1
|
Uyama T, Sasaki S, Sikder MM, Okada-Iwabu M, Ueda N. The PLAAT family as phospholipid-related enzymes. Prog Lipid Res 2025; 98:101331. [PMID: 40074088 DOI: 10.1016/j.plipres.2025.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The phospholipase A and acyltransferase (PLAAT) family is a group of structurally related proteins that are conserved among vertebrates. In humans, the family comprises five members (PLAAT1-5), which share common domain structures, and functions as phospholipase A1/A2 and acyltransferase enzymes. Regarding acyltransferase activities, PLAATs produce N-acyl-phosphatidylethanolamines, which serve as the precursor of bioactive N-acylethanolamines (NAEs). Recent evidence strongly suggests that PLAAT proteins play a crucial role in maintaining homeostasis in various organelles, such as the endoplasmic reticulum, lysosomes, mitochondria, and peroxisomes. In this process, PLAAT proteins bind to organelles and degrade them in an enzyme activity-dependent manner. Their physiological significance was revealed by the inability of PLAAT-deficient animals to degrade organelles during the maturation of the eye lens, resulting in the development of cataracts. Furthermore, the deficiency of PLAAT1, 3, and 5 in mice caused resistance to high-fat diet-induced fatty liver, the lean phenotype represented by a marked decrease in adipose tissue mass, and the exacerbation of testicular inflammation due to decreased levels of anti-inflammatory NAEs, respectively. In addition, human PLAAT3 was identified as a causative gene for lipodystrophy. We herein provide an overview of the molecular and biological properties of PLAAT proteins.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | - Sumire Sasaki
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Mohammad Mamun Sikder
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Miki Okada-Iwabu
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
2
|
Zhao JY, Yuan XK, Luo RZ, Wang LX, Gu W, Yamane D, Feng H. Phospholipase A and acyltransferase 4/retinoic acid receptor responder 3 at the intersection of tumor suppression and pathogen restriction. Front Immunol 2023; 14:1107239. [PMID: 37063830 PMCID: PMC10102619 DOI: 10.3389/fimmu.2023.1107239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Phospholipase A and acyltransferase (PLAAT) 4 is a class II tumor suppressor with phospholipid metabolizing abilities. It was characterized in late 2000s, and has since been referred to as 'tazarotene-induced gene 3' (TIG3) or 'retinoic acid receptor responder 3' (RARRES3) as a key downstream effector of retinoic acid signaling. Two decades of research have revealed the complexity of its function and regulatory roles in suppressing tumorigenesis. However, more recent findings have also identified PLAAT4 as a key anti-microbial effector enzyme acting downstream of interferon regulatory factor 1 (IRF1) and interferons (IFNs), favoring protection from virus and parasite infections. Unveiling the molecular mechanisms underlying its action may thus open new therapeutic avenues for the treatment of both cancer and infectious diseases. Herein, we aim to summarize a brief history of PLAAT4 discovery, its transcriptional regulation, and the potential mechanisms in tumor prevention and anti-pathogen defense, and discuss potential future directions of PLAAT4 research toward the development of therapeutic approaches targeting this enzyme with pleiotropic functions.
Collapse
Affiliation(s)
- Jian-Yong Zhao
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Xiang-Kun Yuan
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Rui-Zhen Luo
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Li-Xin Wang
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing, China
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Li TH, Wang YY, Zhao BB, Qin C, Li ZR, Wang WB. Phospholipase A/acyltransferase 4 is a prognostic biomarker and correlated with immune infiltrates in pancreatic cancer. Heliyon 2022; 8:e10416. [PMID: 36091946 PMCID: PMC9450081 DOI: 10.1016/j.heliyon.2022.e10416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/16/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
Background Phospholipase A/acyltransferase (PLAAT) family exhibits O- and N-acyltransferase activity and biosynthesize N-acylated ethanolamine phospholipids. Previously, PLAAT4 was seen as a tumor suppressor, but the exact function of PLAAT4 in pancreatic cancer was still unknown. In this study, we investigated the relationship of PLAAT4 and pancreatic cancer. Methods Using the data from the cancer genome atlas (TCGA), Genotype-Tissue Expression (GTEx) database and Gene Expression Omnibus (GEO) datasets we compared the expression of PLAAT4 in normal and tumor tissues and analyzed the connections between PLAAT4 and several clinicopathological factors. Further, we conducted Gene ontology (GO) analysis, Gene set enrichment analysis (GSEA), single sample gene set enrichment analysis (ssGSEA) and estimate analysis to explore the association between PLAAT4 and biological function and immune infiltration. In addition, Kaplan-Meier (KM) analysis, univariate and multivariate Cox analysis were used to explore the association between PLAAT4 and prognosis. In addition, we plotted a nomogram according to the multivariate cox analysis visualizing the predictive ability of PLAAT4 on prognosis. In addition, we explore the influence of PLAAT4 on malignant behaviors of the pancreatic cancer cells in vitro. Results After comparing the expression of PLAAT4 in normal and tumor tissues, we found that the expression of PLAAT4 was significantly high in pancreatic ductal adenocarcinoma (PDAC) samples. In addition, the results of GO and GSEA found that the expression of PLAAT4 was related to cell cycle checkpoints, M phase, regulation by p53, cell cycle mitotic and etc. Further, ssGSEA has shown that PLAAT4 was positively related to the abundance of aDC, Th1 cells, Th2 cells and negatively related to the Th17 cells. Subsequently, KM analysis, univariate and multivariate Cox analysis were used to analyze the correlation between PLAAT4 and prognosis. Additionally, we found that higher expression of PLAAT4 was related to T stage, N stage, histologic grade, etc (P < 0.05) and has a significant correlation with poor Overall Survival (OS), Disease-Specific Survival (DSS) and Progression-Free Interval (PFI). At last, we proved that PLAAT4 contributed to the malignant behaviors of the pancreatic cancer cells. Conclusion This study indicated PLAAT4 as a novel prognostic biomarker and an important molecular that mediated immune response in pancreatic cancer.
