1
|
Sumer F, Ozkan B, Karabas VL, Akpinar G, Kasap M. Assessment of protein profile in vitreous samples of patients with epiretinal membrane by proteomic approaches. Exp Eye Res 2025; 250:110160. [PMID: 39551177 DOI: 10.1016/j.exer.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 10/04/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
This study aims to characterize idiopathic epiretinal membrane (iERM) using proteomic analysis to enhance diagnosis and treatment strategies. In a prospective case-control clinical trial, vitreous fluids (VF) from twelve iERM patients were collected during surgery and analyzed by 2DE-based MALDI TOF-TOF MS/MS. PANTHER and STRING analyses were performed to investigate the biological relationships between the identified proteins and to determine relevant cellular pathways. A total of 148 proteins were identified, including 24 that were unique to iERM. Grouping the proteins by biological processes revealed that most were involved in cell adhesion (n = 6), proteolysis (n = 10), and complement activation (n = 8). Compared to control VF, 12 proteins were upregulated and 12 downregulated in iERM VF, with the differentially expressed proteins strongly associated with inflammation. Proteomic analysis highlighted complement and inflammatory proteins as potential biomarkers or therapeutic targets for iERM. Given that inflammation and fibrosis play critical roles in iERM, further investigation into these differential proteins holds significant clinical relevance. Despite the challenge of recruiting suitable patients, we believe the results of this study provide a valuable foundation for future research.
Collapse
Affiliation(s)
- Fatma Sumer
- Recep Tayyip Erdogan University Faculty of Medicine, Department of Ophthalmology, 53100, Rize, Turkey.
| | - Berna Ozkan
- Department of Ophthalmology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, 41100, Turkey.
| | - V Levent Karabas
- Kocaeli University Faculty of Medicine, Department of Ophthalmology, Kocaeli, 41100, Turkey.
| | - Gurler Akpinar
- Kocaeli University Faculty of Medicine, Department of Medical Biology, Kocaeli, 41100, Turkey.
| | - Murat Kasap
- Kocaeli University Faculty of Medicine, Department of Medical Biology, Kocaeli, 41100, Turkey.
| |
Collapse
|
2
|
Cuevas-Rios G, Assale TA, Wissfeld J, Bungartz A, Hofmann J, Langmann T, Neumann H. Decreased sialylation elicits complement-related microglia response and bipolar cell loss in the mouse retina. Glia 2024; 72:2295-2312. [PMID: 39228105 DOI: 10.1002/glia.24613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
Sialylation plays an important role in self-recognition, as well as keeping the complement and innate immune systems in check. It is unclear whether the reduced sialylation seen during aging and in mice heterozygous for the null mutant of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (Gne+/-), an essential enzyme for sialic acid biosynthesis, contributes to retinal inflammation and degeneration. We found a reduction of polysialic acid and trisialic acid expression in several retinal layers in Gne+/- mice at 9 months of age compared to Gne+/+ wildtype (WT) mice, which was associated with a higher microglial expression of the lysosomal marker CD68. Furthermore, the total number of rod bipolar cells was reduced in 12 months old Gne+/- mice in comparison to WT mice, demonstrating loss of these retinal interneurons. Transcriptome analysis showed up-regulation of complement, inflammation, and apoptosis-related pathways in the retinas of Gne+/- mice. Particularly, increased gene transcript levels of the complement factors C3 and C4 and the pro-inflammatory cytokine Il-1β were observed by semi-quantitative real-time polymerase chain reaction (sqRT-PCR) in 9 months old Gne+/- mice compared to WT mice. The increased expression of CD68, loss of rod bipolar cells, and increased gene transcription of complement factor C4, were all prevented after crossing Gne+/- mice with complement factor C3-deficient animals. In conclusion, our data show that retinal hyposialylation in 9 and 12 months old Gne+/- mice was associated with complement-related inflammation and lysosomal microglia response, as well as rod bipolar cells loss, which was absent after genetic deletion of complement factor C3.
Collapse
Affiliation(s)
- German Cuevas-Rios
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Tawfik Abou Assale
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jannis Wissfeld
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Annemarie Bungartz
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Julia Hofmann
- Experimental Immunology of the Eye, Department of Ophthalmology, University Hospital Cologne, Cologne, Germany
| | - Thomas Langmann
- Experimental Immunology of the Eye, Department of Ophthalmology, University Hospital Cologne, Cologne, Germany
| | - Harald Neumann
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Attia SA, Truong AT, Phan A, Lee SJ, Abanmai M, Markanovic M, Avila H, Luo H, Ali A, Sreekumar PG, Kannan R, MacKay JA. αB-Crystallin Peptide Fused with Elastin-like Polypeptide: Intracellular Activity in Retinal Pigment Epithelial Cells Challenged with Oxidative Stress. Antioxidants (Basel) 2023; 12:1817. [PMID: 37891896 PMCID: PMC10604459 DOI: 10.3390/antiox12101817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Oxidative stress-induced retinal degeneration is among the main contributing factors of serious ocular pathologies that can lead to irreversible blindness. αB-crystallin (cry) is an abundant component of the visual pathway in the vitreous humor, which modulates protein and cellular homeostasis. Within this protein exists a 20 amino acid fragment (mini-cry) with both chaperone and antiapoptotic activity. This study fuses this mini-cry peptide to two temperature-sensitive elastin-like polypeptides (ELP) with the goal of prolonging its activity in the retina. METHODS The biophysical properties and chaperone activity of cry-ELPs were confirmed by mass spectrometry, cloud-point determination, and dynamic light scattering 'DLS'. For the first time, this work compares a simpler ELP architecture, cry-V96, with a previously reported ELP diblock copolymer, cry-SI. Their relative mechanisms of cellular uptake and antiapoptotic potential were tested using retinal pigment epithelial cells (ARPE-19). Oxidative stress was induced with H2O2 and comparative internalization of both cry-ELPs was made using 2D and 3D culture models. We also explored the role of lysosomal membrane permeabilization by confocal microscopy. RESULTS The results indicated successful ELP fusion, cellular association with both 2D and 3D cultures, which were enhanced by oxidative stress. Both constructs suppressed apoptotic signaling (cleaved caspase-3); however, cry-V96 exhibited greater lysosomal escape. CONCLUSIONS ELP architecture is a critical factor to optimize delivery of therapeutic peptides, such as the anti-apoptotic mini-cry peptide; furthermore, the protection of mini-cry via ELPs is enhanced by lysosomal membrane permeabilization.
Collapse
Affiliation(s)
- Sara Aly Attia
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Anh Tan Truong
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Alvin Phan
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Shin-Jae Lee
- Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA;
| | - Manal Abanmai
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Marinella Markanovic
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Hugo Avila
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Haozhong Luo
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | - Atham Ali
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
| | | | - Ram Kannan
- Doheny Eye Institute, Pasadena, CA 91103, USA; (P.G.S.); (R.K.)
- Stein Eye Institute, Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - J. Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA; (S.A.A.); (A.T.T.); (A.P.); (M.A.); (M.M.); (H.A.); (H.L.); (A.A.)
- Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA;
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Kundakci YE, Bilir A, Atay E, Vurmaz A, Firat F, Arikan ES. Protective Effects of Different Doses of Ginsenoside-Rb1 Experimental Cataract Model That in Chick Embryos. Curr Eye Res 2023; 48:817-825. [PMID: 37260421 DOI: 10.1080/02713683.2023.2221415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE There has been increased interest in phytochemical antioxidants to prevent protein damage and aggregate formation in cataract treatment. In this study, the protective effect of different doses of Rb1 (GRb1), one of the ginsenosides of Panax Ginseng, in the experimental cataract model formed in chick embryos was investigated. METHODS Five different experimental groups were formed with 100 SPF fertilized eggs: Control (0.9% NaCl to physiological saline), hydrocortisone hemisuccinate sodium (HC), low dose (HC + L-GRb1 (1 mg/kg)), medium dose (HC+). M-GRb1 (2.5 mg/kg)), and high dose (HC + H-GRb1 (5 mg/kg)). All solutions were given to air sack at 15 days of incubation. On the 17th day, the bulbous oculi of the chick embryos were dissected. Cataract formations of the lenses, glutathione (GSH), malondialdehyde (MDA), total antioxidant (TAS), total oxidant (TOS) levels, Caspase-3 H-score, and TUNEL index were determined. In addition, crystalline alpha A (CRYAA) gene expression was evaluated. RESULTS Cataracts were observed in the control, HC, HC + L-GRb1, HC + M-GRb1, and HC + H-GRb1 groups with a frequency of 0%, 100%, 75%, 56.25%, and 100%, respectively. There were statistically significant differences between the control and HC groups in terms of TAS, TOS, MDA, GSH, Caspase-3 H-score, and TUNEL index (p < .05). When the therapeutic effect of the GRb1 groups was evaluated, the HC group showed significant differences with the HC + L-GRb1 and HC + M-GRb1 groups in almost all parameters (p < .05), while there was no statistical difference with the HC + H-GRb1 group (p > .05). In addition, gene expression levels differed between the groups, although not statistically significant (p > .05). CONCLUSION 1 mg/kg and 2.5 mg/kg GRb1 applications show therapeutic properties on the HC-induced cataract model. This effect is more pronounced at 2.5 mg/kg.
Collapse
Affiliation(s)
- Yunus Emre Kundakci
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Abdulkadir Bilir
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Emre Atay
- Department of Anatomy, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Ayhan Vurmaz
- Department of Biochemistry, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Fatma Firat
- Department of Histology and Embryology, Medicine Faculty, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Evrim Suna Arikan
- Department of Medical Biology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
5
|
Park J, MacGavin S, Niederbrach L, Mchaourab HS. Interplay between Nrf2 and αB-crystallin in the lens and heart of zebrafish under proteostatic stress. Front Mol Biosci 2023; 10:1185704. [PMID: 37577747 PMCID: PMC10422029 DOI: 10.3389/fmolb.2023.1185704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
A coordinated oxidative stress response, partly triggered by the transcription factor Nrf2, protects cells from the continual production of reactive oxygen species. Left unbuffered, reactive oxygen species can lead to protein aggregation that has been implicated in a spectrum of diseases such as cataract of the ocular lens and myopathy of the heart. While proteostasis is maintained by diverse families of heat shock proteins, the interplay between the oxidative and proteostatic stress responses in the lens and heart has not been investigated. Capitalizing on multiple zebrafish lines that have compromised function of Nrf2 and/or the two zebrafish small heat shock proteins αBa- and αBb-crystallin, we uncovered a transcriptional relationship that leads to a substantial increase in αBb-crystallin transcripts in the heart in response to compromised function of Nrf2. In the lens, the concomitant loss of function of Nrf2 and αBa-crystallin leads to upregulation of the cholesterol biosynthesis pathway, thus mitigating the phenotypic consequences of the αBa-crystallin knockout. By contrast, abrogation of Nrf2 function accentuates the penetrance of a heart edema phenotype characteristic of embryos of αB-crystallin knockout lines. Multiple molecular pathways, such as genes involved in extracellular interactions and implicated in cardiomyopathy, are revealed from transcriptome profiling, thus identifying novel targets for further investigation. Together, our transcriptome/phenotypic analysis establishes an intersection between oxidative stress and chaperone responses in the lens and heart.
