that it is tightly regulated, in order to prevent recognition of self-nucleic acids and the subsequent development of autoimmunity. Defects in the mechanisms regulating such pathways, for example mutations in endonucleases that clear DNA, altered expression of nucleic acid sensors and defects in negative regulators of these signalling pathways involved in RNA/DNA sensing, have all been implicated in promoting the generation of autoimmune responses. This evidence, as reviewed here, suggests that novel therapeutics targeting these sensors and their downstream pathways may be of use in the treatment of patients with autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis and primary Sjögren's syndrome.
Collapse
Affiliation(s)
- Siobhán Smith
- Molecular and Cellular Therapeutics and RCSI Research Institute, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Caroline Jefferies
- Molecular and Cellular Therapeutics and RCSI Research Institute, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
6
|
Santin I, Eizirik DL. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis. Diabetes Obes Metab 2013; 15 Suppl 3:71-81. [PMID: 24003923 DOI: 10.1111/dom.12162] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/17/2013] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) have identified more than 50 loci associated with genetic risk of type 1 diabetes (T1D). Several T1D candidate genes have been suggested or identified within these regions, but the molecular mechanisms by which they contribute to insulitis and β-cell destruction remain to be clarified. More than 60% of the T1D candidate genes are expressed in human pancreatic islets, suggesting that they contribute to T1D by regulating at least in part pathogenic mechanisms at the β-cell level. Recent studies by our group indicate that important genetically regulated pathways in β-cells include innate immunity and antiviral activity, involving RIG-like receptors (particularly MDA5) and regulators of type I IFNs (i.e. PTPN2 and USP18), and genes related to β-cell phenotype and susceptibility to pro-apoptotic stimuli (i.e. GLIS3). These observations reinforce the concept that the early pathogenesis of T1D is characterized by a dialogue between the immune system and pancreatic β-cells. This dialogue is probably influenced by polymorphisms in genes expressed at the β-cell and/or immune system level, leading to inadequate responses to environmental cues such as viral infections. Further studies are needed to clarify how these disease-associated variants affect pancreatic β-cell responses to inflammation and the subsequent triggering of autoimmune responses and progressive β-cell loss.
Collapse
Affiliation(s)
- I Santin
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
7
|
Soleimanpour SA, Stoffers DA. The pancreatic β cell and type 1 diabetes: innocent bystander or active participant? Trends Endocrinol Metab 2013; 24:324-31. [PMID: 23647931 PMCID: PMC3908840 DOI: 10.1016/j.tem.2013.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/25/2013] [Accepted: 03/31/2013] [Indexed: 02/03/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic disease resulting from destruction of insulin-producing pancreatic β cells. Genetic and environmental factors contribute to T1DM onset. Use of high-throughput DNA sequencing has allowed geneticists to perform genome-wide association studies (GWAS) to identify novel gene loci associated with T1DM. Interestingly, >50% of these genes encode products that are expressed in β cells. These studies, coupled with emerging molecular evidence that β cells are impaired by gain-of-function or loss-of-function of these loci, suggest an active role for the β cell in eliciting its own demise. Although immune dysregulation plays a vital role in T1DM pathogenesis, understanding the mechanisms contributing to β cell failure may lead to new strategies to preserve or improve β cell function in patients with T1DM.
Collapse
Affiliation(s)
- Scott A Soleimanpour
- Institute for Diabetes, Obesity, and Metabolism, and the Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
8
|
Dan K, Akiyoshi H, Munakata K, Hasegawa H, Watanabe K. A Kampo (traditional Japanese herbal) medicine, Hochuekkito, pretreatment in mice prevented influenza virus replication accompanied with GM-CSF expression and increase in several defensin mRNA levels. Pharmacology 2013; 91:314-21. [PMID: 23796966 DOI: 10.1159/000350188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022]
Abstract
A Kampo medicine, Hochuekkito (TJ-41), with an influenza virus-preventing effect had life-extending effectiveness, and immunological responses other than interferon (IFN)-α release were examined. TJ-41 (1 g/kg) was given to C57BL/6 male mice orally once a day for 2 weeks. Mice were then intranasally infected with influenza virus. After infection, virus titers and various parameters, mRNA levels and protein expression, for immunoresponses in the bronchoalveolar lavage fluid or removed lung homogenate, were measured by plaque assay, quantitative RT-PCR and ELISA. IFN-α and -β levels of TJ-41-treated mice were higher than those of the control. Toll-like receptor TLR7 and TLR9 mRNAs were elevated after infection, but retinoic acid-inducible gene (RIG-1) family mRNA levels, RIG-1, melanoma differentiation-associated gene 5 and Leishmania G protein 2 showed no response in either TJ-41 or control groups. Interferon regulatory transcription factor (IRF)-3 mRNA levels to stimulate type I (α/β) IFN were increased, but IRF-7 did not change. Only granulocyte-macrophage colony-stimulating factor (GM-CSF) after Hochuekkito treatment was significantly elevated 2 and 3 days after infection. The mRNA levels of 7 defensins after infection increased compared to preinfection values. The key roles of TJ-41 were not only stimulation of type I IFN release but also GM-CSF-derived anti-inflammation activity. Furthermore, defensin (antimicrobial peptide) mRNA levels increased by infection and were further enhanced by TJ-41 treatment. Defensin might prevent influenza virus replication.
