1
|
Fernández-Barroso MÁ, García-Casco JM, Núñez Y, Ramírez-Hidalgo L, Matos G, Muñoz M. Understanding the role of myoglobin content in Iberian pigs fattened in an extensive system through analysis of the transcriptome profile. Anim Genet 2022; 53:352-367. [PMID: 35355298 PMCID: PMC9314091 DOI: 10.1111/age.13195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
Abstract
Meat color is the first perceived sensory feature and one of the most important quality traits. Myoglobin is the main pigment in meat, giving meat its characteristic cherry‐red color, highly appreciated by the consumers. In the current study, we used the RNA‐seq technique to characterize the longissimus dorsi muscle transcriptome in two groups of Iberian pigs with divergent breeding values for myoglobin content. As a result, we identified 57 differentially expressed genes and transcripts (DEGs). Moreover, we have validated the RNA‐seq expression of a set of genes by quantitative PCR (qPCR). Functional analyses revealed an enrichment of DEGs in biological processes related to oxidation (HBA1), lipid metabolism (ECH1, PLA2G10, PLD2), inflammation (CHST1, CD209, PLA2G10), and immune system (CD209, MX2, LGALS3, LGALS9). The upstream analysis showed a total of five transcriptional regulatory factors and eight master regulators that could moderate the expression of some DEGs, highlighting SPI1 and MAPK1, since they regulate the expression of DEGs involved in immune defense and inflammatory processes. Iberian pigs with high myoglobin content also showed higher expression of the HBA1 gene and both molecules, myoglobin and hemoglobin, have been described as having a protective effect against oxidative and inflammatory processes. Therefore, the HBA1 gene is a very promising candidate gene to harbor polymorphisms underlying myoglobin content, whereby further studies should be carried out for its potential use in an Iberian pig selection program.
Collapse
Affiliation(s)
- Miguel Ángel Fernández-Barroso
- Centro Nacional de I+D del Cerdo Ibérico, INIA-CSIC, Zafra, Spain.,Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Juan María García-Casco
- Centro Nacional de I+D del Cerdo Ibérico, INIA-CSIC, Zafra, Spain.,Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| | | | - Gema Matos
- Sánchez Romero Carvajal-Jabugo, SRC, Huelva, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, INIA-CSIC, Madrid, Spain
| |
Collapse
|
2
|
Bermúdez V, Tenconi PE, Giusto NM, Mateos MV. Canonical phospholipase D isoforms in visual function and ocular response to stress. Exp Eye Res 2022; 217:108976. [DOI: 10.1016/j.exer.2022.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 01/10/2023]
|
3
|
Moll T, Marshall JNG, Soni N, Zhang S, Cooper-Knock J, Shaw PJ. Membrane lipid raft homeostasis is directly linked to neurodegeneration. Essays Biochem 2021; 65:999-1011. [PMID: 34623437 PMCID: PMC8709890 DOI: 10.1042/ebc20210026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/17/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Age-associated neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD) and Alzheimer's disease (AD) are an unmet health need, with significant economic and societal implications, and an ever-increasing prevalence. Membrane lipid rafts (MLRs) are specialised plasma membrane microdomains that provide a platform for intracellular trafficking and signal transduction, particularly within neurons. Dysregulation of MLRs leads to disruption of neurotrophic signalling and excessive apoptosis which mirrors the final common pathway for neuronal death in ALS, PD and AD. Sphingomyelinase (SMase) and phospholipase (PL) enzymes process components of MLRs and therefore play central roles in MLR homeostasis and in neurotrophic signalling. We review the literature linking SMase and PL enzymes to ALS, AD and PD with particular attention to attractive therapeutic targets, where functional manipulation has been successful in preclinical studies. We propose that dysfunction of these enzymes is upstream in the pathogenesis of neurodegenerative diseases and to support this we provide new evidence that ALS risk genes are enriched with genes involved in ceramide metabolism (P=0.019, OR = 2.54, Fisher exact test). Ceramide is a product of SMase action upon sphingomyelin within MLRs, and it also has a role as a second messenger in intracellular signalling pathways important for neuronal survival. Genetic risk is necessarily upstream in a late age of onset disease such as ALS. We propose that manipulation of MLR structure and function should be a focus of future translational research seeking to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Jack N G Marshall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Nikita Soni