Collapse
Affiliation(s)
| | | | | | - Hassane S. Mchaourab
- From the Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
6
|
Emerging therapeutic roles of small heat shock protein-derived mini-chaperones and their delivery strategies. Biochimie 2022; 208:56-65. [PMID: 36521577 DOI: 10.1016/j.biochi.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The small heat shock protein (sHsp) family is a group of proteins in which some are induced in response to external stimuli, such as environmental and pathological stresses, while others are constitutively expressed. They show chaperone-like activity, protect cells from apoptosis, and maintain cytoskeletal architecture. Short sequences or fragments ranging from approximately 19-20 residues in sHsps were shown to display chaperone activity in vitro. These sequences are termed sHsp-derived mini-peptides/mini-chaperones. These peptides offer an advantage in providing protective and therapeutic effects over full-length proteins owing to their small molecular weight and easy uptake into the cells. Research on sHsp mini-chaperone therapy has recently received attention and advanced tremendously. sHsp mini-chaperones have shown a wide range of therapeutic effects, such as anti-aggregation of proteins, anti-apoptotic, anti-inflammatory, anti-oxidant, senolytic, and anti-platelet activity. The administration of mini-chaperones into the several disease animal models, including experimental autoimmune encephalomyelitis, cataract, age-related macular degeneration, glaucoma, and thrombosis through various routes reduced symptoms or prevented the progression of the disease. However, it was found that the therapeutic potential of sHsp mini-chaperones is limited by their short turnover and enzymatic degradation in circulation. Nonetheless, carrier molecules approach such as nanoparticles, cell penetration peptides, and extracellular vesicles increased their efficacy by enhancing the uptake, retention time, protection from enzymatic degradation, and site-specific delivery without altering their biological activity. In this context, this review highlights the recent advances in the therapeutic potential of sHsp-derived mini-chaperones, their effect in experimental animal models, and approaches for increasing their efficacy.
Collapse
|
7
|
Chang YY, Hsieh MH, Huang YC, Chen CJ, Lee MT. Conformational Changes of α-Crystallin Proteins Induced by Heat Stress. Int J Mol Sci 2022; 23:ijms23169347. [PMID: 36012609 PMCID: PMC9409278 DOI: 10.3390/ijms23169347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
α-crystallin is a major structural protein in the eye lenses of vertebrates that is composed of two relative subunits, αA and αB crystallin, which function in maintaining lens transparency. As a member of the small heat-shock protein family (sHsp), α-crystallin exhibits chaperone-like activity to prevent the misfolding or aggregation of critical proteins in the lens, which is associated with cataract disease. In this study, high-purity αA and αB crystallin proteins were expressed from E. coli and purified by affinity and size-exclusion chromatography. The size-exclusion chromatography experiment showed that both αA and αB crystallins exhibited oligomeric complexes in solution. Here, we present the structural characteristics of α-crystallin proteins from low to high temperature by combining circular dichroism (CD) and small-angle X-ray scattering (SAXS). Not only the CD data, but also SAXS data show that α-crystallin proteins exhibit transition behavior on conformation with temperature increasing. Although their protein sequences are highly conserved, the analysis of their thermal stability showed different properties in αA and αB crystallin. In this study, taken together, the data discussed were provided to demonstrate more insights into the chaperone-like activity of α-crystallin proteins.
Collapse
Affiliation(s)
- Yu-Yung Chang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Meng-Hsuan Hsieh
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yen-Chieh Huang
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan City 701, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300193, Taiwan
| | - Ming-Tao Lee
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- Department of Physics, National Central University, Jhongli 32001, Taiwan
- Correspondence: ; Tel.: +886-3-5780281-7109
| |
Collapse
|
8
|
Srivastava O, Wilson L, Barnes S, Srivastava K, Joseph R. αA and αB peptides from human cataractous lenses show antichaperone activity and enhance aggregation of lens proteins. Mol Vis 2022; 28:147-164. [PMID: 36540064 PMCID: PMC9744240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/04/2022] [Indexed: 12/30/2022] Open
Abstract
Purpose To identify and characterize properties of αA- and αB-crystallins' low molecular weight peptides (molecular weight [Mr] < 5 kDa) that were present in a 62-year-old human nuclear cataract, but not in normal 62-year-old human lenses. Methods Low molecular weight peptides (< 5 kDa) were isolated with a trichloroacetic acid (TCA) solubilization method from water-soluble (WS) and water-insoluble (WI) proteins of nuclear cataractous lenses of a 62-year-old donor and normal human lenses from an age-matched donor. Five commercially synthesized peptides (found only in cataractous lenses and not in normal lenses) were used to determine their chaperone and antichaperone activity and aggregation properties. Results Mass spectrometric analysis showed 28 peptides of αA-crystallin and 38 peptides of αB-crystallin were present in the cataractous lenses but not in the normal lenses. Two αA peptides (named αAP1 and αAP2; both derived from the αA N-terminal domain (NTD) region) and three αB peptides (named αBP3, αBP4, and αBP5, derived from the αB NTD-, core domain (CD), and C-terminal extension (CTE) regions, respectively) were commercially synthesized. αAP1 inhibited the chaperone activity of αA- and αB-crystallins, but the other four peptides (αAP2, αBP3, αBP4, and αBP5) exhibited mixed effects on chaperone activity. Upon incubation with human WS proteins and peptides in vitro, the αBP4 peptide showed higher aggregation properties relative to the αAP1 peptide. During in vivo experiments, the cell-penetrating polyarginine-labeled αAP1 and αBP4 peptides showed 57% and 85% aggregates, respectively, around the nuclei of cultured human lens epithelial cells compared to only 35% by a scrambled peptide. Conclusions The antichaperone activity of the αAP1 peptide and the aggregation property of the αBP4 peptide with lens proteins could play a potential role during the development of lens opacity.
Collapse
Affiliation(s)
- Om Srivastava
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL,Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL
| | - Kiran Srivastava
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL
| | - Roy Joseph
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
9
|
Wang Y, Shao W, Feng Y, Tang J, Wang Q, Zhang D, Huang H, Jiang M. Prognostic value and potential biological functions of ferroptosis‑related gene signature in bladder cancer. Oncol Lett 2022; 24:301. [PMID: 35949618 PMCID: PMC9353228 DOI: 10.3892/ol.2022.13421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
Bladder cancer (BC), as a genitourinary system tumor, is a highly prevalent tumor type. Ferroptosis is an iron-dependent oxidative cell death mechanism that is becoming increasingly recognized as a promising avenue for cancer therapy. However, further determination of the prospective prognostic value of ferroptosis for BC and investigation of the underlying mechanisms is required. The mRNA expression profiles and associated clinical data were downloaded from public databases such as The Cancer Genome Atlas, Gene Expression Omnibus and the IMvigor210 database. To construct a predictive formula, the least absolute shrinkage and selection operator Cox regression algorithm was used. In addition, a prognostic multigene signature was constructed using previously selected ferroptosis-related genes (FRGs). A total of 28 FRGs were differentially expressed between tumor and normal samples with |log2 fold change| >1 and adjusted P<0.05. A prognostic model was then established and it was validated in the GEO cohort using six genes: Glutamate-cysteine ligase modifier subunit, crystallin α-B, transferrin receptor, zinc finger E-box binding homeobox 1, squalene epoxidase and glucose-6-phosphate dehydrogenase (G6PD). Numerous important pathways involved in the development of the immune system and cancer were indicated to be significantly different between the two risk groups. In addition, it was discovered that G6PD expression subgroups that were associated with immunotherapy response in patients with BC had similar prognostic features to risk score subgroups. In the present study, a gene signature with a prognostic value for ferroptosis in BC was successfully developed and the potential value of G6PD was identified for future research.
Collapse
Affiliation(s)
- Yutong Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenchuan Shao
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yeqi Feng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Junzhe Tang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qinchun Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dong Zhang
- State Key Lab of Reproductive Medicine, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Huaxing Huang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Minjun Jiang
- Department of Urology, Suzhou Ninth People's Hospital, Soochow University, Suzhou, Jiangsu 215299, P.R. China
| |
Collapse
|
10
|
Evidence for Paracrine Protective Role of Exogenous αA-Crystallin in Retinal Ganglion Cells. eNeuro 2022; 9:ENEURO.0045-22.2022. [PMID: 35168949 PMCID: PMC8906792 DOI: 10.1523/eneuro.0045-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/11/2022] Open
Abstract
Expression and secretion of neurotrophic factors have long been known as a key mechanism of neuroglial interaction in the central nervous system. In addition, several other intrinsic neuroprotective pathways have been described, including those involving small heat shock proteins such as α-crystallins. While initially considered as a purely intracellular mechanism, both αA-crystallins and αB-crystallins have been recently reported to be secreted by glial cells. While an anti-apoptotic effect of such secreted αA-crystallin has been suggested, its regulation and protective potential remain unclear. We recently identified residue threonine 148 (T148) and its phosphorylation as a critical regulator of αA-crystallin intrinsic neuroprotective function. In the current study, we explored how mutation of this residue affected αA-crystallin chaperone function, secretion, and paracrine protective function using primary glial and neuronal cells. After demonstrating the paracrine protective effect of αA-crystallins secreted by primary Müller glial cells (MGCs), we purified and characterized recombinant αA-crystallin proteins mutated on the T148 regulatory residue. Characterization of the biochemical properties of these mutants revealed an increased chaperone activity of the phosphomimetic T148D mutant. Consistent with this observation, we also show that exogeneous supplementation of the phosphomimetic T148D mutant protein protected primary retinal neurons from metabolic stress despite similar cellular uptake. In contrast, the nonphosphorylatable mutant was completely ineffective. Altogether, our study demonstrates the paracrine role of αA-crystallin in the central nervous system as well as the therapeutic potential of functionally enhanced αA-crystallin recombinant proteins to prevent metabolic-stress induced neurodegeneration.
