1
|
Chen X, Zhong X, Huang GN. Heart regeneration from the whole-organism perspective to single-cell resolution. NPJ Regen Med 2024; 9:34. [PMID: 39548113 PMCID: PMC11568173 DOI: 10.1038/s41536-024-00378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Cardiac regenerative potential in the animal kingdom displays striking divergence across ontogeny and phylogeny. Here we discuss several fundamental questions in heart regeneration and provide both a holistic view of heart regeneration in the organism as a whole, as well as a single-cell perspective on intercellular communication among diverse cardiac cell populations. We hope to provide valuable insights that advance our understanding of organ regeneration and future therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaochen Zhong
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Fu M, Jia S, Xu L, Li X, Lv Y, Zhong Y, Ai S. Single-cell multiomic analysis identifies macrophage subpopulations in promoting cardiac repair. J Clin Invest 2024; 134:e175297. [PMID: 39190625 PMCID: PMC11444165 DOI: 10.1172/jci175297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cardiac mononuclear phagocytic cells (Cardiac MPCs) participate in maintaining homeostasis and orchestrating cardiac responses upon injury. However, the function of specific MPC subtypes and the related cell fate commitment mechanisms remain elusive in regenerative and nonregenerative hearts due to their cellular heterogeneities. Using spatiotemporal single-cell epigenomic analysis of cardiac MPCs in regenerative (P1) and nonregenerative (P10) mouse hearts after injury, we found that P1 hearts accumulate reparative Arg1+ macrophages, while proinflammatory S100a9+Ly6c+ monocytes are uniquely abundant during nonregenerative remodeling. Moreover, blocking chemokine CXCR2 to inhibit the specification of the S100a9+Ly6c+-biased inflammatory fate in P10 hearts resulted in elevated wound repair responses and marked improvements in cardiac function after injury. Single-cell RNA-Seq further confirmed an increased Arg1+ macrophage subpopulation after CXCR2 blockade, which was accomplished by increased expression of wound repair-related genes and reduced expression of proinflammatory genes. Collectively, our findings provide instructive insights into the molecular mechanisms underlying the function and fate specification of heterogeneous MPCs during cardiac repair and identify potential therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Mingzhu Fu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shengtao Jia
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Longhui Xu
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Li
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yufang Lv
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yulong Zhong
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shanshan Ai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Vargas Aguilar S, Cui M, Tan W, Sanchez-Ortiz E, Bassel-Duby R, Liu N, Olson EN. The PD-1-PD-L1 pathway maintains an immunosuppressive environment essential for neonatal heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:389-402. [PMID: 38737787 PMCID: PMC11086661 DOI: 10.1038/s44161-024-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/05/2024] [Indexed: 05/14/2024]
Abstract
The adult mouse heart responds to injury by scarring with consequent loss of contractile function, whereas the neonatal heart possesses the ability to regenerate. Activation of the immune system is among the first events upon tissue injury. It has been shown that immune response kinetics differ between regeneration and pathological remodeling, yet the underlying mechanisms of the distinct immune reactions during tissue healing remain unclear. Here we show that the immunomodulatory PD-1-PD-L1 pathway is highly active in regenerative neonatal hearts but rapidly silenced later in life. Deletion of the PD-1 receptor or inactivation of its ligand PD-L1 prevented regeneration of neonatal hearts after injury. Disruption of the pathway during neonatal cardiac injury led to increased inflammation and aberrant T cell activation, which ultimately impaired cardiac regeneration. Our findings reveal an immunomodulatory and cardioprotective role for the PD-1-PD-L1 pathway in heart regeneration and offer potential avenues for the control of adult tissue regeneration.
Collapse
Affiliation(s)
- Stephanie Vargas Aguilar
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally: Stephanie Vargas Aguilar, Miao Cui
| | - Miao Cui
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cardiology, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Stephanie Vargas Aguilar, Miao Cui
| | - Wei Tan
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ning Liu
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Xu N, Gonzalez BA, Yutzey KE. Macrophage lineages in heart development and regeneration. Curr Top Dev Biol 2024; 156:1-17. [PMID: 38556420 DOI: 10.1016/bs.ctdb.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
During development, macrophage subpopulations derived from hematopoietic progenitors take up residence in the developing heart. Embryonic macrophages are detectable at the early stages of heart formation in the nascent myocardium, valves and coronary vasculature. The specific subtypes of macrophages present in the developing heart reflect the generation of hematopoietic progenitors in the yolk sac, aorta-gonad-mesonephros, fetal liver, and postnatal bone marrow. Ablation studies have demonstrated specific requirements for embryonic macrophages in valve remodeling, coronary and lymphatic vessel development, specialized conduction system maturation, and myocardial regeneration after neonatal injury. The developmental origins of macrophage lineages change over time, with embryonic lineages having more reparative and remodeling functions in comparison to the bone marrow derived myeloid lineages of adults. Here we review the contributions and functions of cardiac macrophages in the developing heart with potential regenerative and reparative implications for cardiovascular disease.
