1
|
Angom RS, Joshi A, Patowary A, Sivadas A, Ramasamy S, K. V. S, Kaushik K, Sabharwal A, Lalwani MK, K. S, Singh N, Scaria V, Sivasubbu S. Forward genetic screen using a gene-breaking trap approach identifies a novel role of grin2bb-associated RNA transcript ( grin2bbART) in zebrafish heart function. Front Cell Dev Biol 2024; 12:1339292. [PMID: 38533084 PMCID: PMC10964321 DOI: 10.3389/fcell.2024.1339292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
LncRNA-based control affects cardiac pathophysiologies like myocardial infarction, coronary artery disease, hypertrophy, and myotonic muscular dystrophy. This study used a gene-break transposon (GBT) to screen zebrafish (Danio rerio) for insertional mutagenesis. We identified three insertional mutants where the GBT captured a cardiac gene. One of the adult viable GBT mutants had bradycardia (heart arrhythmia) and enlarged cardiac chambers or hypertrophy; we named it "bigheart." Bigheart mutant insertion maps to grin2bb or N-methyl D-aspartate receptor (NMDAR2B) gene intron 2 in reverse orientation. Rapid amplification of adjacent cDNA ends analysis suggested a new insertion site transcript in the intron 2 of grin2bb. Analysis of the RNA sequencing of wild-type zebrafish heart chambers revealed a possible new transcript at the insertion site. As this putative lncRNA transcript satisfies the canonical signatures, we called this transcript grin2bb associated RNA transcript (grin2bbART). Using in situ hybridization, we confirmed localized grin2bbART expression in the heart, central nervous system, and muscles in the developing embryos and wild-type adult zebrafish atrium and bulbus arteriosus. The bigheart mutant had reduced Grin2bbART expression. We showed that bigheart gene trap insertion excision reversed cardiac-specific arrhythmia and atrial hypertrophy and restored grin2bbART expression. Morpholino-mediated antisense downregulation of grin2bbART in wild-type zebrafish embryos mimicked bigheart mutants; this suggests grin2bbART is linked to bigheart. Cardiovascular tissues use Grin2bb as a calcium-permeable ion channel. Calcium imaging experiments performed on bigheart mutants indicated calcium mishandling in the heart. The bigheart cardiac transcriptome showed differential expression of calcium homeostasis, cardiac remodeling, and contraction genes. Western blot analysis highlighted Camk2d1 and Hdac1 overexpression. We propose that altered calcium activity due to disruption of grin2bbART, a putative lncRNA in bigheart, altered the Camk2d-Hdac pathway, causing heart arrhythmia and hypertrophy in zebrafish.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Adita Joshi
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Ashok Patowary
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, Council of Scientific and Industrial Research, Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Soundhar Ramasamy
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Shamsudheen K. V.
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, Council of Scientific and Industrial Research, Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Kriti Kaushik
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ankit Sabharwal
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Mukesh Kumar Lalwani
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Subburaj K.
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Naresh Singh
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Vinod Scaria
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, Council of Scientific and Industrial Research, Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
2
|
N6-methyladenosine modulates long non-coding RNA in the developing mouse heart. Cell Death Discov 2022; 8:329. [PMID: 35858921 PMCID: PMC9300643 DOI: 10.1038/s41420-022-01118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) were reported to potentially play a regulatory role in the process of myocardial regeneration in the neonatal mouse. N6-methyladenosine (m6A) modification may play a key role in myocardial regeneration in mice and regulates a variety of biological processes through affecting the stability of lncRNAs. However, the map of m6A modification of lncRNAs in mouse cardiac development still remains unknown. We aimed to investigate the differences in the m6A status of lncRNAs during mouse cardiac development and reveal a potential role of m6A modification modulating lncRNAs in cardiac development and myocardial regeneration during cardiac development in mice. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) of the heart tissue in C57BL/6 J mice at postnatal day 1 (P1), P7 and P28 were performed to produce stagewise cardiac lncRNA m6A-methylomes in a parallel timeframe with the established loss of an intrinsic cardiac regeneration capacity and early postnatal development. There were significant differences in the distribution and abundance of m6A modifications in lncRNAs in the P7 vs P1 mice. In addition, the functional role of m6A in regulating lncRNA levels was established for selected transcripts with METTL3 silencing in neonatal cardiomyocytes in vitro. Based on our MeRIP-qPCR experiment data, both lncGm15328 and lncRNA Zfp597, that were not previously associated with cardiac regeneration, were found to be the most differently methylated at P1-P7. These two lncRNAs sponged several miRNAs which further regulated multiple mRNAs, including some of which have previously been linked with cardiac regeneration ability. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed that differential m6A modifications were more enriched in functions and cellular signalling pathways related to cardiomyocyte proliferation. Our data suggested that the m6A modification on lncRNAs may play an important role in the regeneration of myocardium and cardiac development. The graphical abstract of the potential mechanism of m6A modulates long non-coding RNA in the developing mouse heart.![]()
Collapse
|
3
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
4
|
Oxidative Stress and New Pathogenetic Mechanisms in Endothelial Dysfunction: Potential Diagnostic Biomarkers and Therapeutic Targets. J Clin Med 2020; 9:jcm9061995. [PMID: 32630452 PMCID: PMC7355625 DOI: 10.3390/jcm9061995] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVD), including heart and pathological circulatory conditions, are the world's leading cause of mortality and morbidity. Endothelial dysfunction involved in CVD pathogenesis is a trigger, or consequence, of oxidative stress and inflammation. Endothelial dysfunction is defined as a diminished production/availability of nitric oxide, with or without an imbalance between endothelium-derived contracting, and relaxing factors associated with a pro-inflammatory and prothrombotic status. Endothelial dysfunction-induced phenotypic changes include up-regulated expression of adhesion molecules and increased chemokine secretion, leukocyte adherence, cell permeability, low-density lipoprotein oxidation, platelet activation, and vascular smooth muscle cell proliferation and migration. Inflammation-induced oxidative stress results in an increased accumulation of reactive oxygen species (ROS), mainly derived from mitochondria. Excessive ROS production causes oxidation of macromolecules inducing cell apoptosis mediated by cytochrome-c release. Oxidation of mitochondrial cardiolipin loosens cytochrome-c binding, thus, favoring its cytosolic release and activation of the apoptotic cascade. Oxidative stress increases vascular permeability, promotes leukocyte adhesion, and induces alterations in endothelial signal transduction and redox-regulated transcription factors. Identification of new endothelial dysfunction-related oxidative stress markers represents a research goal for better prevention and therapy of CVD. New-generation therapeutic approaches based on carriers, gene therapy, cardiolipin stabilizer, and enzyme inhibitors have proved useful in clinical practice to counteract endothelial dysfunction. Experimental studies are in continuous development to discover new personalized treatments. Gene regulatory mechanisms, implicated in endothelial dysfunction, represent potential new targets for developing drugs able to prevent and counteract CVD-related endothelial dysfunction. Nevertheless, many challenges remain to overcome before these technologies and personalized therapeutic strategies can be used in CVD management.
Collapse
|
5
|
Gi WT, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Tappu R, Lehmann DH, Shirvani Samani O, Wisdom M, Keller A, Katus HA, Meder B. Epigenetic Regulation of Alternative mRNA Splicing in Dilated Cardiomyopathy. J Clin Med 2020; 9:jcm9051499. [PMID: 32429430 PMCID: PMC7291244 DOI: 10.3390/jcm9051499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, the genetic architecture of dilated cardiomyopathy (DCM) has been more thoroughly elucidated. However, there is still insufficient knowledge on the modifiers and regulatory principles that lead to the failure of myocardial function. The current study investigates the association of epigenome-wide DNA methylation and alternative splicing, both of which are important regulatory principles in DCM. We analyzed screening and replication cohorts of cases and controls and identified distinct transcriptomic patterns in the myocardium that differ significantly, and we identified a strong association of intronic DNA methylation and flanking exons usage (p < 2 × 10-16). By combining differential exon usage (DEU) and differential methylation regions (DMR), we found a significant change of regulation in important sarcomeric and other DCM-associated pathways. Interestingly, inverse regulation of Titin antisense non-coding RNA transcript splicing and DNA methylation of a locus reciprocal to TTN substantiate these findings and indicate an additional role for non-protein-coding transcripts. In summary, this study highlights for the first time the close interrelationship between genetic imprinting by DNA methylation and the transport of this epigenetic information towards the dynamic mRNA splicing landscape. This expands our knowledge of the genome-environment interaction in DCM besides simple gene expression regulation.
Collapse
Affiliation(s)
- Weng-Tein Gi
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Elham Kayvanpour
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Rewati Tappu
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - David Hermann Lehmann
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Omid Shirvani Samani
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Michael Wisdom
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Andreas Keller
- Department of Clinical Bioinformatics, Medical Faculty, Saarland University, 66123 Saarbrücken, Germany;
| | - Hugo A. Katus
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, 69121 Heidelberg, Germany; (W.-T.G.); (J.H.); (F.S.-H.); (E.K.); (R.T.); (D.H.L.); (O.S.S.); (M.W.); (H.A.K.)
