1
|
Wang Y, Hu Q, Yao Y, Cui Y, Bai Y, An L, Li X, Ding B, Yao X, Wu K. Transcriptome, miRNA, and degradome sequencing reveal the leaf stripe (Pyrenophora graminea) resistance genes in Tibetan hulless barley. BMC PLANT BIOLOGY 2025; 25:71. [PMID: 39825242 PMCID: PMC11740358 DOI: 10.1186/s12870-025-06055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Barley leaf stripe, a disease mainly caused by Pyrenophora graminea (P. graminea) infection, severely affects barley yield and quality and is one of the most widespread diseases in barley production. However, little is known about the underlying molecular mechanisms of leaf stripe resistance. In this study, the transcript expression profiles of normal and infected leaves of resistant Tibetan hulless barley (Hordeum vulgare L. var. nudum Hook. f.) variety Kunlun 14 and susceptible variety Z1141 were analyzed by RNA sequencing (RNA-seq). The results showed a total of 7,669 and 5,943 differentially expressed genes (DEGs) were found in resistant and susceptible Kunlun 14 and Z1141, respectively, with 8,916 DEGs found between Kunlun 14 and Z1141. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the 8,916 DEGs identified many significantly enriched categories and pathways, of which a plant-pathogen interaction pathway, containing a total of 102 genes (100 known genes and two novel genes), was found, that was very important for the study of the leaf stripe resistance mechanism. Using RNA-seq, small RNA sequencing (miRNA-seq) combined with degradome sequencing (degradome-seq), four pairs associated with leaf-stripe miRNAs and target genes were obtained, namely Hvu-miR168-5p and Argonaute1 (HvAGO1), Hvu-novel-52 and growth-regulating factor 6 (HvGRF6), Hvu-miR6195 and chemocyanin-like protein (CLP), and Hvu-miR159b and gibberellin-dependent MYB (GAMYB). Transformation of the important target gene HvAGO1 into Arabidopsis verified that HvAGO1 could against Botrytis cinerea. Then RNA-seq and miRNA-seq of Arabidopsis transformed with overexpressed of HvAGO1 were performed. Based on the above research results, we constructed a Protein-Protein Interaction (PPI) network of barley leaf stripe resistance. This study lays the foundation for the study of the barley leaf stripe resistance mechanism and provides new targets for the genetic improvement of disease-resistant barley varieties.
Collapse
Affiliation(s)
- Yue Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Qinghai Provincial Key Laboratory of Plateau Climate Change and Corresponding Ecological and Environmental Effects, Qinghai Institute of Technology, Xining, Qinghai Province, 810016, China
| | - Qian Hu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Baojun Ding
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China.
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China.
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources/ Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Qinghai Subcenter of National Hulless Barley Improvement, Xining, 810016, China.
| |
Collapse
|
2
|
Huang L, Xie R, Hu Y, Du L, Wang F, Zhao X, Huang Y, Chen X, Hao M, Xu Q, Feng L, Wu B, Wei Z, Zhang L, Liu D. A C2H2-type zinc finger protein TaZFP8-5B negatively regulates disease resistance. BMC PLANT BIOLOGY 2024; 24:1116. [PMID: 39578730 PMCID: PMC11585113 DOI: 10.1186/s12870-024-05843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Zinc finger proteins (ZFPs) are important regulators in abiotic and biotic stress tolerance in plants. However, the role of the ZFPs in wheat responding to pathogen infection is poorly understood. RESULTS In this study, we found TaZFP8-5B was down-regulated by Puccinia striiformis f. sp. tritici (Pst) infection. TaZFP8-5B possesses a single C2H2-type zinc finger domain with a plant-specific QALGGH motif, and an EAR motif (LxLxL) at the C-terminus. The EAR motif represses the trans-activation ability of TaZFP8-5B. Knocking down the expression of TaZFP8 by virus-induced gene silencing increased wheat resistance to Pst, whereas TaZFP8-5B-overexpressing reduced wheat resistance to stripe rust and rice resistance to Magnaporthe oryzae, suggesting that TaZFP8-5B plays a negative role in the modulation of plant immunity. Using bimolecular fluorescence complementation, split-luciferase, and yeast two-hybrid assays, we showed that TaZFP8-5B interacted with a wheat calmodulin-like protein TaCML21. Knock-down of TaCML21 reduced wheat resistance to Pst. CONCLUSIONS This study characterized the function of TaZFP8-5B and its interacting protein TaCML21. Our findings provide a new perspective on a regulatory module made up of TaCML21-TaZFP8-5B in plant immunity.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ruijie Xie
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yanling Hu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lilin Du
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Fang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xueer Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lihua Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhenzhen Wei
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, China
| | - Lianquan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
3
|
Sun T, Ma N, Jiao Y, Wang Q, Wang Q, Liu N, Chen Y, Han S, Hou C, Wang R, Wang D. TaCAMTA4 negatively regulates H2O2-dependent wheat leaf rust resistance by activating catalase 1 expression. PLANT PHYSIOLOGY 2024; 196:2078-2088. [PMID: 39189546 DOI: 10.1093/plphys/kiae443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 08/28/2024]
Abstract
Leaf rust, caused by Puccinia triticina Erikss. (Pt), is a serious disease threatening wheat (Triticum aestivum L.) production worldwide. Hydrogen peroxide (H2O2) triggered by Pt infection in resistant wheat cultivars cause oxidative damage directly to biomolecules or is activated by calcium signaling and mediates the hypersensitive response. Calmodulin-binding transcriptional activator 4 (TaCAMTA4) has been reported to negatively regulate wheat resistance to Pt. In this study, we found that TaCAMTA4 was induced by Pt race 165 in its compatible host harboring the Pt-resistant locus Lr26, TcLr26, and silencing of TaCAMTA4 increased local H2O2 accumulation and Pt resistance. Subcellular localization and autoactivation tests revealed that TaCAMTA4 is a nucleus-localized transcriptional activator. Furthermore, 4 DNA motifs recognized by TaCAMTA4 were identified by transcription factor-centered Y1H. Through analyzing the transcriptome database, 4 gene clusters were identified, each containing a different DNA motif on each promoter. Among them, the expression of catalase 1 (TaCAT1) with motif-1 was highly induced in the compatible interaction and was decreased when TaCAMTA4 was silenced. The results of electrophoretic mobility shift assay, ChIP-qPCR, and RT-qPCR further showed that TaCAMTA4 directly bound motif-1 in the TaCAT1 promoter. Furthermore, silencing of TaCAT1 resulted in enhanced resistance to Pt and increased local H2O2 accumulation in wheat, which is consistent with that of TaCAMTA4. Since calmodulin-binding transcription activators are Ca2+ sensors and catalases catalyze the decomposition of H2O2, we hypothesize that Ca2+ regulates the plant immune networks that are controlled by H2O2 and implicate a potential mechanism for Pt to suppress resistance by inducing the expression of the TaCAMTA4-TaCAT1 module, which consequently enhances H2O2 scavenging and attenuates H2O2-dependent resistance.
Collapse
Affiliation(s)
- Tianjie Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Nan Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yuanyuan Jiao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Qian Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Qipeng Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Na Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Yan Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Shengfang Han
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Chunyan Hou
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Rongna Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| | - Dongmei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
- Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Baoding 071001, China
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
4
|
Fernandes P, Pimentel D, Ramiro RS, Silva MDC, Fevereiro P, Costa RL. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1439380. [PMID: 39188543 PMCID: PMC11345161 DOI: 10.3389/fpls.2024.1439380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024]
Abstract
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Diana Pimentel
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | | | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fevereiro
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB, Green-It Unit), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Pan X, Liu H, Li Y, Guo L, Zhang Y, Zhu Y, Yang M. Cultivation of Fungal Endophytes with Tissue Culture Grapevine Seedlings Reprograms Metabolism by Triggering Defence Responses. Metabolites 2024; 14:402. [PMID: 39195498 DOI: 10.3390/metabo14080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
In this study, the transcriptome profiles of tissue-cultured grapevine (Vitis vinifera L. × Vitis labrusca L.: Rose Honey) seedlings inoculated with fungal endophytes Epicoccum layuense R2-21 (Epi R2-21) and Alternaria alternata XHYN2 (Alt XHYN2), were analyzed at three different time points (6 h, 6 d, and 15 d). A total of 4783 differentially expressed genes (DEGs) was found, of which 1853 (6 h), 3878 (6 d), and 4732 (15 d) were differentially expressed relative to those of the control in endophyte Epi R2-21 treatments, while a total of 5898 DEGs, of which 2726 (6 h), 4610 (6 d), and 3938 (15 d) were differentially expressed in endophyte Alt XHYN2 treatments. DEGs enriched in secondary metabolic pathways, plant-pathogen interaction, and hormone signalling were further analysed. The upregulated DEGs in the Epi R2-21 and Alt XHYN2 treatments, both enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG), were mainly involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, stilbenoid, diarylheptanoid and gingerol biosynthesis, phenylalanine metabolism, and circadian rhythms-plant and plant-pathogen interactions, similar to the trend observed in our previous study conducted on the cultivar 'Cabernet Sauvignon' (Vitis vinifera L.). Taken together with the results obtained from the cultivar 'Cabernet Sauvignon', it was found that tissue-cultured seedlings of the cultivar 'Rose Honey' induced a stronger defence response to fungal endophyte infection than that of the cultivar 'Cabernet Sauvignon', and inoculation with the endophyte Alt XHYN2 triggered a stronger response than inoculation with the endophyte Epi R2-21. In addition, the protein-protein interaction (PPI) network revealed that the genes VIT_16s0100g00910, encoding CHS, and VIT_11s0065g00350, encoding CYP73A, were involved in secondary metabolism and thus mediated in the resistance mechanism of grapevine on both the cultivars. The results showed that inoculation with the endophytes Epi R2-21 and Alt XHYN2 had a great ability to induce defence responses and reprogram the gene expression profiles in different grapevine cultivars, which deepens our knowledge of the interaction between fungal endophytes and grapevine and gives hints for grape quality management in viticulture using candidate fungal endophytes.
Collapse
Affiliation(s)
- Xiaoxia Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
| | - Huizhi Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
| | - Yiqian Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Lirong Guo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yunuo Zhang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Youyong Zhu
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Mingzhi Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| |
Collapse
|
6
|
Subedi A, Minsavage GV, Roberts PD, Goss EM, Sharma A, Jones JB. Insights into bs5 resistance mechanisms in pepper against Xanthomonas euvesicatoria through transcriptome profiling. BMC Genomics 2024; 25:711. [PMID: 39044136 PMCID: PMC11267861 DOI: 10.1186/s12864-024-10604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Bacterial spot of pepper (BSP), caused by four different Xanthomonas species, primarily X. euvesicatoria (Xe), poses a significant challenge in pepper cultivation. Host resistance is considered the most important approach for BSP control, offering long-term protection and sustainability. While breeding for resistance to BSP for many years focused on dominant R genes, introgression of recessive resistance has been a more recent focus of breeding programs. The molecular interactions underlying recessive resistance remain poorly understood. RESULTS In this study, transcriptomic analyses were performed to elucidate defense responses triggered by Xe race P6 infection by two distinct pepper lines: the Xe-resistant line ECW50R containing bs5, a recessive resistance gene that confers resistance to all pepper Xe races, and the Xe-susceptible line ECW. The results revealed a total of 3357 upregulated and 4091 downregulated genes at 0, 1, 2, and 4 days post-inoculation (dpi), with the highest number of differentially expressed genes (DEGs) observed at 2 dpi. Pathway analysis highlighted DEGs in key pathways such as plant-pathogen interaction, MAPK signaling pathway, plant hormone signal transduction, and photosynthesis - antenna proteins, along with cysteine and methionine metabolism. Notably, upregulation of genes associated with PAMP-Triggered Immunity (PTI) was observed, including components like FLS2, Ca-dependent pathways, Rboh, and reactive oxygen species (ROS) generation. In support of these results, infiltration of ECW50R leaves with bacterial suspension of Xe led to observable hydrogen peroxide accumulation without a rapid increase in electrolyte leakage, suggestive of the absence of Effector-Triggered Immunity (ETI). Furthermore, the study confirmed that bs5 does not disrupt the effector delivery system, as evidenced by incompatible interactions between avirulence genes and their corresponding dominant resistant genes in the bs5 background. CONCLUSION Overall, these findings provide insights into the molecular mechanisms underlying bs5-mediated resistance in pepper against Xe and suggest a robust defense mechanism in ECW50R, primarily mediated through PTI. Given that bs5 provides early strong response for resistance, combining this resistance with other dominant resistance genes will enhance the durability of resistance to BSP.