Collapse
Affiliation(s)
- Na Xu
- The Heart Institute, Cincinnati Children's Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brittany A Gonzalez
- The Heart Institute, Cincinnati Children's Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Katherine E Yutzey
- The Heart Institute, Cincinnati Children's Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
5
|
Castillo-Casas JM, Caño-Carrillo S, Sánchez-Fernández C, Franco D, Lozano-Velasco E. Comparative Analysis of Heart Regeneration: Searching for the Key to Heal the Heart-Part II: Molecular Mechanisms of Cardiac Regeneration. J Cardiovasc Dev Dis 2023; 10:357. [PMID: 37754786 PMCID: PMC10531542 DOI: 10.3390/jcdd10090357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, among which ischemic heart disease is the most representative. Myocardial infarction results from occlusion of a coronary artery, which leads to an insufficient blood supply to the myocardium. As it is well known, the massive loss of cardiomyocytes cannot be solved due the limited regenerative ability of the adult mammalian hearts. In contrast, some lower vertebrate species can regenerate the heart after an injury; their study has disclosed some of the involved cell types, molecular mechanisms and signaling pathways during the regenerative process. In this 'two parts' review, we discuss the current state-of-the-art of the main response to achieve heart regeneration, where several processes are involved and essential for cardiac regeneration.
Collapse
Affiliation(s)
- Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
| | - Cristina Sánchez-Fernández
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| | - Estefanía Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, 23071 Jaén, Spain; (J.M.C.-C.); (S.C.-C.); (C.S.-F.); (D.F.)
- Medina Foundation, 18007 Granada, Spain
| |
Collapse
|
6
|
Abstract
It is well established that humans and other mammals are minimally regenerative compared with organisms such as zebrafish, salamander or amphibians. In recent years, however, the identification of regenerative potential in neonatal mouse tissues that normally heal poorly in adults has transformed our understanding of regenerative capacity in mammals. In this Review, we survey the mammalian tissues for which regenerative or improved neonatal healing has been established, including the heart, cochlear hair cells, the brain and spinal cord, and dense connective tissues. We also highlight common and/or tissue-specific mechanisms of neonatal regeneration, which involve cells, signaling pathways, extracellular matrix, immune cells and other factors. The identification of such common features across neonatal tissues may direct therapeutic strategies that will be broadly applicable to multiple adult tissues.
Collapse
Affiliation(s)
| | - Alice H. Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA
| |
Collapse
|
7
|
Ren X, Peng G, Peng B, Tan Y, Bai X. Robust strategy for disease resistance and increasing production breeding in red swamp crayfish (Procambarus clarkii). FISH & SHELLFISH IMMUNOLOGY 2022; 122:57-66. [PMID: 35085739 DOI: 10.1016/j.fsi.2022.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Red swamp crayfish (Procambarus clarkii) is an important aquaculture species in China. With increasing crayfish culture, a number of outbreaks of various diseases have been identified in crayfish. Despite this, there are no reports on the application of disease resistance genes in the molecular breeding of crayfish. In this study, transcriptome analysis was performed to explore the disease resistance genes in crayfish, with a focus on investigating the genetic variations in the open reading frames of these genes, for subsequent haplotype analysis. Furthermore, pathogen-challenge experiments were carried out in the crayfish, to identify the favoured haplotypes. A novel disease resistance gene, R (Resistance), was identified by means of transcriptome analysis. In total, two, four, and five haplotypes of the three disease resistance genes, ALF, R, and crustin2, respectively, were detected. ALF1, R1, and Cru1 were the favoured haplotypes of ALF, R, and crustin2, respectively. Subsequently, the favoured haplotype combinations of the different genes were obtained, and a series of molecular markers were developed to identify them. Finally, we propose a molecular breeding strategy to enhance the disease resistance of crayfish, and thus, improve its production.