Collapse
|
11
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
12
|
Nandi SK, Panda AK, Chakraborty A, Rathee S, Roy I, Barik S, Mohapatra SS, Biswas A. Role of ATP-Small Heat Shock Protein Interaction in Human Diseases. Front Mol Biosci 2022; 9:844826. [PMID: 35252358 PMCID: PMC8890618 DOI: 10.3389/fmolb.2022.844826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/18/2022] [Indexed: 01/18/2023] Open
Abstract
Adenosine triphosphate (ATP) is an important fuel of life for humans and Mycobacterium species. Its potential role in modulating cellular functions and implications in systemic, pulmonary, and ocular diseases is well studied. Plasma ATP has been used as a diagnostic and prognostic biomarker owing to its close association with disease’s progression. Several stresses induce altered ATP generation, causing disorders and illnesses. Small heat shock proteins (sHSPs) are dynamic oligomers that are dominantly β-sheet in nature. Some important functions that they exhibit include preventing protein aggregation, enabling protein refolding, conferring thermotolerance to cells, and exhibiting anti-apoptotic functions. Expression and functions of sHSPs in humans are closely associated with several diseases like cataracts, cardiovascular diseases, renal diseases, cancer, etc. Additionally, there are some mycobacterial sHSPs like Mycobacterium leprae HSP18 and Mycobacterium tuberculosis HSP16.3, whose molecular chaperone functions are implicated in the growth and survival of pathogens in host species. As both ATP and sHSPs, remain closely associated with several human diseases and survival of bacterial pathogens in the host, therefore substantial research has been conducted to elucidate ATP-sHSP interaction. In this mini review, the impact of ATP on the structure and function of human and mycobacterial sHSPs is discussed. Additionally, how such interactions can influence the onset of several human diseases is also discussed.
Collapse
Affiliation(s)
- Sandip K. Nandi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| | - Alok Kumar Panda
- School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Shivani Rathee
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Ipsita Roy
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Subhashree Barik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | | | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
- *Correspondence: Sandip K. Nandi, ; Ashis Biswas,
| |
Collapse
|
13
|
Liu S, Xing L, Zhang J, Wang K, Duan M, Wei M, Zhang B, Chang Z, Zhang H, Shang P. Expression pattern of CRYAB and CTGF genes in two pig breeds at different altitudes. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Tibetan pigs are characterized by significant phenotypic differences relative to lowland pigs. Our previous study demonstrated that the genes CRYAB and CTGF were differentially expressed in heart tissues between Tibetan (highland breed) and Yorkshire (lowland breed) pigs, indicating that they might participate in hypoxia adaptation. CRYAB (ɑB-crystallin) and CTGF (connective tissue growth factor) have also been reported to be associated with lung development. However, the expression patterns of CRYAB and CTGF in lung tissues at different altitudes and their genetic characterization are not well understood. In this study, qRT-PCR and western blot of lung tissue revealed higher CRYAB expression levels in highland and middle-highland Tibetan and Yorkshire pigs than in their lowland counterparts. With an increase in altitude, the expression level of CTGF increased in Tibetan pigs, whereas it decreased in Yorkshire pigs. Furthermore, two novel single-nucleotide polymorphism were identified in the 5′ flanking region of CRYAB (g.39644482C>T and g.39644132T>C) and CTGF (g.31671748A>G and g.31671773T>G). The polymorphism may partially contribute to the differences in expression levels between groups at the same altitude. These findings provide novel insights into the high-altitude hypoxia adaptations of Tibetan pigs.
Collapse
Affiliation(s)
- S. Liu
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| | - L. Xing
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| | - J. Zhang
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| | - K. Wang
- Henan Agricultural University, People’s Republic of China
| | - M. Duan
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| | - M. Wei
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| | - B. Zhang
- China Agricultural University, People’s Republic of China
| | - Z. Chang
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China
| | - H. Zhang
- China Agricultural University, People’s Republic of China
| | - P. Shang
- Tibet Agriculture and Animal Husbandry College, People’s Republic of China; The Provincial and Ministerial co-founded collaborative innovation center for R & D in Tibet characteristic Agricultural and Animal Husbandry resources, People’s Republic of China
| |
Collapse
|
14
|
Wishart TFL, Flokis M, Shu DY, Das SJ, Lovicu FJ. Hallmarks of lens aging and cataractogenesis. Exp Eye Res 2021; 210:108709. [PMID: 34339681 DOI: 10.1016/j.exer.2021.108709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Lens homeostasis and transparency are dependent on the function and intercellular communication of its epithelia. While the lens epithelium is uniquely equipped with functional repair systems to withstand reactive oxygen species (ROS)-mediated oxidative insult, ROS are not necessarily detrimental to lens cells. Lens aging, and the onset of pathogenesis leading to cataract share an underlying theme; a progressive breakdown of oxidative stress repair systems driving a pro-oxidant shift in the intracellular environment, with cumulative ROS-induced damage to lens cell biomolecules leading to cellular dysfunction and pathology. Here we provide an overview of our current understanding of the sources and essential functions of lens ROS, antioxidative defenses, and changes in the major regulatory systems that serve to maintain the finely tuned balance of oxidative signaling vs. oxidative stress in lens cells. Age-related breakdown of these redox homeostasis systems in the lens leads to the onset of cataractogenesis. We propose eight candidate hallmarks that represent common denominators of aging and cataractogenesis in the mammalian lens: oxidative stress, altered cell signaling, loss of proteostasis, mitochondrial dysfunction, dysregulated ion homeostasis, cell senescence, genomic instability and intrinsic apoptotic cell death.
Collapse
Affiliation(s)
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia; Schepens Eye Research Institute of Mass Eye and Ear. Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shannon J Das
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
15
|
Phadte AS, Sluzala ZB, Fort PE. Therapeutic Potential of α-Crystallins in Retinal Neurodegenerative Diseases. Antioxidants (Basel) 2021; 10:1001. [PMID: 34201535 PMCID: PMC8300683 DOI: 10.3390/antiox10071001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The chaperone and anti-apoptotic activity of α-crystallins (αA- and αB-) and their derivatives has received increasing attention due to their tremendous potential in preventing cell death. While originally known and described for their role in the lens, the upregulation of these proteins in cells and animal models of neurodegenerative diseases highlighted their involvement in adaptive protective responses to neurodegeneration associated stress. However, several studies also suggest that chronic neurodegenerative conditions are associated with progressive loss of function of these proteins. Thus, while external supplementation of α-crystallin shows promise, their potential as a protein-based therapeutic for the treatment of chronic neurodegenerative diseases remains ambiguous. The current review aims at assessing the current literature supporting the anti-apoptotic potential of αA- and αB-crystallins and its potential involvement in retinal neurodegenerative diseases. The review further extends into potentially modulating the chaperone and the anti-apoptotic function of α-crystallins and the use of such functionally enhanced proteins for promoting neuronal viability in retinal neurodegenerative disease.
Collapse
Affiliation(s)
- Ashutosh S. Phadte
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
| | - Zachary B. Sluzala
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
| | - Patrice E. Fort
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (A.S.P.); (Z.B.S.)
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
16
|
Li J, Yu J, Xue W, Huang H, Yan L, Sang F, An S, Zhang J, Wang M, Zhang J, Li H, Cui X, He J, Hu Y. The engineered expression of secreted HSPB5-Fc in CHO cells exhibits cytoprotection in vitro. BMC Biotechnol 2021; 21:39. [PMID: 34126963 PMCID: PMC8204567 DOI: 10.1186/s12896-021-00700-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background HSPB5 is an ATP-independent molecular chaperone that is induced by heat shock or other proteotoxic stresses. HSPB5 is cytoprotective against stress both intracellularly and extracellularly. It acts as a potential therapeutic candidate in ischemia-reperfusion and neurodegenerative diseases. Results In this paper, we constructed a recombinant plasmid that expresses and extracellularly secrets a HSPB5-Fc fusion protein (sHSPB5-Fc) at 0.42 μg/ml in CHO-K1 cells. This sHSPB5-Fc protein contains a Fc-tag at the C-terminal extension of HSPB5, facilitating protein-affinity purification. Our study shows that sHSPB5-Fc inhibits heat-induced aggregation of citrate synthase in a time and dose dependent manner in vitro. Administration of sHSPB5-Fc protects lens epithelial cells against cisplatin- or UVB-induced cell apoptosis. It also decreases GFP-Httex1-Q74 insolubility, and reduces the size and cytotoxicity of GFP-Httex1-Q74 aggregates in PC-12 cells. Conclusion This recombinant sHSPB5-Fc exhibits chaperone activity to protect cells against proteotoxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00700-y.
Collapse
Affiliation(s)
- Jing Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China.,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China
| | - Jingjing Yu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Wenxian Xue
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Huili Huang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Longjun Yan
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Fan Sang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Shuangshuang An
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, School of Basic Medical Sciences, Henan University, Jin-Ming Road, Kaifeng, 475004, China. .,Kaifeng Key Lab for Cataract and Myopia, Institute of Eye Disease, Kaifeng Central Hospital, Kaifeng, China. .,Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
17
|
Jia ZK, Fu CX, Wang AL, Yao K, Chen XJ. Cataract-causing allele in CRYAA (Y118D) proceeds through endoplasmic reticulum stress in mouse model. Zool Res 2021; 42:300-309. [PMID: 33929105 PMCID: PMC8175955 DOI: 10.24272/j.issn.2095-8137.2020.354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
As small heat shock proteins, α-crystallins function as molecular chaperones and inhibit the misfolding and aggregation of β/γ-crystallins. Genetic mutations of CRYAA are associated with protein aggregation and cataract occurrence. One possible process underlying cataract formation is that endoplasmic reticulum stress (ERS) induces the unfolded protein response (UPR), leading to apoptosis. However, the pathogenic mechanism related to this remains unexplored. Here, we successfully constructed a cataract-causing CRYAA (Y118D) mutant mouse model, in which the lenses of the CRYAA-Y118D mutant mice showed severe posterior rupture, abnormal morphological changes, and aberrant arrangement of crystallin fibers. Histological analysis was consistent with the clinical pathological characteristics. We also explored the pathogenic factors involved in cataract development through transcriptome analysis. In addition, based on key pathway analysis, up-regulated genes in CRYAA-Y118D mutant mice were implicated in the ERS-UPR pathway. This study showed that prolonged activation of the UPR pathway and severe stress response can cause proteotoxic and ERS-induced cell death in CRYAA-Y118D mutant mice.