Collapse
Affiliation(s)
- Tian-Hao Li
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan-Yang Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Bang-Bo Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Cheng Qin
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ze-Ru Li
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei-Bin Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Corresponding author.
| |
Collapse
|
4
|
Zhang L, Chang N, Liu J, Liu Z, Wu Y, Sui L, Chen W. Reprogramming lipid metabolism as potential strategy for hematological malignancy therapy. Front Oncol 2022; 12:987499. [PMID: 36106108 PMCID: PMC9465383 DOI: 10.3389/fonc.2022.987499] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Hematological malignancies are one of the most lethal illnesses that seriously threaten human life and health. Lipids are important constituents of various biological membranes and substances for energy storage and cell signaling. Furthermore, lipids are critical in the normal physiological activities of cells. In the process of the lethal transformation of hematological malignancies, lipid metabolism reprogramming meets the material and energy requirements of rapidly proliferating and dividing tumor cells. A large number of studies have shown that dysregulated lipid metabolism, commonly occurs in hematological malignancies, mediating the proliferation, growth, migration, invasion, apoptosis, drug resistance and immune escape of tumor cells. Targeting the lipid metabolism pathway of hematological malignancies has become an effective therapeutic approach. This article reviews the oncogenic mechanisms of lipid metabolism reprogramming in hematological malignancies, including fatty acid, cholesterol and phospholipid metabolism, thereby offering an insight into targeting lipid metabolism in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Leqiang Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ning Chang
- Peking University Cancer Hospital, Beijing, China
| | - Jia Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zhuojun Liu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yajin Wu
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Linlin Sui
- Core Lab Glycobiol & Glycoengn, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| | - Wei Chen
- School of Engineering Medicine, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Linlin Sui, ; Wei Chen,
| |
Collapse
|
5
|
Tran-Guzman A, Culty M. Eicosanoid Biosynthesis in Male Reproductive Development: Effects of Perinatal Exposure to NSAIDs and Analgesic Drugs. FRONTIERS IN TOXICOLOGY 2022; 4:842565. [PMID: 35295224 PMCID: PMC8915844 DOI: 10.3389/ftox.2022.842565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing rates of infertility associated with declining sperm counts and quality, as well as increasing rates of testicular cancer are contemporary issues in the United States and abroad. These conditions are part of the Testicular Dysgenesis Syndrome, which includes a variety of male reproductive disorders hypothesized to share a common origin based on disrupted testicular development during fetal and neonatal stages of life. Male reproductive development is a highly regulated and complex process that relies on an intricate coordination between germ, Leydig, and Sertoli cells as well as other supporting cell types, to ensure proper spermatogenesis, testicular immune privilege, and endocrine function. The eicosanoid system has been reported to be involved in the regulation of fetal and neonatal germ cell development as well as overall testicular homeostasis. Moreover, non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics with abilities to block eicosanoid synthesis by targeting either or both isoforms of cyclooxygenase enzymes, have been found to adversely affect male reproductive development. This review will explore the current body of knowledge on the involvement of the eicosanoid system in male reproductive development, as well as discuss adverse effects of NSAIDs and analgesic drugs administered perinatally, focusing on toxicities reported in the testis and on major testicular cell types. Rodent and epidemiological studies will be corroborated by findings in invertebrate models for a comprehensive report of the state of the field, and to add to our understanding of the potential long-term effects of NSAID and analgesic drug administration in infants.
Collapse
|
6
|
Tournefortia sarmentosa Inhibits the Hydrogen Peroxide-Induced Death of H9c2 Cardiomyocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8219141. [PMID: 34484404 PMCID: PMC8413026 DOI: 10.1155/2021/8219141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
Tournefortia sarmentosa is a traditional Chinese medicine used to reduce tissue swelling, to exert the antioxidant effect, and to detoxify tissue. T. sarmentosa is also used to promote development in children and treat heart dysfunction. However, many of the mechanisms underlying the effects of T. sarmentosa in the treatment of disease remain unexplored. In this study, we investigated the antioxidant effect of T. sarmentosa on rat H9c2 cardiomyocytes treated with hydrogen peroxide (H2O2). T. sarmentosa reduced the cell death induced by H2O2. T. sarmentosa inhibited H2O2-induced changes in cell morphology, activation of cell death-related caspases, and production of reactive oxygen species. In addition, we further analyzed the potential active components of T. sarmentosa and found that the compounds present in the T. sarmentosa extract, including caffeic acid, rosmarinic acid, salvianolic acid A, and salvianolic acid B, exert effects similar to those of the T. sarmentosa extract in inhibiting H2O2-induced H9c2 cell death. Therefore, according to the results of this study, the ability of the T. sarmentosa extract to treat heart disease may be related to its antioxidant activity and its ability to reduce the cellular damage caused by free radicals.