Collapse
Affiliation(s)
- Xin Ren
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guohui Peng
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Peng
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunfei Tan
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Shuangshui Shuanglü Institute, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
8
|
Garbern JC, Lee RT. Heart regeneration: 20 years of progress and renewed optimism. Dev Cell 2022; 57:424-439. [PMID: 35231426 PMCID: PMC8896288 DOI: 10.1016/j.devcel.2022.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide, and thus there remains great interest in regenerative approaches to treat heart failure. In the past 20 years, the field of heart regeneration has entered a renaissance period with remarkable progress in the understanding of endogenous heart regeneration, stem cell differentiation for exogenous cell therapy, and cell-delivery methods. In this review, we highlight how this new understanding can lead to viable strategies for human therapy. For the near term, drugs, electrical and mechanical devices, and heart transplantation will remain mainstays of cardiac therapies, but eventually regenerative therapies based on fundamental regenerative biology may offer more permanent solutions for patients with heart failure.
Collapse
Affiliation(s)
- Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA,Department of Cardiology, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA,Corresponding author and lead contact: Richard T. Lee, Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, Phone: 617-496-5394, Fax: 617-496-8351,
| |
Collapse
|
9
|
Edlinger C, Paar V, Kheder SH, Krizanic F, Lalou E, Boxhammer E, Butter C, Dworok V, Bannehr M, Hoppe UC, Kopp K, Lichtenauer M. Endothelialization and Inflammatory Reactions After Intracardiac Device Implantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:1-22. [DOI: 10.1007/5584_2022_712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Holm SR, Jenkins BJ, Cronin JG, Jones N, Thornton CA. A role for metabolism in determining neonatal immune function. Pediatr Allergy Immunol 2021; 32:1616-1628. [PMID: 34170575 DOI: 10.1111/pai.13583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 01/04/2023]
Abstract
Immune responses of neonates differ markedly to those of adults, with skewed cytokine phenotypes, reduced inflammatory properties and drastically diminished memory function. Recent research efforts have started to unravel the role of cellular metabolism in determining immune cell fate and function. For studies in humans, much of the work on metabolic mechanisms underpinning innate and adaptive immune responses by different haematopoietic cell types is in adults. Studies investigating the contribution of metabolic adaptation in the unique setting of early life are just emerging, and much more work is needed to elucidate the contribution of metabolism to neonatal immune responses. Here, we discuss our current understanding of neonatal immune responses, examine some of the latest developments in neonatal immunometabolism and consider the possible role of altered metabolism to the distinctive immune phenotype of the neonate. Understanding the role of metabolism in regulating immune function at this critical stage in life has direct benefit for the child by affording opportunities to maximize immediate and long-term health. Additionally, gaining insight into the diversity of human immune function and naturally evolved immunometabolic strategies that modulate immune function could be harnessed for a wide range of opportunities including new therapeutic approaches.
Collapse
Affiliation(s)
- Sean R Holm
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Ben J Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - James G Cronin
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, UK
| |
Collapse
|
11
|
Perreault LR, Le TT, Oudin MJ, Black LD. RNA sequencing indicates age-dependent shifts in the cardiac fibroblast transcriptome between fetal, neonatal, and adult developmental ages. Physiol Genomics 2021; 53:414-429. [PMID: 34281425 PMCID: PMC8560366 DOI: 10.1152/physiolgenomics.00074.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022] Open
Abstract
Cardiac fibroblasts are responsible for extracellular matrix turnover and repair in the cardiac environment and serve to help facilitate immune responses. However, it is well established that they have a significant phenotypic heterogeneity with respect to location, physiological conditions, and developmental age. The goal of this study was to provide an in-depth transcriptomic profile of cardiac fibroblasts derived from rat hearts at fetal, neonatal, and adult developmental ages to ascertain variations in gene expression that may drive functional differences in these cells at these specific stages of development. We performed RNA sequencing (RNA-seq) of cardiac fibroblasts isolated from fetal, neonatal, and adult rats and compared with the rat genome. Principal component analysis of RNA-seq data suggested that data variance was predominantly due to developmental age. Differential expression and gene set enrichment analysis against Gene Ontology and Kyoto Encyclopedia of Genes and Genomes datasets indicated an array of differences across developmental ages, including significant decreases in cardiac development and cardiac function-associated genes with age and a significant increase in immune- and inflammatory-associated functions, particularly immune cell signaling and cytokine and chemokine production, with respect to increasing developmental age. These results reinforce established evidence of diverse phenotypic heterogeneity of fibroblasts with respect to developmental age. Furthermore, based on our analysis of gene expression, age-specific alterations in cardiac fibroblasts may play a crucial role in observed differences in cardiac inflammation and immune response observed across developmental ages.