Collapse
Affiliation(s)
- Zhe-Kun Jia
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Chen-Xi Fu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ai-Ling Wang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China. E-mail:
| | - Xiang-Jun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China. E-mail:
| |
Collapse
|
18
|
iTRAQ-based proteomic analysis of duck muscle related to lipid oxidation. Poult Sci 2021; 100:101029. [PMID: 33662660 PMCID: PMC7937752 DOI: 10.1016/j.psj.2021.101029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 01/29/2023] Open
Abstract
Lipid oxidation is the main cause of quality deterioration in meat and meat products. To facilitate the identification of candidate molecular biomarkers that are linked to lipid oxidation, we performed the proteomic analysis of duck muscle using isobaric tag for relative and absolute quantification (iTRAQ), followed by parallel reaction monitoring (PRM) to confirm the iTRAQ results. Pectoralis major muscles were divided into 2 groups in accordance with lipid oxidation, and iTRAQ-based analysis identified a total of 301 differentially expressed proteins, of which 15 proteins were examined by PRM assay. Proteins involved in lipid binding and metabolism, lipolysis, stress response, oxidative respiratory chain, and redox regulation were found to be differentially expressed between 2 groups and might affect lipid oxidation in muscles. The findings could contribute to the improved understanding of key proteins and processes engaged in lipid oxidation of meat.
Collapse
|
19
|
Mekala NK, Sasikumar S, Akula KK, Parekh Y, Rao CM, Bokara KK. HspB5 protects mouse neural stem/progenitor cells from paraquat toxicity. AMERICAN JOURNAL OF STEM CELLS 2020; 9:68-77. [PMID: 33489464 PMCID: PMC7811932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION HspB5 (αB-crystallin) is known to be involved in a variety of cellular functions, including, protection of cells from oxidative damage and inhibiting apoptosis. Neural stem/progenitor cells (NSPCs) have significant therapeutic value, especially in the NSC/NPC transplantation therapy. However, the viability of the transplanted NSPCs remains low because of various factors, including oxidative stress. OBJECTIVE The current investigation explored the possible role of HspB5 in the protection of mouse NSPCs (mNSPCs) against paraquat-induced toxicity. METHODS The recombinant human HspB5 was expressed in E.coli and was purified using gel filtration and Ion-exchange chromatography. The biophysical characterization of HspB5 was carried out using DLS, CD, and Analytical Ultracentrifugation (SV); the chaperone activity of HspB5 was determined by alcohol dehydrogenase aggregation assay. We have subjected the mNSPCs to paraquat-induced oxidative stress and monitored the protective ability of HspB5 by MTT assay and Hoechst-PI staining. Furthermore, increase in the expression of the anti-apoptotic protein, procaspase-3 was monitored using western blotting. RESULTS The recombinant HspB5 was purified to its homogeneity and was characterized using various biophysical techniques. The externally added FITC-labeled HspB5 was found to be localized within the cytoplasm of mNSPCs. Our Immunocytochemistry results showed that the externally added FITC-labeled HspB5 not only entered the cells but also conferred cytoprotection against paraquat-induced toxicity. The protective events were monitored by a decrease in the PI-positive cells and an increase in the procaspase-3 expression through Immunocytochemistry and Western blotting respectively. CONCLUSION Our results clearly demonstrate that exogenously added recombinant human HspB5 enters the mNSPCs and confers protection against paraquat toxicity.
Collapse
Affiliation(s)
| | - Shyama Sasikumar
- Department of Biomedical Engineering, Indian Institute of Technology HyderabadKandi-502285, Sangareddy, Telangana, India
| | - Kranthi Kiran Akula
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Yash Parekh
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| | - Kiran Kumar Bokara
- CSIR-Centre for Cellular and Molecular Biology, Annexe-II, Medical Biotechnology ComplexUppal Road, Hyderabad, Telangana 500007, India
| |
Collapse
|
20
|
Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract. Commun Biol 2020; 3:755. [PMID: 33311586 PMCID: PMC7733496 DOI: 10.1038/s42003-020-01421-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 10/01/2020] [Indexed: 11/10/2022] Open
Abstract
Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10−16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 10−19), TMPRSS5 (rs4936279, P = 2.5 × 10−10), LINC01412 (rs16823886, P = 1.3 × 10−9), GLTSCR1 (rs1005911, P = 9.8 × 10−9), and COMMD1 (rs62149908, P = 1.2 × 10−8). The results suggest a strong link of age-related nuclear cataract with congenital cataract and eye development genes, and the importance of common genetic variants in maintaining crystalline lens integrity in the aging eye. Here, the authors report a multi-ethnic genome wide association meta-analysis of 12 studies from the International Cataract Genetics Consortium. They find six new loci associated with age-related nuclear cataract, in addition to replicating the association at CRYAA, and suggest a strong genetic link between age-related nuclear and congenital cataracts.
Collapse
|
21
|
Ram L, Mittal C, Harsolia RS, Yadav JK. Trehalose Inhibits the Heat-Induced Formation of the Amyloid-Like Structure of Soluble Proteins Isolated from Human Cataract Lens. Protein J 2020; 39:509-518. [PMID: 33037983 DOI: 10.1007/s10930-020-09919-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 11/25/2022]
Abstract
The age-dependent loss of solubility and aggregation of crystallins constitute the pathological hallmarks of cataract. Several biochemical and biophysical factors are responsible for the reduction of crystallins' solubility and formation of irreversible protein aggregates, which display amyloid-like characteristics. The present study reports the heat-induced aggregation of soluble proteins isolated from human cataract lenses and the formation of amyloid-like structures. Exposure of protein at 55 °C for 4 h resulted in extensive (≈ 60%) protein aggregation. The heat-induced protein aggregates displayed substantial (≈ 20 nm) redshift in the wavelength of maximum absorption (λmax) of Congo red (CR) and increase in Thioflavin T (ThT) fluorescence emission intensity, indicating the presence of amyloid-like structures in the heat-induced protein aggregates. Subsequently, the addition of trehalose resulted in substantial inhibition of heat-induced aggregation and the formation of amyloid-like structure. The ability of trehalose to inhibit the heat-induced aggregation was found to be linearly dependent upon its concentration used. The optimum effect was observed in the presence of 30-40% (w/v) trehalose where the aggregated was found to be reduced from 60 to 30%. The present study demonstrated the ability to trehalose to inhibit the protein aggregation and interfere with the formation of amyloid-like structures.
Collapse
Affiliation(s)
- Lakshman Ram
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Chandrika Mittal
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Ram Swaroop Harsolia
- Department of Ophthalmology, Jawaharlal Nehru Medical College, Ajmer, Rajasthan, India
| | - Jay Kant Yadav
- Department of Biotechnology, Central University of Rajasthan, NH-8 Bandersindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
22
|
Padmanabha S, Vallikannan B. Fatty acids influence the efficacy of lutein in the modulation of α-crystallin chaperone function: Evidence from selenite induced cataract rat model. Biochem Biophys Res Commun 2020; 529:425-431. [PMID: 32703446 DOI: 10.1016/j.bbrc.2020.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Loss of α-crystallin chaperone function results in the lens protein aggregation leading to cataract. In this study, we evaluated the efficacy of micellar lutein with different fatty acids in modulating α-crystallin chaperone function under selenite cataract conditions. METHODS Cataract was induced in rat pups by giving sodium selenite (25 μM/kg body weight) by IP. Lutein [(L), 1.3 μmol/kg body weight)] was given day before and five days after selenite injection as a micelle with 7.5 mM linoleic acid (LA), or 7.5 mM eicosapentaenoic acid (EPA)+docosahexaenoic acid (DHA) or 7.5 mM oleic acid (OA). Lens α-crystallins was purified, and its chaperone function and integrity was assessed. Cholesterol, calcium, calpain-2, procaspase-3, and expression of α-A and β-B1 crystallin in the lens of cataract and micellar lutein administered rats were evaluated. RESULTS Cataract induction significantly (p < 0.05) decreased lens α-crystallin chaperone function. Cataract rats had increased cholesterol and calcium level, increased the expression of calpain-2, and α-A and β-B1 crystallin, and reduced the pro-caspase-3 level in the lens. However, micellar lutein administration significantly (p < 0.05) protected client proteins from aggregation via the modulation of calcium-dependent calpain-2 protease activity. The chaperone function of lens α-crystallins in rats administered micellar lutein with EPA + DHA was found to be highest when compared to OA and LA. CONCLUSIONS Micellar lutein with unsaturated fatty acids beneficially modulates α-crystallin chaperone function. Among the fatty acids tested, micellar lutein with EPA + DHA exhibited superior effects, thereby offering a promising strategy for cataract management.
Collapse
Affiliation(s)
- Smitha Padmanabha
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Baskaran Vallikannan
- Dept. of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
23
|
Proteinaceous Transformers: Structural and Functional Variability of Human sHsps. Int J Mol Sci 2020; 21:ijms21155448. [PMID: 32751672 PMCID: PMC7432308 DOI: 10.3390/ijms21155448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023] Open
Abstract
The proteostasis network allows organisms to support and regulate the life cycle of proteins. Especially regarding stress, molecular chaperones represent the main players within this network. Small heat shock proteins (sHsps) are a diverse family of ATP-independent molecular chaperones acting as the first line of defense in many stress situations. Thereby, the promiscuous interaction of sHsps with substrate proteins results in complexes from which the substrates can be refolded by ATP-dependent chaperones. Particularly in vertebrates, sHsps are linked to a broad variety of diseases and are needed to maintain the refractive index of the eye lens. A striking key characteristic of sHsps is their existence in ensembles of oligomers with varying numbers of subunits. The respective dynamics of these molecules allow the exchange of subunits and the formation of hetero-oligomers. Additionally, these dynamics are closely linked to the chaperone activity of sHsps. In current models a shift in the equilibrium of the sHsp ensemble allows regulation of the chaperone activity, whereby smaller oligomers are commonly the more active species. Different triggers reversibly change the oligomer equilibrium and regulate the activity of sHsps. However, a finite availability of high-resolution structures of sHsps still limits a detailed mechanistic understanding of their dynamics and the correlating recognition of substrate proteins. Here we summarize recent advances in understanding the structural and functional relationships of human sHsps with a focus on the eye-lens αA- and αB-crystallins.