- DZHK (German Center for Cardiovascular Research), 69121 Heidelberg, Germany
- Department of Medicine III, University of Heidelberg, INF 410, 69120 Heidelberg, Germany
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
6
|
Lin B, Xu J, Wang F, Wang J, Zhao H, Feng D. LncRNA XIST promotes myocardial infarction by regulating FOS through targeting miR-101a-3p. Aging (Albany NY) 2020; 12:7232-7247. [PMID: 32315985 PMCID: PMC7202499 DOI: 10.18632/aging.103072] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to reveal the hypothesis that lncRNA X inactive specific transcript (XIST) can participate in the regulation of cardiomyocyte apoptosis in neonatal mice cardiomyocytes (NMCMs) and myocardial infarction (MI) through targeting miR-101a-3p. NMCMs were isolated from neonatal C57BL/6 mice and anoxia was induced in hypoxic chamber. MTT assay and flow cytometry were used to determine proliferation and apoptosis respectively. The target relationship among XIST, miR-101a-3p and FOS was revealed by bioinformatic analysis, luciferase reporter assay, pull-down assay and RNA immunoprecipitation assay. The expression of XIST, miR-101a-3p, FOS and apoptosis-related proteins was determined by qRT-PCR or western blot. MI model was constructed to reveal the role of XIST. We found that XIST was up-regulated in NMCMs under anoxia condition. Moreover, XIST increased FOS expression by sponging miR-101a-3p in anoxia cells. Silencing XIST expression improved cell viability and suppressed apoptosis in vitro and inhibited myocardial infarction by reducing the level of c-FOS and apoptosis-related proteins in vivo. Our findings suggest that XIST is involved in MI, modulation of its level can be used as a new strategy or potential target in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Bin Lin
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Feng Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiaxiang Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hui Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Deguang Feng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| |
Collapse
|
7
|
Kang X, Zhao Y, Van Arsdell G, Nelson SF, Touma M. Ppp1r1b-lncRNA inhibits PRC2 at myogenic regulatory genes to promote cardiac and skeletal muscle development in mouse and human. RNA (NEW YORK, N.Y.) 2020; 26:481-491. [PMID: 31953255 PMCID: PMC7075267 DOI: 10.1261/rna.073692.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators and play important roles in cardiac development and congenital heart disease. In a previous study, we identified a novel lncRNA, Ppp1r1b, with expression highly correlated with myogenesis. However, the molecular mechanism that underlies Ppp1r1b-lncRNA function in myogenic regulation is unknown. By silencing Ppp1r1b-lncRNA, mouse C2C12 and human skeletal myoblasts failed to develop fully differentiated myotubes. Myogenic differentiation was also impaired in PPP1R1B-lncRNA deficient human-induced pluripotent stem cell-derived cardiomyocytes (hiPSCs-CMs). The expression of myogenic transcription factors, including MyoD, Myogenin, and Tbx5, as well as sarcomere proteins, was significantly suppressed in Ppp1r1b-lncRNA inhibited myoblast cells and neonatal mouse heart. Histone modification analysis revealed increased H3K27 tri-methylation at MyoD1 and Myogenin promoters in GapmeR treated C2C12 cells. Furthermore, Ppp1r1b-lncRNA was found to bind to Ezh2, and chromatin isolation by RNA purification (ChIRP) assay revealed enriched interaction of Ppp1r1b-lncRNA with Myod1 and Tbx5 promoters, suggesting that Ppp1r1b-lncRNA induces transcription of myogenic transcription factors by interacting with the polycomb repressive complex 2 (PRC2) at the chromatin interface. Correspondingly, the silencing of Ppp1r1b-lncRNA increased EZH2 binding at promoter regions of myogenic transcription factors. Therefore, our results suggest that Ppp1r1b-lncRNA promotes myogenic differentiation through competing for PRC2 binding with chromatin of myogenic master regulators during heart and skeletal muscle development.
Collapse
Affiliation(s)
- Xuedong Kang
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yan Zhao
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Glen Van Arsdell
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Cardiothoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Stanley F Nelson
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Human Genetics, Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Marlin Touma
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Neonatal/Congenital Heart Laboratory, Cardiovascular Research Laboratory, University of California Los Angeles, Los Angeles, California 90095, USA
- Department of Human Genetics, Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Institute of Precision Health, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- The Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Children's Discovery and Innovation Institute, Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
- Eli and Edythe Broad Stem Cell Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
8
|
Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int 2020; 2020:4356359. [PMID: 32215017 PMCID: PMC7085399 DOI: 10.1155/2020/4356359] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
The role of the mesenchymal stromal cell- (MSC-) derived secretome is becoming increasingly intriguing from a clinical perspective due to its ability to stimulate endogenous tissue repair processes as well as its effective regulation of the immune system, mimicking the therapeutic effects produced by the MSCs. The secretome is a composite product secreted by MSC in vitro (in conditioned medium) and in vivo (in the extracellular milieu), consisting of a protein soluble fraction (mostly growth factors and cytokines) and a vesicular component, extracellular vesicles (EVs), which transfer proteins, lipids, and genetic material. MSC-derived secretome differs based on the tissue from which the MSCs are isolated and under specific conditions (e.g., preconditioning or priming) suggesting that clinical applications should be tailored by choosing the tissue of origin and a priming regimen to specifically correct a given pathology. MSC-derived secretome mediates beneficial angiogenic effects in a variety of tissue injury-related diseases. This supports the current effort to develop cell-free therapeutic products that bring both clinical benefits (reduced immunogenicity, persistence in vivo, and no genotoxicity associated with long-term cell cultures) and manufacturing advantages (reduced costs, availability of large quantities of off-the-shelf products, and lower regulatory burden). In the present review, we aim to give a comprehensive picture of the numerous components of the secretome produced by MSCs derived from the most common tissue sources for clinical use (e.g., AT, BM, and CB). We focus on the factors involved in the complex regulation of angiogenic processes.
Collapse
|
9
|
Liang H, Su X, Wu Q, Shan H, Lv L, Yu T, Zhao X, Sun J, Yang R, Zhang L, Yan H, Zhou Y, Li X, Du Z, Shan H. LncRNA 2810403D21Rik/Mirf promotes ischemic myocardial injury by regulating autophagy through targeting Mir26a. Autophagy 2019; 16:1077-1091. [PMID: 31512556 DOI: 10.1080/15548627.2019.1659610] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
More evidence is emerging of the roles long non-coding RNAs (lncRNAs) play as regulatory factors in a variety of biological processes, but the mechanisms underlying the function of lncRNAs in acute myocardial infarction (AMI) have not been explicitly delineated. The present study identified the lncRNA 2810403D21Rik/AK007586/Mirf (myocardial infarction-regulatory factor), that inhibited macroautophagy/autophagy by modulating Mir26a (microRNA 26a). Inhibition of Mir26a led to cardiac injury both in vitro and in vivo, whereas overexpression of Mir26a attenuated ischemic stress-induced cell death by activating autophagy through targeting Usp15 (ubiquitin specific peptidase 15). More importantly, 2810403D21Rik/Mirf acted as a competitive endogenous RNA (ceRNA) of Mir26a; forced expression of 2810403D21Rik/Mirf downregulated Mir26a to inhibit autophagy. In contrast, loss of 2810403D21Rik/Mirf resulted in upregulation of Mir26a to promote autophagy and alleviate cardiac injury, which in turn improved cardiac function in MI mice. This study identified a lncRNA 2810403D21Rik/Mirf that functions as an anti-autophagic molecule via ceRNA activity toward Mir26a. Our findings suggest that knockdown of 2810403D21Rik/Mirf might be a novel therapeutic approach for cardiac diseases associated with autophagy. ABBREVIATIONS 3-MA: 3-methyladenine; AAV-9: adenovirus associated virus-9; agoMir26a: cholesterol-conjugated Mir26a mimic; AMI: acute myocardial infarction; AMO-26a: Mir26a inhibitor; ATG: autophagy related; BECN1: beclin 1; ceRNA: competitive endogenous RNAs; EF: ejection fraction; f-2810403D21Rik/Mirf: fragment encompassing the Mir26a binding site; FS: fraction shortening; GFP-mRFP: a plasmid expressing green fluorescent protein-monomeric red fluorescent protein; lncRNA: long non-coding RNA; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; Mirf: myocardial infarction-regulatory factor; miRNAs: microRNAs; NC: negative control; NMCMs: neonatal mice cardiomyocytes; shRNA: short hairpin RNA; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; Usp15: ubiquitin specific peptidase 15.
Collapse
Affiliation(s)
- Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Xiaomin Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Qiuxia Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Huitong Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Tong Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Xiaoguang Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Rui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Lu Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - He Yan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Yuhong Zhou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Zhimin Du
- Institute of Clinical Pharmacy, The 2nd Affiliated Hospital, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University , Harbin, Heilongjiang, P. R. China.,Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University , Harbin, Heilongjiang, P. R. China
| |
Collapse
|
10
|
Zhang Q, Cheng Z, Yu Z, Zhu C, Qian L. Role of lncRNA uc.457 in the differentiation and maturation of cardiomyocytes. Mol Med Rep 2019; 19:4927-4934. [PMID: 30957182 DOI: 10.3892/mmr.2019.10132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/27/2019] [Indexed: 11/06/2022] Open
Abstract
Congenital heart disease (CHD) is the most common type of birth defect, and the leading cause of fetal mortality. The long noncoding RNA (lncRNA) uc.457 is differentially expressed in cardiac tissue from patients with a ventricular septal defect; however, its role in cardiac development and CHD remains unknown. In the present study, the role of uc.457 in the differentiation and maturation of cardiomyocytes was investigated. Bioinformatics approaches were employed to analyze putative transcription factor (TF) regulation, histone modifications and the biological functions of uc.457. Subsequently, uc.457 overexpression and small interfering RNA‑mediated knockdown were performed to evaluate the functional role of the lncRNA in the dimethyl sulfoxide‑induced differentiation of P19 cells into cardiomyocytes. Bioinformatics analyses predicted that uc.457 binds to TFs associated with cardiomyocyte growth and cardiac development. Cell Counting Kit‑8 assays demonstrated that uc.457 overexpression inhibited cell proliferation, whereas knockdown of uc.457 enhanced the proliferation of differentiating cardiomyocytes. Additionally, reverse transcription‑quantitative polymerase chain reaction and western blot analyses revealed that overexpression of uc.457 suppressed the mRNA and protein expression of histone cell cycle regulation defective homolog A, natriuretic peptide A, cardiac muscle troponin T and myocyte‑specific enhancer factor 2C. Collectively, the results indicated that overexpression of uc.457 inhibited the differentiation and proliferation of cardiomyocytes, suggesting that dysregulated uc.457 expression may be associated with CHD.