Collapse
|
7
|
Prostaglandin D2 synthase/prostaglandin D2/TWIST2 signaling inhibits breast cancer proliferation. Anticancer Drugs 2021; 32:1029-1037. [PMID: 34232948 DOI: 10.1097/cad.0000000000001111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Though the past few years have witnessed exciting achievements in targeted and immunotherapeutic treatments of all breast cancer subtypes, yet the decline in breast cancer mortality has been slowed, urging the need for further expanding options of high-quality treatments. Prostaglandin D2 synthase (PTGDS)/prostaglandin D2 (PGD2) play important roles in a variety of cancer types and show tissue-specificity, however, there are limited relevant reports in breast cancer. Therefore, the aims of the present study were to investigate the effects of PTGDS/PGD2 in breast cancer by large-scale bioinformatic analysis and in vitro experiments conducted on human breast cancer cell lines. Results of our study indicated that patients with high levels of PTGDS expression showed a reduced potential of tumor proliferation. PGD2 treatment significantly inhibited the proliferation and migration of breast cancer cells, which was mediated by the reduced expression of TWIST2. Overexpression of TWIST2 reversed the inhibitory effects of PGD2 on breast cancer cell proliferation. These results provided the novel evidence that PTGDS may play a significant role in modulating breast cancer growth, with implications for its potential use in treating breast cancer.
Collapse
|
8
|
He H, Suryawanshi H, Morozov P, Gay-Mimbrera J, Del Duca E, Kim HJ, Kameyama N, Estrada Y, Der E, Krueger JG, Ruano J, Tuschl T, Guttman-Yassky E. Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. J Allergy Clin Immunol 2020; 145:1615-1628. [DOI: 10.1016/j.jaci.2020.01.042] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
|
9
|
Bumiller-Bini V, Cipolla GA, Spadoni MB, Augusto DG, Petzl-Erler ML, Beltrame MH, Boldt ABW. Condemned or Not to Die? Gene Polymorphisms Associated With Cell Death in Pemphigus Foliaceus. Front Immunol 2019; 10:2416. [PMID: 31681304 PMCID: PMC6813369 DOI: 10.3389/fimmu.2019.02416] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022] Open
Abstract
Pemphigus foliaceus (PF) is an autoimmune blistering skin disease that occurs sporadically across the globe and is endemic in Brazil. Keratinocyte adhesion loss (acantholysis) is associated with high levels of anti-desmoglein 1 IgG autoantibodies, but the role of cell death is poorly understood in PF. Current evidence disqualifies apoptosis as the major cell death mechanism and no other process has yet been investigated. To approach the role of variation in genes responsible for cell death pathways in pemphigus susceptibility, we systematically investigated the frequencies of 1,167 polymorphisms from genes encoding products of all 12 well-established cell death cascades (intrinsic and extrinsic apoptosis, necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic, NETotic, lysosome-dependent, autophagy-dependent, and immunogenic). By multivariate logistic regression, we compared allelic and genotypic frequencies of 227 PF patients and 194 controls obtained by microarray hybridization. We found 10 variants associated with PF (p < 0.005), belonging to six cell death pathways: apoptosis (TNF, TRAF2, CD36, and PAK2), immunogenic cell death (EIF2AK3, CD47, and SIRPA), necroptosis (TNF and TRAF2), necrosis (RAPGEF3), parthanatos (HK1), and pyroptosis (PRKN). Five polymorphisms were associated with susceptibility: TNF rs1800630*A (OR = 1.9, p = 0.0003), CD36 rs4112274*T (OR = 2.14, p = 0.0015), CD47 rs12695175*G (OR = 1.77, p = 0.0043), SIRPA rs6075340*A/A (OR = 2.75, p = 0.0009), and HK1 rs7072268*T (OR = 1.48, p = 0.0045). Other five variants were associated with protection: TRAF2 rs10781522*G (OR = 0.64, p = 0.0014), PAK2 rs9325377*A/A (OR = 0.48, p = 0.0023), EIF2AK3 rs10167879*T (OR = 0.48, p = 0.0007), RAPGEF3 rs10747521*A/A (OR = 0.42, p = 0.0040), and PRKN rs9355950*C (OR = 0.57, p = 0.0004). Through functional annotation, we found that all associated alleles, with the exception of PRKN rs9355950*C, were previously associated with differential gene expression levels in healthy individuals (mostly in skin and peripheral blood). Further functional validation of these genetic associations may contribute to the understanding of PF etiology and to the development of new drugs and therapeutic regimens for the disease.