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, U.S.A
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, U.K
| |
Collapse
|
4
|
Auclair N, Sané AT, Delvin E, Spahis S, Levy E. Phospholipase D as a Potential Modulator of Metabolic Syndrome: Impact of Functional Foods. Antioxid Redox Signal 2021; 34:252-278. [PMID: 32586106 DOI: 10.1089/ars.2020.8081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Cardiometabolic disorders (CMD) are composed of a plethora of metabolic dysfunctions such as dyslipidemia, nonalcoholic fatty liver disease, insulin resistance, and hypertension. The development of these disorders is highly linked to inflammation and oxidative stress (OxS), two metabolic states closely related to physiological and pathological conditions. Given the drastically rising CMD prevalence, the discovery of new therapeutic targets/novel nutritional approaches is of utmost importance. Recent Advances: The tremendous progress in methods/technologies and animal modeling has allowed the clarification of phospholipase D (PLD) critical roles in multiple cellular processes, whether directly or indirectly via phosphatidic acid, the lipid product mediating signaling functions. In view of its multiple features and implications in various diseases, PLD has emerged as a drug target. Critical Issues: Although insulin stimulates PLD activity and, in turn, PLD regulates insulin signaling, the impact of the two important PLD isoforms on the metabolic syndrome components remains vague. Therefore, after outlining PLD1/PLD2 characteristics and functions, their role in inflammation, OxS, and CMD has been analyzed and critically reported in the present exhaustive review. The influence of functional foods and nutrients in the regulation of PLD has also been examined. Future Directions: Available evidence supports the implication of PLD in CMD, but only few studies emphasize its mechanisms of action and specific regulation by nutraceutical compounds. Therefore, additional investigations are first needed to clarify the functional role of nutraceutics and, second, to elucidate whether targeting PLDs with food compounds represents an appropriate therapeutic strategy to treat CMD. Antioxid. Redox Signal. 34, 252-278.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Kazemi T, Huang S, Avci NG, Waits CMK, Akay YM, Akay M. Investigating the influence of perinatal nicotine and alcohol exposure on the genetic profiles of dopaminergic neurons in the VTA using miRNA-mRNA analysis. Sci Rep 2020; 10:15016. [PMID: 32929144 PMCID: PMC7490691 DOI: 10.1038/s41598-020-71875-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nicotine and alcohol are two of the most commonly used and abused recreational drugs, are often used simultaneously, and have been linked to significant health hazards. Furthermore, patients diagnosed with dependence on one drug are highly likely to be dependent on the other. Several studies have shown the effects of each drug independently on gene expression within many brain regions, including the ventral tegmental area (VTA). Dopaminergic (DA) neurons of the dopamine reward pathway originate from the VTA, which is believed to be central to the mechanism of addiction and drug reinforcement. Using a well-established rat model for both nicotine and alcohol perinatal exposure, we investigated miRNA and mRNA expression of dopaminergic (DA) neurons of the VTA in rat pups following perinatal alcohol and joint nicotine-alcohol exposure. Microarray analysis was then used to profile the differential expression of both miRNAs and mRNAs from DA neurons of each treatment group to further explore the altered genes and related biological pathways modulated. Predicted and validated miRNA-gene target pairs were analyzed to further understand the roles of miRNAs within these networks following each treatment, along with their post transcription regulation points affecting gene expression throughout development. This study suggested that glutamatergic synapse and axon guidance pathways were specifically enriched and many miRNAs and genes were significantly altered following alcohol or nicotine-alcohol perinatal exposure when compared to saline control. These results provide more detailed insight into the cell proliferation, neuronal migration, neuronal axon guidance during the infancy in rats in response to perinatal alcohol/ or nicotine-alcohol exposure.