Collapse
Affiliation(s)
- Qijun Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zijie Cheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhangbin Yu
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Chun Zhu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Lingmei Qian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
11
|
|
12
|
Zhuang Y, Li T, Zhuang Y, Li Z, Yang W, Huang Q, Li D, Wu H, Zhang G, Yang T, Zhan L, Pan Z, Lu Y. Involvement of lncR-30245 in Myocardial Infarction-Induced Cardiac Fibrosis Through Peroxisome Proliferator-Activated Receptor-γ-Mediated Connective Tissue Growth Factor Signalling Pathway. Can J Cardiol 2019; 35:480-489. [PMID: 30935639 DOI: 10.1016/j.cjca.2019.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are emerging as important mediators of cardiac pathophysiology. The aim of the present study is to investigate the effects of lncR-30245, an lncRNA, on cardiac fibrogenesis and the underlying mechanism. METHODS Myocardial infarction (MI) and transforming growth factor (TGF)-β1 were used to induce fibrotic phenotypes. Cardiac fibrosis was detected by Masson's trichrome staining. Cardiac function was evaluated by echocardiography. Western blot, quantitative reverse transcription-polymerase chain reaction, and pharmacological approaches were used to investigate the role of lncR-30245 in cardiac fibrogenesis. RESULTS Expression of lncR-30245 was significantly increased in MI hearts and TGF-β1-treated cardiac fibroblasts (CFs). LncR-30245 was mainly located in the cytoplasm. Overexpression of lncR-30245 promoted collagen production and CF proliferation. Knockdown of lncR-30245 significantly inhibited TGF-β1-induced collagen production and CF proliferation. LncR-30245 overexpression inhibited the antifibrotic role of peroxisome proliferator-activated receptor (PPAR)-γ and increased connective tissue growth factor (CTGF) expression, whereas lncR-30245 knockdown exerted the opposite effects. Rosiglitazone, a PPAR-γ agonist, significantly inhibited lncR-30245-induced CTGF upregulation and collagen production in CFs. In contrast, T0070907, a PPAR-γ antagonist, attenuated the inhibitory effects of lncR-30245 small interfering RNA (siRNA) on TGF-β1-induced CTGF expression and collagen production. LncR-30245 knockdown significantly enhanced ejection fraction and fractional shortening and attenuated cardiac fibrosis in MI mice. CONCLUSION Our study indicates that the lncR-30245/PPAR-γ/CTGF pathway mediates MI-induced cardiac fibrosis and might be a therapeutic target for various cardiac diseases associated with fibrosis.
Collapse
Affiliation(s)
- Yuting Zhuang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Tingting Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Yanan Zhuang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Zhuoyun Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Wanqi Yang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Qihe Huang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Danyang Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Hao Wu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Guiye Zhang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Ti Yang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Linfeng Zhan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Zhenwei Pan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China.
| | - Yanjie Lu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, P. R. China; Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, P. R. China.
| |
Collapse
|
13
|
Adult Cardiac Stem Cell Aging: A Reversible Stochastic Phenomenon? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5813147. [PMID: 30881594 PMCID: PMC6383393 DOI: 10.1155/2019/5813147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
Abstract
Aging is by far the dominant risk factor for the development of cardiovascular diseases, whose prevalence dramatically increases with increasing age reaching epidemic proportions. In the elderly, pathologic cellular and molecular changes in cardiac tissue homeostasis and response to injury result in progressive deteriorations in the structure and function of the heart. Although the phenotypes of cardiac aging have been the subject of intense study, the recent discovery that cardiac homeostasis during mammalian lifespan is maintained and regulated by regenerative events associated with endogenous cardiac stem cell (CSC) activation has produced a crucial reconsideration of the biology of the adult and aged mammalian myocardium. The classical notion of the adult heart as a static organ, in terms of cell turnover and renewal, has now been replaced by a dynamic model in which cardiac cells continuously die and are then replaced by CSC progeny differentiation. However, CSCs are not immortal. They undergo cellular senescence characterized by increased ROS production and oxidative stress and loss of telomere/telomerase integrity in response to a variety of physiological and pathological demands with aging. Nevertheless, the old myocardium preserves an endogenous functionally competent CSC cohort which appears to be resistant to the senescent phenotype occurring with aging. The latter envisions the phenomenon of CSC ageing as a result of a stochastic and therefore reversible cell autonomous process. However, CSC aging could be a programmed cell cycle-dependent process, which affects all or most of the endogenous CSC population. The latter would infer that the loss of CSC regenerative capacity with aging is an inevitable phenomenon that cannot be rescued by stimulating their growth, which would only speed their progressive exhaustion. The resolution of these two biological views will be crucial to design and develop effective CSC-based interventions to counteract cardiac aging not only improving health span of the elderly but also extending lifespan by delaying cardiovascular disease-related deaths.
Collapse
|
14
|
Huang G, Liu J, Yang C, Xiang Y, Wang Y, Wang J, Cao M, Yang W. RNA sequencing discloses the genome‑wide profile of long noncoding RNAs in dilated cardiomyopathy. Mol Med Rep 2019; 19:2569-2580. [PMID: 30720098 PMCID: PMC6423559 DOI: 10.3892/mmr.2019.9937] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a common type of non‑ischemic cardiomyopathy, of which the underlying mechanisms have not yet been fully elucidated. Long noncoding RNAs (lncRNAs) have been reported to serve crucial physiological roles in various cardiac diseases. However, the genome‑wide expression profile of lncRNAs remains to be elucidated in DCM. In the present study, a case‑control study was performed to identify expression deviations in circulating lncRNAs between patients with DCM and controls by RNA sequencing. Partial dysregulated lncRNAs were validated by reverse transcription‑polymerase chain reaction. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and lncRNA‑messenger RNA (mRNA) co‑expression network analyses were employed to probe potential functions of these dysregulated lncRNAs in DCM. Comparison between 8 DCM and 8 control samples demonstrated that there were alterations in the expression levels of 988 lncRNAs and 1,418 mRNAs in total. The dysregulated lncRNAs were found to be mainly associated with system development, organ morphogenesis and metabolic regulation in terms of 'biological processes'. Furthermore, the analysis revealed that the gap junction pathway, phagosome, and dilated and hypertrophic cardiomyopathy pathways may serve crucial roles in the development of DCM. The lncRNA‑mRNA co‑expression network also suggested that the target genes of the lncRNAs were different in patients with DCM as compared with those in the controls. In conclusion, the present study revealed the genome‑wide profile of circulating lncRNAs in DCM by RNA sequencing, and explored the potential functions of these lncRNAs in DCM using bioinformatics analysis. These findings provide a theoretical foundation for future studies of lncRNAs in DCM.
Collapse
Affiliation(s)
- Guangyong Huang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Jingwen Liu
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Chuansheng Yang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Youzhang Xiang
- Shandong Institute for Endemic Disease Control, Jinan, Shandong 250014, P.R. China
| | - Yuehai Wang
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Jing Wang
- Shandong Institute for Endemic Disease Control, Jinan, Shandong 250014, P.R. China
| | - Miaomiao Cao
- Department of Cardiology, Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong 252000, P.R. China
| | - Wenbo Yang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
15
|
Xiong Y, Kuang W, Lu S, Guo H, Wu M, Ye M, Wu L. Long noncoding RNA HOXB13-AS1 regulates HOXB13 gene methylation by interacting with EZH2 in glioma. Cancer Med 2018; 7:4718-4728. [PMID: 30105866 PMCID: PMC6144250 DOI: 10.1002/cam4.1718] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 12/30/2022] Open
Abstract
Dysregulation of long noncoding RNAs (lncRNAs) has been implicated in human diseases, in particular, cancers. In this study, we determined the expression of an lncRNA, HOXB13‐AS1, involving in glioma. We showed that HOXB13‐AS1 was significantly upregulated in glioma tissues and cells and was negatively correlated with its surrounding gene HOXB13 levels. Functional experiments in vitro and in vivo revealed that high level of HOXB13‐AS1 increased cell proliferation and tumor growth by promoting cell cycle progression. Conversely, knockdown of HOXB13‐AS1 resulted in decreased cell proliferation and tumor growth. Mechanistically, we showed that HOXB13‐AS1 overexpression increased DNMT3B‐mediated methylation of adjacent gene HOXB13 promoter by binding with the enhancer of zeste homolog 2 (EZH2) using bisulfite sequencing PCR (BSP), epigenetically suppressing HOXB13 expression. Additionally, the interaction between HOXB13‐AS1 and HOXB13 was validated by RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays using antibody against to EZH2. Taken together, our study indicated that HOXB13‐AS1 could regulate HOXB13 gene expression by methylation HOXB13 promoter and acts as an epigenetic oncogenic in glioma.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Kuang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shigang Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Miaojing Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Minhua Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Li JW, Wang XY, Zhang X, Gao L, Wang LF, Yin XH. (‑)‑Epicatechin protects against myocardial ischemia‑induced cardiac injury via activation of the PTEN/PI3K/AKT pathway. Mol Med Rep 2018; 17:8300-8308. [PMID: 29658565 PMCID: PMC5984010 DOI: 10.3892/mmr.2018.8870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Flavonol (−)-epicatechin (EPI) is primarily contained in green tea (Camellia sinensis) and cocoa beans (Theobroma cacao), and has been demonstrated to be beneficial for the health of the cardiovascular system. However, the effect and the underlying mechanism of EPI on myocardial ischemia induced cardiac injury has not yet been determined. Therefore, the present study aimed to detect whether EPI inhibited myocardial ischemia injury. An in vivo mouse myocardial ischemia model was induced by the ligation of left descending coronary artery for 7 days. EPI (1 mg/kg/day) was administrated 10 days prior to myocardial ischemia operation. The in vitro mouse myocardial ischemia model was induced by cultivating neonatal mouse cardiomyocytes under anoxia condition for 12 h. Cardiomyocytes were treated with EPI (5 µM) for 1 h and then incubated under anoxia conditions. Mouse hearts and cultured cardiomyocytes were used for hematoxylin-eosin, masson, ultrasonography, terminal dUTP nick end-labeling, immunofluorescence, western blotting and MTT assays. Results revealed that myocardial ischemia-induced mouse cardiac injury was significantly inhibited by EPI, as evidenced by decreased myocardial apoptosis, cardiac fibrosis and myocardial hypertrophy and improved cardiac function. In addition, it was confirmed that EPI serves a protective effect against myocardial ischemia via the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, which was reversed by the PI3K inhibitor, LY294002. The protective role of EPI in myocardial apoptosis was further confirmed on mouse cardiomyocytes following anoxia treatment in vitro. In conclusion, the data suggested that EPI protects against myocardial ischemia induced cardiac injury through the PTEN/PI3K/AKT signaling pathway in vivo and in vitro, which may provide clinical therapeutic approaches and targets for cardiac ischemia injury.