Collapse
Affiliation(s)
- Valéria Bumiller-Bini
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Gabriel Adelman Cipolla
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Mariana Basso Spadoni
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Danillo Gardenal Augusto
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Marcia Holsbach Beltrame
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
10
|
Macdonald J, Kilcoyne KR, Sharpe RM, Kavanagh Á, Anderson RA, Brown P, Smith LB, Jørgensen A, Mitchell RT. DMRT1 repression using a novel approach to genetic manipulation induces testicular dysgenesis in human fetal gonads. Hum Reprod 2019; 33:2107-2121. [PMID: 30272154 PMCID: PMC6195803 DOI: 10.1093/humrep/dey289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/04/2018] [Indexed: 01/16/2023] Open
Abstract
STUDY QUESTION Does loss of DMRT1 in human fetal testis alter testicular development and result in testicular dysgenesis? SUMMARY ANSWER DMRT1 repression in human fetal testis alters the expression of key testicular and ovarian determining genes, and leads to focal testicular dysgenesis. WHAT IS KNOWN ALREADY Testicular dysgenesis syndrome (TDS) is associated with common testicular disorders in young men, but its etiology is unknown. DMRT1 has been shown to play a role in the regulation of sex differentiation in the vertebrate gonad. Downregulation of DMRT1 in male mice results in trans-differentiation of Sertoli cells into granulosa (FOXL2+) cells resulting in an ovarian gonadal phenotype. STUDY DESIGN, SIZE, DURATION To determine the effect of DMRT1 repression on human fetal testes, we developed a novel system for genetic manipulation, which utilizes a Lentivral delivered miRNA during short-term in vitro culture (2 weeks). A long-term (4–6 weeks) ex vivo xenograft model was used to determine the subsequent effects of DMRT1 repression on testicular development and maintenance. We included first and second-trimester testis tissue (8–20 weeks gestation; n = 12) in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS Human fetal testes were cultured in vitro and exposed to either of two DMRT1 miRNAs (miR536, miR641), or to scrambled control miRNA, for 24 h. This was followed by a further 14 days of culture (n = 3–4), or xenografting (n = 5) into immunocompromised mice for 4–6 weeks. Tissues were analyzed by histology, immunohistochemistry, immunofluorescence and quantitative RT-PCR. Endpoints included histological evaluation of seminiferous cord integrity, mRNA expression of testicular, ovarian and germ cell genes, and assessment of cell number and protein expression for proliferation, apoptosis and pluripotency factors. Statistical analysis was performed using a linear mixed effect model. MAIN RESULTS AND THE ROLE OF CHANCE DMRT1 repression (miR536/miR641) resulted in a loss of DMRT1 protein expression in a sub-population of Sertoli cells of first trimester (8–11 weeks gestation) human fetal testis; however, this did not affect the completion of seminiferous cord formation or morphological appearance. In second-trimester testis (12–20 weeks gestation), DMRT1 repression (miR536/miR641) resulted in disruption of seminiferous cords with absence of DMRT1 protein expression in Sertoli (SOX9+) cells. No differences in proliferation (Ki67+) were observed and apoptotic cells (CC3+) were rare. Expression of the Sertoli cell associated gene, SOX8, was significantly reduced (miR536, 34% reduction, P = 0.031; miR641 36% reduction, P = 0.026), whilst SOX9 expression was unaffected. Changes in expression of AMH (miR536, 100% increase, P = 0.033), CYP26B1 (miR641, 38% reduction, P = 0.05) and PTGDS (miR642, 30% reduction, P = 0.0076) were also observed. Amongst granulosa cell associated genes, there was a significant downregulation in R-spondin 1 expression (miR536, 76% reduction, P < 0.0001; miR641, 49% reduction, P = 0.046); however, there were no changes in expression of the granulosa cell marker, FOXL2. Analysis of germ cell associated genes demonstrated a significant increase in the expression of the pluripotency gene OCT4 (miR536, 233%, P < 0.001). We used the xenograft system to investigate the longer-term effects of seminiferous cord disruption via DMRT1 repression. As was evident in vitro for second-trimester samples, DMRT1 repression resulted in focal testicular dysgenesis similar to that described in adults with TDS. These dysgenetic areas were devoid of germ cells, whilst expression of FOXL2 within the dysgenetic areas, indicated trans-differentiation from a male (Sertoli cell) to female (granulosa cell) phenotype. LIMITATIONS, REASONS FOR CAUTION Human fetal testis tissue is a limited resource; however, we were able to demonstrate significant effects of DMRT1 repression on the expression of germ and somatic cell genes, in addition to the induction of focal testicular dysgenesis, using these limited samples. In vitro culture may not reflect all aspects of human fetal testis development and function; however, the concurrent use of the xenograft model which represents a more physiological system supports the validity of the in vitro findings. WIDER IMPLICATIONS OF THE FINDINGS Our findings have important implications for understanding the role of DMRT1 in human testis development and in the origin of testicular dysgenesis. In addition, we provide validation of a novel system that can be used to determine the effects of repression of genes that have been implicated in gonadal development and associated human reproductive disorders. STUDY FUNDING/COMPETING INTEREST(S) This project was funded by a Wellcome Trust Intermediate Clinical Fellowship (Grant No. 098522) awarded to RTM. LBS was supported by MRC Programme Grant MR/N002970/1. RAA was supported by MRC Programme Grant G1100357/1. RMS was supported by MRC Programme Grant G33253. This work was undertaken in the MRC Centre for Reproductive Health which is funded by the MRC Centre grant MR/N022556/1. The funding bodies had no input into the conduct of the research or the production of this manuscript. The authors have declared no conflicts of interest.