Collapse
|
24
|
Wang L, Nie Q, Gao M, Yang L, Xiang JW, Xiao Y, Liu FY, Gong XD, Fu JL, Wang Y, Nguyen QD, Liu Y, Liu M, Li DWC. The transcription factor CREB acts as an important regulator mediating oxidative stress-induced apoptosis by suppressing αB-crystallin expression. Aging (Albany NY) 2020; 12:13594-13617. [PMID: 32554860 PMCID: PMC7377838 DOI: 10.18632/aging.103474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/03/2020] [Indexed: 12/17/2022]
Abstract
The general transcription factor, CREB has been shown to play an essential role in promoting cell proliferation, neuronal survival and synaptic plasticity in the nervous system. However, its function in stress response remains to be elusive. In the present study, we demonstrated that CREB plays a major role in mediating stress response. In both rat lens organ culture and mouse lens epithelial cells (MLECs), CREB promotes oxidative stress-induced apoptosis. To confirm that CREB is a major player mediating the above stress response, we established stable lines of MLECs stably expressing CREB and found that they are also very sensitive to oxidative stress-induced apoptosis. To define the underlying mechanism, RNAseq analysis was conducted. It was found that CREB significantly suppressed expression of the αB-crystallin gene to sensitize CREB-expressing cells undergoing oxidative stress-induced apoptosis. CREB knockdown via CRISPR/CAS9 technology led to upregulation of αB-crystallin and enhanced resistance against oxidative stress-induced apoptosis. Moreover, overexpression of exogenous human αB-crystallin can restore the resistance against oxidative stress-induced apoptosis. Finally, we provided first evidence that CREB directly regulates αB-crystallin gene. Together, our results demonstrate that CREB is an important transcription factor mediating stress response, and it promotes oxidative stress-induced apoptosis by suppressing αB-crystallin expression.
Collapse
Affiliation(s)
- Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Meng Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
- Medical College, Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303, USA
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Fang-Yuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Xiao-Dong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Quan Dong Nguyen
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA 94303, USA
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510230, Guangdong, China
| |
Collapse
|
25
|
Sadik NAH, El-Boghdady NA, Omar NN, Al-Hamid HA. Esculetin and idebenone ameliorate galactose-induced cataract in a rat model. J Food Biochem 2020; 44:e13230. [PMID: 32301145 DOI: 10.1111/jfbc.13230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/23/2020] [Accepted: 03/20/2020] [Indexed: 01/20/2023]
Abstract
Cataract is the principal cause of blindness. The enzyme, aldose reductase (AR) is a key player in polyol pathway. Buildup of polyols and oxidative stress are the main causes of cataractogenesis. This study investigated the cytoprotective properties of esculetin and idebenone in galactose-induced cataract. Rats were partitioned into four groups each of ten rats. Control group was fed with normal diet; group 2 rats were fed with galactose diet (50%); groups 3, 4 rats were fed with galactose diet concurrently with either esculetin (50 mg/kg BW) or idebenone (100 mg/kg BW), for 20 days. The study revealed that esculetin and idebenone significantly reduced the elevated levels of Bax/Bcl-2 ratio, malondialdehyde, and DNA fragmentation and increased total antioxidant capacity level in lenses compared to the cataract-induced group. Only esculetin decreased AR, galactitol, and advanced glycated end products levels in lenses. Histopathological examinations supported the biochemical findings. Esculetin and idebenone may have chemopreventive effects for sugar cataract. PRACTICAL APPLICATIONS: Cataract is an age-related disease that might cause blindness in older adult people. Presently, no absolute pharmacological treatment is accessible for cataract. The use of natural products or their derivatives attract particular attention in modern medicines as they are believed to be safer with few or no side effects. Esculetin is a polyphenolic compound found in many medicinal plants. Idebenone is a synthetic analogue of coenzyme Q10. The current study is an approach to explore the anticataract effects of esculetin and idebenone in galactose-induced cataract in rats. Our study proved that both agents have anticataractogenic potentials due to their antioxidant and antiapoptotic properties.
Collapse
Affiliation(s)
| | | | - Nesreen Nabil Omar
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Hager Abd Al-Hamid
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
26
|
Targeting of externalized αB-crystallin on irradiated endothelial cells with pro-thrombotic vascular targeting agents: Potential applications for brain arteriovenous malformations. Thromb Res 2020; 189:119-127. [PMID: 32208214 DOI: 10.1016/j.thromres.2020.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/23/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular targeting uses molecular markers on the surface of diseased vasculature for ligand-directed drug delivery to induce vessel occlusion or destruction. In the absence of discriminatory markers, such as in brain arteriovenous malformations (AVMs), stereotactic radiosurgery may be used to prime molecular changes on the endothelial surface. This study explored αB-crystallin (CRYAB) as a radiation induced target and pre-tested the specificity and efficacy of a CRYAB-targeting coaguligand for in vitro thrombus induction. METHODS A parallel-plate flow system was established to circulate human whole blood over a layer of human brain endothelial cells. A conjugate of anti-CRYAB antibody and thrombin was injected into the circuit to compare binding and thrombus formation on cells with or without prior radiation treatment (0-25 Gy). RESULTS Radiation increased CRYAB expression and surface exposure in human brain endothelial cells. In the parallel-plate flow system, the targeted anti-CRYAB-thrombin conjugate increased thrombus formation on the surface of irradiated cells relative to non-irradiated cells and to a non-targeting IgG-thrombin conjugate. Fibrin deposition and accumulation of fibrinogen degradation products increased significantly at radiation doses at or above 15 Gy with conjugate concentrations of 1.25 and 2.5 μg/mL. CONCLUSIONS CRYAB exposure can be detected at the surface of human brain endothelial cells in response to irradiation. Pro-thrombotic CRYAB-targeting conjugates can bind under high flow conditions and in the presence of whole blood induce stable thrombus formation with high specificity and efficacy on irradiated surfaces. CRYAB provides a novel radiation marker for potential vascular targeting in irradiated brain AVMs.
Collapse
|
27
|
Janowska MK, Baughman HER, Woods CN, Klevit RE. Mechanisms of Small Heat Shock Proteins. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034025. [PMID: 30833458 DOI: 10.1101/cshperspect.a034025] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones that delay formation of harmful protein aggregates. sHSPs' role in protein homeostasis has been appreciated for decades, but their mechanisms of action remain poorly understood. This gap in understanding is largely a consequence of sHSP properties that make them recalcitrant to detailed study. Multiple stress-associated conditions including pH acidosis, oxidation, and unusual availability of metal ions, as well as reversible stress-induced phosphorylation can modulate sHSP chaperone activity. Investigations of sHSPs reveal that sHSPs can engage in transient or long-lived interactions with client proteins depending on solution conditions and sHSP or client identity. Recent advances in the field highlight both the diversity of function within the sHSP family and the exquisite sensitivity of individual sHSPs to cellular and experimental conditions. Here, we will present and highlight current understanding, recent progress, and future challenges.
Collapse
Affiliation(s)
- Maria K Janowska
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Hannah E R Baughman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Christopher N Woods
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
28
|
Phadte AS, Mahalingam S, Santhoshkumar P, Sharma KK. Functional Rescue of Cataract-Causing αA-G98R-Crystallin by Targeted Compensatory Suppressor Mutations in Human αA-Crystallin. Biochemistry 2019; 58:4148-4158. [PMID: 31523965 DOI: 10.1021/acs.biochem.9b00374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The G98R mutation in αA-crystallin is associated with the onset of presenile cataract and is characterized biochemically by an increased oligomeric mass, altered chaperone function, and loss of structural stability over time. Thus, far, it is not known whether the inherent instability caused by gain-of-charge mutation could be rescued by a compensatory loss of charge mutation elsewhere on the protein. To answer this question, we investigated whether αA-G98R-mediated instability could be rescued through suppressor mutations by introducing site-specific "compensatory" mutations in αA-G98R-crystallin, αA-R21Q/G98R, αA-G98R/R116C, and αA-R157Q/G98R. The recombinant proteins were expressed, purified, characterized, and evaluated by circular dichroism (CD), intrinsic fluorescence, and bis-ANS-binding studies. Chaperone-like activities of recombinant proteins were assessed using alcohol dehydrogenase (ADH) and insulin as unfolding substrates. Far-UV CD studies revealed an increased α-helical content in αA-G98R in comparison to αA-WT, αA-R21Q, R157Q, and the double mutants, αA-R21Q/G98R, and αA-R157Q/G98R. Compared to αA-WT, αA-R21Q, and αA-G98R, the double mutants showed an increased intrinsic tryptophan fluorescence, whereas the highest hydrophobicity (bis-ANS-binding) was shown by αA-G98R. Introduction of a second mutation in αA-G98R reduced its bis-ANS-binding activity. Both αA-R21Q/G98R and αA-R157Q/G98R showed greater chaperone-like activity against ADH aggregation than αA-G98R. However, among the three G98R mutants, only αA-R21Q/G98R protected ARPE-19 cells from H2O2-induced cytotoxicity. These results suggest that the lost chaperone-like activity of αA-G98R-crystallin can be rescued by another targeted mutation and that substitution of αA-R21Q-crystallin at the N-terminal region can rescue a deleterious mutation in the conserved α-crystallin domain of the protein.
Collapse
Affiliation(s)
- Ashutosh S Phadte
- Department of Ophthalmology , University of Missouri School of Medicine , Columbia , Missouri 65212 , United States.,Department of Biochemistry , University of Missouri , Columbia , Missouri 65212 , United States
| | - Sundararajan Mahalingam
- Department of Ophthalmology , University of Missouri School of Medicine , Columbia , Missouri 65212 , United States
| | - Puttur Santhoshkumar
- Department of Ophthalmology , University of Missouri School of Medicine , Columbia , Missouri 65212 , United States
| | - Krishna K Sharma
- Department of Ophthalmology , University of Missouri School of Medicine , Columbia , Missouri 65212 , United States.,Department of Biochemistry , University of Missouri , Columbia , Missouri 65212 , United States
| |
Collapse
|
29
|
Puspitasari A, Handayani N. Broccoli sprouts juice prevents lens protein aggregation in streptozotocin-induced diabetic rat. Int J Ophthalmol 2019; 12:1380-1385. [PMID: 31544030 PMCID: PMC6739569 DOI: 10.18240/ijo.2019.09.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/12/2019] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the effect of broccoli sprouts juice in preventing lens protein aggregation in diabetic rat model. METHODS Totally 25 male Wistar rats were divided into negative control group, diabetic group without juice treatment as positive control and diabetic group given broccoli sprouts juice 0.25, 0.5 and 1 g/d for 28d. Diabetic rat model was obtained by administering a single dose streptozotocin 65 mg/kg intraperitoneal. At the end of the study, all rats were examined for fasting blood sugar level (FBS), visual cataract score using slit lamp biomicroscope and lens αB-crystallin expression using Western blot method. Statistical analysis was performed using one way ANOVA with post hoc test, correlation test, and simple linear regression. RESULTS Positive control group had the highest cataract score and lens aggregated αB-crystallin expression. Broccoli sprout juice dose of 1 g/d group had the mildest cataract score, as well as the expression of lens aggregated αB-crystallin compared to treatments groups 1 and 2, opposite to lens native αB-crystallin expression. The broccoli sprout juice groups gave a significant decrease in cataract score, and also in lens aggregated αB-crystallin expression in diabetic rat models (P<0.05). CONCLUSION Broccoli sprout juice has a significant effect in preventing lens protein aggregation in diabetic rat model. The higher dose gives better visual cataract scores, lower lens aggregated αB-crystallin expression and higher lens native αB-crystallin expression.