Collapse
Affiliation(s)
- Jia-Wen Li
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiao-Yun Wang
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin Zhang
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lei Gao
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Li-Feng Wang
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin-Hua Yin
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
17
|
Zhuang Y, Li T, Zhuang Y, Li Z, Yang W, Huang Q, Li D, Wu H, Zhang G, Yang T, Zhan L, Pan Z, Lu Y. WITHDRAWN: Suppression of lncR-30245 alleviates myocardial infarction induced cardiac fibrosis via the PPAR-γ/CTGF pathway. Can J Cardiol 2018. [DOI: 10.1016/j.cjca.2018.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
Di Mauro V, Barandalla-Sobrados M, Catalucci D. The noncoding-RNA landscape in cardiovascular health and disease. Noncoding RNA Res 2018; 3:12-19. [PMID: 30159435 PMCID: PMC6084835 DOI: 10.1016/j.ncrna.2018.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 12/22/2022] Open
Abstract
The cardiovascular system plays a pivotal role in regulating and maintaining homeostasis in the human body. Therefore any alteration in regulatory networks that orchestrate heart development as well as adaptation to physiological and environmental stress might result in pathological conditions, which represent the leading cause of death worldwide [1]. The latest advances in genome-wide techniques challenged the "protein-central dogma" with the discovery of the so-called non-coding RNAs (ncRNAs). Despite their lack of protein coding potential, ncRNAs have been largely demonstrated to regulate the majority of biological processes and have also been largely implicated in cardiovascular disorders. This review will first discuss the important mechanistic aspects of some of the classes of ncRNAs such as biogenesis, mechanism of action, as well as their involvement in cardiac diseases. The ncRNA potential uses as therapeutic molecules, with a specific focus on the latest technologies for their in vivo delivery as drug targets, will be described.
Collapse
Affiliation(s)
- Vittoria Di Mauro
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Maria Barandalla-Sobrados
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Daniele Catalucci
- National Research Council, Institute of Genetics and Biomedical Research, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
19
|
Marotta P, Cianflone E, Aquila I, Vicinanza C, Scalise M, Marino F, Mancuso T, Torella M, Indolfi C, Torella D. Combining cell and gene therapy to advance cardiac regeneration. Expert Opin Biol Ther 2018; 18:409-423. [PMID: 29347847 DOI: 10.1080/14712598.2018.1430762] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The characterization of multipotent endogenous cardiac stem cells (eCSCs) and the breakthroughs of somatic cell reprogramming to boost cardiomyocyte replacement have fostered the prospect of achieving functional heart repair/regeneration. AREAS COVERED Allogeneic CSC therapy through its paracrine stimulation of the endogenous resident reparative/regenerative process produces functional meaningful myocardial regeneration in pre-clinical porcine myocardial infarction models and is currently tested in the first-in-man human trial. The in vivo test of somatic reprogramming and cardioregenerative non-coding RNAs revived the interest in gene therapy for myocardial regeneration. The latter, together with the advent of genome editing, has prompted most recent efforts to produce genetically-modified allogeneic CSCs that secrete cardioregenerative factors to optimize effective myocardial repair. EXPERT OPINION The current war against heart failure epidemics in western countries seeks to find effective treatments to set back the failing hearts prolonging human lifespan. Off-the-shelf allogeneic-genetically-modified CSCs producing regenerative agents are a novel and evolving therapy set to be affordable, safe, effective and available at all times for myocardial regeneration to either prevent or treat heart failure.
Collapse
Affiliation(s)
- Pina Marotta
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Eleonora Cianflone
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Iolanda Aquila
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Carla Vicinanza
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Mariangela Scalise
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Fabiola Marino
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Teresa Mancuso
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Michele Torella
- b Department of Cardiothoracic Sciences , University of Campania "L. Vanvitelli" , Naples , Italy
| | - Ciro Indolfi
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Daniele Torella
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| |
Collapse
|
20
|
Fatima F, Ekstrom K, Nazarenko I, Maugeri M, Valadi H, Hill AF, Camussi G, Nawaz M. Non-coding RNAs in Mesenchymal Stem Cell-Derived Extracellular Vesicles: Deciphering Regulatory Roles in Stem Cell Potency, Inflammatory Resolve, and Tissue Regeneration. Front Genet 2017; 8:161. [PMID: 29123544 PMCID: PMC5662888 DOI: 10.3389/fgene.2017.00161] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous populations of nano- and micro-sized vesicles secreted by various cell types. There is mounting evidence that EVs have widespread roles in transporting proteins, lipids, and nucleic acids between cells and serve as mediators of intercellular communication. EVs secreted from stem cells could function as paracrine factors, and appear to mimic and recapitulate several features of their secreting cells. EV-mediated transport of regulatory RNAs provides a novel source of trans-regulation between cells. As such, stem cells have evolved unique forms of paracrine mechanisms for recapitulating their potencies with specialized functions by transporting non-coding RNAs (ncRNAs) via EVs. This includes the dissemination of stem cell-derived EV-ncRNAs and their regulatory effects elicited in differentiation, self-renewal, pluripotency, and the induction of reparative programs. Here, we summarize and discuss the therapeutic effects of mesenchymal stem cell-derived EV-ncRNAs in the induction of intrinsic regenerative programs elicited through regulating several mechanisms. Among them, most noticeable are the EV-mediated enrichment of ncRNAs at the injury sites contributing the regulation of matrix remodeling, epithelial mesenchymal transitions, and attraction of fibroblasts. Additionally, we emphasize EV-mediated transmission of anti-inflammatory RNAs from stem cells to injury site that potentially orchestrate the resolution of the inflammatory responses and immune alleviation to better facilitate healing processes. Collectively, this knowledge indicates a high value and potential of EV-mediated RNA-based therapeutic approaches in regenerative medicine.
Collapse
Affiliation(s)
- Farah Fatima
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Karin Ekstrom
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Irina Nazarenko
- Faculty of Medicine, Institute for Infection Prevention and Hospital Epidemiology, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Marco Maugeri
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Giovanni Camussi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Muhammad Nawaz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Kaikkonen MU, Halonen P, Liu OHF, Turunen TA, Pajula J, Moreau P, Selvarajan I, Tuomainen T, Aavik E, Tavi P, Ylä-Herttuala S. Genome-Wide Dynamics of Nascent Noncoding RNA Transcription in Porcine Heart After Myocardial Infarction. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.117.001702. [DOI: 10.1161/circgenetics.117.001702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/25/2017] [Indexed: 11/16/2022]
Abstract
Background—
Microarrays and RNA sequencing are widely used to profile transcriptome remodeling during myocardial ischemia. However, the steady-state RNA analysis lacks in sensitivity to detect all noncoding RNA species and does not provide separation between transcriptional and post-transcriptional regulations. Here, we provide the first comprehensive analysis of nascent RNA profiles of mRNAs, primary micro-RNAs, long noncoding RNAs, and enhancer RNAs in a large animal model of acute infarction.
Methods and Results—
Acute infarction was induced by cardiac catheterization of domestic swine. Nuclei isolated from healthy, border zone, and ischemic regions of the affected heart were subjected to global run-on sequencing. Global run-on sequencing analysis indicated that half of affected genes are regulated at the level of transcriptional pausing. A gradient of induction of inflammatory mediators and repression of peroxisome proliferator-activated receptor signaling and oxidative phosphorylation was detected when moving from healthy toward infarcted area. In addition, we interrogated the transcriptional regulation of primary micro-RNAs and provide evidence that several arrhythmia-related target genes exhibit repression at post-transcriptional level. We identified 450 long noncoding RNAs differently regulated by ischemia, including novel conserved long noncoding RNAs expressed in antisense orientation to myocardial transcription factors GATA-binding protein 4, GATA-binding protein 6, and Krüppel-like factor 6. Finally, characterization of enhancers exhibiting differential expression of enhancer RNAs pointed a central role for Krüppel-like factor, MEF2C, ETS, NFY, ATF, E2F2, and NRF1 transcription factors in determining transcriptional responses to ischemia.