Collapse
Affiliation(s)
- Tina Kazemi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Shuyan Huang
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Naze G Avci
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Charlotte Mae K Waits
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Yasemin M Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Metin Akay
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
6
|
Tanguy E, Wang Q, Vitale N. Role of Phospholipase D-Derived Phosphatidic Acid in Regulated Exocytosis and Neurological Disease. Handb Exp Pharmacol 2020; 259:115-130. [PMID: 30570690 DOI: 10.1007/164_2018_180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipids play a vital role in numerous cellular functions starting from a structural role as major constituents of membranes to acting as signaling intracellular or extracellular entities. Accordingly, it has been known for decades that lipids, especially those coming from diet, are important to maintain normal physiological functions and good health. On the other side, the exact molecular nature of these beneficial or deleterious lipids, as well as their precise mode of action, is only starting to be unraveled. This recent improvement in our knowledge is largely resulting from novel pharmacological, molecular, cellular, and genetic tools to study lipids in vitro and in vivo. Among these important lipids, phosphatidic acid plays a unique and central role in a great variety of cellular functions. This review will focus on the proposed functions of phosphatidic acid generated by phospholipase D in the last steps of regulated exocytosis with a specific emphasis on hormonal and neurotransmitter release and its potential impact on different neurological diseases.
Collapse
Affiliation(s)
- Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France.
- INSERM, Paris, Cedex 13, France.
| |
Collapse
|
7
|
Li WQ, Luo LD, Hu ZW, Lyu TJ, Cen C, Wang Y. PLD1 promotes dendritic spine morphogenesis via activating PKD1. Mol Cell Neurosci 2019; 99:103394. [PMID: 31356881 DOI: 10.1016/j.mcn.2019.103394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 01/20/2023] Open
Abstract
Dendritic spines on the dendrites of pyramidal neurons are one of the most important components for excitatory synapses, where excitatory information exchanges and integrates. The defects of dendritic spine development have been closely connected with many nervous system diseases including autism, intellectual disability and so forth. Based on our previous studies, we here report a new functional signaling link between phospholipase D1 (PLD1) and protein kinase D1 (PKD1) in dendritic spine morphogenesis. Coimmunoprecipitation assays showed that PLD1 associates with PKD1. A series of knocking down and rescuing experiments demonstrated that PLD1 acts upstream of PKD1 in positively regulating dendritic spine morphogenesis. Using PLD1 inhibitor, we found that PLD1 activates PKD1 to promote dendritic spine morphogenesis. Thus, we further reveal the roles of the two different enzymes in neuronal development.
Collapse
Affiliation(s)
- Wen-Qi Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Li-Da Luo
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China.
| | - Zhi-Wen Hu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Tian-Jie Lyu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Cheng Cen
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100083, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Tenconi PE, Bermúdez V, Oresti GM, Giusto NM, Salvador GA, Mateos MV. High glucose-induced phospholipase D activity in retinal pigment epithelium cells: New insights into the molecular mechanisms of diabetic retinopathy. Exp Eye Res 2019; 184:243-257. [PMID: 31059692 DOI: 10.1016/j.exer.2019.04.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 02/02/2023]
Abstract
Chronic hyperglycemia, oxidative stress and inflammation are key players in the pathogenesis of diabetic retinopathy (DR). In this work we study the role of phospholipase D (PLD) pathway in an in vitro model of high glucose (HG)-induced damage. To this end, we exposed human retinal pigment epithelium (RPE) cell lines (ARPE-19 and D407) to HG concentrations (16.5 or 33 mM) or to normal glucose concentration (NG, 5.5 mM) for 4, 24 or 72 h. Exposure to HG increased reactive oxygen species levels and caspase-3 cleavage and reduced cell viability after 72 h of incubation. In addition, short term HG exposure (4 h) induced the activation of early events, that involve PLD and ERK1/2 signaling, nuclear factor kappa B (NFκB) nuclear translocation and IκB phosphorylation. The increment in pro-inflammatory interleukins (IL-6 and IL-8) and cyclooxygenase-2 (COX-2) mRNA levels was observed after 24 h of HG exposure. The effect of selective pharmacological PLD1 (VU0359595) and PLD2 (VU0285655-1) inhibitors demonstrated that ERK1/2 and NFκB activation were downstream events of both PLD isoforms. The increment in IL-6 and COX-2 mRNA levels induced by HG was reduced to control levels in cells pre-incubated with both PLD inhibitors. Furthermore, the inhibition of PLD1, PLD2 and MEK/ERK pathway prevented the loss of cell viability and the activation of caspase-3 induced by HG. In conclusion, our findings demonstrate that PLD1 and PLD2 mediate the inflammatory response triggered by HG in RPE cells, pointing to their potential use as a therapeutic target for DR treatment.