Collapse
Affiliation(s)
- Katsuaki Dan
- Collaborative Research Resources, Core Instrumentation Facility, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
9
|
McCall KD, Schmerr MJ, Thuma JR, James CBL, Courreges MC, Benencia F, Malgor R, Schwartz FL. Phenylmethimazole suppresses dsRNA-induced cytotoxicity and inflammatory cytokines in murine pancreatic beta cells and blocks viral acceleration of type 1 diabetes in NOD mice. Molecules 2013; 18:3841-58. [PMID: 23535518 PMCID: PMC6269916 DOI: 10.3390/molecules18043841] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 02/28/2013] [Accepted: 03/22/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence supports a role for viruses in the pathogenesis of type 1 diabetes mellitus (T1DM). Activation of dsRNA-sensing pathways by viral dsRNA induces the production of inflammatory cytokines and chemokines that trigger beta cell apoptosis, insulitis, and autoimmune-mediated beta cell destruction. This study was designed to evaluate and describe potential protective effects of phenylmethimazole (C10), a small molecule which blocks dsRNA-mediated signaling, on preventing dsRNA activation of beta cell apoptosis and the inflammatory pathways important in the pathogenesis of T1DM. We first investigated the biological effects of C10, on dsRNA-treated pancreatic beta cells in culture. Cell viability assays, quantitative real-time PCR, and ELISAs were utilized to evaluate the effects of C10 on dsRNA-induced beta cell cytotoxicity and cytokine/chemokine production in murine pancreatic beta cells in culture. We found that C10 significantly impairs dsRNA-induced beta cell cytotoxicity and up-regulation of cytokines and chemokines involved in the pathogenesis of T1DM, which prompted us to evaluate C10 effects on viral acceleration of T1DM in NOD mice. C10 significantly inhibited viral acceleration of T1DM in NOD mice. These findings demonstrate that C10 (1) possesses novel beta cell protective activity which may have potential clinical relevance in T1DM and (2) may be a useful tool in achieving a better understanding of the role that dsRNA-mediated responses play in the pathogenesis of T1DM.
Collapse
Affiliation(s)
- Kelly D McCall
- Department of Specialty Medicine, Ohio University Heritage College of Osteopathic Medicine, Athens, OH 45701, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Nair S, Akil A, Craig ME. Enterovirus infection, β-cell apoptosis and type 1 diabetes. MICROBIOLOGY AUSTRALIA 2013. [DOI: 10.1071/ma13051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Uchida M, Ito T, Nakamura T, Igarashi H, Oono T, Fujimori N, Kawabe K, Suzuki K, Jensen RT, Takayanagi R. ERK pathway and sheddases play an essential role in ethanol-induced CX3CL1 release in pancreatic stellate cells. J Transl Med 2013; 93:41-53. [PMID: 23147224 DOI: 10.1038/labinvest.2012.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The clinical course of chronic pancreatitis (CP) worsens with drinking, and pancreatic stellate cells (PSCs) have an important role in the pathogenesis of alcoholic CP. Chemokines recruit inflammatory cells, resulting in chronic pancreatic inflammation. Although serum levels of fractalkine (CX3CL1) are significantly elevated in patients with alcoholic CP, the mechanism of this elevation remains unclear. This study aims to determine the effects of cytokines, pathogen-associated molecular patterns (PAMPs), and ethanol and its metabolites on CX3CL1 secretion by PSCs. Male Wistar/Bonn Kobori (WBN/Kob) rats aged 15 to 20 weeks were used as rodent models of CP in vivo. PSCs were isolated from 6-week-old male Wistar rats. The effects of cytokines, PAMPs, and ethanol and its metabolites on chemokine production and activation of signaling pathways in PSCs in vitro were examined by real-time reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and enzyme-linked immunosorbent assay. Expression of CX3CL1 and matrix metalloprotease (MMP)-2 was increased in the pancreas of WBN/Kob rats. The rat PSCs expressed CX3CL1, MMP-2, and a disintegrin and metalloprotease domain (ADAM) 17. Cytokines and PAMPs induced CX3CL1 release and activated extracellular signal-regulated kinase (ERK), MMP-9, and ADAM17. CX3CL1 release was suppressed by specific inhibitors of ERK, MMP, and ADAM, and ERK was associated with CX3CL1 transcription. Ethanol and phorbol myristate acetate synergistically increased CX3CL1 release. Real-time PCR and western blotting confirmed the synergistic activation of ERK and ADAM17. Ethanol synergistically increased CX3CL1 release via ERK and ADAM17 activation in PSCs. In conclusion, we demonstrated for the first time that ethanol synergistically increased CX3CL1 release from PSCs at least in part through activation of ERK mitogen-activated protein kinase and ADAM17. This might be one of the mechanisms of serum CX3CL1 elevation and disease progression in patients with alcoholic CP.