Collapse
Affiliation(s)
- Joni Macdonald
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Karen R Kilcoyne
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Áine Kavanagh
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Pamela Brown
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK.,School of Environmental and Life Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW, Australia
| | - Anne Jørgensen
- University Department of Growth and Reproduction, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, Scotland, UK.,Edinburgh Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh, Scotland, UK
| |
Collapse
|
11
|
Wang CH, Wang LK, Wu CC, Chen ML, Lee MC, Lin YY, Tsai FM. The Ribosomal Protein RPLP0 Mediates PLAAT4-induced Cell Cycle Arrest and Cell Apoptosis. Cell Biochem Biophys 2019; 77:253-260. [DOI: 10.1007/s12013-019-00876-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
|
12
|
Prostaglandin D2-Mediated DP2 and AKT Signal Regulate the Activation of Androgen Receptors in Human Dermal Papilla Cells. Int J Mol Sci 2018; 19:ijms19020556. [PMID: 29439547 PMCID: PMC5855778 DOI: 10.3390/ijms19020556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/04/2022] Open
Abstract
Prostaglandin D2 (PGD2) and prostaglandin D2 receptor 2 (DP2) is known to be an important factor in androgenetic alopecia (AGA). However, the effect of PGD2 in human dermal papilla cells (hDPCs) is not fully understood. The function of PGD2-induced expression of the androgen receptor (AR), DP2, and AKT (protein kinase B) signal were examined by using real time-PCR (qRT-PCR), western blot analysis, immunocytochemistry (ICC), and siRNA transfection system. PGD2 stimulated AR expression and AKT signaling through DP2. PGD2 stimulated AR related factors (transforming growth factor beta 1 (TGFβ1), Creb, lymphoid enhancer binding factor 1 (LEF1), and insulin-like growth factor 1, (IGF-1)) and AKT signaling (GSK3β and Creb) on the AR expression in hDPCs. However, these factors were down-regulated by DP2 antagonist (TM30089) and AKT inhibitor (LY294002) as well as DP2 knockdown in hDPCs decreased AR expression and AKT signaling. Finally, we confirmed that PGD2 stimulates the expression of AR related target genes, and that AKT and its downstream substrates are involved in AR expression on hDPCs. Taken together, our data suggest that PGD2 promotes AR and AKT signal via DP2 in hDPCs, thus, PGD2 and DP2 signal plays a critical role in AR expression. These findings support the additional explanation for the development of AGA involving PGD2-DP2 in hDPCs.
Collapse
|
13
|
Kim YB, Yoon YS, Choi YH, Park EM, Kang JL. Interaction of macrophages with apoptotic cells inhibits transdifferentiation and invasion of lung fibroblasts. Oncotarget 2017; 8:112297-112312. [PMID: 29348826 PMCID: PMC5762511 DOI: 10.18632/oncotarget.22737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023] Open
Abstract
The invasion of activated fibroblasts is a key mechanism of tissue fibrosis pathology. The recognition and uptake of apoptotic cells can induce the anti-fibrogenic programming of macrophages. We demonstrate that after interacting with apoptotic cells, macrophages secrete bioactive molecules that antagonize TGF-β1-induced increases in myofibroblast (fibroproliferative) phenotypic markers and reduce the enhanced invasive capacity of TGF-β1- or EGF-treated mouse lung fibroblasts (MLg). Furthermore, numerous treatment strategies prevented the anti-fibrotic effects of conditioned media, including transfection of macrophages with COX-2 or RhoA siRNAs or treatment of MLg cells with receptor antagonists for prostaglandin E2 (PGE2), PGD2, or hepatocyte growth factor (HGF). Additionally, administration of apoptotic cells in vivo inhibited the bleomycin-mediated invasive capacity of primary fibroblasts, as well as adhesion and extracellular matrix protein mRNA expression. These data suggest that the anti-fibrogenic programming of macrophages by apoptotic cells can be used as a novel tool to control the progressive fibrotic reaction.