Collapse
Affiliation(s)
- Paula E Tenconi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), 8000, Bahía, Blanca, Argentina
| | - Vicente Bermúdez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina
| | - Gerardo M Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), 8000, Bahía, Blanca, Argentina
| | - Norma M Giusto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), 8000, Bahía, Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), 8000, Bahía, Blanca, Argentina
| | - Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000, Bahía, Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia (DBByF), Universidad Nacional del Sur (UNS), 8000, Bahía, Blanca, Argentina.
| |
Collapse
|
9
|
Conde MA, Alza NP, Iglesias González PA, Scodelaro Bilbao PG, Sánchez Campos S, Uranga RM, Salvador GA. Phospholipase D1 downregulation by α-synuclein: Implications for neurodegeneration in Parkinson's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:639-650. [PMID: 29571767 DOI: 10.1016/j.bbalip.2018.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/14/2018] [Accepted: 03/18/2018] [Indexed: 11/17/2022]
Abstract
We have previously shown that phospholipase D (PLD) pathways have a role in neuronal degeneration; in particular, we found that PLD activation is associated with synaptic injury induced by oxidative stress. In the present study, we investigated the effect of α-synuclein (α-syn) overexpression on PLD signaling. Wild Type (WT) α-syn was found to trigger the inhibition of PLD1 expression as well as a decrease in ERK1/2 phosphorylation and expression levels. Moreover, ERK1/2 subcellular localization was shown to be modulated by WT α-syn in a PLD1-dependent manner. Indeed, PLD1 inhibition was found to alter the neurofilament network and F-actin distribution regardless of the presence of WT α-syn. In line with this, neuroblastoma cells expressing WT α-syn exhibited a degenerative-like phenotype characterized by a marked reduction in neurofilament light subunit (NFL) expression and the rearrangement of the F-actin organization, compared with either the untransfected or the empty vector-transfected cells. The gain of function of PLD1 through the overexpression of its active form had the effect of restoring NFL expression in WT α-syn neurons. Taken together, our findings reveal an unforeseen role for α-syn in PLD regulation: PLD1 downregulation may constitute an early mechanism in the initial stages of WT α-syn-triggered neurodegeneration.
Collapse
Affiliation(s)
- Melisa A Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Natalia P Alza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Química-UNS, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Pablo A Iglesias González
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Paola G Scodelaro Bilbao
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Sofía Sánchez Campos
- Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina
| | - Romina M Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Argentina; Departamento de Biología, Bioquímica y Farmacia-Universidad Nacional del Sur (UNS), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina.