Collapse
Affiliation(s)
- Masahiko Uchida
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Induction and activation of antiviral enzyme 2′,5′-oligoadenylate synthetase by in vitro transcribed insulin mRNA and other cellular RNAs. Mol Biol Rep 2012; 39:7813-22. [DOI: 10.1007/s11033-012-1624-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 04/16/2012] [Indexed: 12/24/2022]
|
13
|
Zhou A, Zhang S. Regulation of cell signaling and porcine reproductive and respiratory syndrome virus. Cell Signal 2012; 24:973-80. [PMID: 22274732 DOI: 10.1016/j.cellsig.2012.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/26/2011] [Accepted: 01/10/2012] [Indexed: 01/21/2023]
Abstract
In order to successfully survive in host and persistent infection, porcine reproductive and respiratory syndrome virus (PRRSV) utilized sophisticated mechanisms to suppress or escape from the host' innate and adaptive immune systems, and then changed host gene expression. Signaling pathways play a pivotal role in the regulation of diverse biological processes. Once signaling pathways are activated by a variety of different stimuli, immune responses will be triggered by the activation of chemokines, transcription factors, and inflammatory cytokines to adjust the aggressive replication and dissemination of viruses. PRRSV infection is able to get many signaling pathways activation that facilitates distinct cell functions to modulate immune responses. In addition, the cross-talk of cell signaling pathways also can regulate PRRSV replication and also is present in this review by recent finding.
Collapse
Affiliation(s)
- Ao Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
14
|
Eksioglu EA, Zhu H, Bayouth L, Bess J, Liu HY, Nelson DR, Liu C. Characterization of HCV interactions with Toll-like receptors and RIG-I in liver cells. PLoS One 2011; 6:e21186. [PMID: 21695051 PMCID: PMC3117876 DOI: 10.1371/journal.pone.0021186] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 05/23/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIM The aim of this study was to examine the mechanisms of IFN induction and viral escape. In order to accomplish the goal we compared our new hepatoma cell line LH86, which has intact TLR3 and RIG-I expression and responds to HCV by inducing IFN, with Huh7.5 cells which lack those features. METHODS The initial interaction of LH86 cells, Huh7.5 cells or their transfected counter parts (LH86 siRIG-I, siTLR3 or siTLR7 and Huh7.5 RIG-I, TLR3 or TLR7) after infection with HCV (strain JFH-1) was studied by measuring the expression levels of IFNβ, TRAIL, DR4, DR5 and their correlation to viral replication. RESULTS HCV replicating RNA induces IFN in LH86 cells. The IFN induction system is functional in LH86, and the expression of the RIG-I and TLR3 in LH86 is comparable to the primary hepatocytes. Both proteins appear to play important roles in suppression of viral replication. We found that innate immunity against HCV is associated with the induction of apoptosis by RIG-I through the TRAIL pathway and the establishment of an antiviral state by TLR3. HCV envelope proteins interfere with the expression of TLR3 and RIG-I. CONCLUSION These findings correlate with the lower expression level of PRRs in HCV chronic patients and highlight the importance of the PRRs in the initial interaction of the virus and its host cells. This work represents a novel mechanism of viral pathogenesis for HCV and demonstrates the role of PRRs in viral infection.