Collapse
Affiliation(s)
- Luke R Perreault
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Thanh T Le
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Madeleine J Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Cellular, Molecular, and Developmental Biology Program, Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Cellular, Molecular, and Developmental Biology Program, Tufts Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
12
|
Borchert T, Beitar L, Langer LBN, Polyak A, Wester HJ, Ross TL, Hilfiker-Kleiner D, Bengel FM, Thackeray JT. Dissecting the target leukocyte subpopulations of clinically relevant inflammation radiopharmaceuticals. J Nucl Cardiol 2021; 28:1636-1645. [PMID: 31659697 DOI: 10.1007/s12350-019-01929-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Leukocyte subtypes bear distinct pro-inflammatory, reparative, and regulatory functions. Imaging inflammation provides information on disease prognosis and may guide therapy, but the cellular basis of the signal remains equivocal. We evaluated leukocyte subtype specificity of characterized clinically relevant inflammation-targeted radiotracers. METHODS AND RESULTS Leukocyte populations were purified from blood- and THP-1-derived macrophages were polarized into M1-, reparative M2a-, or M2c-macrophages. In vitro uptake assays were conducted using tracers of enhanced glucose or amino acid metabolism and molecular markers of inflammatory cells. Both 18F-deoxyglucose (18F-FDG) and the labeled amino acid 11C-methionine (11C-MET) displayed higher uptake in neutrophils and monocytes compared to other leukocytes (P = 0.005), and markedly higher accumulation in pro-inflammatory M1-macrophages compared to reparative M2a-macrophages (P < 0.001). Molecular tracers 68Ga-DOTATATE targeting the somatostatin receptor type 2 and 68Ga-pentixafor targeting the chemokine receptor type 4 (CXCR4) exhibited broad uptake by leukocyte subpopulations and polarized macrophages with highest uptake in T-cells/natural killer cells and B-cells compared to neutrophils. Mitochondrial translocator protein (TSPO)-targeted 18F-flutriciclamide selectively accumulated in monocytes and pro-inflammatory M1 macrophages (P < 0.001). Uptake by myocytes and fibroblasts tended to be higher for metabolic radiotracers. CONCLUSIONS The different in vitro cellular uptake profiles may allow isolation of distinct phases of the inflammatory pathway with specific inflammation-targeted radiotracers. The pathogenetic cell population in specific inflammatory diseases should be considered in the selection of an appropriate imaging agent.
Collapse
Affiliation(s)
- Tobias Borchert
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Laura Beitar
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Laura B N Langer
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Andras Polyak
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - Hans-Jürgen Wester
- Department of Radiopharmaceutical Chemistry, Technical University of Munich, Munich, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | | | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
13
|
Khyeam S, Lee S, Huang GN. Genetic, Epigenetic, and Post-Transcriptional Basis of Divergent Tissue Regenerative Capacities Among Vertebrates. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e10042. [PMID: 34423307 PMCID: PMC8372189 DOI: 10.1002/ggn2.10042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022]
Abstract
Regeneration is widespread across the animal kingdom but varies vastly across phylogeny and even ontogeny. Adult mammalian regeneration in most organs and appendages is limited, while vertebrates such as zebrafish and salamanders are able to regenerate various organs and body parts. Here, we focus on the regeneration of appendages, spinal cord, and heart - organs and body parts that are highly regenerative among fish and amphibian species but limited in adult mammals. We then describe potential genetic, epigenetic, and post-transcriptional similarities among these different forms of regeneration across vertebrates and discuss several theories for diminished regenerative capacity throughout evolution.
Collapse
Affiliation(s)
- Sheamin Khyeam
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Sukjun Lee
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Guo N. Huang
- Cardiovascular Research Institute and Department of PhysiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell ResearchUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
14
|
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 2021; 18:368-379. [PMID: 33462421 PMCID: PMC7812989 DOI: 10.1038/s41569-020-00489-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Konstantinos Klaourakis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Pedersen K, Rasmussen RK, Dittrich A, Lauridsen H. Cardiac regeneration in the axolotl is unaffected by alterations in leukocyte numbers induced by lipopolysaccharide and prednisolone. BMC Res Notes 2021; 14:157. [PMID: 33910634 PMCID: PMC8082892 DOI: 10.1186/s13104-021-05574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Cardiac regeneration in the axolotl has been found to rely on the innate immune system, and especially macrophages have been demonstrated to play a vital role in regulating the regenerative process. In this study we wanted to induce a pro- and anti-inflammatory milieu in the axolotl during heart regeneration to test the resilience of the regenerative response. Results This was induced via repeated intrapericardial injections of lipopolysaccharide or prednisolone during a 40-day regeneration period in order to challenge the presumably fine-tuned inflammatory response that normally facilitates regeneration. We observed a local and systemic leucocyte response to pro- and anti-inflammatory stimulation, but we found cardiac regeneration to be structurally and functionally unaffected.
