1
|
Perez Diaz N, Lione LA, Hutter V, Mackenzie LS. Co-Incubation with PPARβ/δ Agonists and Antagonists Modeled Using Computational Chemistry: Effect on LPS Induced Inflammatory Markers in Pulmonary Artery. Int J Mol Sci 2021; 22:ijms22063158. [PMID: 33808880 PMCID: PMC8003823 DOI: 10.3390/ijms22063158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator activated receptor beta/delta (PPARβ/δ) is a nuclear receptor ubiquitously expressed in cells, whose signaling controls inflammation. There are large discrepancies in understanding the complex role of PPARβ/δ in disease, having both anti- and pro-effects on inflammation. After ligand activation, PPARβ/δ regulates genes by two different mechanisms; induction and transrepression, the effects of which are difficult to differentiate directly. We studied the PPARβ/δ-regulation of lipopolysaccharide (LPS) induced inflammation (indicated by release of nitrite and IL-6) of rat pulmonary artery, using different combinations of agonists (GW0742 or L-165402) and antagonists (GSK3787 or GSK0660). LPS induced release of NO and IL-6 is not significantly reduced by incubation with PPARβ/δ ligands (either agonist or antagonist), however, co-incubation with an agonist and antagonist significantly reduces LPS-induced nitrite production and Nos2 mRNA expression. In contrast, incubation with LPS and PPARβ/δ agonists leads to a significant increase in Pdk-4 and Angptl-4 mRNA expression, which is significantly decreased in the presence of PPARβ/δ antagonists. Docking using computational chemistry methods indicates that PPARβ/δ agonists form polar bonds with His287, His413 and Tyr437, while antagonists are more promiscuous about which amino acids they bind to, although they are very prone to bind Thr252 and Asn307. Dual binding in the PPARβ/δ binding pocket indicates the ligands retain similar binding energies, which suggests that co-incubation with both agonist and antagonist does not prevent the specific binding of each other to the large PPARβ/δ binding pocket. To our knowledge, this is the first time that the possibility of binding two ligands simultaneously into the PPARβ/δ binding pocket has been explored. Agonist binding followed by antagonist simultaneously switches the PPARβ/δ mode of action from induction to transrepression, which is linked with an increase in Nos2 mRNA expression and nitrite production.
Collapse
Affiliation(s)
- Noelia Perez Diaz
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
| | - Lisa A. Lione
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
| | - Victoria Hutter
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
| | - Louise S. Mackenzie
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK; (N.P.D.); (L.A.L.); (V.H.)
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
- Correspondence:
| |
Collapse
|
2
|
Follo MY, Ratti S, Manzoli L, Ramazzotti G, Faenza I, Fiume R, Mongiorgi S, Suh PG, McCubrey JA, Cocco L. Inositide-Dependent Nuclear Signalling in Health and Disease. Handb Exp Pharmacol 2019; 259:291-308. [PMID: 31889219 DOI: 10.1007/164_2019_321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nuclear inositides have a specific subcellular distribution that is linked to specific functions; thus their regulation is fundamental both in health and disease. Emerging evidence shows that alterations in multiple inositide signalling pathways are involved in pathophysiology, not only in cancer but also in other diseases. Here, we give an overview of the main features of inositides in the cell, and we discuss their potential as new molecular therapeutic targets.