Collapse
Affiliation(s)
- Erika A. Eksioglu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Haizhen Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Biology and Research Center of Cancer Prevention and Treatment of Hunan University & Hunan Tumor Hospital, Changsha, Hunan Province, China
| | - Lilly Bayouth
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Jennifer Bess
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Hong-yan Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - David R. Nelson
- Department of Medicine, Division of Hepatobiliary Diseases, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
- Department of Medicine, Division of Hepatobiliary Diseases, University of Florida College of Medicine, Gainesville, Florida, United States of America
| |
Collapse
|
15
|
Skog O, Korsgren O, Frisk G. Modulation of innate immunity in human pancreatic islets infected with enterovirus in vitro. J Med Virol 2011; 83:658-64. [PMID: 21328381 DOI: 10.1002/jmv.21924] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Present knowledge of innate immunity in infected cells relies on studies of cell lines and animal models. In this study, primary human pancreatic islets of Langerhans were used to study virus-host interactions in a model of the possible induction of type 1 diabetes by enterovirus (EV). Human islets were infected with a strain of EV isolated at onset of type 1 diabetes, or exposed to synthetic dsRNA (poly(I:C)), used commonly to mimic viral infection. Induction of innate immunity and the effect of the female sex hormone 17β-estradiol, known to have cell-protective effects, on islet chemokine secretion were investigated. 17β-Estradiol reduced EV-but not poly(I:C)-induced IP-10/CXCL10 secretion from human islets, suggesting that separate signaling pathways of the innate immune response are triggered by EV and poly(I:C), respectively. Infection with EV increased the gene-expression of toll-like receptor 3, interferon-β, and the intracellular helicase MDA5, involved in antiviral innate immunity, multi-fold over time, whereas poly(I:C) increased the expression of these genes transiently. The induced expression pattern was similar in all donors, but the expression levels varied greatly. Pre-exposure to poly(I:C) blocked viral replication in islets from 56% of the donors. These data provide insight on the innate immune responses induced by EV in human islets, and show that this can be modulated by 17β-estradiol, and suggest an important difference between virus- and poly(I:C)-induced signaling.
Collapse
Affiliation(s)
- Oskar Skog
- Division of Clinical Immunology, Department of Oncology, Radiology, and Clinical Immunology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
16
|
mRNA induces RANTES production in trophoblast cells via TLR3 only when delivered intracellularly using lipid membrane encapsulation. Placenta 2011; 32:500-5. [PMID: 21546084 DOI: 10.1016/j.placenta.2011.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND Trophoblasts express Toll-like receptor 3 (TLR3). The artificial TLR3 ligand, PolyI:C, induces an inflammatory response in trophoblasts but an endogenous ligand has not been identified. Notably, inflammatory disorders of pregnancy are associated with increased circulating placenta-derived mRNA. Endogenous degraded, uncapped mRNA is recognized by TLR3 in other cell lines. OBJECTIVE We tested the hypothesis that plasma-derived mRNA induces an inflammatory response in a trophoblast cell line via TLR3. METHODS Experiments were performed in the human first trimester extravillous trophoblast cell line HTR-8/SV neo. Plasma-derived mRNA was amplified using modified template switching and final in vitro transcription. We compared free mRNA (which favors cell surface interaction) to liposomally encapsulated mRNA (which favors intracellular mRNA delivery). We tested for the specific requirement of TLR3 signaling using siRNA. We tested for involvement of the canonical signaling pathway downstream of TLR3 by measuring NF-κB and IFN regulatory factor transcriptional activity using firefly-luciferase constructs. RESULTS Free mRNA did not induce RANTES production. In contrast, liposomal mRNA resulted in marked induction of RANTES production (non-stimulated control 3.4 ± 0.6 pg/mL, liposomal mRNA 169.7 ± 26.2 pg/mL, p < 0.001), and this RANTES production was abolished by siRNA for TLR3. Downstream of TLR3, liposomal mRNA-induced dose-response NF-κB and IFN regulatory factor transcriptional activity, and IFN beta production. CONCLUSION Plasma-derived 5' uncapped mRNA delivered intracellularly signals to induce NF-κB activation and increase RANTES production via TLR3.
Collapse
|
17
|
Abstract
Antiviral innate immunity is triggered by sensing viral nucleic acids. RIG-I (retinoic acid-inducible gene-I) is an intracellular molecule that responds to viral nucleic acids and activates downstream signaling, resulting in the induction of members of the type I interferon (IFN) family, which are regarded among the most important effectors of the innate immune system. Although RIG-I is expressed ubiquitously in the cytoplasm, its levels are subject to transcriptional and post-transcriptional regulation. RIG-I belongs to the IFN-stimulated gene (ISG) family, but certain cells regulate its expression through IFN-independent mechanisms. Several lines of evidence indicate that deregulated RIG-I signaling is associated with autoimmune disorders. Further studies suggest that RIG-I has functions in addition to those directly related to its role in RNA sensing and host defense. We have much to learn and discover regarding this interesting cytoplasmic sensor so that we can capitalize on its properties for the treatment of viral infections, immune disorders, cancer, and perhaps other conditions.
Collapse
Affiliation(s)
- Tomoh Matsumiya
- Department of Vascular Biology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | |
Collapse
|