Conclusions—
Global run-on sequencing allowed us to follow the gradient of gene expression occurring in the ischemic heart and identify novel noncoding RNAs regulated by oxygen deprivation. These findings highlight potential new targets for diagnosis and treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Minna U. Kaikkonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Paavo Halonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Oscar Hsin-Fu Liu
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Tiia A. Turunen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Juho Pajula
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Pierre Moreau
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Ilakya Selvarajan
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Tomi Tuomainen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Einari Aavik
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Pasi Tavi
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| |
Collapse
|
22
|
Garreta E, Prado P, Izpisua Belmonte JC, Montserrat N. Non-coding microRNAs for cardiac regeneration: Exploring novel alternatives to induce heart healing. Noncoding RNA Res 2017; 2:93-99. [PMID: 30159426 PMCID: PMC6096419 DOI: 10.1016/j.ncrna.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, different studies have revealed that adult mammalian cardiomyocytes have the capacity to self-renew under homeostatic conditions and after myocardial injury. Interestingly, data from animal models capable of regeneration, such as the adult zebrafish and neonatal mice, have identified different non-coding RNAs (ncRNAs) as functional RNA molecules driving cardiac regeneration and repair. In this review, we summarize the current knowledge of the roles that a specific subset of ncRNAs, namely microRNAs (miRNA), plays in these animal models. We also emphasize the importance of characterizing and manipulating miRNAs as a novel approach to awaken the dormant regenerative potential of the adult mammalian heart by the administration of miRNA mimics or inhibitors. Overall, the use of these strategies alone or in combination with current cardiac therapies may represent new avenues to pursue for cardiac regeneration.
Collapse
Affiliation(s)
- Elena Garreta
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Patricia Prado
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | | | - Nuria Montserrat
- Pluripotent Stem Cells and Activation of Endogenous Tissue Programs for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| |
Collapse
|
23
|
Abstract
Mammalian genomes are pervasively transcribed generating thousands of long noncoding RNAs (lncRNAs) with emergent regulatory roles. Many of these lncRNAs exhibit highly specialised expression patterns during development and typically flank and regulate key developmental factors. In this review, we discuss and summarise the latest advances in our understanding of the roles of lncRNAs during mesendoderm (ME) specification, a key step during gastrulation and the formation of the primitive streak (PS).
Collapse
Affiliation(s)
- Michael Alexanian
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| |
Collapse
|
24
|
Juni RP, Abreu RC, da Costa Martins PA. Regulation of microvascularization in heart failure - an endothelial cell, non-coding RNAs and exosome liaison. Noncoding RNA Res 2017; 2:45-55. [PMID: 30159420 PMCID: PMC6096416 DOI: 10.1016/j.ncrna.2017.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
Heart failure is a complex syndrome involving various pathophysiological processes. An increasing body of evidence shows that the myocardial microvasculature is essential for the homeostasis state and that a decompensated heart is associated with microvascular dysfunction as a result of impaired endothelial angiogenic capacity. The intercellular communication between endothelial cells and cardiomyocytes through various signaling molecules, such as vascular endothelial growth factor, nitric oxide, and non-coding RNAs is an important determinant of cardiac microvascular function. Non-coding RNAs are transported from endothelial cells to cardiomyocytes, and vice versa, regulating microvascular properties and angiogenic processes in the heart. Small-exocytosed vesicles, called exosomes, which are secreted by both cell types, can mediate this intercellular communication. The purpose of this review is to highlight the contribution of the microvasculature to proper heart function maintenance by focusing on the interaction between cardiac endothelial cells and myocytes with a specific emphasis on non-coding RNAs (ncRNAs) in this form of cell-to-cell communication. Finally, the potential of ncRNAs as targets for angiogenesis therapy will also be discussed.
Collapse
Affiliation(s)
- Rio P. Juni
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Ricardo C. Abreu
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paula A. da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Emerging cardiac non-coding landscape: The importance of meta-analysis. Biochimie 2017; 133:87-94. [DOI: 10.1016/j.biochi.2016.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/26/2016] [Indexed: 11/23/2022]
|
26
|
Hou J, Long H, Zhou C, Zheng S, Wu H, Guo T, Wu Q, Zhong T, Wang T. Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro. Stem Cell Res Ther 2017; 8:4. [PMID: 28095922 PMCID: PMC5242041 DOI: 10.1186/s13287-016-0454-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/11/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have limited potential of cardiogenic differentiation. In this study, we investigated the influence of long noncoding RNA Braveheart (lncRNA-Bvht) on cardiogenic differentiation of MSCs in vitro. Methods MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells were divided into three groups: blank control, null vector control, and lncRNA-Bvht. All three groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24 h, and 24 h of reoxygenation (20% O2). Cardiogenic differentiation was induced using 5-AZA for another 24 h. Normoxia (20% O2) was applied as a negative control during the whole process. Cardiogenic differentiation was assessed, and expressions of cardiac-specific transcription factors and epithelial-mesenchymal transition (EMT)-associated biomarkers were detected. Anti-mesoderm posterior1 (Mesp1) siRNA was transfected in order to block its expression, and relevant downstream molecules were examined. Results Compared with the blank control and null vector control groups, the lncRNA-Bvht group presented a higher percentage of differentiated cells of the cardiogenic phenotype in vitro both under the normal condition and after hypoxia/re-oxygenation. There was an increased level of cTnT and α-SA, and cardiac-specific transcription factors including Nkx2.5, Gata4, Gata6, and Isl-1 were significantly upregulated (P < 0.01). Expressions of EMT-associated genes including Snail, Twist and N-cadherin were much higher (P < 0.01). Mesp1 exhibited a distinct augmentation following lncRNA-Bvht transfection. Expressions of relevant cardiac-specific transcription factors and EMT-associated genes all presented a converse alteration in the condition of Mesp1 inhibition prior to lncRNA-Bvht transfection. Conclusion lncRNA-Bvht could efficiently promote MSCs transdifferentation into cells with the cardiogenic phenotype in vitro. It might function via enhancing the expressions of cardiac-specific transcription factors and EMT-associated genes. Mesp1 could be a pivotal intermediary in the procedure.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China. .,Department of Emergency, the Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
27
|
Bi R, Ding F, He Y, Jiang L, Jiang Z, Mei J, Liu H. miR-503 inhibits platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration through targeting the insulin receptor. Biomed Pharmacother 2016; 84:1711-1716. [PMID: 27829550 DOI: 10.1016/j.biopha.2016.10.081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Abnormal proliferation and migration of vascular smooth muscle cells (VSMC) is a common feature of disease progression in atherosclerosis. Here, we investigated the potential role of miR-503 in platelet-derived growth factor (PDGF)-induced proliferation and migration of human aortic smooth muscle cells and the underlying mechanisms of action. miR-503 expression was significantly downregulated in a dose- and time-dependent manner following PDGF treatment. Introduction of miR-503 mimics into cultured SMCs significantly attenuated cell proliferation and migration induced by PDGF. Bioinformatics analyses revealed that the insulin receptor (INSR) is a target candidate of miR-503. miR-503 suppressed luciferase activity driven by a vector containing the 3'-untranslated region of INSR in a sequence-specific manner. Downregulation of INSR appeared critical for miR-503-mediated inhibitory effects on PDGF-induced cell proliferation and migration in human aortic SMCs. Based on the collective data, we suggest a novel role of miR-503 as a regulator of VSMC proliferation and migration through modulating INSR.