Collapse
Affiliation(s)
- Aastha Subedi
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Gerald V Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Pamela D Roberts
- Southwest Florida Research & Education Center, University of Florida, Immokalee, FL, USA
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Luo G, Li L, Yang X, Yu Y, Gao L, Mo B, Chen X, Liu L. MicroRNA1432 regulates rice drought stress tolerance by targeting the CALMODULIN-LIKE2 gene. PLANT PHYSIOLOGY 2024; 195:1954-1968. [PMID: 38466155 DOI: 10.1093/plphys/kiae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Due to climate change, drought has become a major threat to rice (Oryza sativa L.) growth and yield worldwide. Understanding the genetic basis of drought tolerance in rice is therefore of great importance. Here, we identified a microRNA, miR1432, which regulates rice drought tolerance by targeting the CALMODULIN-LIKE2 (OsCaML2) gene. Mutation of MIR1432 or suppression of miR1432 expression significantly impaired seed germination and seedling growth under drought-stress conditions. Molecular analysis demonstrated that miR1432 affected rice drought tolerance by directly targeting OsCaML2, which encodes an EF-hand chiral calcium-binding protein. Overexpression of a miR1432-resistant form of OsCaML2 (OEmCaML2) phenocopied the mir1432 mutant and miR1432 suppression plants. Furthermore, the suppression of miR1432 severely affected the expression of genes involved in responses to stimulation, metabolism and signal transduction, especially the mitogen-activated protein kinase (MAPK) pathway and hormone transduction pathway in rice under drought stress. Thus, our findings show that the miR1432-OsCaML2 module plays an important role in the regulation of rice drought tolerance, suggesting its potential utilization in developing molecular breeding strategies that improve crop drought tolerance.
Collapse
Affiliation(s)
- Guangyu Luo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lin Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaoyu Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu Yu
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xuemei Chen
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
8
|
Yi F, Li Y, Song A, Shi X, Hu S, Wu S, Shao L, Chu Z, Xu K, Li L, Tran LP, Li W, Cai Y. Positive roles of the Ca 2+ sensors GbCML45 and GbCML50 in improving cotton Verticillium wilt resistance. MOLECULAR PLANT PATHOLOGY 2024; 25:e13483. [PMID: 38829344 PMCID: PMC11146148 DOI: 10.1111/mpp.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
As a universal second messenger, cytosolic calcium (Ca2+) functions in multifaceted intracellular processes, including growth, development and responses to biotic/abiotic stresses in plant. The plant-specific Ca2+ sensors, calmodulin and calmodulin-like (CML) proteins, function as members of the second-messenger system to transfer Ca2+ signal into downstream responses. However, the functions of CMLs in the responses of cotton (Gossypium spp.) after Verticillium dahliae infection, which causes the serious vascular disease Verticillium wilt, remain elusive. Here, we discovered that the expression level of GbCML45 was promoted after V. dahliae infection in roots of cotton, suggesting its potential role in Verticillium wilt resistance. We found that knockdown of GbCML45 in cotton plants decreased resistance while overexpression of GbCML45 in Arabidopsis thaliana plants enhanced resistance to V. dahliae infection. Furthermore, there was physiological interaction between GbCML45 and its close homologue GbCML50 by using yeast two-hybrid and bimolecular fluorescence assays, and both proteins enhanced cotton resistance to V. dahliae infection in a Ca2+-dependent way in a knockdown study. Detailed investigations indicated that several defence-related pathways, including salicylic acid, ethylene, reactive oxygen species and nitric oxide signalling pathways, as well as accumulations of lignin and callose, are responsible for GbCML45- and GbCML50-modulated V. dahliae resistance in cotton. These results collectively indicated that GbCML45 and GbCML50 act as positive regulators to improve cotton Verticillium wilt resistance, providing potential targets for exploitation of improved Verticillium wilt-tolerant cotton cultivars by genetic engineering and molecular breeding.
Collapse
Affiliation(s)
- Feifei Yi
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Yuzhe Li
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Aosong Song
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Xinying Shi
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Shanci Hu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Shuang Wu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Lili Shao
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Zongyan Chu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| | - Kun Xu
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Liangliang Li
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Lam‐Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress ResistanceTexas Tech UniversityLubbockTexasUSA
| | - Weiqiang Li
- Jilin Da'an Agro‐Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Yingfan Cai
- National Key Laboratory of Cotton Biological Breeding and Utilization, School of Life SciencesSanya Institute, Henan UniversityKaifengChina
| |
Collapse
|
9
|
Niu J, Zhao J, Guo Q, Zhang H, Yue A, Zhao J, Yin C, Wang M, Du W. WGCNA Reveals Hub Genes and Key Gene Regulatory Pathways of the Response of Soybean to Infection by Soybean mosaic virus. Genes (Basel) 2024; 15:566. [PMID: 38790195 PMCID: PMC11120672 DOI: 10.3390/genes15050566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Soybean mosaic virus (SMV) is one of the main pathogens that can negatively affect soybean production and quality. To study the gene regulatory network of soybeans in response to SMV SC15, the resistant line X149 and susceptible line X97 were subjected to transcriptome analysis at 0, 2, 8, 12, 24, and 48 h post-inoculation (hpi). Differential expression analysis revealed that 10,190 differentially expressed genes (DEGs) responded to SC15 infection. Weighted gene co-expression network analysis (WGCNA) was performed to identify highly related resistance gene modules; in total, eight modules, including 2256 DEGs, were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of 2256 DEGs revealed that the genes significantly clustered into resistance-related pathways, such as the plant-pathogen interaction pathway, mitogen-activated protein kinases (MAPK) signaling pathway, and plant hormone signal transduction pathway. Among these pathways, we found that the flg22, Ca2+, hydrogen peroxide (H2O2), and abscisic acid (ABA) regulatory pathways were fully covered by 36 DEGs. Among the 36 DEGs, the gene Glyma.01G225100 (protein phosphatase 2C, PP2C) in the ABA regulatory pathway, the gene Glyma.16G031900 (WRKY transcription factor 22, WRKY22) in Ca2+ and H2O2 regulatory pathways, and the gene Glyma.04G175300 (calcium-dependent protein kinase, CDPK) in Ca2+ regulatory pathways were highly connected hub genes. These results indicate that the resistance of X149 to SC15 may depend on the positive regulation of flg22, Ca2+, H2O2, and ABA regulatory pathways. Our study further showed that superoxide dismutase (SOD) activity, H2O2 content, and catalase (CAT) and peroxidase (POD) activities were significantly up-regulated in the resistant line X149 compared with those in 0 hpi. This finding indicates that the H2O2 regulatory pathway might be dependent on flg22- and Ca2+-pathway-induced ROS generation. In addition, two hub genes, Glyma.07G190100 (encoding F-box protein) and Glyma.12G185400 (encoding calmodulin-like proteins, CMLs), were also identified and they could positively regulate X149 resistance. This study provides pathways for further investigation of SMV resistance mechanisms in soybean.
Collapse
Affiliation(s)
- Jingping Niu
- College of Life Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China;
| | - Jing Zhao
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| | - Qian Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| | - Hanyue Zhang
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| | - Aiqin Yue
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| | - Jinzhong Zhao
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (C.Y.)
| | - Congcong Yin
- Department of Basic Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (C.Y.)
| | - Min Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| | - Weijun Du
- College of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (J.Z.); (Q.G.); (H.Z.); (A.Y.); (M.W.)
| |
Collapse
|
10
|
Castell-Miller CV, Kono TJ, Ranjan A, Schlatter DC, Samac DA, Kimball JA. Interactive transcriptome analyses of Northern Wild Rice ( Zizania palustris L.) and Bipolaris oryzae show convoluted communications during the early stages of fungal brown spot development. FRONTIERS IN PLANT SCIENCE 2024; 15:1350281. [PMID: 38736448 PMCID: PMC11086184 DOI: 10.3389/fpls.2024.1350281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Fungal diseases, caused mainly by Bipolaris spp., are past and current threats to Northern Wild Rice (NWR) grain production and germplasm preservation in both natural and cultivated settings. Genetic resistance against the pathogen is scarce. Toward expanding our understanding of the global gene communications of NWR and Bipolaris oryzae interaction, we designed an RNA sequencing study encompassing the first 12 h and 48 h of their encounter. NWR activated numerous plant recognition receptors after pathogen infection, followed by active transcriptional reprogramming of signaling mechanisms driven by Ca2+ and its sensors, mitogen-activated protein kinase cascades, activation of an oxidative burst, and phytohormone signaling-bound mechanisms. Several transcription factors associated with plant defense were found to be expressed. Importantly, evidence of diterpenoid phytoalexins, especially phytocassane biosynthesis, among expression of other defense genes was found. In B. oryzae, predicted genes associated with pathogenicity including secreted effectors that could target plant defense mechanisms were expressed. This study uncovered the early molecular communication between the NWR-B. oryzae pathosystem, which could guide selection for allele-specific genes to boost NWR defenses, and overall aid in the development of more efficient selection methods in NWR breeding through the use of the most virulent fungal isolates.
Collapse
Affiliation(s)
| | - Thomas J.Y. Kono
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN, United States
| | - Ashish Ranjan
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Daniel C. Schlatter
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- United States Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN, United States
| | - Deborah A. Samac
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
- United States Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Saint Paul, MN, United States
| | - Jennifer A. Kimball
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
11
|
De-la-Cruz IM, Oyama K, Núñez-Farfán J. The chromosome-scale genome and the genetic resistance machinery against insect herbivores of the Mexican toloache, Datura stramonium. G3 (BETHESDA, MD.) 2024; 14:jkad288. [PMID: 38113048 PMCID: PMC10849327 DOI: 10.1093/g3journal/jkad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Plant resistance refers to the heritable ability of plants to reduce damage caused by natural enemies, such as herbivores and pathogens, either through constitutive or induced traits like chemical compounds or trichomes. However, the genetic architecture-the number and genome location of genes that affect plant defense and the magnitude of their effects-of plant resistance to arthropod herbivores in natural populations remains poorly understood. In this study, we aimed to unveil the genetic architecture of plant resistance to insect herbivores in the annual herb Datura stramonium (Solanaceae) through quantitative trait loci mapping. We achieved this by assembling the species' genome and constructing a linkage map using an F2 progeny transplanted into natural habitats. Furthermore, we conducted differential gene expression analysis between undamaged and damaged plants caused by the primary folivore, Lema daturaphila larvae. Our genome assembly resulted in 6,109 scaffolds distributed across 12 haploid chromosomes. A single quantitative trait loci region on chromosome 3 was associated with plant resistance, spanning 0 to 5.17 cM. The explained variance by the quantitative trait loci was 8.44%. Our findings imply that the resistance mechanisms of D. stramonium are shaped by the complex interplay of multiple genes with minor effects. Protein-protein interaction networks involving genes within the quantitative trait loci region and overexpressed genes uncovered the key role of receptor-like cytoplasmic kinases in signaling and regulating tropane alkaloids and terpenoids, which serve as powerful chemical defenses against D. stramonium herbivores. The data generated in our study constitute important resources for delving into the evolution and ecology of secondary compounds mediating plant-insect interactions.
Collapse
Affiliation(s)
- Ivan M De-la-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma, Alnarp 230 53, Sweden
| | - Ken Oyama
- Escuela Nacional de Estudios Superiores (ENES), Universidad Nacional Autónoma de México (UNAM), Campus Morelia, Morelia, Michoacán 8701, Mexico
| | - Juan Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
12
|
Yan C, Gao Q, Yang M, Shao Q, Xu X, Zhang Y, Luan S. Ca 2+/calmodulin-mediated desensitization of glutamate receptors shapes plant systemic wound signalling and anti-herbivore defence. NATURE PLANTS 2024; 10:145-160. [PMID: 38168609 DOI: 10.1038/s41477-023-01578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/30/2023] [Indexed: 01/05/2024]
Abstract
Plants rely on systemic signalling mechanisms to establish whole-body defence in response to insect and nematode attacks. GLUTAMATE RECEPTOR-LIKE (GLR) genes have been implicated in long-distance transmission of wound signals to initiate the accumulation of the defence hormone jasmonate (JA) at undamaged distal sites. The systemic signalling entails the activation of Ca2+-permeable GLR channels by wound-released glutamate, triggering membrane depolarization and cytosolic Ca2+ influx throughout the whole plant. The systemic electrical and calcium signals rapidly dissipate to restore the resting state, partially due to desensitization of the GLR channels. Here we report the discovery of calmodulin-mediated, Ca2+-dependent desensitization of GLR channels, revealing a negative feedback loop in the orchestration of plant systemic wound responses. A CRISPR-engineered GLR3.3 allele with impaired desensitization showed prolonged systemic electrical signalling and Ca2+ waves, leading to enhanced plant defence against herbivores. Moreover, this Ca2+/calmodulin-mediated desensitization of GLR channels is a highly conserved mechanism in plants, providing a potential target for engineering anti-herbivore defence in crops.