Collapse
Affiliation(s)
- Kathrine Pedersen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, 8200, Aarhus N, Denmark
| | | | - Anita Dittrich
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, 8200, Aarhus N, Denmark
| | - Henrik Lauridsen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, 8200, Aarhus N, Denmark.
| |
Collapse
|
16
|
Guo K, Ma S. The Immune System in Transfusion-Related Acute Lung Injury Prevention and Therapy: Update and Perspective. Front Mol Biosci 2021; 8:639976. [PMID: 33842545 PMCID: PMC8024523 DOI: 10.3389/fmolb.2021.639976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
As an initiator of respiratory distress, transfusion-related acute lung injury (TRALI) is regarded as one of the rare complications associated with transfusion medicine. However, to date, the pathogenesis of TRALI is still unclear, and specific therapies are unavailable. Understanding the mechanisms of TRALI may promote the design of preventive and therapeutic strategies. The immune system plays vital roles in reproduction, development and homeostasis. Sterile tissue damage, such as physical trauma, ischemia, or reperfusion injury, induces an inflammatory reaction that results in wound healing and regenerative mechanisms. In other words, in addition to protecting against pathogens, the immune response may be strongly associated with TRALI prevention and treatment through a variety of immunomodulatory strategies to inhibit excessive immune system activation. Immunotherapy based on immune cells or immunological targets may eradicate complications. For example, IL-10 therapy is a promising therapeutic strategy to explore further. This review will focus on ultramodern advances in our understanding of the potential role of the immune system in TRALI prevention and treatment.
Collapse
Affiliation(s)
- Kai Guo
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shuxuan Ma
- Department of Transfusion Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
17
|
Elchaninov A, Sukhikh G, Fatkhudinov T. Evolution of Regeneration in Animals: A Tangled Story. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.621686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The evolution of regenerative capacity in multicellular animals represents one of the most complex and intriguing problems in biology. How could such a seemingly advantageous trait as self-repair become consistently attenuated by the evolution? This review article examines the concept of the origin and nature of regeneration, its connection with the processes of embryonic development and asexual reproduction, as well as with the mechanisms of tissue homeostasis. The article presents a variety of classical and modern hypotheses explaining different trends in the evolution of regenerative capacity which is not always beneficial for the individual and notably for the species. Mechanistically, these trends are driven by the evolution of signaling pathways and progressive restriction of differentiation plasticity with concomitant advances in adaptive immunity. Examples of phylogenetically enhanced regenerative capacity are considered as well, with appropriate evolutionary reasoning for the enhancement and discussion of its molecular mechanisms.
Collapse
|
18
|
Forte E, Perkins B, Sintou A, Kalkat HS, Papanikolaou A, Jenkins C, Alsubaie M, Chowdhury RA, Duffy TM, Skelly DA, Branca J, Bellahcene M, Schneider MD, Harding SE, Furtado MB, Ng FS, Hasham MG, Rosenthal N, Sattler S. Cross-Priming Dendritic Cells Exacerbate Immunopathology After Ischemic Tissue Damage in the Heart. Circulation 2021; 143:821-836. [PMID: 33297741 PMCID: PMC7899721 DOI: 10.1161/circulationaha.120.044581] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of heart failure. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells, and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4+ helper and CD8+ cytotoxic T cells in response to necrotic cells and may thus be crucial players in exacerbating autoimmunity targeting the heart. This study investigates a role for cross-priming DC in post-myocardial infarction immunopathology through presentation of self-antigen from necrotic cardiac cells to cytotoxic CD8+ T cells. METHODS We induced type 2 myocardial infarction-like ischemic injury in the heart by treatment with a single high dose of the β-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long-term cardiac immunopathology and functional decline in wild type and Clec9a-depleted mice lacking DC cross-priming function. RESULTS A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. Clec9a-/- mice deficient in DC cross-priming are protected from persistent immune-mediated myocardial damage and decline of cardiac function, likely because of dampened activation of cytotoxic CD8+ T cells. CONCLUSION Activation of cytotoxic CD8+ T cells by cross-priming DC contributes to exacerbation of postischemic inflammatory damage of the myocardium and corresponding decline in cardiac function. Importantly, this provides novel therapeutic targets to prevent postischemic immunopathology and heart failure.