Collapse
Affiliation(s)
- Matilde Y Follo
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Roberta Fiume
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pann Ghill Suh
- Korea Brain Research Institute, Daegu, Republic of Korea.,School of Life Sciences, UNIST, Ulsan, Republic of Korea
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
3
|
Dolivo DM, Larson SA, Dominko T. Tryptophan metabolites kynurenine and serotonin regulate fibroblast activation and fibrosis. Cell Mol Life Sci 2018; 75:3663-3681. [PMID: 30027295 PMCID: PMC11105268 DOI: 10.1007/s00018-018-2880-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023]
Abstract
Fibrosis is a pathological form of aberrant tissue repair, the complications of which account for nearly half of all deaths in the industrialized world. All tissues are susceptible to fibrosis under particular pathological sets of conditions. Though each type of fibrosis has characteristics and hallmarks specific to that particular condition, there appear to be common factors underlying fibrotic diseases. One of these ubiquitous factors is the paradigm of the activated myofibroblast in the promotion of fibrotic phenotypes. Recent research has implicated metabolic byproducts of the amino acid tryptophan, namely serotonin and kynurenines, in the pathology or potential pharmacologic therapy of fibrosis, in part through their effects on development of myofibroblast phenotypes. Here, we review literature underlying what is known mechanistically about the effects of these compounds and their respective pathways on fibrosis. Pharmacologic administration of kynurenine improves scarring outcomes in vivo likely not only through its well-characterized immunosuppressive properties but also via its demonstrated antagonism of fibroblast activation and of collagen deposition. In contrast, serotonin directly promotes activation of fibroblasts via activation of canonical TGF-β signaling, and overstimulation with serotonin leads to fibrotic outcomes in vivo. Recently discovered feedback inhibition between serotonin and kynurenine pathways also reveals more information about the cellular physiology of tryptophan metabolism and may also underlie possible paradigms for anti-fibrotic therapy. Together, understanding of the effects of tryptophan metabolism on modulation of fibrosis may lead to the development of new therapeutic avenues for treatment through exploitation of these effects.
Collapse
Affiliation(s)
- David M Dolivo
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Sara A Larson
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Tanja Dominko
- Biology and Biotechnology Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA.
| |
Collapse
|
4
|
Jiang D, Zhuang J, Peng W, Lu Y, Liu H, Zhao Q, Chi C, Li X, Zhu G, Xu X, Yan C, Xu Y, Ge J, Pang J. Phospholipase Cγ1 Mediates Intima Formation Through Akt-Notch1 Signaling Independent of the Phospholipase Activity. J Am Heart Assoc 2017; 6:JAHA.117.005537. [PMID: 28698260 PMCID: PMC5586285 DOI: 10.1161/jaha.117.005537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Vascular smooth muscle cell proliferation, migration, and dedifferentiation are critical for vascular diseases. Recently, it was demonstrated that Notch receptors have opposing effects on intima formation after vessel injury. Therefore, it is important to investigate the specific regulatory pathways that activate the different Notch receptors. Methods and Results There was a time‐ and dose‐dependent activation of Notch1 by angiotensin II and platelet‐derived growth factor in vascular smooth muscle cells. When phospholipase Cγ1 (PLCγ1) expression was reduced by small interfering RNA, Notch1 activation and Hey2 expression (Notch target gene) induced by angiotensin II or platelet‐derived growth factor were remarkably inhibited, while Notch2 degradation was not affected. Mechanistically, we observed an association of PLCγ1 and Akt, which increased after angiotensin II or platelet‐derived growth factor stimulation. PLCγ1 knockdown significantly inhibited Akt activation. Importantly, PLCγ1 phospholipase site mutation (no phospholipase activity) did not affect Akt activation. Furthermore, PLCγ1 depletion inhibited platelet‐derived growth factor–induced vascular smooth muscle cell proliferation, migration, and dedifferentiation, while it increased apoptosis. In vivo, PLCγ1 and control small interfering RNA were delivered periadventitially in pluronic gel and complete carotid artery ligation was performed. Morphometric analysis 21 days after ligation demonstrated that PLCγ1 small interfering RNA robustly attenuated intima area and intima/media ratio compared with the control group. Conclusions PLCγ1‐Akt–mediated Notch1 signaling is crucial for intima formation. This effect is attributable to PLCγ1‐Akt interaction but not PLCγ1 phospholipase activity. Specific inhibition of the PLCγ1 and Akt interaction will be a promising therapeutic strategy for preventing vascular remodeling.