Collapse
Affiliation(s)
- Ayu Puspitasari
- Department of Ophthalmology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang 65145, Indonesia
| | - Nina Handayani
- Department of Ophthalmology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang 65145, Indonesia
| |
Collapse
|
30
|
SUMOylation Evoked by Oxidative Stress Reduced Lens Epithelial Cell Antioxidant Functions by Increasing the Stability and Transcription of TP53INP1 in Age-Related Cataracts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7898069. [PMID: 31281592 PMCID: PMC6590620 DOI: 10.1155/2019/7898069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/05/2019] [Indexed: 01/13/2023]
Abstract
Oxidative stress plays an important role in the pathogenesis of cataracts. Small ubiquitin-like modifier (SUMO) proteins have great effects on cell stress response. Previous studies have shown that TP53INP1 can arrest cell growth and induce apoptosis by modulating p53 transcriptional activity and that both TP53INP1 and p53 are substrates of SUMOylation. However, no previous research has studied the effect of SUMOylation on the oxidative stress response in cataracts. This is the first study to investigate the effect of SUMOylation of TP53INP1 in oxidative stress-induced lens epithelial cell injury and age-related cataract formation. We found that the oxidative stress-induced endogenous SUMOylation of TP53INP1 promoted human lens epithelial cell (holed) apoptosis and regulated hLEC antioxidant effects by increasing the stability and transcription of TP53INP1 in age-related cataracts. SUMO-1, SUMOylation, and TP53INP1 were upregulated in lens tissues affected by age-related cataracts. A SUMO-1-specific protease, SENP1, acted as an oxidative stress-sensitive target gene in hLECs. This study identified for the first time that TP53INP1 can be SUMOylated in vivo, that the SUMOylation of TP53INP1 is induced by oxidative stress, and that SUMOylation/deSUMOylation can affect the stability and transcription of TP53INP1 in hLECs.
Collapse
|
31
|
Zhang J, Liu J, Wu J, Li W, Chen Z, Yang L. Progression of the role of CRYAB in signaling pathways and cancers. Onco Targets Ther 2019; 12:4129-4139. [PMID: 31239701 PMCID: PMC6553995 DOI: 10.2147/ott.s201799] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/07/2019] [Indexed: 01/18/2023] Open
Abstract
CRYAB is a member of the small heat shock protein family, first discovered in the lens of the eye, and involved in various diseases, such as eye and heart diseases and even cancers, for example, breast cancer, lung cancer, prostate cancer, and ovarian cancer. In addition, CRYAB proteins are involved in a variety of signaling pathways including apoptosis, inflammation, and oxidative stress. This review summarizes the recent progress concerning the role of CRYAB in signaling pathways and diseases. Therefore, the role of CRYAB in signaling pathways and cancers is urgently needed. This article reviews the regulation of CRYAB in the apoptotic inflammatory signaling pathway and its role in cancers progression and as a key role in anti-cancer therapy targeting CRYAB in an effort to improve outcomes for patients with metastatic disease.
Collapse
Affiliation(s)
- JunFei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - Jia Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - JiaLi Wu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - WenFeng Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - ZhongWei Chen
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - LiShan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| |
Collapse
|
32
|
A monoclonal antibody targeted to the functional peptide of αB-crystallin inhibits the chaperone and anti-apoptotic activities. J Immunol Methods 2019; 467:37-47. [PMID: 30738041 DOI: 10.1016/j.jim.2019.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 01/18/2023]
Abstract
αB-Crystallin is a member of the small heat shock protein family. It is a molecular chaperone and an anti-apoptotic protein. Previous studies have shown that the peptide (73DRFSVNLDVKHFSPEELKVKV93, hereafter referred to as peptain-1) from the core domain of αB-crystallin exhibits both chaperone and anti-apoptotic properties similar to the parent protein. We developed a mouse monoclonal antibody against peptain-1 with the aim of blocking the functions of αB-crystallin. The antibody reacted with peptain-1, it did not react with the chaperone peptide of αA-crystallin. The antibody strongly reacted with human recombinant αB-crystallin but weakly with Hsp20; it did not react with αA-crystallin or Hsp27. The antibody specifically reacted with αB-crystallin in human and mouse lens proteins but not with αA-crystallin. The antibody reacted with αB-crystallin in human lens epithelial cells, human retinal endothelial cells, and with peptain-1 in peptain-1-transduced cells. Unlike the commercial antibodies against αB-crystallin, the antibody against peptain-1 inhibited the chaperone and anti-apoptotic activities of peptain-1. The antibody might find use in inhibiting αB-crystallin's chaperone and anti-apoptotic activities in diseases where αB-crystallin is a causative or contributing factor.
Collapse
|
33
|
Droho S, Keener ME, Mueller NH. Changes in function but not oligomeric size are associated with αB-crystallin lysine substitution. Biochem Biophys Rep 2018; 14:1-6. [PMID: 29872727 PMCID: PMC5986625 DOI: 10.1016/j.bbrep.2018.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/19/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
αB-Crystallin, ubiquitously expressed in many tissues including the ocular lens, is a small heat shock protein that can prevent protein aggregation. A number of post-translation modifications are reported to modify αB-crystallin function. Recent studies have identified αB-crystallin lysine residues are modified by acetylation and ubiquitination. Therefore, we sought to determine the effects of lysine to alanine substitution on αB-crystallin functions including chaperone activity and modulation of actin polymerization. Analysis of the ten substitution mutants as recombinant proteins indicated all the proteins were soluble and formed oligomeric complexes similar to wildtype protein. Lysozyme aggregation induced by chemical treatment indicated that K82, K90, K121, K166 and K174/K175 were required for efficient chaperone activity. Thermal induction of γ-crystallin aggregation could be prevented by all αB-crystallin substitution mutants. These αB-crystallin mutants also were able to mediate wildtype levels of actin polymerization. Further analysis of two clones with either enhanced or reduced chaperone activity on individual client substrates or actin polymerization indicated both retained broad chaperone activity and anti-apoptotic activity. Collectively, these studies show the requirements for lysine residues in αB-crystallin function. αB-crystallin Lysine-to-alanine mutation yields soluble recombinant protein. αB-crystallin mutants form oligomeric complexes similar to wildtype. αB-crystallin mutants prevent thermal aggregation of γ-crystallin. αB-crystallin mutants have disperse activity in chemical aggregation assays. αB-crystallin mutants retain ability to modulate actin polymerization.
Collapse
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Mitchell E. Keener
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Niklaus H. Mueller
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA
- Correspondence to: University of Colorado School of Medicine, 12800 East 19th Avenue, Mail Stop 8311, Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Li N, Han Z, Li L, Zhang B, Liu Z, Li J. The anti-cataract molecular mechanism study in selenium cataract rats for baicalin ophthalmic nanoparticles. Drug Des Devel Ther 2018; 12:1399-1411. [PMID: 29872263 PMCID: PMC5973426 DOI: 10.2147/dddt.s160524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The objective of this study was to investigate the effects of the solid lipid nanoparticles of baicalin (BA-SLNs) on an experimental cataract model and explore the molecular mechanism combined with bioinformatics analysis. MATERIALS AND METHODS The transparency of lens was observed daily by slit-lamp and photography. Lenticular opacity was graded. Two-dimensional gel electrophoresis (2-DE) was employed to analyze the differential protein expression modes in each group. Proteins of interest were subjected to protein identification by nano-liquid chromatography tandem mass spectrometry (LC-MS/MS). Bioinformatics analysis was performed using the Ingenuity Pathway Analysis (IPA) online software to comprehend the biological implications of the proteins identified by proteomics. RESULTS At the end of the sodium selenite-induced cataract progression, almost all lenses from the model group developed partial nuclear opacity; however, all lenses were clear and normal in the blank group. There was no significant difference between the BA-SLNs group and the blank group. Many protein spots were differently expressed in 2-DE patterns of total proteins of lenses from each group, and 65 highly different protein spots were selected to be identified between the BA-SLNs group and the model group. A total of 23 proteins were identified, and 12 of which were crystalline proteins. CONCLUSION We considered crystalline proteins to play important roles in preserving the normal expression levels of proteins and the transparency of lenses. The general trend in the BA-SLN-treated lenses' data showed that BA-SLNs regulated the protein expression mode of cataract lenses to normal lenses. Our findings suggest that BA-SLNs may be a potential therapeutic agent in treating cataract by regulating protein expression and may also be a strong candidate for future clinical research.
Collapse
Affiliation(s)
- Nan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Zhenzhen Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Baokang Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Lin Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Jiawei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
35
|
Phadte AS, Santhoshkumar P, Sharma KK. Characterization of an N-terminal mutant of αA-crystallin αA-R21Q associated with congenital cataract. Exp Eye Res 2018; 174:185-195. [PMID: 29782825 DOI: 10.1016/j.exer.2018.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/06/2018] [Accepted: 05/16/2018] [Indexed: 01/20/2023]
Abstract
Several mutations associated with congenital cataracts in human beings target conserved arginine residues in αA-crystallin. The N-terminal region of αA-crystallin is a "mutational hotspot," with multiple cataract-related mutations reported in this region. Two mutations at arginine 21 in the N-terminal domain of αA-crystallin - αA-R21L and αA-R21W have been associated with congenital cataract. A third mutant of R21, αA-R21Q, was recently identified to be associated with congenital cataract in a South Australian family. The point mutation was reported to compromise the quaternary structure of αA-crystallin by preventing its assembly into higher ordered oligomers. To assess the effect of the αA-R21Q mutation on αA-crystallin function, recombinant αA-R21Q was expressed, purified and characterized in vitro. Compared to wild-type αA-crystallin, the recombinant αA-R21Q exhibits enhanced chaperone-like activity, increased surface hydrophobicity, lesser stability in urea and increased susceptibility to digestion by trypsin. αA-R21Q demonstrated increased binding affinity towards unfolding ADH and bovine lens fiber cell membranes. αA-R21Q homo-oligomers and hetero-oligomers also prevented H2O2-induced apoptosis in ARPE-19 cells. Taken together, αA-R21Q exhibited a gain of function despite subtle structural differences as compared to wild-type αA-crystallin. This study further validates the involvement of arginine 21 in regulating αA-crystallin structure and function.