Collapse
Affiliation(s)
- Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Bryant Perkins
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Amalia Sintou
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Harkaran S. Kalkat
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Angelos Papanikolaou
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Catherine Jenkins
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Mashael Alsubaie
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Rasheda A. Chowdhury
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Theodore M. Duffy
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Daniel A. Skelly
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Jane Branca
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Mohamed Bellahcene
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Michael D. Schneider
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Milena B. Furtado
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
- Amgen Biotechnology, Thousand Oaks, CA (M.B.F.)
| | - Fu Siong Ng
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Muneer G. Hasham
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME (E.F., B.P., T.M.D., D.A.S., J.B., M.B.F., M.G.H., N.R.)
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, UK (A.S., H.S.K., A.P., C.J., M.A., R.A.C., M.B., M.D.S., S.E.H., F.S.N., N.R., S.S.)
| |
Collapse
|
19
|
Schukfeh N, Elyas A, Viemann D, Ure BM, Froemmel S, Park JK, Kuebler JF, Vieten G. Phenotypic Switch of Human Peritoneal Macrophages during Childhood. Eur J Pediatr Surg 2021; 31:86-94. [PMID: 32950032 DOI: 10.1055/s-0040-1717088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Human peritoneal macrophages are resident in the abdominal cavity where they support the specific microenvironmental regulation. We have previously observed a phenotypic switch of murine macrophages during infancy that was associated with a functional development. To investigate the age related changes in human peritoneal macrophages, we analyzed peritoneal macrophages of children undergoing laparoscopic procedures. MATERIALS AND METHODS Immunologically healthy children who received minimally invasive surgery in our department were included in this study. In all cases, the written consent was obtained. At the beginning of laparoscopy, physiologic NaCl-solution was instilled and manually removed through the umbilical trocar to gain macrophages. Lavage cells were processed for flow cytometry analysis. CD14+ myeloid cells were monitored for specific lineage marker expression. RESULTS A total of 21 donors (age: 7 days-18 years) were included and divided into three groups. In all age groups, 97% of myeloid cells expressed CD11b. 70% of these expressed CD14. Three subsets of CD14 cells were detected on the basis of CD14/CD16 expression (CD14 + CD16dim, CD14 + CD16inter, and CD14 + CD16high). In neonates, >80% belonged to the CD14 + CD16high subset, reducing to 30% in adolescents. In none of the cases, the M2 markers CD23 and CD25 were expressed. CONCLUSION This is the first study showing that lineage marker expression of peritoneal macrophages in neonates differs from that in adults. The knowledge about neonatal tissue resident macrophages might help to understand their complex interaction and to use specific macrophage properties for therapeutic approaches.
Collapse
Affiliation(s)
- Nagoud Schukfeh
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Amr Elyas
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pulmonology, Hannover Medical School, Hannover, Germany
| | - Benno M Ure
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Stephanie Froemmel
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Joon-Keun Park
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Joachim F Kuebler
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Gertrud Vieten
- Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Regulation of cardiomyocyte fate plasticity: a key strategy for cardiac regeneration. Signal Transduct Target Ther 2021; 6:31. [PMID: 33500391 PMCID: PMC7838318 DOI: 10.1038/s41392-020-00413-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
With the high morbidity and mortality rates, cardiovascular diseases have become one of the most concerning diseases worldwide. The heart of adult mammals can hardly regenerate naturally after injury because adult cardiomyocytes have already exited the cell cycle, which subseqently triggers cardiac remodeling and heart failure. Although a series of pharmacological treatments and surgical methods have been utilized to improve heart functions, they cannot replenish the massive loss of beating cardiomyocytes after injury. Here, we summarize the latest research progress in cardiac regeneration and heart repair through altering cardiomyocyte fate plasticity, which is emerging as an effective strategy to compensate for the loss of functional cardiomyocytes and improve the impaired heart functions. First, residual cardiomyocytes in damaged hearts re-enter the cell cycle to acquire the proliferative capacity by the modifications of cell cycle-related genes or regulation of growth-related signals. Additionally, non-cardiomyocytes such as cardiac fibroblasts, were shown to be reprogrammed into cardiomyocytes and thus favor the repair of damaged hearts. Moreover, pluripotent stem cells have been shown to transform into cardiomyocytes to promote heart healing after myocardial infarction (MI). Furthermore, in vitro and in vivo studies demonstrated that environmental oxygen, energy metabolism, extracellular factors, nerves, non-coding RNAs, etc. play the key regulatory functions in cardiac regeneration. These findings provide the theoretical basis of targeting cellular fate plasticity to induce cardiomyocyte proliferation or formation, and also provide the clues for stimulating heart repair after injury.