Collapse
Affiliation(s)
- Dongyang Jiang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhui Zhuang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenhui Peng
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuyan Lu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Liu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Chi
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiankai Li
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guofu Zhu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangbin Xu
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Chen Yan
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Yawei Xu
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinjiang Pang
- Department of Cardiology, Pan-Vascular Research Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China .,Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
5
|
Zloh M, Perez-Diaz N, Tang L, Patel P, Mackenzie LS. Evidence that diclofenac and celecoxib are thyroid hormone receptor beta antagonists. Life Sci 2016; 146:66-72. [DOI: 10.1016/j.lfs.2016.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/02/2015] [Accepted: 01/09/2016] [Indexed: 01/04/2023]
|
6
|
Perez Diaz N, Zloh M, Patel P, Mackenzie LS. In silico modelling of prostacyclin and other lipid mediators to nuclear receptors reveal novel thyroid hormone receptor antagonist properties. Prostaglandins Other Lipid Mediat 2015; 122:18-27. [PMID: 26686607 DOI: 10.1016/j.prostaglandins.2015.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/19/2015] [Accepted: 12/07/2015] [Indexed: 11/27/2022]
Abstract
Prostacyclin (PGI2) is a key mediator involved in cardiovascular homeostasis, acting predominantly on two receptor types; cell surface IP receptor and cytosolic peroxisome proliferator activated receptor (PPAR) β/δ. Having a very short half-life, direct methods to determine its long term effects on cells is difficult, and little is known of its interactions with nuclear receptors. Here we used computational chemistry methods to investigate the potential for PGI2, beraprost (IP receptor agonist), and GW0742 (PPARβ/δ agonist), to bind to nuclear receptors, confirmed with pharmacological methods. In silico screening predicted that PGI2, beraprost, and GW0742 have the potential to bind to different nuclear receptors, in particular thyroid hormone β receptor (TRβ) and thyroid hormone α receptor (TRα). Docking analysis predicts a binding profile to residues thought to have allosteric control on the TR ligand binding site. Luciferase reporter assays confirmed that beraprost and GW0742 display TRβ and TRα antagonistic properties; beraprost IC50 6.3 × 10(-5)mol/L and GW0742 IC50 4.9 × 10(-6) mol/L. Changes to triiodothyronine (T3) induced vasodilation of rat mesenteric arteries measured on the wire myograph were measured in the presence of the TR antagonist MLS000389544 (10(-5) mol/L), beraprost (10(-5) mol/L) and GW0742 (10(-5) mol/L); all significantly inhibited T3 induced vasodilation compared to controls. We have shown that both beraprost and GW0742 exhibit TRβ and TRα antagonist behaviour, and suggests that PGI2 has the ability to affect the long term function of cells through binding to and inactivating thyroid hormone receptors.
Collapse
Affiliation(s)
- Noelia Perez Diaz
- Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Mire Zloh
- Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Pryank Patel
- Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Louise S Mackenzie
- Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK.
| |
Collapse
|
7
|
Phylogenetic and structural analysis of the phospholipase A2 gene family in vertebrates. Int J Mol Med 2014; 35:587-96. [PMID: 25543670 PMCID: PMC4314415 DOI: 10.3892/ijmm.2014.2047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
The phospholipase A (PLA)2 family is the most complex gene family of phospholipases and plays a crucial role in a number of physiological activities. However, the phylogenetic background of the PLA2 gene family and the amino acid residues of the PLA2G7 gene following positive selection gene remain undetermined. In this study, we downloaded 49 genomic data sets of PLA from different species, including the human, house mouse, Norway rat, pig, dog, chicken, cattle, African clawed frog, Sumatran orangutan and the zebrafish species. Phylogenetic relationships were determined using the neighbor-joining (NJ), minimum evolution (ME) and maximum parsimony (MP) methods, as well as the Bayesian information criterion. The results were then presented as phylogenetic trees. Positive selection sites were detected using site, branch and branch‑site models. These methods led us to the following assumptions: i) closer lineages were observed between PLA2G16 and PLA2G6, PLA2G7 and PLA2G4, PLA2G3 and PLA2G12, as well as among PLA2G10, PLA2G5 and PLA2G15; ii) PLA2G5 appeared to be the origin of the PLA2 family, and PLA2G7 was one of the most evolutionarily distant PLA2 proteins; iii) 16 positive-selection sites were detected and were marked in the PLA2G7 protein sequence as 327D, 257Q, 276G, 34s, 66G, 67C, 319S, 28N, 50S, 54T, 58R, 75T, 88Q, 92R, 179H and 191K.
Collapse
|