Collapse
Affiliation(s)
- Rui Bi
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Yi He
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Zhaolei Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
| | - Hao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
| |
Collapse
|
28
|
Chen G, Guo H, Song Y, Chang H, Wang S, Zhang M, Liu C. Long non-coding RNA AK055347 is upregulated in patients with atrial fibrillation and regulates mitochondrial energy production in myocardiocytes. Mol Med Rep 2016; 14:5311-5317. [DOI: 10.3892/mmr.2016.5893] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/22/2016] [Indexed: 11/05/2022] Open
|
29
|
Ounzain S, Pedrazzini T. Long non-coding RNAs in heart failure: a promising future with much to learn. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:298. [PMID: 27569219 DOI: 10.21037/atm.2016.07.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| |
Collapse
|
30
|
Hou J, Zhou C, Long H, Zheng S, Guo T, Wu Q, Wu H, Zhong T, Wang T. Long noncoding RNAs: Novel molecules in cardiovascular biology, disease and regeneration. Exp Mol Pathol 2016; 100:493-501. [PMID: 27180105 DOI: 10.1016/j.yexmp.2016.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022]
Abstract
Remarkable breakthroughs made in genomic technologies have facilitated the discovery of thousands of novel transcripts that do not template protein synthesis. Numerous RNAs termed as long noncoding RNAs (lncRNAs) generated from this pervasive transcription function vividly in gene regulatory networks and a variety of biological and cellular processes. Here, we make a brief description of the known and putative functions of lncRNAs in cardiovascular biology and disease. The association between lncRNAs and stem cells mediated cardiomyocytes differentiation and neovascularization is discussed then. It will provide a new clue for further studies on these novel molecules in cardiovascular disease and bring bright prospects for their future applications in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Quanhua Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China; Department of Emergency, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
PIWI-interacting RNA (piRNA) signatures in human cardiac progenitor cells. Int J Biochem Cell Biol 2016; 76:1-11. [PMID: 27131603 DOI: 10.1016/j.biocel.2016.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/01/2016] [Accepted: 04/25/2016] [Indexed: 12/22/2022]
Abstract
Cardiac progenitors, such as cardiospheres and cardiosphere-derived cells, represent an attractive cell source for cardiac regeneration. The PIWI-interacting RNAs, piRNAs, are an intriguing class of small non-coding RNAs, implicated in the regulation of epigenetic state, maintenance of genomic integrity and stem cell functions. Although non-coding RNAs are an exploiting field in cardiovascular research, the piRNA signatures of cardiac progenitors has not been evaluated yet.We profiled, through microarrays, 15,311 piRNAs expressed in cardiospheres, cardiosphere-derived cells and cardiac fibroblasts. Results showed a set of differentially expressed piRNAs (fold change ≥2, p<0.01): 641 piRNAs were upregulated and 1,301 downregulated in the cardiospheres compared to cardiosphere-derived cells, while 255 and 708 piRNAs resulted up- and down-regulated, respectively, if compared to cardiac fibroblasts. We also identified 181 piRNAs that are overexpressed and 129 are downregulated in cardiosphere-derived cells respect to cardiac fibroblasts.Bioinformatics analysis showed that the deregulated piRNAs were mainly distributed on few chromosomes, suggesting that piRNAs are organized in discrete genomic clusters.Furthermore, the bioinformatics search showed that the most upregulated piRNAs target transposons, especially belonged to LINE-1 class, as validated by qRT-PCR. This reduction is also associated to an activation of AKT signaling, which is beneficial for cardiac regeneration.The present study is the first to show a highly consistent piRNA expression pattern for human cardiac progenitors, likely responsible of their different regenerative power. Moreover, this piRNome analysis may provide new methods for characterize cardiac progenitors and may shed new light on the understanding the complex molecular mechanisms of cardiac regeneration.
Collapse
|
32
|
Lee J, Lim S, Song BW, Cha MJ, Ham O, Lee SY, Lee C, Park JH, Bae Y, Seo HH, Seung M, Choi E, Hwang KC. MicroRNA-29b inhibits migration and proliferation of vascular smooth muscle cells in neointimal formation. J Cell Biochem 2016; 116:598-608. [PMID: 25389122 DOI: 10.1002/jcb.25011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/28/2014] [Indexed: 01/20/2023]
Abstract
The proliferation and migration of smooth muscle cells (SMCs) are considered to be key steps in the progression of atherosclerosis and restenosis. Certain stimuli, such as, interleukin-3 (IL-3) are known to stimulate proliferation and migration in vascular diseases. Meanwhile, microRNAs (miRs) have been revealed as critical modulators of various diseases in which miR-29b is known to regulate cell growth by targeting Mcl-1 and MMP2. However, roles of miR-29b in vascular smooth muscle cells remain almost unknown. We hypothesized that miR-29b may control the proliferation and migration processes induced by IL-3 stimulation by inhibiting its own specific targets in SMCs. MiR-29b significantly suppressed the proliferation and migration of SMCs through the inhibition of the signaling pathway related to Mcl-1 and MMP2. We also found that miR-29b expression levels significantly declined in balloon-injured rat carotid arteries and that the overexpression of miR-29b by local oligonucleotide delivery can inhibit neointimal formation. Consistent with the critical role of miR-29b in vitro, we observed down-regulated expression levels of Mcl-1 and MMP2 from the neointimal region. These results indicate that miR-29b suppressed the proliferation and migration of SMCs, possibly through the inhibition of Mcl-1 and MMP2, and suggest that miR-29b may serve as a useful therapeutic tool to treat cardiovascular diseases such as, atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Jiyun Lee
- Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Long Noncoding RNA LOC100129973 Suppresses Apoptosis by Targeting miR-4707-5p and miR-4767 in Vascular Endothelial Cells. Sci Rep 2016; 6:21620. [PMID: 26887505 PMCID: PMC4757888 DOI: 10.1038/srep21620] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/26/2016] [Indexed: 01/16/2023] Open
Abstract
Accumulating evidence has demonstrated that long non-coding RNAs (lncRNAs) are key regulators of multiple biological processes by altering gene expression at various levels. Apoptosis in vascular endothelial cells (VECs) is closely linked to numerous cardiovascular diseases, such as arteriosclerosis, thrombus formation and plaque erosion. However, studies on lncRNAs in the cardiovascular system are just beginning. And thus far, no anti-apoptosis lncRNAs have been identified in VECs. Here, we focused on the anti-apoptosis roles of lncRNAs in the serum and FGF-2 starvation-induced apoptosis of VECs. Using microarray analysis, we found a novel lncRNA LOC100129973 which acted as an apoptosis inhibitor in VECs. Through sponging miR-4707-5p and miR-4767, lncRNA LOC100129973 upregulated the expression of two apoptosis repressors gene, Apoptosis Inhibitor 5 (API5) and BCL2 like 12 (BCL2L12), and thus alleviated the serum and FGF-2 starvation-induced apoptosis in VECs. This evidence suggests that lncRNA LOC100129973 is an attractive target to improve endothelial function and for therapy of apoptosis related cardiovascular diseases.
Collapse
|
34
|
Zhang J, Gao C, Meng M, Tang H. Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis. Biomol Ther (Seoul) 2016; 24:19-24. [PMID: 26759697 PMCID: PMC4703348 DOI: 10.4062/biomolther.2015.066] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/12/2015] [Accepted: 07/13/2015] [Indexed: 11/05/2022] Open
Abstract
Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The exploration of new biomarkers with high sensitivity and specificity for early diagnosis of AMI therefore becomes one of the primary task. In the current study, we aim to detect whether there is any heart specific long noncoding RNA (lncRNA) releasing into the circulation during AMI, and explore its function in the neonatal rat cardiac myocytes injury induced by H2O2. Our results revealed that the cardiac-specific lncRNA MHRT (Myosin Heavy Chain Associated RNA Transcripts) was significantly elevated in the blood from AMI patients compared with the healthy control ((*) p<0.05). Using an in vitro neonatal rat cardiac myocytes injury model, we demonstrated that lncRNA MHRT was upregulated in the cardiac myocytes after treatment with hydrogen peroxide (H2O2) via real-time RT-PCR (qRT-PCR). Furthermore, we knockdowned the MHRT gene by siRNA to confirm its roles in the H2O2-induced cardiac cell apoptosis, and found that knockdown of MHRT led to significant more apoptotic cells than the non-target control ((**) p<0.01), indicating that the lncRNA MHRT is a protective factor for cardiomyocyte and the plasma concentration of MHRT may serve as a biomarker for myocardial infarction diagnosis in humans AMI.
Collapse
Affiliation(s)
- Jianying Zhang
- Departments of Emergency, Maternity and Child Care Hospital, Weihai City, Shandong Province 564200, P. R. China
| | - Caihua Gao
- Medical Services, Maternity and Child Care Hospital, Weihai City, Shandong Province 564200, P. R. China
| | - Meijuan Meng
- Cardiology, Maternity and Child Care Hospital, Weihai City, Shandong Province 564200, P. R. China
| | - Hongxia Tang
- Departments of Emergency, Maternity and Child Care Hospital, Weihai City, Shandong Province 564200, P. R. China
| |
Collapse
|
35
|
Tao L, Bei Y, Zhou Y, Xiao J, Li X. Non-coding RNAs in cardiac regeneration. Oncotarget 2015; 6:42613-22. [PMID: 26462179 PMCID: PMC4767457 DOI: 10.18632/oncotarget.6073] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Developing new therapeutic strategies which could enhance cardiomyocyte regenerative capacity is of significant clinical importance. Though promising, methods to promote cardiac regeneration have had limited success due to the weak regenerative capacity of the adult mammalian heart. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs) and long non-coding RNAs (lncRNAs), are functional RNA molecules without a protein coding function that have been reported to engage in cardiac regeneration and repair. In light of current regenerative strategies, the regulatory effects of ncRNAs can be categorized as follows: cardiac proliferation, cardiac differentiation, cardiac survival and cardiac reprogramming. miR-590, miR-199a, miR-17-92 cluster, miR302-367 cluster and miR-222 have been reported to promote cardiomyocyte proliferation while miR-1 and miR-133 suppress that. miR-499 and miR-1 promote the differentiation of cardiac progenitors into cardiomyocyte while miR-133 and H19 inhibit that. miR-21, miR-24, miR-221, miR-199a and miR-155 improve cardiac survival while miR-34a, miR-1 and miR-320 exhibit opposite effects. miR-1, miR-133, miR-208 and miR-499 are capable of reprogramming fibroblasts to cardiomyocyte-like cells and miR-284, miR-302, miR-93 , miR-106b and lncRNA-ST8SIA3 are able to enhace cardiac reprogramming. Exploring non-coding RNA-based methods to enhance cardiac regeneration would be instrumental for devising new effective therapies against cardiovascular diseases.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Science, Shanghai University, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Ounzain S, Pedrazzini T. Super-enhancer lncs to cardiovascular development and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1953-60. [PMID: 26620798 DOI: 10.1016/j.bbamcr.2015.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
Abstract
Cardiac development, function and pathological remodelling in response to stress depend on the dynamic control of tissue specific gene expression by distant acting transcriptional enhancers. Recently, super-enhancers (SEs), also known as stretch or large enhancer clusters, are emerging as sentinel regulators within the gene regulatory networks that underpin cellular functions. It is becoming increasingly evident that long noncoding RNAs (lncRNAs) associated with these sequences play fundamental roles for enhancer activity and the regulation of the gene programs hardwired by them. Here, we review this emerging landscape, focusing on the roles of SEs and their derived lncRNAs in cardiovascular development and disease. We propose that exploration of this genomic landscape could provide novel therapeutic targets and approaches for the amelioration of cardiovascular disease. Ultimately we envisage a future of ncRNA therapeutics targeting the SE landscape to alleviate cardiovascular disease. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Switzerland.