Collapse
|
21
|
VEGF-A in Cardiomyocytes and Heart Diseases. Int J Mol Sci 2020; 21:ijms21155294. [PMID: 32722551 PMCID: PMC7432634 DOI: 10.3390/ijms21155294] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelial growth factor (VEGF), a homodimeric vasoactive glycoprotein, is the key mediator of angiogenesis. Angiogenesis, the formation of new blood vessels, is responsible for a wide variety of physio/pathological processes, including cardiovascular diseases (CVD). Cardiomyocytes (CM), the main cell type present in the heart, are the source and target of VEGF-A and express its receptors, VEGFR1 and VEGFR2, on their cell surface. The relationship between VEGF-A and the heart is double-sided. On the one hand, VEGF-A activates CM, inducing morphogenesis, contractility and wound healing. On the other hand, VEGF-A is produced by CM during inflammation, mechanical stress and cytokine stimulation. Moreover, high concentrations of VEGF-A have been found in patients affected by different CVD, and are often correlated with an unfavorable prognosis and disease severity. In this review, we summarized the current knowledge about the expression and effects of VEGF-A on CM and the role of VEGF-A in CVD, which are the most important cause of disability and premature death worldwide. Based on clinical studies on angiogenesis therapy conducted to date, it is possible to think that the control of angiogenesis and VEGF-A can lead to better quality and span of life of patients with heart disease.
Collapse
|
22
|
Zogbi C, Oliveira NC, Levy D, Bydlowski SP, Bassaneze V, Neri EA, Krieger JE. Beneficial effects of IL-4 and IL-6 on rat neonatal target cardiac cells. Sci Rep 2020; 10:12350. [PMID: 32704142 PMCID: PMC7378182 DOI: 10.1038/s41598-020-69413-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
The nature of the early post-natal immune response in rodents appears to influence cardiac regeneration even though the underlying molecules remain poorly understood. Consistent with this idea, we show now significant changes in the expression of immune and cell movement gene pathways in heart samples from 1- and 7-day-old rats with ventricle resection. We then tested whether conditioned media from adult M2 anti-inflammatory macrophages target neonatal cardiac cells to a pro-regenerative like phenotype compared to the M1 pro-inflammatory macrophages. We found that M2 compared to M1 macrophage-conditioned media upregulates neonatal cardiomyocyte proliferation, suppresses myofibroblast-induced differentiation and stimulates endothelial cell tube formation. Using a cytokine array, we selected four candidate cytokine molecules uniquely expressed in M2 macrophage-conditioned media and showed that two of them (IL-4 and IL-6) induce endothelial cell proliferation whilst IL-4 promotes proliferation in neonatal cardiomyocytes and prevents myofibroblast-induced collagen type I secretion. Altogether, we provided evidence that adult M2 macrophage-conditioned media displays a paracrine beneficial pro-regenerative response in target cardiac cells and that IL-4 and IL-6 recapitulate, at least in part, these pleiotropic effects. Further characterization of macrophage immune phenotypes and their secreted molecules may give rise to novel therapeutic approaches for post-natal cardiac repair.
Collapse
Affiliation(s)
- Camila Zogbi
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Nathalia C Oliveira
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Débora Levy
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Sergio P Bydlowski
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Vinicius Bassaneze
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Elida A Neri
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil
| | - Jose E Krieger
- Lab Genetics & Mol Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Av Dr Eneas C Aguiar 44, Sao Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
23
|
Sampaio-Pinto V, Ruiz-Villalba A, Nascimento DS, Pérez-Pomares JM. Bone marrow contribution to the heart from development to adulthood. Semin Cell Dev Biol 2020; 112:16-26. [PMID: 32591270 DOI: 10.1016/j.semcdb.2020.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
Cardiac chamber walls contain large numbers of non-contractile interstitial cells, including fibroblasts, endothelial cells, pericytes and significant populations of blood lineage-derived cells. Blood cells first colonize heart tissues a few days before birth, although their recruitment from the bloodstream to the cardiac interstitium is continuous and extends throughout adult life. The bone marrow, as the major hematopoietic site of adult individuals, is in charge of renewing all circulating cell types, and it therefore plays a pivotal role in the incorporation of blood cells to the heart. Bone marrow-derived cells are instrumental to tissue homeostasis in the steady-state heart, and are major effectors in cardiac disease progression. This review will provide a comprehensive approach to bone marrow-derived blood cell functions in the heart, and discuss aspects related to hot topics in the cardiovascular field like cell-based heart regeneration strategies.