Collapse
Affiliation(s)
- Yong-Bae Kim
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Young-So Yoon
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Youn-Hee Choi
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Eun-Mi Park
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| | - Jihee Lee Kang
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul 07985, Korea.,Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07985, Korea
| |
Collapse
|
14
|
Kugathas S, Audouze K, Ermler S, Orton F, Rosivatz E, Scholze M, Kortenkamp A. Effects of Common Pesticides on Prostaglandin D2 (PGD2) Inhibition in SC5 Mouse Sertoli Cells, Evidence of Binding at the COX-2 Active Site, and Implications for Endocrine Disruption. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:452-459. [PMID: 26359731 PMCID: PMC4829986 DOI: 10.1289/ehp.1409544] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 09/04/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND There are concerns that diminished prostaglandin action in fetal life could increase the risk of congenital malformations. Many endocrine-disrupting chemicals have been found to suppress prostaglandin synthesis, but to our knowledge, pesticides have never been tested for these effects. OBJECTIVES We assessed the ability of pesticides that are commonly used in the European Union to suppress prostaglandin D2 (PGD2) synthesis. METHODS Changes in PGD2 secretion in juvenile mouse Sertoli cells (SC5 cells) were measured using an ELISA. Coincubation with arachidonic acid (AA) was conducted to determine the site of action in the PGD2 synthetic pathway. Molecular modeling studies were performed to assess whether pesticides identified as PGD2-active could serve as ligands of the cyclooxygenase-2 (COX-2) binding pocket. RESULTS The pesticides boscalid, chlorpropham, cypermethrin, cyprodinil, fenhexamid, fludioxonil, imazalil (enilconazole), imidacloprid, iprodione, linuron, methiocarb, o-phenylphenol, pirimiphos-methyl, pyrimethanil, and tebuconazole suppressed PGD2 production. Strikingly, some of these substances-o-phenylphenol, cypermethrin, cyprodinil, linuron, and imazalil (enilconazole)-showed potencies (IC50) in the range between 175 and 1,500 nM, similar to those of analgesics intended to block COX enzymes. Supplementation with AA failed to reverse this effect, suggesting that the sites of action of these pesticides are COX enzymes. The molecular modeling studies revealed that the COX-2 binding pocket can accommodate most of the pesticides shown to suppress PGD2 synthesis. Some of these pesticides are also capable of antagonizing the androgen receptor. CONCLUSIONS Chemicals with structural features more varied than previously thought can suppress PGD2 synthesis. Our findings signal a need for in vivo studies to establish the extent of endocrine-disrupting effects that might arise from simultaneous interference with PGD2 signaling and androgen action. CITATION Kugathas S, Audouze K, Ermler S, Orton F, Rosivatz E, Scholze M, Kortenkamp A. 2016. Effects of common pesticides on prostaglandin D2 (PGD2) inhibition in SC5 mouse Sertoli cells, evidence of binding at the COX-2 active site, and implications for endocrine disruption. Environ Health Perspect 124:452-459; http://dx.doi.org/10.1289/ehp.1409544.
Collapse
Affiliation(s)
- Subramaniam Kugathas
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Karine Audouze
- Molécules Thérapeutiques in silico, Université Paris Diderot-Inserm UMR-S973, Paris, France
| | - Sibylle Ermler
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Frances Orton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Erika Rosivatz
- Institute of Chemical Biology, Imperial College London, London, United Kingdom
| | - Martin Scholze
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Andreas Kortenkamp
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
15
|
Mardian EB, Bradley RM, Duncan RE. The HRASLS (PLA/AT) subfamily of enzymes. J Biomed Sci 2015; 22:99. [PMID: 26503625 PMCID: PMC4624172 DOI: 10.1186/s12929-015-0210-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
The H-RAS-like suppressor (HRASLS) subfamily consists of five enzymes (1–5) in humans and three (1, 3, and 5) in mice and rats that share sequence homology with lecithin:retinol acyltransferase (LRAT). All HRASLS family members possess in vitro phospholipid metabolizing abilities including phospholipase A1/2 (PLA1/2) activities and O-acyltransferase activities for the remodeling of glycerophospholipid acyl chains, as well as N-acyltransferase activities for the production of N-acylphosphatidylethanolamines. The in vivo biological activities of the HRASLS enzymes have not yet been fully investigated. Research to date indicates involvement of this subfamily in a wide array of biological processes and, as a consequence, these five enzymes have undergone extensive rediscovery and renaming within different fields of research. This review briefly describes the discovery of each of the HRASLS enzymes and their role in cancer, and discusses the biochemical function of each enzyme, as well as the biological role, if known. Gaps in current understanding are highlighted and suggestions for future research directions are discussed.
Collapse
Affiliation(s)
- Emily B Mardian
- Department of Kinesiology, University of Waterloo, BMH 2415, Waterloo, ON, N2L 3G1, Canada.
| | - Ryan M Bradley
- Department of Kinesiology, University of Waterloo, BMH 2415, Waterloo, ON, N2L 3G1, Canada.