Collapse
Affiliation(s)
- Chun Yan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Qifei Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Mai Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaolin Shao
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaopeng Xu
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Yongbiao Zhang
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
13
|
Pan XX, Liu HZ, Li Y, Zhou P, Wen Y, Lu CX, Zhu YY, Yang MZ. The Interactions between Two Fungal Endophytes Epicoccum layuense R2-21 and Alternaria alternata XHYN2 and Grapevines ( Vitis vinifera) with De Novo Established Symbionts under Aseptic Conditions. J Fungi (Basel) 2023; 9:1154. [PMID: 38132755 PMCID: PMC10744766 DOI: 10.3390/jof9121154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
In this study, we focused on grapevine-endophyte interactions and reprogrammed secondary metabolism in the host plant due to defense against the colonization of endophytes. Thus, the transcriptional responses of tissue cultured grapevine seedlings (Vitis vinifera L. cv.: Cabernet Sauvignon) to two fungal endophytes Epicoccum layuense R2-21 (Epi R2-21) and Alternaria alternata XHYN2 (Alt XHYN2) at three different time points (6 h, 6 d, 15 d) were analyzed. As expected, a total of 5748 and 5817 differentially expressed genes (DEGs) were separately initiated in Epi R2-21 and Alt XHYN2 symbiotic tissue cultured seedlings compared to no endophyte treatment. The up-regulated DEGs at all time points in Epi R2-21- or Alt XHYN2-treated seedlings were mainly enriched in the flavonoid biosynthesis, phenylpropanoid biosynthesis, phenylalanine metabolism, stilbenoid, diarylheptanoid and gingerol biosynthesis, and circadian rhythm-plant pathways. In addition, the up-regulated DEGs at all sampling times in Alt XHYN2-treated tissue cultured seedlings were enriched in the plant-pathogen interaction pathway, but appeared in Epi R2-21 symbiotic seedlings only after 15 d of treatment. The down-regulated DEGs were not enriched in any KEGG pathways after 6 h inoculation for Epi R2-21 and Alt XHYN2 treatments, but were enriched mainly in photosynthesis-antenna proteins and plant hormone signal transduction pathways at other sampling times. At three different time points, a total of 51 DEGs (all up-regulated, 1.33-10.41-fold) were involved in secondary metabolism, and 22 DEGs (all up-regulated, 1.01-8.40-fold) were involved in defense responses in endophytic fungi symbiotic tissue cultured seedlings. The protein-protein interaction (PPI) network demonstrated that genes encoding CHS (VIT_10s0042g00920, VIT_14s0068g00920, and VIT_16s0100g00910) and the VIT_11s0065g00350 gene encoding CYP73A mediated the defense responses, and might induce more defense-associated metabolites. These results illustrated the activation of stress-associated secondary metabolism in the host grapevine during the establishment of fungi-plant endophytism. This work provides avenues for reshaping the qualities and characteristics of wine grapes utilizing specific endophytes and better understanding plant-microbe interactions.
Collapse
Affiliation(s)
- Xiao-Xia Pan
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
| | - Hui-Zhi Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China
| | - Yu Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
| | - Ping Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
| | - Yun Wen
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
| | - Chun-Xi Lu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
| | - You-Yong Zhu
- Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Ming-Zhi Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (X.-X.P.)
| |
Collapse
|
14
|
Li X, Wang X, Ma X, Cai W, Liu Y, Song W, Fu B, Li S. Genome-wide investigation and expression analysis of OSCA gene family in response to abiotic stress in alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1285488. [PMID: 38023912 PMCID: PMC10655083 DOI: 10.3389/fpls.2023.1285488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Alfalfa is an excellent leguminous forage crop that is widely cultivated worldwide, but its yield and quality are often affected by drought and soil salinization. Hyperosmolality-gated calcium-permeable channel (OSCA) proteins are hyperosmotic calcium ion (Ca2+) receptors that play an essential role in regulating plant growth, development, and abiotic stress responses. However, no systematic analysis of the OSCA gene family has been conducted in alfalfa. In this study, a total of 14 OSCA genes were identified from the alfalfa genome and classified into three groups based on their sequence composition and phylogenetic relationships. Gene structure, conserved motifs and functional domain prediction showed that all MsOSCA genes had the same functional domain DUF221. Cis-acting element analysis showed that MsOSCA genes had many cis-regulatory elements in response to abiotic or biotic stresses and hormones. Tissue expression pattern analysis demonstrated that the MsOSCA genes had tissue-specific expression; for example, MsOSCA12 was only expressed in roots and leaves but not in stem and petiole tissues. Furthermore, RT-qPCR results indicated that the expression of MsOSCA genes was induced by abiotic stress (drought and salt) and hormones (JA, SA, and ABA). In particular, the expression levels of MsOSCA3, MsOSCA5, MsOSCA12 and MsOSCA13 were significantly increased under drought and salt stress, and MsOSCA7, MsOSCA10, MsOSCA12 and MsOSCA13 genes exhibited significant upregulation under plant hormone treatments, indicating that these genes play a positive role in drought, salt and hormone responses. Subcellular localization results showed that the MsOSCA3 protein was localized on the plasma membrane. This study provides a basis for understanding the biological information and further functional analysis of the MsOSCA gene family and provides candidate genes for stress resistance breeding in alfalfa.
Collapse
Affiliation(s)
- Xiaohong Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Xiaotong Wang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Xuxia Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Wenqi Cai
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Yaling Liu
- Inner Mongolia Pratacultural Technology Innovation Center Co., Ltd, Hohhot, China
| | - Wenxue Song
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
| | - Bingzhe Fu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, China
| | - Shuxia Li
- College of Forestry and Prataculture, Ningxia University, Yinchuan, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, China
| |
Collapse
|
15
|
Aleynova OA, Kiselev KV, Suprun AR, Ananev AA, Dubrovina AS. Involvement of the Calmodulin-like Protein Gene VaCML92 in Grapevine Abiotic Stress Response and Stilbene Production. Int J Mol Sci 2023; 24:15827. [PMID: 37958810 PMCID: PMC10649675 DOI: 10.3390/ijms242115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Calmodulin-like proteins (CMLs) are an important family of plant calcium sensor proteins that sense and decode changes in the intracellular calcium concentration in response to environmental and developmental stimuli. Nonetheless, the specific functions of individual CML family members remain largely unknown. This study aims to explore the role of the Vitis amurensis VaCML92 gene in the development of its high stress resistance and the production of stilbenes. The expression of VaCML92 was sharply induced in V. amurensis cuttings after cold stress. The VaCML92 gene was cloned and its role in the abiotic stress responses and stilbene production in grapevine was further investigated. The VaCML92-overexpressing callus cell cultures of V. amurensis and soil-grown plants of Arabidopsis thaliana exhibited enhanced tolerance to cold stress and, to a lesser extent, to the drought, while their tolerance to heat stress and high salinity was not affected. In addition, the overexpression of VaCML92 increased stilbene production in the V. amurensis cell cultures by 7.8-8.7-fold. Taken together, the data indicate that the VaCML92 gene is involved as a strong positive regulator in the rapid response to cold stress, the induction of cold stress resistance and in stilbene production in wild grapevine.
Collapse
Affiliation(s)
| | | | | | | | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia (K.V.K.)
| |
Collapse
|
16
|
Li H, Liu J, Yuan X, Chen X, Cui X. Comparative transcriptome analysis reveals key pathways and regulatory networks in early resistance of Glycine max to soybean mosaic virus. Front Microbiol 2023; 14:1241076. [PMID: 38033585 PMCID: PMC10687721 DOI: 10.3389/fmicb.2023.1241076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023] Open
Abstract
As a high-value oilseed crop, soybean [Glycine max (L.) Merr.] is limited by various biotic stresses during its growth and development. Soybean mosaic virus (SMV) is a devastating viral infection of soybean that primarily affects young leaves and causes significant production and economic losses; however, the synergistic molecular mechanisms underlying the soybean response to SMV are largely unknown. Therefore, we performed RNA sequencing on SMV-infected resistant and susceptible soybean lines to determine the molecular mechanism of resistance to SMV. When the clean reads were aligned to the G. max reference genome, a total of 36,260 genes were identified as expressed genes and used for further research. Most of the differentially expressed genes (DEGs) associated with resistance were found to be enriched in plant hormone signal transduction and circadian rhythm according to Kyoto Encyclopedia of Genes and Genomes analysis. In addition to salicylic acid and jasmonic acid, which are well known in plant disease resistance, abscisic acid, indole-3-acetic acid, and cytokinin are also involved in the immune response to SMV in soybean. Most of the Ca2+ signaling related DEGs enriched in plant-pathogen interaction negatively influence SMV resistance. Furthermore, the MAPK cascade was involved in either resistant or susceptible responses to SMV, depending on different downstream proteins. The phytochrome interacting factor-cryptochrome-R protein module and the MEKK3/MKK9/MPK7-WRKY33-CML/CDPK module were found to play essential roles in soybean response to SMV based on protein-protein interaction prediction. Our findings provide general insights into the molecular regulatory networks associated with soybean response to SMV and have the potential to improve legume resistance to viral infection.
Collapse
Affiliation(s)
- Han Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinyang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoyan Cui
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
17
|
Moolhuijzen P, Ge C, Palmiero E, Ellwood SR. A unique resistance mechanism is associated with RBgh2 barley powdery mildew adult plant resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:145. [PMID: 37253878 DOI: 10.1007/s00122-023-04392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023]
Abstract
KEY MESSAGE Gene expression at the RBgh2 locus indicates involvement in cAMP/G-protein-coupled signalling and innate immunity in barley powdery mildew adult plant resistance. Barley powdery mildew is a globally significant disease, responsible for reduced grain yield and quality. A major effect adult plant resistance gene, RBgh2, was previously found in a landrace from Azerbaijan. The atypical phenotype suggested different underlying genetic factors compared to conventional resistance genes and to investigate this, genome-wide gene expression was compared between sets of heterogeneous doubled haploids. RBgh2 resistance is recessive and induces both temporary genome-wide gene expression changes during powdery mildew infection together with constitutive changes, principally at the RBgh2 locus. Defence-related genes significantly induced included homologues of genes associated with innate immunity and pathogen recognition. Intriguingly, RBgh2 resistance does not appear to be dependent on salicylic acid signalling, a key pathway in plant resistance to biotrophs. Constitutive co-expression of resistance gene homologues was evident at the 7HS RBgh2 locus, while no expression was evident for a 6-transmembrane gene, predicted in silico to contain both G-protein- and calmodulin-binding domains. The gene was disrupted at the 5' end, and G-protein-binding activity was suppressed. RBgh2 appears to operate through a unique mechanism that co-opts elements of innate immunity.
Collapse
Affiliation(s)
- Paula Moolhuijzen
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Cynthia Ge
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Elzette Palmiero
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Simon R Ellwood
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
18
|
Luo X, Wang Z, Wang C, Yue L, Tao M, Elmer WH, White JC, Cao X, Xing B. Nanomaterial Size and Surface Modification Mediate Disease Resistance Activation in Cucumber ( Cucumis sativus). ACS NANO 2023; 17:4871-4885. [PMID: 36871293 DOI: 10.1021/acsnano.2c11790] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Crop disease represents a serious and increasing threat to global food security. Lanthanum oxide nanomaterials (La2O3 NMs) with different sizes (10 and 20 nm) and surface modifications (citrate, polyvinylpyrrolidone [PVP], and poly(ethylene glycol)) were investigated for their control of the fungal pathogen Fusarium oxysporum (Schl.) f. sp cucumerinum Owen on six-week-old cucumber (Cucumis sativus) in soil. Seed treatment and foliar application of the La2O3 NMs at 20-200 mg/kg (mg/L) significantly suppressed cucumber wilt (decreased by 12.50-52.11%), although the disease control efficacy was concentration-, size-, and surface modification-dependent. The best pathogen control was achieved by foliar application of 200 mg/L PVP-coated La2O3 NMs (10 nm); disease severity was decreased by 67.6%, and fresh shoot biomass was increased by 49.9% as compared with pathogen-infected control. Importantly, disease control efficacy was 1.97- and 3.61-fold greater than that of La2O3 bulk particles and a commercial fungicide (Hymexazol), respectively. Additionally, La2O3 NMs application enhanced cucumber yield by 350-461%, increased fruit total amino acids by 295-344%, and improved fruit vitamin content by 65-169% as compared with infected controls. Transcriptomic and metabolomic analyses revealed that La2O3 NMs: (1) interacted with calmodulin, subsequently activating salicylic acid-dependent systemic acquired resistance; (2) increased the activity and expression of antioxidant and related genes, thereby alleviating pathogen-induced oxidative stress; and (3) directly inhibited in vivo pathogen growth. The findings highlight the significant potential of La2O3 NMs for suppressing plant disease in sustainable agriculture.