| |
Collapse
|
10
|
Unraveling the Burden of Iron in Neurodegeneration: Intersections with Amyloid Beta Peptide Pathology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2850341. [PMID: 29581821 PMCID: PMC5831758 DOI: 10.1155/2018/2850341] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022]
Abstract
Iron overload is a hallmark of many neurodegenerative processes such as Alzheimer's, Parkinson's, and Huntington's diseases. Unbound iron accumulated as a consequence of brain aging is highly reactive with water and oxygen and produces reactive oxygen species (ROS) or free radicals. ROS are toxic compounds able to damage cell membranes, DNA, and mitochondria. Which are the mechanisms involved in neuronal iron homeostasis and in neuronal response to iron-induced oxidative stress constitutes a cutting-edge topic in metalloneurobiology. Increasing our knowledge about the underlying mechanisms that operate in iron accumulation and their consequences would shed light on the comprehension of the molecular events that participate in the pathophysiology of the abovementioned neurodegenerative diseases. In this review, current evidences about iron accumulation in the brain, the signaling mechanisms triggered by metal overload, as well as the interaction between amyloid β (Aβ) and iron, will be summarized.
Collapse
|
11
|
Leskova GF. Phospholipids in mitochondrial dysfunction during hemorrhagic shock. J Bioenerg Biomembr 2016; 49:121-129. [PMID: 27999981 DOI: 10.1007/s10863-016-9691-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/05/2016] [Indexed: 01/04/2023]
Abstract
Energy deficiency plays a key role in the development of irreversible shock conditions. Therefore, identifying mitochondrial functional disturbances during hemorrhagic shock should be considered a prospective direction for studying its pathogenesis. Phospholipid (PL)-dependent mechanisms of mitochondrial dysfunction in the brain (i.e., in the frontal lobes of the cerebral hemispheres and medulla oblongata) and liver, which, when damaged, leads to an encephalopathy, are examined in this review. These mechanisms show strong regional specificity. Analyzing the data presented in this review suggests that the basis for mitochondrial functional disturbances is cholinergic hyperactivation, accompanied by a choline deficiency and membrane phosphatidylcholine (PC) depletion. Stabilization of the PL composition in mitochondrial membranes using "empty" PC liposomes could be one of the most important methods for eliminating energy deficiency during massive blood loss.
Collapse
Affiliation(s)
- Galina F Leskova
- Laboratory of nanopathology and biomedical nanotechnologies, Institute of General Pathology und Pathophysiology, Baltijskaja str., 8, 125315, Moscow, Russia.
| |
Collapse
|
12
|
Raben DM, Barber CN. Phosphatidic acid and neurotransmission. Adv Biol Regul 2016; 63:15-21. [PMID: 27671966 DOI: 10.1016/j.jbior.2016.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/31/2022]
Abstract
Lipids play a vital role in the health and functioning of neurons and interest in the physiological role of neuronal lipids is certainly increasing. One neuronal function in which neuronal lipids appears to play key roles in neurotransmission. Our understanding of the role of lipids in the synaptic vesicle cycle and neurotransmitter release is becoming increasingly more important. Much of the initial research in this area has highlighted the major roles played by the phosphoinositides (PtdIns), diacylglycerol (DAG), and phosphatidic acid (PtdOH). Of these, PtdOH has not received as much attention as the other lipids although its role and metabolism appears to be extremely important. This lipid has been shown to play a role in modulating both exocytosis and endocytosis although its precise role in either process is not well defined. The currently evidence suggest this lipid likely participates in key processes by altering membrane architecture necessary for membrane fusion, mediating the penetration of membrane proteins, serving as a precursor for other important SV cycling lipids, or activating essential enzymes. In this review, we address the sources of PtdOH, the enzymes involved in its production, the regulation of these enzymes, and its potential roles in neurotransmission in the central nervous system.
Collapse
Affiliation(s)
- Daniel M Raben
- The Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Casey N Barber
- The Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
13
|
Mateos MV, Kamerbeek CB, Giusto NM, Salvador GA. Early LPS-induced ERK activation in retinal pigment epithelium cells is dependent on PIP 2 -PLC. Data Brief 2016; 7:423-7. [PMID: 27006973 PMCID: PMC4786752 DOI: 10.1016/j.dib.2016.02.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/02/2016] [Accepted: 02/20/2016] [Indexed: 11/25/2022] Open
Abstract
This article presents additional data regarding the study “The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium” [1]. The new data presented here show that short exposure of RPE cells to lipopolysaccharide (LPS) induces an early and transient activation of the extracellular signal-regulated kinase (ERK1/2). This early ERK1/2 activation is dependent on phosphatidylinositol bisphosphate-phospholipase C (PIP2-PLC). On the contrary, neither the phospholipase D 1 (PLD1) nor the PLD2 inhibition is able to modulate the early ERK1/2 activation induced by LPS in RPE cells.