| | - Robin E Duncan
- Department of Kinesiology, University of Waterloo, BMH 1110, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
16
|
Tsai FM, Chen ML, Wang LK, Lee MC. H-rev107 Regulates Cytochrome P450 Reductase Activity and Increases Lipid Accumulation. PLoS One 2015; 10:e0138586. [PMID: 26381418 PMCID: PMC4575093 DOI: 10.1371/journal.pone.0138586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/01/2015] [Indexed: 12/16/2022] Open
Abstract
H-rev107 is a member of the HREV107 type II tumor suppressor gene family and acts as a phospholipase to catalyze the release of fatty acids from glycerophospholipid. H-rev107 has been shown to play an important role in fat metabolism in adipocytes through the PGE2/cAMP pathway, but the detailed molecular mechanism underlying H-rev107-mediated lipid degradation has not been studied. In this study, the interaction between H-rev107 and cytochrome P450 reductase (POR), which is involved in hepatic lipid content regulation, was determined by yeast two-hybrid screen and confirmed by using in vitro pull down assays and immunofluorescent staining. The expression of POR in H-rev107-expressing cells enhanced the H-rev107-mediated release of arachidonic acid. However, H-rev107 inhibited POR activity and relieved POR-mediated decreased triglyceride content in HtTA and HeLa cervical cells. The inhibitory effect of H-rev107 will be abolished when POR-expressing cells transfected with PLA2-lacking pH-rev107 or treated with PLA2 inhibitor. Silencing of H-rev107 using siRNA resulted in increased glycerol production and reversion of free fatty acid-mediated growth suppression in Huh7 hepatic cells. In summary, our results revealed that H-rev107 is also involved in lipid accumulation in liver cells through the POR pathway via its PLA2 activity.
Collapse
Affiliation(s)
- Fu-Ming Tsai
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, Taiwan
- * E-mail:
| | - Mao-Liang Chen
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, Taiwan
| | - Lu-Kai Wang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
17
|
Madi A, Bransburg-Zabary S, Maayan-Metzger A, Dar G, Ben-Jacob E, Cohen IR. Tumor-associated and disease-associated autoantibody repertoires in healthy colostrum and maternal and newborn cord sera. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:5272-81. [PMID: 25917091 PMCID: PMC4432729 DOI: 10.4049/jimmunol.1402771] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
In this work, we studied autoantibody repertoires and Ig isotypes in 71 mothers and their 104 healthy newborns (including twins and triplets delivered term or premature). Newborns receive maternal IgG Abs via the placenta before birth, but developing infants must produce their own IgM and IgA Abs. We used an Ag microarray analysis to detect binding to a selection of 295 self-Ags, compared with 27 standard foreign Ags. The magnitude of binding to specific self-Ags was found to be not less than that to the foreign Ags. As expected, each newborn shared with its mother a similar IgG repertoire-manifest as early as the 24th week of gestation. IgM and IgA autoantibody repertoires in cord sera were highly correlated among the newborns and differed from their mothers' repertoires; the latter differed in sera and milk. The autoantibodies bound to self-Ags known to be associated with tumors and to autoimmune diseases. Thus, autoantibody repertoires in healthy humans--the immunological homunculus--arise congenitally, differ in maternal milk and sera, and mark the potential of the immune system to attack tumors, beneficially, or healthy tissues, harmfully; regulation of the tissue site, the dynamics, and the response phenotype of homuncular autoimmunity very likely affects health.
Collapse
Affiliation(s)
- Asaf Madi
- Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel; Department of Neonatology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 5262100 Ramat Gan, Israel
| | - Sharron Bransburg-Zabary
- Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ayala Maayan-Metzger
- Faculty of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel; Department of Neonatology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 5262100 Ramat Gan, Israel
| | - Gittit Dar
- School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Eshel Ben-Jacob
- School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005; and
| | - Irun R Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
Rossitto M, Ujjan S, Poulat F, Boizet-Bonhoure B. Multiple roles of the prostaglandin D2 signaling pathway in reproduction. Reproduction 2015; 149:R49-58. [DOI: 10.1530/rep-14-0381] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prostaglandins signaling molecules are involved in numerous physiological processes. They are produced by several enzyme-limited reactions upon fatty acids, which are catalyzed by two cyclooxygenases and prostaglandin synthases. In particular, the prostaglandins E2(PGE2), D2(PGD2), and F2(PGF2α) have been shown to be involved in female reproductive mechanisms. Furthermore, widespread expression of lipocalin- and hematopoietic-PGD2synthases in the male reproductive tract supports the purported roles of PGD2in the development of both embryonic and adult testes, sperm maturation, and spermatogenesis. In this review, we summarize the putative roles of PGD2signaling and the roles of both PGD2synthases in testicular formation and function. We review the data reporting the involvement of PGD2signaling in the differentiation of Sertoli and germ cells of the embryonic testis. Furthermore, we discuss the roles of lipocalin-PGD2synthase in steroidogenesis and spermatogenesis, in terms of lipid molecule transport and PGD2production. Finally, we discuss the hypothesis that PGD2signaling may be affected in certain reproductive diseases, such as infertility, cryptorchidism, and testicular cancer.