Collapse
Affiliation(s)
- Xing Luo
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wade H Elmer
- The Connecticut Agricultural Experiment Station, New Haven 06511, Connecticut, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven 06511, Connecticut, United States
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst 01003, Massachusetts, United States
| |
Collapse
|
19
|
Jeon HS, Jang E, Kim J, Kim SH, Lee MH, Nam MH, Tobimatsu Y, Park OK. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity. Autophagy 2023; 19:597-615. [PMID: 35652914 PMCID: PMC9851231 DOI: 10.1080/15548627.2022.2085496] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The evolutionary plant-pathogen arms race has equipped plants with the immune system that can defend against pathogens. Pattern-triggered immunity and effector-triggered immunity are two major branches of innate immunity that share immune responses, including oxidative bursts, transcriptional reprogramming, and cell wall modifications such as lignin deposition. In a previous study, we reported that lignin rapidly accumulates in pathogen-infected Arabidopsis leaves and acts as a mechanical barrier, spatially restricting pathogens and cell death. Lignin deposition into the cell wall is a three-step process: monolignol biosynthesis, transport, and polymerization. While monolignol biosynthesis and polymerization are relatively well understood, the mechanism of monolignol transport remains unclear. In this study, we show that macroautophagy/autophagy modulates pathogen-induced lignin formation. Lignification and other immune responses were impaired in autophagy-defective atg (autophagy-related) mutants. In microscopy analyses, monolignols formed punctate structures in response to pathogen infection and colocalized with autophagic vesicles. Furthermore, autophagic activity and lignin accumulation were both enhanced in dnd1 (defense, no death 1) mutant with elevated disease resistance but no cell death and crossing dnd1-1 with atg mutants resulted in a lignin deficit, further supporting that lignin formation requires autophagy. Collectively, these findings demonstrate that lignification, particularly monolignol transport, is achieved through autophagic membrane trafficking in plant immunity.Abbreviations: ABC transporter: ATP-binding cassette transporter; ACD2/AT4G37000: accelerated cell death 2; ATG: autophagy-related; C3'H/AT2G40890: p-coumaroyl shikimate 3-hydroxylase; C4H/AT2G30490: cinnamate 4-hydroxylase; CA: coniferyl alcohol; CaMV: cauliflower mosaic virus; CASP: Casparian strip membrane domain protein; CASPL: CASP-like protein; CBB: Coomassie Brilliant Blue; CCoAOMT1/AT4G34050: caffeoyl-CoA O-methyltransferase 1; CCR1/AT1G15950: cinnamoyl-CoA reductase 1; CFU: colony-forming unit; COMT1/AT5G54160: caffeic acid O-methyltransferase 1; Con A: concanamycin A; DMAC: dimethylaminocoumarin; DND1/AT5G15410: defense, no death 1; CNGC2: cyclic nucleotide-gated channel 2; ER: endoplasmic reticulum; ESB1/AT2G28670/DIR10: enhanced suberin 1; ETI: effector-triggered immunity; EV: extracellular vesicle; F5H/AT4G36220: ferulate-5-hydroxylase; Fluo-3 AM: Fluo-3 acetoxymethyl ester; GFP: green fluorescent protein; HCT/AT5G48930: p-hydroxycinnamoyl-CoA:quinate/shikimate p-hydroxycinnamoyltransferase; HR: hypersensitive response; LAC: laccase; LTG: LysoTracker Green; LSD1/AT4G200380: lesion stimulating disease 1; PAL1/AT2G37040: phenylalanine ammonia-lyase 1; PAMP: pathogen-associated molecular patterns; PCD: programmed cell death; PE: phosphatidylethanolamine; PRX: peroxidase; Pst DC3000: Pseudomonas syringe pv. tomato DC3000; PTI: pattern-triggered immunity; SA: salicylic acid; SD: standard deviation; SID2/AT1G7410: SA induction-deficient 2; UGT: UDP-glucosyltransferase; UPLC: ultraperformance liquid chromatography; UPS: unconventional protein secretion; V-ATPase: vacuolar-type H+-translocating ATPase.
Collapse
Affiliation(s)
- Hwi Seong Jeon
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Eunjeong Jang
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jinwoo Kim
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Seu Ha Kim
- Department of Life Sciences, Korea University, Seoul, Korea
| | | | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute, Seoul, Korea
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, Japan
| | - Ohkmae K. Park
- Department of Life Sciences, Korea University, Seoul, Korea,CONTACT Ohkmae K. Park Department of Life Sciences, Korea University, Seoul02841, Korea
| |
Collapse
|
20
|
Zhao H, Gao Y, Du Y, Du J, Han Y. Genome-wide analysis of the CML gene family and its response to melatonin in common bean (Phaseolus vulgaris L.). Sci Rep 2023; 13:1196. [PMID: 36681714 PMCID: PMC9867747 DOI: 10.1038/s41598-023-28445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Calmodulin-like proteins (CML) are important calcium signal transduction proteins in plants. CML genes have been analyzed in several plants. However, little information on CML in Phaseolus vulgare is available. In this study, we identified 111 PvCMLs distributed on eleven chromosomes. Phylogenetic analysis classified them into seven subfamilies. Cis-acting element prediction showed that PvCML contained elements related to growth and development, response to abiotic stress and hormones. Moreover, the majority of PvCMLs showed different expression patterns in most of the nine tissues and developmental stages which indicated the role of PvCML in the growth and development of common bean. Additionally, the common bean was treated with melatonin by seed soaking, and root transcriptome at the 5th day and qRT-PCR of different tissue at several stages were performed to reveal the response of PvCML to the hormone. Interestingly, 9 PvCML genes of subfamily VI were detected responsive to exogenous melatonin, and the expression dynamics of nine melatonin response PvCML genes after seed soaking with melatonin were revealed. Finally, the protein interaction network analysis of nine melatonin responsive PvCMLs was constructed. The systematic analysis of the PvCML gene family provides theoretical support for the further elucidation of their functions, and melatonin response molecular mechanism of the CML family in P. vulgaris.
Collapse
Affiliation(s)
- Hongyan Zhao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yamei Gao
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in the Cold Region, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yanli Du
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Jidao Du
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Yiqiang Han
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China.
- National Coarse Cereals Engineering Research Center, Daqing, 163319, Heilongjiang, People's Republic of China.
| |
Collapse
|
21
|
Jiang S, Zheng W, Li Z, Tan J, Wu M, Li X, Hong SB, Deng J, Zhu Z, Zang Y. Enhanced Resistance to Sclerotinia sclerotiorum in Brassica rapa by Activating Host Immunity through Exogenous Verticillium dahliae Aspf2-like Protein (VDAL) Treatment. Int J Mol Sci 2022; 23:13958. [PMID: 36430439 PMCID: PMC9694685 DOI: 10.3390/ijms232213958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most destructive diseases in Brassica rapa. Verticillium dahliae Aspf2-like protein (VDAL) is a secretory protein of V. dahliae which has been shown to enhance the resistance against fungal infections in several plants. Nonetheless, the molecular mechanisms of VDAL-primed disease resistance are still poorly understood. In this study, we performed physiological, biochemical, and transcriptomic analyses of Brassica rapa in order to understand how VDAL confers resistance to S. sclerotiorumn infections in plants. The results showed that foliar application of VDAL significantly reduced the plaque area on leaves inoculated with S. sclerotiorum. It also enhanced antioxidant capacity by increasing activities of superoxide dismutase (SOD), peroxidase (POD), peroxidase (APX), glutathione reductase (GR), protoporphyrinogen oxidase (PPO), and defense-related enzymes β-1,3-glucanase and chitinase during the infection periods. This occurred in parallel with significantly reduced relative conductivity at different periods and lower malondialdehyde (MDA) content as compared to sole S. sclerotiorum inoculation. Transcriptomic analysis showed a total of 146 (81 up-regulated and 65 down-regulated) differentially expressed genes (DEGs) in VDAL-treated leaves compared to the control. The most enriched three Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were the mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and plant-pathogen interaction, all of which were associated with plant immunity. DEGs associated with MAPK and hormone signal transduction pathways were ethylene response sensor ERS2, EIN3 (Ethylene Insensitive3)-binding F-box protein 2 (EBF2), ethylene-responsive transcription factor ERF94, MAPK 9 (MKK9), protein phosphatase 2C (PP2C37), auxin-responsive proteins (AUX/IAA1 and 19), serine/threonine-protein kinase CTR1, and abscisic acid receptors (PLY 4 and 5). Among the DEGs linked with the plant-pathogen interaction pathway were calmodulin-like proteins (CML5, 24, 27), PTI1-like tyrosine protein kinase 3 (Pti13) and transcription factor MYB30, all of which are known to play key roles in pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI) for hypersensitive response (HR), cell wall reinforcement, and stomatal closure in plants. Overall, VDLA treatment triggered repression of the auxin and ABA signaling pathways and de-repression of the ethylene signaling pathways in young B. rapa seedlings to increase plant innate immunity. Our results showed that VDAL holds great potential to enhance fungal disease resistance in B. rapa crop.
Collapse
Affiliation(s)
- Shufang Jiang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingru Tan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinyuan Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA
| | - Jianyu Deng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
22
|
Ariyoshi C, Sant’ana GC, Felicio MS, Sera GH, Nogueira LM, Rodrigues LMR, Ferreira RV, da Silva BSR, de Resende MLV, Destéfano SAL, Domingues DS, Pereira LFP. Genome-wide association study for resistance to Pseudomonas syringae pv. garcae in Coffea arabica. FRONTIERS IN PLANT SCIENCE 2022; 13:989847. [PMID: 36330243 PMCID: PMC9624508 DOI: 10.3389/fpls.2022.989847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Bacteria halo blight (BHB), a coffee plant disease caused by Pseudomonas syringae pv. garcae, has been gaining importance in producing mountain regions and mild temperatures areas as well as in coffee nurseries. Most Coffea arabica cultivars are susceptible to this disease. In contrast, a great source of genetic diversity and resistance to BHB are found in C. arabica Ethiopian accessions. Aiming to identify quantitative trait nucleotides (QTNs) associated with resistance to BHB and the influence of these genomic regions during the domestication of C. arabica, we conducted an analysis of population structure and a Genome-Wide Association Study (GWAS). For this, we used genotyping by sequencing (GBS) and phenotyping for resistance to BHB of a panel with 120 C. arabica Ethiopian accessions from a historical FAO collection, 11 C. arabica cultivars, and the BA-10 genotype. Population structure analysis based on single-nucleotide polymorphisms (SNPs) markers showed that the 132 accessions are divided into 3 clusters: most wild Ethiopian accessions, domesticated Ethiopian accessions, and cultivars. GWAS, using the single-locus model MLM and the multi-locus models mrMLM, FASTmrMLM, FASTmrEMMA, and ISIS EM-BLASSO, identified 11 QTNs associated with resistance to BHB. Among these QTNs, the four with the highest values of association for resistance to BHB are linked to g000 (Chr_0_434_435) and g010741 genes, which are predicted to encode a serine/threonine-kinase protein and a nucleotide binding site leucine-rich repeat (NBS-LRR), respectively. These genes displayed a similar transcriptional downregulation profile in a C. arabica susceptible cultivar and in a C. arabica cultivar with quantitative resistance, when infected with P. syringae pv. garcae. However, peaks of upregulation were observed in a C. arabica cultivar with qualitative resistance, for both genes. Our results provide SNPs that have potential for application in Marker Assisted Selection (MAS) and expand our understanding about the complex genetic control of the resistance to BHB in C. arabica. In addition, the findings contribute to increasing understanding of the C. arabica domestication history.