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Switzerland.
| |
Collapse
|
37
|
Zhou L, Xu DY, Sha WG, Shen L, Lu GY, Yin X. Long non-coding MIAT mediates high glucose-induced renal tubular epithelial injury. Biochem Biophys Res Commun 2015; 468:726-32. [PMID: 26551455 DOI: 10.1016/j.bbrc.2015.11.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Long non-coding RNAs (lncRNAs) constitute a novel class of non-coding RNAs that take part in occurrence and development of diabetes complication via regulating gene expression. However, litter is known about lncRNAs in the setting of diabetes induced nephropathy. The aim of this study was to examine whether lncRNA-myocardial infarction-associated transcript (MIAT) is involved in diabetes induced renal tubules injury. METHODS Adult Wister rats were randomly assigned to receive intraperitoneal STZ (65 mg/kg) to induce diabetes. Rats treated with equal volume of citrate buffer were as control. Renal function was evaluated by analysis of serum creatinine and blood urea nitrogen (BUN) every four weeks after STZ administration. Also tubules of all rats were collected for determination of MIAT and Nrf2 level at the corresponding phase. The in vitro high glucose-triggered human renal tubular epithelial cell line (HK-2) was used to explore the mechanism underling MIAT regulated high glucose-induced tubular damage. RESULTS In diabetic rats, MIAT showed the lower level and its expression is negatively correlated with serum creatinine and BUN. Consistent with diabetic rat, exposed to high glucose, HK-2 cells expressed lower level of MIAT and Nrf2, and also showed reduction in cell viability. By pcDNA-MIAT plasmid transfection, we observed that MIAT overexpression reversed inhibitory action of Nrf2 expression by high glucose. Moreover, the data of RNA pull-down and RIP showed that MIAT controlled Nrf2 cellular through enhancing Nrf2 stability, which was confirmed by CHX and MG132 administration. Inhibitory effect of cell viability by silencing MIAT was also reversed by Nrf2 overexpression. CONCLUSION In summary, our data suggested that MIAT/Nrf2 served as an important signaling pathway for high glucose induced renal tubular epithelial injury.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - De-yu Xu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Wen-gang Sha
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Lei Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Guo-yuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xia Yin
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
38
|
The promise of enhancer-associated long noncoding RNAs in cardiac regeneration. Trends Cardiovasc Med 2015; 25:592-602. [DOI: 10.1016/j.tcm.2015.01.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/08/2023]
|
39
|
Ounzain S, Micheletti R, Arnan C, Plaisance I, Cecchi D, Schroen B, Reverter F, Alexanian M, Gonzales C, Ng SY, Bussotti G, Pezzuto I, Notredame C, Heymans S, Guigó R, Johnson R, Pedrazzini T. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J Mol Cell Cardiol 2015; 89:98-112. [PMID: 26423156 DOI: 10.1016/j.yjmcc.2015.09.016] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 01/14/2023]
Abstract
Long noncoding RNAs (lncRNAs) are emerging as important regulators of developmental pathways. However, their roles in human cardiac precursor cell (CPC) remain unexplored. To characterize the long noncoding transcriptome during human CPC cardiac differentiation, we profiled the lncRNA transcriptome in CPCs isolated from the human fetal heart and identified 570 lncRNAs that were modulated during cardiac differentiation. Many of these were associated with active cardiac enhancer and super enhancers (SE) with their expression being correlated with proximal cardiac genes. One of the most upregulated lncRNAs was a SE-associated lncRNA that was named CARMEN, (CAR)diac (M)esoderm (E)nhancer-associated (N)oncoding RNA. CARMEN exhibits RNA-dependent enhancing activity and is upstream of the cardiac mesoderm-specifying gene regulatory network. Interestingly, CARMEN interacts with SUZ12 and EZH2, two components of the polycomb repressive complex 2 (PRC2). We demonstrate that CARMEN knockdown inhibits cardiac specification and differentiation in cardiac precursor cells independently of MIR-143 and -145 expression, two microRNAs located proximal to the enhancer sequences. Importantly, CARMEN expression was activated during pathological remodeling in the mouse and human hearts, and was necessary for maintaining cardiac identity in differentiated cardiomyocytes. This study demonstrates therefore that CARMEN is a crucial regulator of cardiac cell differentiation and homeostasis.
Collapse
Affiliation(s)
- Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland.
| | - Rudi Micheletti
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Carme Arnan
- Bioinformatics and Genomics Group, Centre for Genomic Regulation, Barcelona, Spain
| | - Isabelle Plaisance
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Dario Cecchi
- Bioinformatics and Genomics Group, Centre for Genomic Regulation, Barcelona, Spain
| | - Blanche Schroen
- Centre for Heart Failure Research, Cardiovascular Research Institute, Maastricht University, The Netherlands
| | - Ferran Reverter
- Bioinformatics and Genomics Group, Centre for Genomic Regulation, Barcelona, Spain
| | - Michael Alexanian
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Christine Gonzales
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Shi Yan Ng
- Stem Cell and Developmental Biology Group, Genome Institute of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Giovanni Bussotti
- Comparative Bioinformatics Group, Centre for Genomic Regulation, Barcelona, Spain
| | - Iole Pezzuto
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Cedric Notredame
- Comparative Bioinformatics Group, Centre for Genomic Regulation, Barcelona, Spain
| | - Stephane Heymans
- Centre for Heart Failure Research, Cardiovascular Research Institute, Maastricht University, The Netherlands
| | - Roderic Guigó
- Bioinformatics and Genomics Group, Centre for Genomic Regulation, Barcelona, Spain
| | - Rory Johnson
- Bioinformatics and Genomics Group, Centre for Genomic Regulation, Barcelona, Spain.
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland.
| |
Collapse
|
40
|
Ounzain S, Burdet F, Ibberson M, Pedrazzini T. Discovery and functional characterization of cardiovascular long noncoding RNAs. J Mol Cell Cardiol 2015; 89:17-26. [PMID: 26408097 DOI: 10.1016/j.yjmcc.2015.09.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/15/2015] [Accepted: 09/19/2015] [Indexed: 02/04/2023]
Abstract
Recent advances in sequencing and genomic technologies have resulted in the discovery of thousands of previously unannotated long noncoding RNAs (lncRNAs). However, their function in the cardiovascular system remains elusive. Here we review and discuss considerations for cardiovascular lncRNA discovery, annotation and functional characterization. Although we primarily focus on the heart, the proposed pipeline should foster functional and mechanistic exploration of these transcripts in various cardiovascular pathologies. Moreover, these insights could ultimately lead to novel therapeutic approaches targeting lncRNAs for the amelioration of cardiovascular diseases including heart failure.
Collapse
Affiliation(s)
- Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland.
| | - Frédéric Burdet
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Mark Ibberson
- Vital-IT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland.
| |
Collapse
|
41
|
The mesmiRizing complexity of microRNAs for striated muscle tissue engineering. Adv Drug Deliv Rev 2015; 88:37-52. [PMID: 25912658 DOI: 10.1016/j.addr.2015.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 03/31/2015] [Accepted: 04/15/2015] [Indexed: 12/12/2022]
Abstract
microRNAs (miRs) are small non-protein-coding RNAs, able to post-transcriptionally regulate many genes and exert pleiotropic effects. Alteration of miR levels in tissues and in the circulation has been associated with various pathological and regenerative conditions. In this regard, tissue engineering of cardiac and skeletal muscles is a fascinating context for harnessing the complexity of miR-based circuitries and signals. In this review, we will focus on miR-driven regulation of cardiac and skeletal myogenic routes in homeostatic and challenging states. Furthermore, we will survey the intriguing perspective of exosomal and circulating miRs as novel paracrine players, potentially useful for current and future approaches of regenerative medicine for the striated muscles.