Collapse
|
19
|
Wang CH, Shyu RY, Wu CC, Tsai TC, Wang LK, Chen ML, Jiang SY, Tsai FM. Phospholipase A/Acyltransferase enzyme activity of H-rev107 inhibits the H-RAS signaling pathway. J Biomed Sci 2014; 21:36. [PMID: 24884338 PMCID: PMC4012743 DOI: 10.1186/1423-0127-21-36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/24/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND H-rev107, also called HRASLS3 or PLA2G16, is a member of the HREV107 type II tumor suppressor gene family. Previous studies showed that H-rev107 exhibits phospholipase A/acyltransferase (PLA/AT) activity and downregulates H-RAS expression. However, the mode of action and the site of inhibition of H-RAS by H-rev107 are still unknown. RESULTS Our results indicate that H-rev107 was co-precipitated with H-RAS and downregulated the levels of activated RAS (RAS-GTP) and ELK1-mediated transactivation in epidermal growth factor-stimulated and H-RAS-cotransfected HtTA cervical cancer cells. Furthermore, an acyl-biotin exchange assay demonstrated that H-rev107 reduced H-RAS palmitoylation. H-rev107 has been shown to be a PLA/AT that is involved in phospholipid metabolism. Treating cells with the PLA/AT inhibitor arachidonyl trifluoromethyl ketone (AACOCF3) or methyl arachidonyl fluorophosphate (MAFP) alleviated H-rev107-induced downregulation of the levels of acylated H-RAS. AACOCF3 and MAFP also increased activated RAS and ELK1-mediated transactivation in H-rev107-expressing HtTA cells following their treatment with epidermal growth factor. In contrast, treating cells with the acyl-protein thioesterase inhibitor palmostatin B enhanced H-rev107-mediated downregulation of acylated H-RAS in H-rev107-expressing cells. Palmostatin B had no effect on H-rev107-induced suppression of RAS-GTP levels or ELK1-mediated transactivation. These results suggest that H-rev107 decreases H-RAS activity through its PLA/AT activity to modulate H-RAS acylation. CONCLUSIONS We made the novel observation that H-rev107 decrease in the steady state levels of H-RAS palmitoylation through the phospholipase A/acyltransferase activity. H-rev107 is likely to suppress activation of the RAS signaling pathway by reducing the levels of palmitoylated H-RAS, which decreases the levels of GTP-bound H-RAS and also the activation of downstream molecules. Our study further suggests that the PLA/AT activity of H-rev107 may play an important role in H-rev107-mediated RAS suppression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fu-Ming Tsai
- Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, New Taipei City, Taiwan.
| |
Collapse
|
20
|
Characteristic of PGDS potential regulation role on spermatogenesis in the Chinese mitten crab Eriocheir sinensis. Gene 2014; 543:244-52. [PMID: 24709109 DOI: 10.1016/j.gene.2014.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 02/08/2023]
Abstract
Prostaglandin D synthase (PGDS) catalyzes the isomerization of PGH2 to produce PGD2 in the presence of sulfhydryl compounds. In this study, a full length PGDS gene comprising 1250 nucleotides from the Chinese mitten crab Eriocheir sinensis (Es-PGDS) was characterized, with a 615 bp open reading frame encoding 204 amino acid residues. Its deduced peptide has high homology with other species' PGDS protein. The Es-PGDS mRNA expression was tissue-related, with the highest expression observed in the hepatopancreas, accessory sex gland, testis and ovaries. We also detected the different stages of tissue expression and the enzyme activity for Es-PGDS in the testis and male crab hepatopancreas. The different expression patterns and its corresponding enzyme activity level indicated that PGDS is involving in the regulation of reproductive action during the period of rapid development in E. sinensis. Furthermore our research could arouse a heat debate on the PGDS reproductive function in invertebrate and further study will be needed to determine the molecular mechanism(s) linking PGDS functions to spermatogenesis and ontogenesis if this gene is to be exploited as a molecular biomarker in further studies of development.
Collapse
|
21
|
Shyu RY, Wu CC, Wang CH, Tsai TC, Wang LK, Chen ML, Jiang SY, Tsai FM. H-rev107 regulates prostaglandin D2 synthase-mediated suppression of cellular invasion in testicular cancer cells. J Biomed Sci 2013; 20:30. [PMID: 23687991 PMCID: PMC3669107 DOI: 10.1186/1423-0127-20-30] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/15/2013] [Indexed: 01/08/2023] Open
Abstract
Background H-rev107 is a member of the HREV107 type II tumor suppressor gene family which includes H-REV107, RIG1, and HRASLS. H-REV107 has been shown to express at high levels in differentiated tissues of post-meiotic testicular germ cells. Prostaglandin D2 (PGD2) is conjectured to induce SRY-related high-mobility group box 9 (SOX9) expression and subsequent Sertoli cell differentiation. To date, the function of H-rev107 in differentiated testicular cells has not been well defined. Results In the study, we found that H-rev107 was co-localized with prostaglandin D2 synthase (PTGDS) and enhanced the activity of PTGDS, resulting in increase of PGD2 production in testis cells. Furthermore, when H-rev107 was expressed in human NT2/D1 testicular cancer cells, cell migration and invasion were inhibited. Also, silencing of PTGDS would reduce H-rev107-mediated increase in PGD2, cAMP, and SOX9. Silencing of PTGDS or SOX9 also alleviated H-rev107-mediated suppression of cell migration and invasion. Conclusions These results revealed that H-rev107, through PTGDS, suppressed cell migration and invasion. Our data suggest that the PGD2-cAMP-SOX9 signal pathway might play an important role in H-rev107-mediated cancer cell invasion in testes.
Collapse
Affiliation(s)
- Rong-Yaun Shyu
- Department of Internal Medicine, Buddhist Tzu Chi General Hospital Taipei Branch, New Taipei City, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|