Collapse
Affiliation(s)
- Melina V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - Constanza B Kamerbeek
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - Norma M Giusto
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina
| |
Collapse
|
14
|
Paoletti L, Domizi P, Marcucci H, Montaner A, Krapf D, Salvador G, Banchio C. Lysophosphatidylcholine Drives Neuroblast Cell Fate. Mol Neurobiol 2015; 53:6316-6331. [DOI: 10.1007/s12035-015-9528-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 12/31/2022]
|
15
|
Shin SY, Kim YS, Lee SY, Bae WJ, Park YD, Hyun YC, Kang K, Kim EC. Expression of Phospholipase D in Periodontitis and Its Role in the Inflammatory and Osteoclastic Response by Nicotine- and Lipopolysaccharide-Stimulated Human Periodontal Ligament Cells. J Periodontol 2015; 86:1405-16. [PMID: 26334245 DOI: 10.1902/jop.2015.150123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The aim of the present study is to investigate the expression of phospholipase D (PLD) 1 and PLD2 in periodontal patients and in human periodontal ligament cells (HPDLCs) exposed to nicotine plus lipopolysaccharide (LPS) from Porphyromonas gingivalis (Toll-like receptor 2 ligand). Furthermore, the effects of PLD isoform inhibition on the inflammatory response and osteoclast differentiation and its mechanisms were determined. METHODS Proinflammatory mediators were examined by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. To silence the gene expression of the PLD isoforms, cells were transfected with small interfering RNA (siRNA) targeting PLD1 or PLD2. Mouse bone marrow-derived macrophages (BMMs) were used as osteoclast precursor cells for in vitro osteoclastogenesis. Western blot analysis and immunofluorescence were used to assess signaling pathways. RESULTS Chronic smokers with periodontitis exhibited significantly higher PLD1 and PLD2 messenger RNA (mRNA) expression than non-smokers with periodontitis and healthy controls. Nicotine and LPS upregulated PLD1 and PLD2 mRNA expression in a dose-dependent manner in HPDLCs. Pharmacologic and siRNA-mediated inhibition of PLD1 and PLD2 attenuated the nicotine- and LPS-induced upregulation of inducible nitric oxide (NO) synthase and cyclooxygenase-2, production of NO, and prostaglandin E2, and mRNA expression and secretion of tumor necrosis factor-α, interleukin (IL)-1β, and IL-8. The conditioned media from HPDLCs treated with PLD isoform inhibitors or siRNA against PLD inhibited receptor activator of nuclear factor-κB (NF-κB) ligand-mediated osteoclast differentiation, as well as protein expression of nuclear factor of activated T cells c1 and c-Fos, in BMMs. In addition, PLD isoform inhibitors and siRNA inhibited the nicotine- and LPS-induced activation of phosphoinositide 3-kinase, protein kinase C, p38, extracellular signal-regulated kinase, c-Jun N-terminal protein kinase, mitogen-activated protein kinase, and NF-κB. CONCLUSION To the best of the authors' knowledge, this study is the first to demonstrate that PLD isoform inhibition has anti-inflammatory and antiosteoclastogenic effects and thus may be a therapeutic target for the treatment of periodontitis.