Collapse
|
42
|
Jiang X, Ning Q. The emerging roles of long noncoding RNAs in common cardiovascular diseases. Hypertens Res 2015; 38:375-9. [PMID: 25762413 DOI: 10.1038/hr.2015.26] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/13/2014] [Accepted: 12/24/2014] [Indexed: 01/09/2023]
Abstract
Long noncoding RNAs (lncRNAs) are defined as noncoding RNAs that are longer than ~200 nucleotides and lack protein-encoding capacity. It has been shown that lncRNAs are involved in multiple human diseases by regulating gene expression at various levels. However, studies of lncRNAs in the cardiovascular system are still in their infancy. A growing body of evidence suggests that lncRNAs are also involved in common cardiovascular diseases, including cardiac development, atherosclerosis, myocardial infarction, heart failure, hypertension and aneurysms. In this review, we summarize the current understanding of lncRNAs in common cardiovascular diseases in an effort to better elucidate the molecular mechanism of cardiovascular diseases and provide a basis for exploring new therapeutic targets in those diseases.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qilan Ning
- Department of Biochemistry and Molecular Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
43
|
Ounzain S, Micheletti R, Beckmann T, Schroen B, Alexanian M, Pezzuto I, Crippa S, Nemir M, Sarre A, Johnson R, Dauvillier J, Burdet F, Ibberson M, Guigó R, Xenarios I, Heymans S, Pedrazzini T. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J 2015; 36:353-68a. [PMID: 24786300 PMCID: PMC4320320 DOI: 10.1093/eurheartj/ehu180] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/14/2014] [Accepted: 04/06/2014] [Indexed: 12/30/2022] Open
Abstract
AIM Heart disease is recognized as a consequence of dysregulation of cardiac gene regulatory networks. Previously, unappreciated components of such networks are the long non-coding RNAs (lncRNAs). Their roles in the heart remain to be elucidated. Thus, this study aimed to systematically characterize the cardiac long non-coding transcriptome post-myocardial infarction and to elucidate their potential roles in cardiac homoeostasis. METHODS AND RESULTS We annotated the mouse transcriptome after myocardial infarction via RNA sequencing and ab initio transcript reconstruction, and integrated genome-wide approaches to associate specific lncRNAs with developmental processes and physiological parameters. Expression of specific lncRNAs strongly correlated with defined parameters of cardiac dimensions and function. Using chromatin maps to infer lncRNA function, we identified many with potential roles in cardiogenesis and pathological remodelling. The vast majority was associated with active cardiac-specific enhancers. Importantly, oligonucleotide-mediated knockdown implicated novel lncRNAs in controlling expression of key regulatory proteins involved in cardiogenesis. Finally, we identified hundreds of human orthologues and demonstrate that particular candidates were differentially modulated in human heart disease. CONCLUSION These findings reveal hundreds of novel heart-specific lncRNAs with unique regulatory and functional characteristics relevant to maladaptive remodelling, cardiac function and possibly cardiac regeneration. This new class of molecules represents potential therapeutic targets for cardiac disease. Furthermore, their exquisite correlation with cardiac physiology renders them attractive candidate biomarkers to be used in the clinic.
Collapse
Affiliation(s)
- Samir Ounzain
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Rudi Micheletti
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Tal Beckmann
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Blanche Schroen
- Centre for Heart Failure Research, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Michael Alexanian
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Iole Pezzuto
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Stefania Crippa
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Mohamed Nemir
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | - Alexandre Sarre
- Cardiovascular Assessment Facility, University of Lausanne, Lausanne, Switzerland
| | | | - Jérôme Dauvillier
- VitalIT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Burdet
- VitalIT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Mark Ibberson
- VitalIT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | | | - Ioannis Xenarios
- VitalIT, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Stephane Heymans
- Centre for Heart Failure Research, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| |
Collapse
|
44
|
Tao H, Yang JJ, Shi KH. Non-coding RNAs as direct and indirect modulators of epigenetic mechanism regulation of cardiac fibrosis. Expert Opin Ther Targets 2015; 19:707-16. [PMID: 25652534 DOI: 10.1517/14728222.2014.1001740] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Cardiac fibroblast activation is a pivotal cellular event in cardiac fibrosis. Numerous studies have indicated that epigenetic modifications control cardiac fibroblast activation. Greater knowledge of the role of epigenetic modifications could improve understanding of the cardiac fibrosis pathogenesis. AREAS COVERED The aim of this review is to describe the present knowledge about the important role of non-coding RNA (ncRNA) transcripts in epigenetic gene regulation in cardiac fibrosis and looks ahead on new perspectives of epigenetic modification research. Furthermore, we will discuss examples of ncRNAs that interact with histone modification or DNA methylation to regulate gene expression. EXPERT OPINION MicroRNAs (miRNAs) and long ncRNAs (lncRNAs) modulate several important aspects of function. Recently, some studies continue to find novel pathways, including the important role of ncRNA transcripts in epigenetic gene regulation. Targeting the miRNAs and lncRNAs can be a promising direction in cardiac fibrosis treatment. We discuss new perspectives of ncRNAs that interact with histone modification or DNA methylation to regulate gene expression, others that are targets of these epigenetic mechanisms. The emerging recognition of the diverse functions of ncRNAs in regulating gene expression by epigenetic mechanisms suggests that they may represent new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Hui Tao
- The Second Hospital of Anhui Medical University, Department of Cardiothoracic Surgery , Fu Rong Road, Hefei 230601, Anhui Province , China +86 551 63869531 ; +86 551 63869531 ;
| | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Myocardial injury and disease often result in heart failure, a major cause of death worldwide. To achieve myocardial regeneration and foster development of efficient therapeutics for cardiac injury, it is essential to uncover molecular mechanisms that will promote myocardial regeneration. In this review, we examine the latest progress made in elucidation of the roles of small non-coding RNAs called microRNAs (miRs) in myocardial regeneration. RECENT FINDINGS Promising progress has been made in studying cardiac regeneration. Several miRs, which include miR-590, miR-199a, miR-17-92 cluster, miR-199a-214 cluster, miR-34a, and miR-15 family, have been recently shown to play an essential role in myocardial regeneration by regulating different processes during cardiac repair, including cell death, proliferation, and metabolism. For example, miR-590 promotes cardiac regeneration through activating cardiomyocyte proliferation, whereas miR-34a inhibits cardiac repair through inducing apoptosis. SUMMARY These recent findings shed new light on our understanding of myocardial regeneration and suggest potential novel therapeutic targets to treat cardiac disease.
Collapse
|
46
|
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci U S A 2014; 111:12264-9. [PMID: 25071214 DOI: 10.1073/pnas.1410622111] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The vast majority of mammalian DNA does not encode for proteins but instead is transcribed into noncoding (nc)RNAs having diverse regulatory functions. The poorly characterized subclass of long ncRNAs (lncRNAs) can epigenetically regulate protein-coding genes by interacting locally in cis or distally in trans. A few reports have implicated specific lncRNAs in cardiac development or failure, but precise details of lncRNAs expressed in hearts and how their expression may be altered during embryonic heart development or by adult heart disease is unknown. Using comprehensive quantitative RNA sequencing data from mouse hearts, livers, and skin cells, we identified 321 lncRNAs present in the heart, 117 of which exhibit a cardiac-enriched pattern of expression. By comparing lncRNA profiles of normal embryonic (∼E14), normal adult, and hypertrophied adult hearts, we defined a distinct fetal lncRNA abundance signature that includes 157 lncRNAs differentially expressed compared with adults (fold-change ≥ 50%, false discovery rate = 0.02) and that was only poorly recapitulated in hypertrophied hearts (17 differentially expressed lncRNAs; 13 of these observed in embryonic hearts). Analysis of protein-coding mRNAs from the same samples identified 22 concordantly and 11 reciprocally regulated mRNAs within 10 kb of dynamically expressed lncRNAs, and reciprocal relationships of lncRNA and mRNA levels were validated for the Mccc1 and Relb genes using in vitro lncRNA knockdown in C2C12 cells. Network analysis suggested a central role for lncRNAs in modulating NFκB- and CREB1-regulated genes during embryonic heart growth and identified multiple mRNAs within these pathways that are also regulated, but independently of lncRNAs.
Collapse
|
47
|
Hohl M, Ardehali H, Azuaje FJ, Breckenridge RA, Doehner W, Eaton P, Ehret GB, Fujita T, Gaetani R, Giacca M, Hasenfuß G, Heymans S, Leite-Moreira AF, Linke WA, Linz D, Lyon A, Mamas MA, Orešič M, Papp Z, Pedrazzini T, Piepoli M, Prosser B, Rizzuto R, Tarone G, Tian R, van Craenenbroeck E, van Rooij E, Wai T, Weiss G, Maack C. Meeting highlights from the 2013 European Society of Cardiology Heart Failure Association Winter Meeting on Translational Heart Failure Research. Eur J Heart Fail 2014; 16:6-14. [PMID: 24453095 DOI: 10.1002/ejhf.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/07/2013] [Accepted: 09/09/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mathias Hohl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, D-66421, Homburg/Saar, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Xinshu Grace Xiao
- Molecular Biology Institute (X.X., Y.W.), Department of Integrative Biology and Physiology, College of Life Sciences (X.X.), and Departments of Pediatrics (M.T.) and Anesthesiology, Medicine, and Physiology (Y.W.), David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA
| | | | | |
Collapse
|
49
|
Increased binding of stroke-induced long non-coding RNAs to the transcriptional corepressors Sin3A and coREST. ASN Neuro 2013; 5:283-9. [PMID: 24063527 PMCID: PMC3806319 DOI: 10.1042/an20130029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
LncRNAs (long non-coding RNAs) are thought to play a significant role in cellular homeostasis during development and disease by interacting with CMPs (chromatin-modifying proteins). We recently showed that following transient focal ischemia, the expression of many lncRNAs was altered significantly in rat brain. We currently analyzed whether focal ischemia also alters the association of lncRNAs with the CMPs Sin3A and coREST (corepressors of the RE-1 silencing transcription factor). RIP (RNA immunoprecipitation) combined with lncRNA microarray analysis showed that 177 of the 2497 lncRNAs expressed in rat cerebral cortex showed significantly increased binding to either Sin3A or coREST following ischemia compared with sham. Of these, 26 lncRNAs enriched with Sin3A and 11 lncRNAs enriched with coREST were also up-regulated in their expressions after ischemia. A majority of the lncRNAs enriched with these CMPs were intergenic in origin. Evaluation of the expression profiles of corresponding protein-coding genes showed that their expression levels correlate with those of the lncRNAs with which they shared a common locus. This is the first study to show that stroke-induced lncRNAs might associate with CMPs to modulate the post-ischemic epigenetic landscape.
Collapse
|