Collapse
Affiliation(s)
- Caroline Ariyoshi
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina (UEL), Centro de Ciâncias Biológicas, Londrina, Brazil
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
| | | | - Mariane Silva Felicio
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
- Programa de pós-graduação em Ciências Biológicas (Genética), Universidade Estadual Paulista “Júlio de Mesquita Filho“ (UNESP), Instituto de Biociências, Campus de Botucatu, Botucatu, Brazil
| | - Gustavo Hiroshi Sera
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
| | - Livia Maria Nogueira
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina (UEL), Centro de Ciâncias Biológicas, Londrina, Brazil
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
| | | | - Rafaelle Vecchia Ferreira
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina (UEL), Centro de Ciâncias Biológicas, Londrina, Brazil
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
| | - Bruna Silvestre Rodrigues da Silva
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina (UEL), Centro de Ciâncias Biológicas, Londrina, Brazil
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
| | | | | | - Douglas Silva Domingues
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (USP), Piracicaba, Brazil
| | - Luiz Filipe Protasio Pereira
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina (UEL), Centro de Ciâncias Biológicas, Londrina, Brazil
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA-Café), Brasília, Brazil
| |
Collapse
|
23
|
Han P, Li R, Yue Q, Li F, Nie J, Yin Z, Xu M, Guan Q, Huang L. The Apple Receptor-Like Kinase MdSRLK3 Positively Regulates Resistance Against Pathogenic Fungus Valsa mali by Affecting the Ca 2+ Signaling Pathway. PHYTOPATHOLOGY 2022; 112:2187-2197. [PMID: 35509209 DOI: 10.1094/phyto-11-21-0471-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Valsa mali is the main pathogenic fungus that causes the apple Valsa canker, a destructive disease severely threatening apple production in the world. However, the underlying key components involved in resistance against V. mali in apple trees remain largely unexplored. Here, we isolated and functionally characterized a G-type lectin S-receptor-like protein kinase MdSRLK3 from the cultivar Royal Gala derivative line GL-3. qRT-PCR showed that the relative expression of MdSRLK3 in apple branches reached its highest level at 24 h post V. mali inoculation, which was 13.42 times higher than without inoculation. Transient overexpression of MdSRLK3 enhanced apple resistance against V. mali, while transient silencing of MdSRLK3 reduced its resistance against the pathogen. More importantly, stable silencing of MdSRLK3 resulted in reduced resistance against this fungus. Furthermore, we demonstrated that MdSRLK3 positively regulated apple resistance by affecting the Ca2+ signaling pathway, and the regulation was also related to the H2O2 and callose signaling pathways. Overall, our data reveal that MdSRLK3 is a positive regulator of apple immunity.
Collapse
Affiliation(s)
- Pengliang Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fudong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiajun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiyuan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Min CW, Jang JW, Lee GH, Gupta R, Yoon J, Park HJ, Cho HS, Park SR, Kwon SW, Cho LH, Jung KH, Kim YJ, Wang Y, Kim ST. TMT-based quantitative membrane proteomics identified PRRs potentially involved in the perception of MSP1 in rice leaves. J Proteomics 2022; 267:104687. [PMID: 35914717 DOI: 10.1016/j.jprot.2022.104687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022]
Abstract
Pathogen-associated molecular patterns (PAMPs) play a key role in triggering PAMPs triggered immunity (PTI) in plants. In the case of the rice-Magnaporthe oryzae pathosystem, fewer PAMPs and their pattern recognition receptors (PRRs) have been characterized. Recently, a M. oryzae snodprot1 homolog protein (MSP1) has been identified that functions as PAMP and triggering the PTI responses in rice. However, the molecular mechanism underlying MSP1-induced PTI is currently elusive. Therefore, we generated MSP1 overexpressed transgenic lines of rice, and a tandem mass tag (TMT)-based quantitative membrane proteomic analysis was employed to decipher the potential MSP1-induced signaling in rice using total cytosolic as well as membrane protein fractions. This approach led to the identification of 8033 proteins of which 1826 were differentially modulated in response to overexpression of MSP1 and/or exogenous jasmonic acid treatment. Of these, 20 plasma membrane-localized receptor-like kinases (RLKs) showed increased abundance in MSP1 overexpression lines. Moreover, activation of proteins related to the protein degradation and modification, calcium signaling, redox, and MAPK signaling was observed in transgenic lines expressing MSP1 in the apoplast. Taken together, our results identified potential PRR candidates involved in MSP1 recognition and suggested the overview mechanism of the MSP1-induced PTI signaling in rice leaves. SIGNIFICANCE: In plants, recognition of pathogen pathogen-derived molecules, such as PAMPs, by plant plant-derived PRRs has an essential role for in the activation of PTI against pathogen invasion. Typically, PAMPs are recognized by plasma membrane (PM) localized PRRs, however, identifying the PM-localized PRR proteins is challenging due to their low abundance. In this study, we performed an integrated membrane protein enrichment by microsomal membrane extraction (MME) method and subsequent TMT-labeling-based quantitative proteomic analysis using MSP1 overexpressed rice. Based on these results, we successfully identified various intracellular and membrane membrane-localized proteins that participated in the MSP1-induced immune response and characterized the potential PM-localized PRR candidates in rice.
Collapse
Affiliation(s)
- Cheol Woo Min
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Gi Hyun Lee
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Jinmi Yoon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Hyun Ji Park
- Plant System Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hye Sun Cho
- Plant System Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Soon-Wook Kwon
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Yu-Jin Kim
- Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Yiming Wang
- Key Laboratory of Biological Interactions and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
25
|
Miao Z, Wang G, Shen H, Wang X, Gabriel DW, Liang W. BcMettl4-Mediated DNA Adenine N6-Methylation Is Critical for Virulence of Botrytis cinerea. Front Microbiol 2022; 13:925868. [PMID: 35847085 PMCID: PMC9279130 DOI: 10.3389/fmicb.2022.925868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
DNA adenine N6-methylation (6mA) plays a critical role in various biological functions, but its occurrence and functions in filamentous plant pathogens are largely unexplored. Botrytis cinerea is an important pathogenic fungus worldwide. A systematic analysis of 6mA in B. cinerea was performed in this study, revealing that 6mA is widely distributed in the genome of this fungus. The 2 kb regions flanking many genes, particularly the upstream promoter regions, were susceptible to methylation. The role of BcMettl4, a 6mA methyltransferase, in the virulence of B. cinerea was investigated. BcMETTL4 disruption and point mutations of its catalytic motif “DPPW” both resulted in significant 6mA reduction in the genomic DNA and in reduced virulence of B. cinerea. RNA-Seq analysis revealed a total of 13 downregulated genes in the disruption mutant ΔBcMettl4 in which methylation occurred at the promoter sites. These were involved in oxidoreduction, secretory pathways, autophagy and carbohydrate metabolism. Two of these genes, BcFDH and BcMFS2, were independently disrupted. Knockout of BcFDH led to reduced sclerotium formation, while disruption of BcMFS2 resulted in dramatically decreased conidium formation and pathogenicity. These observations indicated that 6mA provides potential epigenetic markers in B. cinerea and that BcMettl4 regulates virulence in this important plant pathogen.
Collapse
Affiliation(s)
- Zhengang Miao
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Heng Shen
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
| | - Xue Wang
- Yantai Agricultural Technology Extension Center, Yantai, China
| | - Dean W. Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Wenxing Liang
- College of Plant Health and Medicine, Engineering Research Center for Precision Pest Management for Fruits and Vegetables of Qingdao, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Wenxing Liang,
| |
Collapse
|
26
|
Tomato Response to Fusarium spp. Infection under Field Conditions: Study of Potential Genes Involved. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tomato is one of the most important horticultural crops in the world and is severely affected by Fusarium diseases. To successfully manage these diseases, new insights on the expression of plant–pathogen interaction genes involved in immunity responses to Fusarium spp. infection are required. The aim of this study was to assess the level of infection of Fusarium spp. in field tomato samples and to evaluate the differential expression of target genes involved in plant–pathogen interactions in groups presenting different infection levels. Our study was able to detect Fusarium spp. in 16 from a total of 20 samples, proving the effectiveness of the primer set designed in the ITS region for its detection, and allowed the identification of two main different species complexes: Fusarium oxysporum and Fusarium incarnatum-equiseti. Results demonstrated that the level of infection positively influenced the expression of the transcription factor WRKY41 and the CBEF (calcium-binding EF hand family protein) genes, involved in plant innate resistance to pathogens. To the best of our knowledge, this is the first time that the expression of tomato defense-related gene expression is studied in response to Fusarium infection under natural field conditions. We highlight the importance of these studies for the identification of candidate genes to incorporate new sources of resistance in tomato and achieve sustainable plant disease management.
Collapse
|
27
|
Zhao F, Niu K, Tian X, Du W. Triticale Improvement: Mining of Genes Related to Yellow Rust Resistance in Triticale Based on Transcriptome Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:883147. [PMID: 35615122 PMCID: PMC9125219 DOI: 10.3389/fpls.2022.883147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 05/27/2023]
Abstract
Yellow (stripe) rust caused by Puccinia striiformis f. sp. tritici (Pst) is a major destructive fungal disease of small grain cereals, leading to large yield losses. The breeding of resistant varieties is an effective, sustainable way to control yellow rust. Elucidation of resistance mechanisms against yellow rust and identification of candidate genes associated with rust resistance are thus crucial. In this study, seedlings of two Triticosecale Wittmack cultivars, highly resistant Gannong No. 2 and susceptible Shida No. 1, were inoculated with Pst race CYR34. Transcriptome sequencing (RNA-seq) was then used to investigate their transcriptional responses against pathogen infection before and after the appearance of symptoms-10 and 20 days after inoculation, respectively. According to the RNA-seq data, the number of upregulated and downregulated differentially expressed genes (DEGs) in the resistant cultivar was greater than in the susceptible cultivar. A total of 2,560 DEGs commonly expressed in the two cultivars on two sampling dates were subjected to pathway analysis, which revealed that most DEGs were closely associated with defense and metabolic activities. Transcription factor enrichment analysis indicated that the expressions of NAC, WRKY, and FAR1 families were also significantly changed. Further in-depth analysis of resistance genes revealed that almost all serine/threonine-protein kinases were upregulated in the resistant cultivar. Other genes related to disease resistance, such as those encoding disease-resistance- and pathogenesis-related proteins were differentially regulated in the two cultivars. Our findings can serve as a resource for gene discovery and facilitate elucidation of the complex defense mechanisms involved in triticale resistance to Pst.
Collapse
|
28
|
Aslam MQ, Naqvi RZ, Zaidi SSEA, Asif M, Akhter KP, Scheffler BE, Scheffler JA, Liu SS, Amin I, Mansoor S. Analysis of a tetraploid cotton line Mac7 transcriptome reveals mechanisms underlying resistance against the whitefly Bemisia tabaci. Gene 2022; 820:146200. [PMID: 35131368 DOI: 10.1016/j.gene.2022.146200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023]
Abstract
Whitefly inflicts both direct and indirect losses to cotton crop. Whitefly resistant cotton germplasm is a high priority and considered among the best possible solutions to mitigate this issue. In this study, we evaluated cotton leaf curl disease (CLCuD) resistant cotton line Mac7 under whitefly stress. Furthermore, we utilized the already available transcriptome data of Mac7 concerning whitefly stress to elucidate associated mechanisms and identify functionally important genes in cotton. In transcriptomic data analysis, differentially expressed genes (DEGs) were found involved in complex relay pathways, activated on whitefly exposure. The response implicates signalling through resistance genes (R-genes), MAPK, ROS, VQs or RLKs, transcription factors, which leads to the activation of defence responses including, Ca2+messengers, phytohormonal cross-talk, gossypol, flavonoids, PhasiRNA and susceptibility genes (S-genes). The qRT-PCR assay of 10 functionally important genes also showed their involvement in differential responses at 24 and 48 h post whitefly infestation. Briefly, our study helps in understanding the resistant nature of Mac7 under whitefly stress.
Collapse
Affiliation(s)
- Muhammad Qasim Aslam
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | | | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | | | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 141 Experimental Station Road, Stoneville, MS, United States
| | - Jodi A Scheffler
- Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 141 Experimental Station Road, Stoneville, MS, United States
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan.
| |
Collapse
|
29
|
Transcriptome Analysis of the Cf-13-Mediated Hypersensitive Response of Tomato to Cladosporium fulvum Infection. Int J Mol Sci 2022; 23:ijms23094844. [PMID: 35563232 PMCID: PMC9102077 DOI: 10.3390/ijms23094844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Tomato leaf mold disease caused by Cladosporium fulvum (C. fulvum) is one of the most common diseases affecting greenhouse tomato production. Cf proteins can recognize corresponding AVR proteins produced by C. fulvum, and Cf genes are associated with leaf mold resistance. Given that there are many physiological races of C. fulvum and that these races rapidly mutate, resistance to common Cf genes (such as Cf-2, Cf-4, Cf-5, and Cf-9) has decreased. In the field, Ont7813 plants (carrying the Cf-13 gene) show effective resistance to C. fulvum; thus, these plants could be used as new, disease-resistant materials. To explore the mechanism of the Cf-13-mediated resistance response, transcriptome sequencing was performed on three replicates each of Ont7813 (Cf-13) and Moneymaker (MM; carrying the Cf-0 gene) at 0, 9, and 15 days after inoculation (dai) for a total of 18 samples. In total, 943 genes were differentially expressed, specifically in the Ont7813 response process as compared to the Moneymaker response process. Gene ontology (GO) classification of these 943 differentially expressed genes (DEGs) showed that GO terms, including "hydrogen peroxide metabolic process (GO_Process)", "secondary active transmembrane transporter activity (GO_Function)", and "mismatch repair complex (GO_Component)", which were the same as 11 other GO terms, were significantly enriched. An analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many key regulatory genes of the Cf-13-mediated resistance response processes were involved in the "plant hormone signal transduction" pathway, the "plant-pathogen interaction" pathway, and the "MAPK signaling pathway-plant" pathway. Moreover, during C. fulvum infection, jasmonic acid (JA) and salicylic acid (SA) contents significantly increased in Ont7813 at the early stage. These results lay a vital foundation for further understanding the molecular mechanism of the Cf-13 gene in response to C. fulvum infection.