Collapse
Affiliation(s)
- Seung-Yun Shin
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Suk Kim
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration, School of Dentistry, Kyung Hee University
| | - So-Youn Lee
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration, School of Dentistry, Kyung Hee University
| | - Won-Jung Bae
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration, School of Dentistry, Kyung Hee University
| | - Yong-Duk Park
- Department of Preventive and Society Dentistry, School of Dentistry, Kyung Hee University
| | - Yong-Cheol Hyun
- Department of Preventive and Society Dentistry, School of Dentistry, Kyung Hee University
| | - KyungLhi Kang
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology and Research Center for Tooth and Periodontal Regeneration, School of Dentistry, Kyung Hee University
| |
Collapse
|
16
|
Sánchez Campos S, Rodríguez Diez G, Oresti GM, Salvador GA. Dopaminergic Neurons Respond to Iron-Induced Oxidative Stress by Modulating Lipid Acylation and Deacylation Cycles. PLoS One 2015; 10:e0130726. [PMID: 26076361 PMCID: PMC4468124 DOI: 10.1371/journal.pone.0130726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Metal-imbalance has been reported as a contributor factor for the degeneration of dopaminergic neurons in Parkinson Disease (PD). Specifically, iron (Fe)-overload and copper (Cu) mis-compartmentalization have been reported to be involved in the injury of dopaminergic neurons in this pathology. The aim of this work was to characterize the mechanisms of membrane repair by studying lipid acylation and deacylation reactions and their role in oxidative injury in N27 dopaminergic neurons exposed to Fe-overload and Cu-supplementation. N27 dopaminergic neurons incubated with Fe (1mM) for 24 hs displayed increased levels of reactive oxygen species (ROS), lipid peroxidation and elevated plasma membrane permeability. Cu-supplemented neurons (10, 50 μM) showed no evidence of oxidative stress markers. A different lipid acylation profile was observed in N27 neurons pre-labeled with [3H] arachidonic acid (AA) or [3H] oleic acid (OA). In Fe-exposed neurons, AA uptake was increased in triacylglycerols (TAG) whereas its incorporation into the phospholipid (PL) fraction was diminished. TAG content was 40% higher in Fe-exposed neurons than in controls. This increase was accompanied by the appearance of Nile red positive lipid bodies. Contrariwise, OA incorporation increased in the PL fractions and showed no changes in TAG. Lipid acylation profile in Cu-supplemented neurons showed AA accumulation into phosphatidylserine and no changes in TAG. The inhibition of deacylation/acylation reactions prompted an increase in oxidative stress markers and mitochondrial dysfunction in Fe-overloaded neurons. These findings provide evidence about the participation of lipid acylation mechanisms against Fe-induced oxidative injury and postulate that dopaminergic neurons cleverly preserve AA in TAG in response to oxidative stress.
Collapse
Affiliation(s)
- Sofía Sánchez Campos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Guadalupe Rodríguez Diez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Gerardo Martín Oresti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Gabriela Alejandra Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- * E-mail:
| |
Collapse
|
17
|
Mateos MV, Kamerbeek CB, Giusto NM, Salvador GA. The phospholipase D pathway mediates the inflammatory response of the retinal pigment epithelium. Int J Biochem Cell Biol 2014; 55:119-28. [DOI: 10.1016/j.biocel.2014.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/12/2014] [Accepted: 08/18/2014] [Indexed: 12/25/2022]
|
18
|
Tu-Sekine B, Goldschmidt H, Raben DM. Diacylglycerol, phosphatidic acid, and their metabolic enzymes in synaptic vesicle recycling. Adv Biol Regul 2014; 57:147-52. [PMID: 25446883 DOI: 10.1016/j.jbior.2014.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 01/10/2023]
Abstract