Collapse
Affiliation(s)
- Ashutosh S Phadte
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Puttur Santhoshkumar
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - K Krishna Sharma
- Department of Ophthalmology, University of Missouri School of Medicine, Columbia, MO 65212, United States; Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
36
|
Reddy VS, Madala SK, Trinath J, Reddy GB. Extracellular small heat shock proteins: exosomal biogenesis and function. Cell Stress Chaperones 2018; 23:441-454. [PMID: 29086335 PMCID: PMC5904088 DOI: 10.1007/s12192-017-0856-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jamma Trinath
- Department of Biological Sciences, BITS-Pilani, 500078, Hyderabad Campus, Hyderabad, Telangana, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| |
Collapse
|
37
|
Lin FL, Ho JD, Cheng YW, Chiou GCY, Yen JL, Chang HM, Lee TH, Hsiao G. Theissenolactone C Exhibited Ocular Protection of Endotoxin-Induced Uveitis by Attenuating Ocular Inflammatory Responses and Glial Activation. Front Pharmacol 2018; 9:326. [PMID: 29686615 PMCID: PMC5900795 DOI: 10.3389/fphar.2018.00326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/21/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the effects of a natural component, theissenolactone C (LC53), on the ocular inflammation of experimental endotoxin-induced uveitis (EIU) and its related mechanisms in microglia. Evaluation of the severity of anterior uveitis indicated that LC53 treatment significantly decreased iridal hyperemia and restored the clinical scores. Additionally, the deficient retina functions of electroretinography were improved by LC53. LC53 significantly reduced levels of tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1, protein leakage and activation of matrix metalloproteinases in the anterior section during EIU. Moreover, LC53 treatment decreased the oxidative stress as well as neuroinflammatory reactivities of GFAP and Iba-1 in the posterior section. Furthermore, LC53 decreased the phosphorylation of p65, expression of HSP90, Bax, and cleaved-caspase-3 in EIU. According to the microglia studies, LC53 significantly abrogated the productions of TNF-α, PGE2, NO and ROS, as well as inducible NO synthase and cyclooxygenase-2 expression in LPS-stimulated microglial BV2 cells. The microglial activation of IKKβ, p65 phosphorylation and nuclear phosphorylated p65 translocation were strongly attenuated by LC53. On the other hand, LC53 exhibited the inhibitory effects on JNK and ERK MAPKs activation. Our findings indicated that LC53 exerted the ocular-protective effect through its inhibition on neuroinflammation, glial activation, and apoptosis in EIU, suggesting a therapeutic potential with down-regulation of the NF-κB signaling for uveitis and retinal inflammatory diseases.
Collapse
Affiliation(s)
- Fan-Li Lin
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jau-Der Ho
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - George C Y Chiou
- Department of Neuroscience and Experimental Therapeutics and Institute of Ocular Pharmacology, College of Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Chang
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
38
|
Droho S, Keener ME, Mueller NH. Heparan sulfate mediates cell uptake of αB-crystallin fused to the glycoprotein C cell penetration peptide. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:598-604. [PMID: 29408057 DOI: 10.1016/j.bbamcr.2018.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Steven Droho
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Mitchell E Keener
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | - Niklaus H Mueller
- Department of Ophthalmology, University of Colorado Denver School of Medicine, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver School of Medicine, Aurora, CO, USA.
| |
Collapse
|
39
|
Alkozi HA, Franco R, Pintor JJ. Epigenetics in the Eye: An Overview of the Most Relevant Ocular Diseases. Front Genet 2017; 8:144. [PMID: 29075285 PMCID: PMC5643502 DOI: 10.3389/fgene.2017.00144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/22/2017] [Indexed: 01/09/2023] Open
Abstract
Sight for mammals is one of the most appreciated senses. In humans there are several factors that contribute to the increment in all kind of eye diseases. This mini-review will focus on some diseases whose prevalence is steadily increasing year after year for non-genetic reasons, namely cataracts, dry eye, and glaucoma. Aging, diet, inflammation, drugs, oxidative stress, seasonal and circadian style-of-live changes are impacting on disease prevalence by epigenetics factors, defined as stable heritable traits that are not explained by changes in DNA sequence. The mini-review will concisely show the data showing epigenetics marks in these diseases and on how knowledge on the epigenetic alterations may guide therapeutic approaches to have a healthy eye.
Collapse
Affiliation(s)
- Hanan A Alkozi
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine of the University of Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Cell and Molecular Neuropharmacology, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús J Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
40
|
Yu Y, Jiang H, Li H, Song W, Xia X. Alpha-A-Crystallin Protects Lens Epithelial Cell-Derived iPSC-Like Cells Against Apoptosis Induced by Oxidative Stress. Cell Reprogram 2016; 18:327-332. [PMID: 27696911 DOI: 10.1089/cell.2016.0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Yixin Yu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haibo Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haibo Li
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Weitao Song
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
41
|
Ma X, Jiao X, Ma Z, Hejtmancik JF. Polymorphism rs7278468 is associated with Age-related cataract through decreasing transcriptional activity of the CRYAA promoter. Sci Rep 2016; 6:23206. [PMID: 26984531 PMCID: PMC4794711 DOI: 10.1038/srep23206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/02/2016] [Indexed: 11/18/2022] Open
Abstract
CRYAA plays critical functional roles in lens transparency and opacity, and polymorphisms near CRYAA have been associated with age-related cataract (ARC). This study examines polymorphisms in the CRYAA promoter region for association with ARC and elucidates the mechanisms of this association. Three SNPs nominally associated with ARC were identified in the promoter region of CRYAA: rs3761382 (P = 0.06, OR (Odds ratio) = 1.5), rs13053109 (P = 0.04, OR = 1.6), rs7278468 (P = 0.007, OR = 0.6). The C-G-T haplotype increased the risk for ARC overall (P = 0.005, OR = 1.8), and both alleles and haplotypes show a stronger association with cortical cataract (rs3761382, P = 0.002, OR = 2.1; rs13053109, P = 0.002, OR = 2.1; rs7278468, P = 0.0007, OR = 0.5; C-G-T haplotype, P = 0.0003, OR = 2.2). The C-G-T risk haplotype decreased transcriptional activity through rs7278468, which lies in a consensus binding site for the transcription repressor KLF10. KLF10 binding inhibited CRYAA transcription, and both binding and inhibition were greater with the T rs7278468 allele. Knockdown of KLF10 in HLE cells partially rescued the transcriptional activity of CRYAA with rs7278468 T allele, but did not affect activity with the G allele. Thus, our data suggest that the T allele of rs7278468 in the CRYAA promoter is associated with ARC through increasing binding of KLF-10 and thus decreasing CRYAA transcription.
Collapse
Affiliation(s)
- Xiaoyin Ma
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, 325003, China.,Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Datiles MB, Ansari RR, Yoshida J, Brown H, Zambrano AI, Tian J, Vitale S, Zigler JS, Ferris FL, West SK, Stark WJ. Longitudinal Study of Age-Related Cataract Using Dynamic Light Scattering: Loss of α-Crystallin Leads to Nuclear Cataract Development. Ophthalmology 2016; 123:248-254. [PMID: 26545319 PMCID: PMC4724511 DOI: 10.1016/j.ophtha.2015.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To conduct a longitudinal study on age-related nuclear cataracts using dynamic light scattering (DLS) to determine if cataract progression is associated with loss of the unbound form of the lens molecular chaperone protein, α-crystallin. DESIGN Natural history and cohort study. PARTICIPANTS Patients 30 years of age or older of either gender seeking treatment at the Wilmer Eye Institute Cornea-Cataract Department. METHODS All patients underwent a comprehensive dilated eye examination every 6 months, including slit-lamp grading of their lenses using the Age-Related Eye Disease Study (AREDS) clinical lens grading system and obtaining an estimate of unbound α-crystallin level in the nucleus, the α-crystallin index (ACI), using the National Aeronautics and Space Administration-National Eye Institute DLS device. We used a random effects statistical model to examine the relationship of lens opacity changes over time with ACI changes. MAIN OUTCOME MEASURES α-Crystallin Index (ACI) and AREDS nuclear cataract grade. RESULTS Forty-five patients (66 eyes) 34 to 79 years of age with AREDS nuclear lens grades of 0 to 3.0 were followed up every 6 months for a mean of 19 months (range, 6-36 months). We found that lenses with the lowest baseline levels of ACI had the most rapid progression of cataracts, whereas lenses with higher ACI at baseline had no or slower cataract progression. Lenses that lost α-crystallin at the highest rates during the study also had faster progression of nuclear cataracts than lenses with a slower rate of ACI loss. Kaplan-Meier survival curves showed that lenses with the lowest initial ACI had the highest risk of undergoing cataract surgery. CONCLUSIONS This longitudinal study corroborates our previous cross-sectional study finding that higher levels of unbound α-crystallin as assessed by ACI are associated with lower risk of cataract formation and that loss of ACI over time is associated with cataract formation and progression. This study suggested that assessment of ACI with the DLS device could be used as a surrogate for lens opacity risk in clinical studies, and for assessing nuclear cataract events in studies where cataract development may be a side effect of a drug or device.
Collapse
Affiliation(s)
- Manuel B Datiles
- National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| | - Rafat R Ansari
- National Aeronautics and Space Administration-John H. Glenn Research Center, Cleveland, Ohio
| | - Junko Yoshida
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland; Department of Ophthalmology, University of Tokyo, Tokyo, Japan
| | - Holly Brown
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Andrea I Zambrano
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Jing Tian
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Susan Vitale
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - J Samuel Zigler
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Frederick L Ferris
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Sheila K West
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Walter J Stark
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| |
Collapse
|
43
|
Cetinel S, Montemagno C. Nanotechnology for the Prevention and Treatment of Cataract. Asia Pac J Ophthalmol (Phila) 2015; 4:381-7. [PMID: 26716434 DOI: 10.1097/apo.0000000000000156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The purpose of this article was to review recent advances in the applications of nanotechnology in cataract treatment and prevention strategies. DESIGN A literature review on the use of nanotechnology for the prevention and treatment of cataract was done. METHODS Research articles about nanotechnology-based treatments and prevention technologies for cataract were searched on Web of Science, and the most recent advances were reported. RESULTS Nonsteroid anti-inflammatory drugs, natural antioxidants, biologic and chemical chaperones, and chaperones such as molecules have found great application in preventing and treating cataracts. Current scientific research on new treatment strategies, which focuses on the biochemical basis of the disease, will likely result in new anticataract agents. However, none of the drug formulations will be approved for use unless efficient delivery is promised. Nanoparticle engineering together with biomimetic strategies enable the development of next-generation, more efficient, less complex, and personalized treatments. CONCLUSIONS The only currently available treatment for cataracts, surgical replacement of the opacified lens, is not an easily accessible option in developing countries. New treatment strategies based on topical drugs would enable treatment to reach massive populations facing the threat of blindness and more effectively deal with the postsurgical complications. Nanotechnology plays a key role in improving drug delivery systems with enhanced controlled release, targeted delivery, and bioavailability to overcome diffusion limitations in the eye.