Collapse
|
30
|
Yang R, Wang J, Cai Z, Shen Y, Gan Z, Duan B, Yuan J, Huang T, Zhang W, Du H, Wan C, Chen J, Zhu L. Transcriptome profiling to elucidate mechanisms of the enhancement of the resistance to Botryosphaeria dothidea by nitric oxide in postharvest kiwifruit during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Full-Length Transcriptome Sequencing-Based Analysis of Pinus sylvestris var. mongolica in Response to Sirex noctilio Venom. INSECTS 2022; 13:insects13040338. [PMID: 35447780 PMCID: PMC9029201 DOI: 10.3390/insects13040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Sirex noctilio, as a devastating international forestry quarantine pest whose venom can cause a series of physiological changes in the host plants, such as needle wilting, yellowing, decreased transpiration rate and increased respiration rate, etc. In this study, a full-length reference transcript of Pinus sylvestris var. mongolica was constructed by combining second- and third-generation transcriptome sequencing technologies. We also identified the specific expression genes and transcription factors of P. sylvestris var. mongolica under S. noctilio venom and wounding stress. S. noctilio venom mainly induced the expression of genes related to ROS, GAPDH and GPX, and mechanical damage mainly induced the photosynthesis−related genes. The results provide a better understanding of the molecular regulation of pine trees in response to S. noctilio venom. Abstract Sirex noctilio is a major international quarantine pest that recently emerged in northeast China to specifically invade conifers. During female oviposition, venom is injected into the host together with its symbiotic fungus to alter the normal Pinus physiology and weaken or even kill the tree. In China, the Mongolian pine (Pinus sylvestris var. mongolica), an important wind-proof and sand-fixing species, is the unique host of S. noctilio. To explore the interplay between S. noctilio venom and Mongolian pine, we performed a transcriptome comparative analysis of a 10-year-old Mongolian pine after wounding and inoculation with S. noctilio venom. The analysis was performed at 12 h, 24 h and 72 h. PacBio ISO-seq was used and integrated with RNA-seq to construct an accurate full-length transcriptomic database. We obtained 52,963 high-precision unigenes, consisting of 48,654 (91.86%) unigenes that were BLASTed to known sequences in the public database and 4309 unigenes without any annotation information, which were presumed to be new genes. The number of differentially expressed genes (DEGs) increased with the treatment time, and the DEGs were most abundant at 72 h. A total of 706 inoculation-specific DEGs (475 upregulated and 231 downregulated) and 387 wounding-specific DEGs (183 upregulated and 204 downregulated) were identified compared with the control. Under venom stress, we identified 6 DEGs associated with reactive oxygen species (ROS) and 20 resistance genes in Mongolian pine. Overall, 52 transcription factors (TFs) were found under venom stress, 45 of which belonged to the AP2/ERF TF family and were upregulated. A total of 13 genes related to the photosystem, 3 genes related photo-regulation, and 9 TFs were identified under wounding stress. In conclusion, several novel putative genes were found in Mongolian pine by PacBio ISO seq. Meanwhile, we also identified various genes that were resistant to S. noctilio venom, such as GAPDH, GPX, CAT, FL2, CERK1, and HSP83A, etc.
Collapse
|
32
|
Wang C, Wang B, Cao L, Zhang Y, Gao Y, Cao Y, Zhang Y, Liu Q, Zhang X. Identification and Gene Mapping of the Lesion Mimic Mutant lm8015-3. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.809008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lesion mimic mutants (LMMs) exhibit spots on leaves without fungal infection pressure. The spots confer variable resistance to pathogens in different LMM, making them useful research materials. It is unclear how the rice immune system responds to infection with the fungal pathogen Magnaporthe oryzae (M. oryzae). Here, we identified a rice LMM, lm8015-3, which shows reduced resistance to M. oryzae. We used Quantitative Real-Time PCR (qRT-PCR) to observe the immune system response to M. oryzae–induced lm8015-3. Lm8015-3, obtained from an ethyl methane sulfonate (EMS)–induced Zhonghui8015 (ZH8015) library, showed orange-yellow spots starting in the seedling stage and accumulated more H2O2, resulting in severe degradation of the chloroplast. With map-based cloning, the target gene was located on chromosome 12. Once inoculated with M. oryzae, the expression level of pathogen-related genes of lm8015-3 was downregulated between 48 and 72 h. In addition, more germinating spores appeared in lm8015-3. Therefore, we conclude that M. oryzae weakening the immune system of lm8015-3 from 48 to 72 h makes lm8015-3 more susceptible to M. oryzae. These results suggested that understanding how LMMs defend against M. oryzae infection will contribute to improving rice breeding.
Collapse
|
33
|
Han W, Zhao J, Deng X, Gu A, Li D, Wang Y, Lu X, Zu Q, Chen Q, Chen Q, Zhang J, Qu Y. Quantitative Trait Locus Mapping and Identification of Candidate Genes for Resistance to Fusarium Wilt Race 7 Using a Resequencing-Based High Density Genetic Bin Map in a Recombinant Inbred Line Population of Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2022; 13:815643. [PMID: 35371113 PMCID: PMC8965654 DOI: 10.3389/fpls.2022.815643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 05/16/2023]
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (FOV) is one of the most destructive diseases in cotton (Gossypium spp.) production, and use of resistant cultivars is the most cost-effective method managing the disease. To understand the genetic basis of cotton resistance to FOV race 7 (FOV7), this study evaluated a recombinant inbred line (RIL) population of 110 lines of G. barbadense from a cross between susceptible Xinhai 14 and resistant 06-146 in eight tests and constructed a high-density genetic linkage map with resequencing-based 933,845 single-nucleotide polymorphism (SNP) markers covering a total genetic distance of 2483.17 cM. Nine quantitative trait loci (QTLs) for FOV7 resistance were identified, including qFOV7-D03-1 on chromosome D03 in two tests. Through a comparative analysis of gene expression and DNA sequence for predicted genes within the QTL region between the two parents and selected lines inoculated with FOV7, GB_D03G0217 encoding for a calmodulin (CaM)-like (CML) protein was identified as a candidate gene. A further analysis confirmed that the expression of GB_D03G0217 was suppressed, leading to increased disease severity in plants of the resistant parent with virus induced gene silencing (VIGS).
Collapse
Affiliation(s)
- Wanli Han
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Jieyin Zhao
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Xiaojuan Deng
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Aixing Gu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Duolu Li
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Yuxiang Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Xiaoshuang Lu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Qianli Zu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Qin Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Yanying Qu
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
34
|
Zhao N, Wang W, Jiang K, Grover CE, Cheng C, Pan Z, Zhao C, Zhu J, Li D, Wang M, Xiao L, Yang J, Ning X, Li B, Xu H, Su Y, Aierxi A, Li P, Guo B, Wendel JF, Kong J, Hua J. A Calmodulin-Like Gene ( GbCML7) for Fiber Strength and Yield Improvement Identified by Resequencing Core Accessions of a Pedigree in Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2022; 12:815648. [PMID: 35185964 PMCID: PMC8850914 DOI: 10.3389/fpls.2021.815648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 05/23/2023]
Abstract
Sea Island cotton (Gossypium barbadense) is world-renowned for its superior natural fiber. Although fiber strength is one of the most important fiber quality traits, genes contributing to fiber strength are poorly understood. Production of sea island cotton also is inextricably linked to improving its relatively low yield, thus enhancing the importance of joint improvement of both fiber quality and yield. We used genomic variation to uncover the genetic evidence of trait improvement resulting from pedigree breeding of Sea Island cotton. This pedigree was aimed at improving fiber strength and yielded an elite cultivar, XH35. Using a combination of genome-wide association study (GWAS) and selection screens, we detected 82 putative fiber-strength-related genes. Expression analysis confirmed a calmodulin-like gene, GbCML7, which enhanced fiber strength in a specific haplotype. This gene is a major-effect gene, which interacts with a minor-effect gene, GbTUA3, facilitating the enhancement of fiber strength in a synergistic fashion. Moreover, GbCML7 participates in the cooperative improvement of fiber strength, fiber length, and fiber uniformity, though a slight compromise exists between the first two of these traits and the latter. Importantly, GbCML7 is shown to boost yield in some backgrounds by increasing multiple yield components to varying degrees, especially boll number. Our work provides valuable genomic evidence and a key genetic factor for the joint improvement of fiber quality and yield in Sea Island cotton.
Collapse
Affiliation(s)
- Nan Zhao
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Weiran Wang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Kaiyun Jiang
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Cheng Cheng
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhuanxia Pan
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Cunpeng Zhao
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jiahui Zhu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Dan Li
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Meng Wang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Li Xiao
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Jing Yang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Xinmin Ning
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Bin Li
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haijiang Xu
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Ying Su
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Alifu Aierxi
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Pengbo Li
- Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, China
| | - Baosheng Guo
- Cotton Research Institute, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Ürümqi, China
| | - Jinping Hua
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
35
|
Chickpea Roots Undergoing Colonisation by Phytophthora medicaginis Exhibit Opposing Jasmonic Acid and Salicylic Acid Accumulation and Signalling Profiles to Leaf Hemibiotrophic Models. Microorganisms 2022; 10:microorganisms10020343. [PMID: 35208798 PMCID: PMC8874544 DOI: 10.3390/microorganisms10020343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hemibiotrophic pathogens cause significant losses within agriculture, threatening the sustainability of food systems globally. These microbes colonise plant tissues in three phases: a biotrophic phase followed by a biotrophic-to-necrotrophic switch phase and ending with necrotrophy. Each of these phases is characterized by both common and discrete host transcriptional responses. Plant hormones play an important role in these phases, with foliar models showing that salicylic acid accumulates during the biotrophic phase and jasmonic acid/ethylene responses occur during the necrotrophic phase. The appropriateness of this model to plant roots has been challenged in recent years. The need to understand root responses to hemibiotrophic pathogens of agronomic importance necessitates further research. In this study, using the root hemibiotroph Phytophthora medicaginis, we define the duration of each phase of pathogenesis in Cicer arietinum (chickpea) roots. Using transcriptional profiling, we demonstrate that susceptible chickpea roots display some similarities in response to disease progression as previously documented in leaf plant–pathogen hemibiotrophic interactions. However, our transcriptomic results also show that chickpea roots do not conform to the phytohormone responses typically found in leaf colonisation by hemibiotrophs. We found that quantified levels of salicylic acid concentrations in root tissues decreased significantly during biotrophy while jasmonic acid concentrations were significantly induced. This study demonstrated that a wider spectrum of plant species should be investigated in the future to understand the physiological changes in plants during colonisation by soil-borne hemibiotrophic pathogens before we can better manage these economically important microbes.
Collapse
|
36
|
Mino M, Tezuka T, Shomura S. The hybrid lethality of interspecific F 1 hybrids of Nicotiana: a clue to understanding hybrid inviability-a major obstacle to wide hybridization and introgression breeding of plants. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:10. [PMID: 37309322 PMCID: PMC10248639 DOI: 10.1007/s11032-022-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Reproductive isolation poses a major obstacle to wide hybridization and introgression breeding of plants. Hybrid inviability in the postzygotic isolation barrier inevitably reduces hybrid fitness, consequently causing hindrances in the establishment of novel genotypes from the hybrids among genetically divergent parents. The idea that the plant immune system is involved in the hybrid problem is applicable to the intra- and/or interspecific hybrids of many different taxa. The lethality characteristics and expression profile of genes associated with the hypersensitive response of the hybrids, along with the suppression of causative genes, support the deleterious epistatic interaction of parental NB-LRR protein genes, resulting in aberrant hyper-immunity reactions in the hybrid. Moreover, the cellular, physiological, and biochemical reactions observed in hybrid cells also corroborate this hypothesis. However, the difference in genetic backgrounds of the respective hybrids may contribute to variations in lethality phenotypes among the parental species combinations. The mixed state in parental components of the chaperone complex (HSP90-SGT1-RAR1) in the hybrid may also affect the hybrid inviability. This review article discusses the facts and hypothesis regarding hybrid inviability, alongside the findings of studies on the hybrid lethality of interspecific hybrids of the genus Nicotiana. A possible solution for averting the hybrid problem has also been scrutinized with the aim of improving the wide hybridization and introgression breeding program in plants.