The synaptic vesicle (SV) cycle includes exocytosis of vesicles loaded with a neurotransmitter such as glutamate, coordinated recovery of SVs by endocytosis, refilling of vesicles, and subsequent release of the refilled vesicles from the presynaptic bouton. SV exocytosis is tightly linked with endocytosis, and variations in the number of vesicles, and/or defects in the refilling of SVs, will affect the amount of neurotransmitter available for release (Sudhof, 2004). There is increasing interest in the roles synaptic vesicle lipids and lipid metabolizing enzymes play in this recycling. Initial emphasis was placed on the role of polyphosphoinositides in SV cycling as outlined in a number of reviews (Lim and Wenk, 2009; Martin, 2012; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). Other lipids are now recognized to also play critical roles. For example, PLD1 (Humeau et al., 2001; Rohrbough and Broadie, 2005) and some DGKs (Miller et al., 1999; Nurrish et al., 1999) play roles in neurotransmission which is consistent with the critical roles for phosphatidic acid (PtdOH) and diacylglycerol (DAG) in the regulation of SV exo/endocytosis (Cremona et al., 1999; Exton, 1994; Huttner and Schmidt, 2000; Lim and Wenk, 2009; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). PLD generates phosphatidic acid by catalyzing the hydrolysis of phosphatidylcholine (PtdCho) and in some systems this PtdOH is de-phosphorylated to generate DAG. In contrast, DGK catalyzes the phosphorylation of DAG thereby converting it into PtdOH. While both enzymes are poised to regulate the levels of DAG and PtdOH, therefore, they both lead to the generation of PtdOH and could have opposite effects on DAG levels. This is particularly important for SV cycling as PtdOH and DAG are both needed for evoked exocytosis (Lim and Wenk, 2009; Puchkov and Haucke, 2013; Rohrbough and Broadie, 2005). Two lipids and their involved metabolic enzymes, two sphingolipids have also been implicated in exocytosis: sphingosine (Camoletto et al., 2009; Chan et al., 2012; Chan and Sieburth, 2012; Darios et al., 2009; Kanno et al., 2010; Rohrbough et al., 2004) and sphingosine-1-phosphate (Chan, Hu, 2012; Chan and Sieburth, 2012; Kanno et al., 2010). Finally a number of reports have focused on the somewhat less well studies roles of sphingolipids and cholesterol in SV cycling. In this report, we review the recent understanding of the roles PLDs, DGKs, and DAG lipases, as well as sphingolipids and cholesterol play in synaptic vesicle cycling.
Collapse
Affiliation(s)
- Becky Tu-Sekine
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hana Goldschmidt
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel M Raben
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Uranga RM, Katz S, Salvador GA. Enhanced phosphatidylinositol 3-kinase (PI3K)/Akt signaling has pleiotropic targets in hippocampal neurons exposed to iron-induced oxidative stress. J Biol Chem 2013; 288:19773-84. [PMID: 23687303 DOI: 10.1074/jbc.m113.457622] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The PI3K/Akt pathway is a key component in synaptic plasticity and neuronal survival. The aim of this work was to investigate the participation of the PI3K/Akt pathway and its outcome on different molecular targets such as glycogen synthase kinase 3β (GSK3β) and Forkhead box-O (FoxO) transcription factors during mild oxidative stress triggered by iron overload. The exposure of mouse hippocampal neurons (HT22) to different concentrations of Fe(2+) (25-200 μm) for 24 h led us to define a mild oxidative injury status (50 μm Fe(2+)) in which cell morphology showed changes typical of neuronal damage with increased lipid peroxidation and cellular oxidant levels but no alteration of cellular viability. There was a simultaneous increase in both Akt and GSK3β phosphorylation. Levels of phospho-FoxO3a (inactive form) increased in the cytosolic fraction of cells treated with iron in a PI3K-dependent manner. Moreover, PI3K and Akt translocated to the nucleus in response to oxidative stress. Iron-overloaded cells harboring a constitutively active form of Akt showed decreased oxidants levels. Indeed, GSH synthesis under oxidative stress conditions was regulated by activated Akt. Our results show that activation of the PI3K/Akt pathway during iron-induced neurotoxicity regulates multiple targets such as GSK3β, FoxO transcriptional activity, and glutathione metabolism, thus modulating the neuronal response to oxidative stress.
Collapse
Affiliation(s)
- Romina María Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
| | | | | |
Collapse
|