Collapse
Affiliation(s)
- Sibel Cetinel
- From the *Chemical and Materials Engineering and †Ingenuity Lab, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
44
|
Mueller NH, Fogueri U, Pedler MG, Montana K, Petrash JM, Ammar DA. Impact of Subunit Composition on the Uptake of α-Crystallin by Lens and Retina. PLoS One 2015; 10:e0137659. [PMID: 26355842 PMCID: PMC4565700 DOI: 10.1371/journal.pone.0137659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022] Open
Abstract
Misfolded protein aggregation, including cataract, cause a significant amount of blindness worldwide. α-Crystallin is reported to bind misfolded proteins and prevent their aggregation. We hypothesize that supplementing retina and lens with α-crystallin may help to delay disease onset. The purpose of this study was to determine if αB-crystallin subunits containing a cell penetration peptide (gC-tagged αB-crystallin) facilitate the uptake of wild type αA-crystallin (WT-αA) in lens and retina. Recombinant human αB-crystallin was modified by the addition of a novel cell penetration peptide derived from the gC gene product of herpes simplex virus (gC-αB). Recombinant gC-αB and wild-type αA-crystallin (WT-αA) were purified from E. coli over-expression cultures. After Alexa-labeling of WT-αA, these proteins were mixed at ratios of 1:2, 1:5 and 1:10, respectively, and incubated at 37°C for 4 hours to allow for subunit exchange. Mixed oligomers were subsequently incubated with tissue culture cells or mouse organ cultures. Similarly, crystallin mixtures were injected into the vitreous of rat eyes. At various times after exposure, tissues were harvested and analyzed for protein uptake by confocal microscopy or flow cytometry. Chaperone-like activity assays were performed on α-crystallins ratios showing optimal uptake using chemically-induced or heat induced substrate aggregation assays. As determined by flow cytometry, a ratio of 1:5 for gC-αB to WT-αA was found to be optimal for uptake into retinal pigmented epithelial cells (ARPE-19). Chaperone-like activity assays demonstrated that hetero-oligomeric complex of gC-αB to WT-αA (in 1:5 ratio) retained protein aggregation protection. We observed a significant increase in protein uptake when optimized (gC-αB to WT-αA (1:5 ratio)) hetero-oligomers were used in mouse lens and retinal organ cultures. Increased levels of α-crystallin were found in lens and retina following intravitreal injection of homo- and hetero-oligomers in rats.
Collapse
Affiliation(s)
- Niklaus H. Mueller
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| | - Uma Fogueri
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, United States of America
| | - Michelle G. Pedler
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kameron Montana
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - J. Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, Colorado, United States of America
| | - David A. Ammar
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
45
|
Haslbeck M, Peschek J, Buchner J, Weinkauf S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim Biophys Acta Gen Subj 2015; 1860:149-66. [PMID: 26116912 DOI: 10.1016/j.bbagen.2015.06.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Martin Haslbeck
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Jirka Peschek
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| | - Sevil Weinkauf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| |
Collapse
|
46
|
Nagaraj RH, Nahomi RB, Mueller NH, Raghavan CT, Ammar DA, Petrash JM. Therapeutic potential of α-crystallin. Biochim Biophys Acta Gen Subj 2015; 1860:252-7. [PMID: 25840354 DOI: 10.1016/j.bbagen.2015.03.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/26/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND The findings that α-crystallins are multi-functional proteins with diverse biological functions have generated considerable interest in understanding their role in health and disease. Recent studies have shown that chaperone peptides of α-crystallin could be delivered into cultured cells and in experimental animals with beneficial effects against protein aggregation, oxidation, inflammation and apoptosis. SCOPE OF REVIEW In this review, we will summarize the latest developments on the therapeutic potential of α-crystallins and their functional peptides. MAJOR CONCLUSIONS α-Crystallins and their functional peptides have shown significant favorable effects against several diseases. Their targeted delivery to tissues would be of great therapeutic benefit. However, α-crystallins can also function as disease-causing proteins. These seemingly contradictory functions must be carefully considered prior to their therapeutic use. GENERAL SIGNIFICANCE αA and αB-Crystallin are members of the small heat shock protein family. These proteins exhibit molecular chaperone and anti-apoptotic activities. The core crystallin domain within these proteins is largely responsible for these prosperities. Recent studies have identified peptides within the crystallin domain of both α- and αB-crystallins with remarkable chaperone and anti-apoptotic activities. Administration of α-crystallin or their functional peptides has shown substantial inhibition of pathologies in several diseases. However, α-crystallins have been shown to promote disease-causing pathways. These two sides of the proteins are discussed in this review. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Ram H Nagaraj
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Rooban B Nahomi
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Niklaus H Mueller
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cibin T Raghavan
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - David A Ammar
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
47
|
Shi Y, Su C, Wang JT, Du B, Dong LJ, Liu AH, Li XR. Temporal and spatial changes in VEGF, αA- and αB-crystallin expression in a mouse model of oxygen-induced retinopathy. Int J Clin Exp Med 2015; 8:3349-3359. [PMID: 26064225 PMCID: PMC4443059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/28/2015] [Indexed: 06/04/2023]
Abstract
OBJECTIVE Retinal neovascularization is an iconic change in retinopathies. Vascular Endothelial Growth Factor (VEGF) and α-crystallins have been identified to mediate the pathogenesis of retinopathy. However, the special and temporal changes in their expression associated with retinal neovascularization have not yet been determined. Therefore, we examined the expression and distribution of VEGF, αA- and αB-crystallins in the retina using a mouse model of oxygen-induced retinopathy (OIR). METHODS 90 C57/BL mice were randomly divided into the OIR and control groups. The OIR group at postnatal day 7 (P7) were kept at high oxidation state (75 ± 5%) for 5 days before returned to normal environment. Retinal tissue was cut into sections. Oxygen induced retinal neovascularization and vascular structural changes were evaluated using retinal fluorescein angiography. The number of endothelial cell nuclei breaking through the retinal internal limiting membrane was counted after H&E staining. The mRNA expression levels of VEGF, αA- and αB-crystallins in the mouse retina were determined using real-time RT-PCR. The distribution of αA- and αB-crystallins in the retina was detected by fluorescent immunohistochemistry staining. RESULTS Oxygen induction triggered new blood vessel formation in the retina and impaired the structure of the retinal vascular network. The number of endothelial cell nuclei breaking through the retinal internal limiting membrane was significantly increased in the OIR group compared to the control group at P13, P17 and P21 (P < 0.01), reaching the peak on P17. The expression levels of VEGF, αA- and αB-crystalllins were also significantly different between the OIR and control groups. VEGF expression was highest on P15, αA-crystallin expression was highest on P17, whereas αB-crystallin expression kept increasing during the time frame of our study. Both αA- and αB-crystallins were expressed in the ganglion cell layer and the inner nuclear cell layer. While αA- and αB-crystallins were only located on the cell membrane in the outer ganglion cell layer, they were observed both on the cell membrane and in the cytoplasm in the inner layer of cells. CONCLUSION Using our mouse model of oxygen-induced retinopathy, we showed that the expression patterns of VEGF, αA- and αB-crystallins during retinal neovascularization in both spatially and temporally manners, providing significant insights into the molecular mechanisms of retinopathy and the associated neovascularization.
Collapse
Affiliation(s)
- Yi Shi
- Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Tianjin 300384, China
| | - Chang Su
- Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Tianjin 300384, China
| | - Jian-Tao Wang
- Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Tianjin 300384, China
| | - Bei Du
- Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Tianjin 300384, China
| | - Li-Jie Dong
- Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Tianjin 300384, China
| | - Ai-Hua Liu
- Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Tianjin 300384, China
| | - Xiao-Rong Li
- Tianjin Medical University Eye Hospital, School of Optometry and Ophthalmology, Tianjin Medical University Eye Institute, Tianjin Medical University Tianjin 300384, China
| |
Collapse
|
48
|
Raju M, Santhoshkumar P, Xie L, Sharma KK. Addition of αA-crystallin sequence 164-173 to a mini-chaperone DFVIFLDVKHFSPEDLT alters the conformation but not the chaperone-like activity. Biochemistry 2014; 53:2615-23. [PMID: 24697516 PMCID: PMC4007981 DOI: 10.1021/bi4017268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been shown that αA-mini-chaperone, a peptide representing the chaperone binding site in αA-crystallin, prevents destabilized protein aggregation. αA-Mini-chaperone has been shown to form amyloid fibrils. This study was undertaken to improve the stability of αA-mini-chaperone while preserving its anti-aggregation activity by fusing the flexible and solvent-exposed C-terminal 164-173 region of αA-crystallin to the mini-chaperone sequence DFVIFLDVKHFSPEDLT. The resulting chimeric chaperone peptide, DFVIFLDVKHFSPEDLTEEKPTSAPSS (designated CP1), was characterized. Circular dichroism studies showed that unlike αA-mini-chaperone with its β-sheet structure, the CP1 peptide exhibited a random structure. Transmission electron microscopy (TEM) examination of the CP1 peptide incubated in a shaker at 37 °C for 72 h did not reveal amyloid fibrils, whereas αA-mini-chaperone showed distinct fibrils. Consistent with TEM observation, the thioflavin T binding assay showed an increased level of dye binding in the mini-chaperone incubated at 37 °C and subjected to shaking but not of the CP1 peptide incubated under similar conditions. The chaperone activity of the CP1 peptide was comparable to that of αA-mini-chaperone against denaturing alcohol dehydrogenase, citrate synthase, and α-lactalbumin. Transduction of both peptide chaperones to COS-7 cells showed no cytotoxic effects. The antioxidation assay involving the H2O2 treatment of COS-7 cells revealed that αA-mini-chaperone and the CP1 peptide have comparable cytoprotective properties against H2O2-induced oxidative damage in COS-7 cells. This study therefore shows that the addition of C-terminal sequence 164-173 of αA-crystallin to αA-mini-chaperone influences the conformation of αA-mini-chaperone without affecting its chaperone function or cytoprotective activity.
Collapse
Affiliation(s)
- Murugesan Raju
- Department of Ophthalmology, University of Missouri-Columbia School of Medicine , Columbia, Missouri 65212, United States
| | | | | | | |
Collapse
|