Collapse
Affiliation(s)
- Masanobu Mino
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Takahiro Tezuka
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Sachiko Shomura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| |
Collapse
|
37
|
Aleynova OA, Suprun AR, Ananev AA, Nityagovsky NN, Ogneva ZV, Dubrovina AS, Kiselev KV. Effect of Calmodulin-like Gene (CML) Overexpression on Stilbene Biosynthesis in Cell Cultures of Vitis amurensis Rupr. PLANTS 2022; 11:plants11020171. [PMID: 35050059 PMCID: PMC8778512 DOI: 10.3390/plants11020171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Stilbenes are plant phenolics known to rapidly accumulate in grapevine and other plants in response to injury or pathogen attack and to exhibit a great variety of healing beneficial effects. It has previously been shown that several calmodulin-like protein (CML) genes were highly up-regulated in cell cultures of wild-growing grapevine Vitis amurensis Rupr. in response to stilbene-modulating conditions, such as stress hormones, UV-C, and stilbene precursors. Both CML functions and stilbene biosynthesis regulation are still poorly understood. In this study, we investigated the effect of overexpression of five VaCML genes on stilbene and biomass accumulation in the transformed cell cultures of V. amurensis. We obtained 16 transgenic cell lines transformed with the VaCML52, VaCML65, VaCML86, VaCML93, and VaCML95 genes (3–4 independent lines per gene) under the control of the double CaMV 35S promoter. HPLC-MS analysis showed that overexpression of the VaCML65 led to a considerable and consistent increase in the content of stilbenes of 3.8–23.7 times in all transformed lines in comparison with the control calli, while biomass accumulation was not affected. Transformation of the V. amurensis cells with other analyzed VaCML genes did not lead to a consistent and considerable effect on stilbene biosynthesis in the cell lines. The results indicate that the VaCML65 gene is implicated in the signaling pathway regulating stilbene biosynthesis as a strong positive regulator and can be useful in viticulture and winemaking for obtaining grape cultivars with a high content of stilbenes and stress resistance.
Collapse
Affiliation(s)
- Olga A. Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Andrey R. Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Alexey A. Ananev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
- Department of Biochemistry and Biotechnology, Institute of the World Ocean, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Nikolay N. Nityagovsky
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Zlata V. Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
| | - Konstantin V. Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, FEB RAS, 690022 Vladivostok, Russia; (O.A.A.); (A.R.S.); (A.A.A.); (N.N.N.); (Z.V.O.); (A.S.D.)
- Correspondence: ; Tel.: +8-423-2310410; Fax: +8-4232-310193
| |
Collapse
|
38
|
Cai K, Kuang L, Yue W, Xie S, Xia X, Zhang G, Wang J. Calmodulin and calmodulin-like gene family in barley: Identification, characterization and expression analyses. FRONTIERS IN PLANT SCIENCE 2022; 13:964888. [PMID: 36061813 PMCID: PMC9439640 DOI: 10.3389/fpls.2022.964888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/29/2022] [Indexed: 05/11/2023]
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are Ca2+ relays and play diverse and multiple roles in plant growth, development and stress responses. However, CaM/CML gene family has not been identified in barley (Hordeum vulgare). In the present study, 5 HvCaMs and 80 HvCMLs were identified through a genome-wide analysis. All HvCaM proteins possessed 4 EF-hand motifs, whereas HvCMLs contained 1 to 4 EF-hand motifs. HvCaM2, HvCaM3 and HvCaM5 coded the same polypeptide although they differed in nucleotide sequence, which was identical to the polypeptides coded by OsCaM1-1, OsCaM1-2 and OsCaM1-3. HvCaMs/CMLs were unevenly distributed over barley 7 chromosomes, and could be phylogenetically classified into 8 groups. HvCaMs/CMLs differed in gene structure, cis-acting elements and tissue expression patterns. Segmental and tandem duplication were observed among HvCaMs/CMLs during evolution. HvCML16, HvCML18, HvCML50 and HvCML78 were dispensable genes and the others were core genes in barley pan-genome. In addition, 14 HvCaM/CML genes were selected to examine their responses to salt, osmotic and low potassium stresses by qRT-PCR, and their expression were stress-and time-dependent. These results facilitate our understanding and further functional identification of HvCaMs/CMLs.
Collapse
Affiliation(s)
- Kangfeng Cai
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Liuhui Kuang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Wenhao Yue
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
| | - Shanggeng Xie
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Xue Xia
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Junmei Wang
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- National Barley Improvement Centre, Hangzhou, China
- *Correspondence: Junmei Wang,
| |
Collapse
|
39
|
Xu Y, Shang K, Wang C, Yu Z, Zhao X, Song Y, Meng F, Zhu C. WIPK-NtLTP4 pathway confers resistance to Ralstonia solanacearum in tobacco. PLANT CELL REPORTS 2022; 41:249-261. [PMID: 34697685 DOI: 10.1007/s00299-021-02808-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE WIPK-NtLTP4 module improves the resistance to R. solanacearum via upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure in tobacco. Lipid transfer proteins (LTPs) are a class of small lipid binding proteins that play important roles in biotic and abiotic stresses. The previous study revealed that NtLTP4 positively regulates salt and drought stresses in Nicotiana tabacum. However, the role of NtLTP4 in biotic stress, especially regarding its function in disease resistance remains unclear. Here, the critical role of NtLTP4 in regulating resistance to Ralstonia solanacearum (R. solanacearum), a causal agent of bacterial wilt disease in tobacco, was reported. The NtLTP4-overexpressing lines markedly improved the resistance to R. solanacearum by upregulating the expression of defense-related genes, increasing the antioxidant enzyme activity, and promoting stomatal closure. Moreover, NtLTP4 interacted with wound-induced protein kinase (WIPK; a homolog of MAPK3 in tobacco) and acted in a genetically epistatic manner to WIPK in planta. WIPK could directly phosphorylate NtLTP4 to positively regulate its protein abundance. Taken together, these results broaden the knowledge about the functions of the WIPK-NtLTP4 module in disease resistance and may provide valuable information for improving tobacco plant tolerance to R. solanacearum.
Collapse
Affiliation(s)
- Yang Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, 266100, People's Republic of China
| | - Kaijie Shang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Chenchen Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Zipeng Yu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Xuechen Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Yunzhi Song
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Fanxiao Meng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
40
|
Tian XY, He DD, Bai S, Zeng WZ, Wang Z, Wang M, Wu LQ, Chen ZC. Physiological and molecular advances in magnesium nutrition of plants. PLANT AND SOIL 2021; 468:1-17. [PMID: 0 DOI: 10.1007/s11104-021-05139-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/25/2021] [Indexed: 05/27/2023]
|
41
|
Jia Y, Li Q, Li Y, Zhai W, Jiang G, Li C. Inducible Enrichment of Osa-miR1432 Confers Rice Bacterial Blight Resistance through Suppressing OsCaML2. Int J Mol Sci 2021; 22:ijms222111367. [PMID: 34768797 PMCID: PMC8583624 DOI: 10.3390/ijms222111367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 01/20/2023] Open
Abstract
MicroRNAs (miRNAs) handle immune response to pathogens by adjusting the function of target genes in plants. However, the experimentally documented miRNA/target modules implicated in the interplay between rice and Xanthomonas oryzae pv. oryzae (Xoo) are still in the early stages. Herein, the expression of osa-miR1432 was induced in resistant genotype IRBB5, but not susceptible genotype IR24, under Xoo strain PXO86 attack. Overexpressed osa-miR1432 heightened rice disease resistance to Xoo, indicated by enhancive enrichment of defense marker genes, raised reactive oxygen species (ROS) levels, repressed bacterial growth and shortened leaf lesion length, whilst the disruptive accumulation of osa-miR1432 accelerated rice susceptibility to Xoo infection. Noticeably, OsCaML2 (LOC_Os03g59770) was experimentally confirmed as a target gene of osa-miR1432, and the overexpressing OsCaML2 transgenic plants exhibited compromised resistance to Xoo infestation. Our results indicate that osa-miR1432 and OsCaML2 were differently responsive to Xoo invasion at the transcriptional level and fine-tune rice resistance to Xoo infection, which may be referable in resistance gene discovery and valuable in the pursuit of improving Xoo resistance in rice breeding.
Collapse
|
42
|
Wang J, Song J, Wu XB, Deng QQ, Zhu ZY, Ren MJ, Ye M, Zeng RS. Seed priming with calcium chloride enhances wheat resistance against wheat aphid Schizaphis graminum Rondani. PEST MANAGEMENT SCIENCE 2021; 77:4709-4718. [PMID: 34146457 DOI: 10.1002/ps.6513] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Calcium is an essential macronutrient for plant growth. Although it has been shown that exogenous Ca application can increase plant resistance to abiotic stress, little is known about its potential to enhance plant tolerance to biotic stress. Here, we investigated whether pretreatment of wheat (Triticum aestivum L.) seeds with calcium chloride (CaCl2 ) improves plant resistance against wheat aphid (Schizaphis graminum Rondani). The developmental time, population size, feeding behavior of aphids on plants grown from CaCl2 - and water-pretreated seeds, and plant defense responses to aphid attack were investigated. RESULTS Seed pretreatment with CaCl2 extended aphid development time and reduced aphid population size and feeding efficiency. In addition, the pretreatment significantly increased the concentration of Ca2+ in wheat leaves, and upregulated expression levels of TaCaM genes and callose synthase genes (TaGSL2, TaGSL8, TaGSL10, TaGSL12, TaGSL19, TaGSL22 and TaGSL23). Callose concentration in the leaves of plants grown from CaCl2 -pretreated seeds increased significantly upon aphid attack. Further, callose deposition was observed mainly in the phloem. CONCLUSION These results suggest that seed pretreatment with CaCl2 primes the plant response against wheat aphid attack, leading to modulation of callose deposition in the phloem in response to aphid attack. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Jia Song
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Xiao-Bao Wu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Qian-Qian Deng
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Zhong-Yan Zhu
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ming-Jian Ren
- Guizhou Branch of the National Wheat Improvement Center, Guiyang, China
| | - Mao Ye
- Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture, Guiyang, China
| | - Ren-Sen Zeng
- Key Laboratory of the Ministry of Education for Genetics, Breeding, and Multiple Uses of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
43
|
Bakade R, Ingole KD, Deshpande S, Pal G, Patil SS, Bhattacharjee S, Prasannakumar MK, Ramu VS. Comparative Transcriptome Analysis of Rice Resistant and Susceptible Genotypes to Xanthomonas oryzae pv. oryzae Identifies Novel Genes to Control Bacterial Leaf Blight. Mol Biotechnol 2021; 63:719-731. [PMID: 33993401 DOI: 10.1007/s12033-021-00338-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/11/2021] [Indexed: 01/04/2023]
Abstract
The bacterial leaf blight in rice caused by Xanthomonas oryzae pv. oryzae (Xoo) affects crop losses worldwide. In spite of developing resistant varieties by introgressing different Xa genes, the occurrence of diseases is evident. Here we report identification of several genes that are associated with improved plant immunity against Xoo in a resistant genotype BPT-5204 in comparison with susceptible genotype TN-1. The RNA sequencing information was developed to identify the genes that could provide durable resistance in rice. Xoo-resistant rice genotype BPT-5204 with Xa 5, 13 and 21 genes is compared with sensitive Taichung Native 1 (TN-1) to identify the genetic pathways and gene networks involved in resistance mechanisms. The higher levels of salicylic acid resulted in upregulation of many pathogenesis-related (PR) and redox protein encoding transcripts which resulted in higher hypersensitive response in BPT-5204. Many Serine/threonine protein kinase, leucine-rich repeat (LRR) transmembrane protein kinase, protein kinase family genes, Wall-associated kinase (WAK) were upregulated that resulted in activation of bZIP, WRKY, MYB, DOF and HSFs transcription factors that are associated with improved plant immunity. The study provided roles of many genes and their associated plant immunity pathways that can be used for developing resistant rice cultivars.
Collapse
Affiliation(s)
- Rahul Bakade
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - Kishor D Ingole
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121 001, India
| | - Sanjay Deshpande
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121 001, India
| | - Garima Pal
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121 001, India
| | - Swathi S Patil
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - Saikat Bhattacharjee
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121 001, India
| | - M K Prasannakumar
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru, 560065, India
| | - Vemanna S Ramu
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121 001, India.
| |
Collapse
|
44
|
Gahtyari NC, Roy C, He X, Roy KK, Reza MMA, Hakim MA, Malaker PK, Joshi AK, Singh PK. Identification of QTLs for Spot Blotch Resistance in Two Bi-Parental Mapping Populations of Wheat. PLANTS 2021; 10:plants10050973. [PMID: 34068273 PMCID: PMC8153151 DOI: 10.3390/plants10050973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Spot blotch (SB) disease caused by the hemibiotrophic pathogen Bipolaris sorokiniana inflicting major losses to the wheat grown in warm and highly humid areas of the Indian subcontinent, including Bangladesh, necessitates identification of QTLs stably expressing in Indian subcontinent conditions. Thus, two RIL mapping populations, i.e., WC (WUYA × CIANO T79) and KC (KATH × CIANO T79), were phenotyped at Dinajpur, Bangladesh for three consecutive years (2013-2015) and genotyped on a DArTseq genotyping by sequencing (GBS) platform at CIMMYT, Mexico. In both populations, quantitative inheritance along with transgressive segregation for SB resistance was identified. The identified QTLs were mostly minor and were detected on 10 chromosomes, i.e., 1A, 1B, 2A, 2B, 2D, 4B, 4D, 5A, 5D, and 7B. The phenotypic variation explained by the identified QTLs ranged from 2.3–15.0%, whereby QTLs on 4B (13.7%) and 5D (15.0%) were the largest in effect. The identified QTLs upon stacking showed an additive effect in lowering the SB score in both populations. The probable presence of newly identified Sb4 and durable resistance gene Lr46 in the identified QTL regions indicates the importance of these genes in breeding for SB resistance in Bangladesh and the whole of South Asia.
Collapse
Affiliation(s)
- Navin C. Gahtyari
- ICAR—Vivekanand Parvatiya Krishi Anushandhan Sansthan, Almora, Uttarakhand 263601, India;
| | - Chandan Roy
- Department of Plant Breeding and Genetics, Bihar Agricultural University, Sabour, Bihar 813210, India;
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico;
| | - Krishna K. Roy
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Mohamed M. A. Reza
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Md. A. Hakim
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Paritosh K. Malaker
- Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, Bangladesh; (K.K.R.); (M.M.A.R.); (M.A.H.); (P.K.M.)
| | - Arun K. Joshi
- CIMMYT/Borlaug Institute for South Asia, NASC Complex, DPS Marg, New Delhi 110012, India;
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico;
- Correspondence:
| |
Collapse
|
45
|
Mazumdar P, Singh P, Kethiravan D, Ramathani I, Ramakrishnan N. Late blight in tomato: insights into the pathogenesis of the aggressive pathogen Phytophthora infestans and future research priorities. PLANTA 2021; 253:119. [PMID: 33963935 DOI: 10.1007/s00425-021-03636-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
This review provides insights into the molecular interactions between Phytophthora infestans and tomato and highlights research gaps that need further attention. Late blight in tomato is caused by the oomycota hemibiotroph Phytophthora infestans, and this disease represents a global threat to tomato farming. The pathogen is cumbersome to control because of its fast-evolving nature, ability to overcome host resistance and inefficient natural resistance obtained from the available tomato germplasm. To achieve successful control over this pathogen, the molecular pathogenicity of P. infestans and key points of vulnerability in the host plant immune system must be understood. This review primarily focuses on efforts to better understand the molecular interaction between host pathogens from both perspectives, as well as the resistance genes, metabolomic changes, quantitative trait loci with potential for improvement in disease resistance and host genome manipulation via transgenic approaches, and it further identifies research gaps and provides suggestions for future research priorities.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Pooja Singh
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Dharane Kethiravan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Idd Ramathani
- National Crops Resources Research Institute, Gayaza Road Namulonge, 7084, Kampala, Uganda
| | - N Ramakrishnan
- ECSE, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Malaysia
| |
Collapse
|
46
|
Sakeh NM, Abdullah SNA, Bahari MNA, Azzeme AM, Shaharuddin NA, Idris AS. EgJUB1 and EgERF113 transcription factors as potential master regulators of defense response in Elaeis guineensis against the hemibiotrophic Ganoderma boninense. BMC PLANT BIOLOGY 2021; 21:59. [PMID: 33482731 PMCID: PMC7825162 DOI: 10.1186/s12870-020-02812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection. RESULTS The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells. CONCLUSION Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.
Collapse
Affiliation(s)
- Nurshafika Mohd Sakeh
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Siti Nor Akmar Abdullah
- Institute of Plantation Studies, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia.
| | | | - Azzreena Mohamad Azzeme
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor, Malaysia
| | - Abu Seman Idris
- Ganoderma and Diseases Research for Oil Palm Unit, Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
47
|
Barbero F, Guglielmotto M, Islam M, Maffei ME. Extracellular Fragmented Self-DNA Is Involved in Plant Responses to Biotic Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:686121. [PMID: 34381477 PMCID: PMC8350447 DOI: 10.3389/fpls.2021.686121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/05/2021] [Indexed: 05/17/2023]
Abstract
A growing body of evidence indicates that extracellular fragmented self-DNA (eDNA), by acting as a signaling molecule, triggers inhibitory effects on conspecific plants and functions as a damage-associated molecular pattern (DAMP). To evaluate early and late events in DAMP-dependent responses to eDNA, we extracted, fragmented, and applied the tomato (Solanum lycopersicum) eDNA to tomato leaves. Non-sonicated, intact self-DNA (intact DNA) was used as control. Early event analyses included the evaluation of plasma transmembrane potentials (Vm), cytosolic calcium variations (Ca2+ cy t), the activity and subcellular localization of both voltage-gated and ligand-gated rectified K+ channels, and the reactive oxygen species (ROS) subcellular localization and quantification. Late events included RNA-Seq transcriptomic analysis and qPCR validation of gene expression of tomato leaves exposed to tomato eDNA. Application of eDNA induced a concentration-dependent Vm depolarization which was correlated to an increase in (Ca2+)cyt; this event was associated to the opening of K+ channels, with particular action on ligand-gated rectified K+ channels. Both eDNA-dependent (Ca2+)cyt and K+ increases were correlated to ROS production. In contrast, application of intact DNA produced no effects. The plant response to eDNA was the modulation of the expression of genes involved in plant-biotic interactions including pathogenesis-related proteins (PRPs), calcium-dependent protein kinases (CPK1), heat shock transcription factors (Hsf), heat shock proteins (Hsp), receptor-like kinases (RLKs), and ethylene-responsive factors (ERFs). Several genes involved in calcium signaling, ROS scavenging and ion homeostasis were also modulated by application of eDNA. Shared elements among the transcriptional response to eDNA and to biotic stress indicate that eDNA might be a common DAMP that triggers plant responses to pathogens and herbivores, particularly to those that intensive plant cell disruption or cell death. Our results suggest the intriguing hypothesis that some of the plant reactions to pathogens and herbivores might be due to DNA degradation, especially when associated to the plant cell disruption. Fragmented DNA would then become an important and powerful elicitor able to trigger early and late responses to biotic stress.
Collapse
Affiliation(s)
- Francesca Barbero
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Michela Guglielmotto
- Neuroscience Institute of Cavalieri Ottolenghi Foundation, University of Turin, Turin, Italy
| | - Monirul Islam
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimo E. Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- *Correspondence: Massimo E. Maffei,
| |
Collapse
|
48
|
Identification and Characterization of Plant-Interacting Targets of Tomato Spotted Wilt Virus Silencing Suppressor. Pathogens 2021; 10:pathogens10010027. [PMID: 33401462 PMCID: PMC7823891 DOI: 10.3390/pathogens10010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 02/02/2023] Open
Abstract
Tomato spotted wilt virus (TSWV; species Tomato spotted wilt orthotospovirus) is an economically important plant virus that infects multiple horticultural crops on a global scale. TSWV encodes a non-structural protein NSs that acts as a suppressor of host RNA silencing machinery during infection. Despite extensive structural and functional analyses having been carried out on TSWV NSs, its protein-interacting targets in host plants are still largely unknown. Here, we systemically investigated NSs-interacting proteins in Nicotiana benthamiana via affinity purification and mass spectrometry (AP-MS) analysis. Forty-three TSWV NSs-interacting candidates were identified in N. benthamiana. Gene Ontology (GO) and protein–protein interaction (PPI) network analyses were carried out on their closest homologs in tobacco (Nicotiana tabacum), tomatoes (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana). The results showed that NSs preferentially interacts with plant defense-related proteins such as calmodulin (CaM), importin, carbonic anhydrase and two heat shock proteins (HSPs): HSP70 and HSP90. As two major nodes in the PPI network, CaM and importin subunit α were selected for the further verification of their interactions with NSs via yeast two-hybrid (Y2H) screening. Our work suggests that the downstream signaling, transportation and/or metabolic pathways of host-NSs-interacting proteins may play critical roles in NSs-facilitated TSWV infection.
Collapse
|
49
|
Zorin EA, Afonin AM, Kulaeva OA, Gribchenko ES, Shtark OY, Zhukov VA. Transcriptome Analysis of Alternative Splicing Events Induced by Arbuscular Mycorrhizal Fungi ( Rhizophagus irregularis) in Pea ( Pisum sativum L.) Roots. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1700. [PMID: 33287282 PMCID: PMC7761762 DOI: 10.3390/plants9121700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022]
Abstract
Alternative splicing (AS), a process that enables formation of different mRNA isoforms due to alternative ways of pre-mRNA processing, is one of the mechanisms for fine-tuning gene expression. Currently, the role of AS in symbioses formed by plants with soil microorganisms is not fully understood. In this work, a comprehensive analysis of the transcriptome of garden pea (Pisum sativum L.) roots in symbiosis with arbuscular mycorrhiza was performed using RNAseq and following bioinformatic analysis. AS profiles of mycorrhizal and control roots were highly similar, intron retention accounting for a large proportion of the observed AS types (67%). Using three different tools (SUPPA2, DRIMSeq and IsoformSwitchAnalyzeR), eight genes with AS events specific for mycorrhizal roots of pea were identified, among which four were annotated as encoding an apoptosis inhibitor protein, a serine/threonine-protein kinase, a dehydrodolichyl diphosphate synthase, and a pre-mRNA-splicing factor ATP-dependent RNA helicase DEAH1. In pea mycorrhizal roots, the isoforms of these four genes with preliminary stop codons leading to a truncated ORFs were up-regulated. Interestingly, two of these four genes demonstrating mycorrhiza-specific AS are related to the process of splicing, thus forming parts of the feedback loops involved in fine-tuning of gene expression during mycorrhization.
Collapse
Affiliation(s)
| | | | | | | | | | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (E.A.Z.); (A.M.A.); (O.A.K.); (E.S.G.); (O.Y.S.)
| |
Collapse
|
50
|
Liu J, Peng H, Su W, Liu M, Huang W, Dai L, Peng D. HaCRT1 of Heterodera avenae Is Required for the Pathogenicity of the Cereal Cyst Nematode. FRONTIERS IN PLANT SCIENCE 2020; 11:583584. [PMID: 33329646 PMCID: PMC7717957 DOI: 10.3389/fpls.2020.583584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Cereal cyst nematodes are sedentary biotrophic endoparasites that secrete effector proteins into plant tissues to transit normal cells into specialized feeding sites and suppress plant defenses. To understand the function of nematode effectors in Heterodera avenae, here, we identified a calreticulin protein HaCRT1, which could suppress the cell death induced by Bax when expressed in Nicotiana benthamiana. HaCRT1 is synthetized in the subventral gland cells of pre-parasitic second-stage nematodes. Real-time PCR assays indicated that the expression of HaCRT1 was highest in parasitic second-stage juveniles. The expression of an HaCRT1-RFP fusion in N. benthamiana revealed that it was localized in the endoplasmic reticulum of the plant cell. The ability of H. avenae infecting plants was significantly reduced when HaCRT1 was knocked down by RNA interference in vitro. Arabidopsis thaliana plants expressing HaCRT1 were more susceptible than wild-type plants to Pseudomonas syringae. The induction of defense-related genes, PAD4, WRKY33, FRK1, and WRKY29, after treatment with flg22 was suppressed in HaCRT1-transgenic plants. Also, the ROS accumulation induced by flg22 was reduced in the HaCRT1-transgenic plants compared to wild-type plants. HaCRT1 overexpression increased the cytosolic Ca2+ concentration in A. thaliana. These data suggested that HaCRT1 may contribute to the pathogenicity of H. avenae by suppressing host basal defense.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Su
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Maoyan Liu
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangying Dai
- Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|