Collapse
Affiliation(s)
- Vasco Sampaio-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal; Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Adrián Ruiz-Villalba
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal.
| | - José M Pérez-Pomares
- Department of Animal Biology, Institute of Biomedicine of Málaga (IBIMA), Faculty of Sciences, University of Málaga, Málaga, Spain; Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Campanillas, Málaga, Spain.
| |
Collapse
|
24
|
Lock MC, Tellam RL, Darby JRT, Soo JY, Brooks DA, Seed M, Selvanayagam JB, Morrison JL. Identification of Novel miRNAs Involved in Cardiac Repair Following Infarction in Fetal and Adolescent Sheep Hearts. Front Physiol 2020; 11:614. [PMID: 32587529 PMCID: PMC7298149 DOI: 10.3389/fphys.2020.00614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 01/14/2023] Open
Abstract
Aims Animal models have been used to show that there are critical molecular mechanisms that can be activated to induce myocardial repair at specific times in development. For example, specific miRNAs are critical for regulating the response to myocardial infarction (MI) and improving the response to injury. Manipulating these miRNAs in small animal models provides beneficial effects post-MI; however it is not known if these miRNAs are regulated similarly in large mammals. Studying a large animal where the timing of heart development in relation to birth is similar to humans may provide insights to better understand the capacity to repair a developing mammalian heart and its application to the adult heart. Methods We used a sheep model of MI that included permanent ligation of the left anterior descending (LAD) coronary artery. Surgery was performed on fetuses (at 105 days gestation when all cardiomyocytes are mononucleated and proliferative) and adolescent sheep (at 6 months of age when all cardiomyocytes contribute to heart growth by hypertrophy). A microarray was utilized to determine the expression of known miRNAs within the damaged and undamaged tissue regions in fetal and adolescent hearts after MI. Results 73 miRNAs were up-regulated and 58 miRNAs were down-regulated significantly within the fetal infarct compared to remote cardiac samples. From adolescent hearts 69 non-redundant miRNAs were up-regulated and 63 miRNAs were down-regulated significantly in the infarct area compared to remote samples. Opposite differential expression profiles of 10 miRNAs within tissue regions (Infarct area, Border zone and Remote area of the left ventricle) occurred between the fetuses and adolescent sheep. These included miR-558 and miR-1538, which when suppressed using LNA anti-miRNAs in cell culture, increased cardiomyoblast proliferation. Conclusion There were significant differences in miRNA responses in fetal and adolescent sheep hearts following a MI, suggesting that the modulation of novel miRNA expression may have therapeutic potential, by promoting proliferation or repair in a damaged heart.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia.,Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mike Seed
- Division of Cardiology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joseph B Selvanayagam
- Cardiac Imaging Research, Department of Heart Health, South Australian Health & Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
25
|
Borchert T, Hess A, Lukačević M, Ross TL, Bengel FM, Thackeray JT. Angiotensin-converting enzyme inhibitor treatment early after myocardial infarction attenuates acute cardiac and neuroinflammation without effect on chronic neuroinflammation. Eur J Nucl Med Mol Imaging 2020; 47:1757-1768. [PMID: 32125488 PMCID: PMC7248052 DOI: 10.1007/s00259-020-04736-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Purpose Myocardial infarction (MI) triggers a local inflammatory response which orchestrates cardiac repair and contributes to concurrent neuroinflammation. Angiotensin-converting enzyme (ACE) inhibitor therapy not only attenuates cardiac remodeling by interfering with the neurohumoral system, but also influences acute leukocyte mobilization from hematopoietic reservoirs. Here, we seek to dissect the anti-inflammatory and anti-remodeling contributions of ACE inhibitors to the benefit of heart and brain outcomes after MI. Methods C57BL/6 mice underwent permanent coronary artery ligation (n = 41) or sham surgery (n = 9). Subgroups received ACE inhibitor enalapril (20 mg/kg, oral) either early (anti-inflammatory strategy; 10 days treatment beginning 3 days prior to surgery; n = 9) or delayed (anti-remodeling; continuous from 7 days post-MI; n = 16), or no therapy (n = 16). Cardiac and neuroinflammation were serially investigated using whole-body macrophage- and microglia-targeted translocator protein (TSPO) PET at 3 days, 7 days, and 8 weeks. In vivo PET signal was validated by autoradiography and histopathology. Results Myocardial infarction evoked higher TSPO signal in the infarct region at 3 days and 7 days compared with sham (p < 0.001), with concurrent elevation in brain TSPO signal (+ 18%, p = 0.005). At 8 weeks after MI, remote myocardium TSPO signal was increased, consistent with mitochondrial stress, and corresponding to recurrent neuroinflammation. Early enalapril treatment lowered the acute TSPO signal in the heart and brain by 55% (p < 0.001) and 14% (p = 0.045), respectively. The acute infarct signal predicted late functional outcome (r = 0.418, p = 0.038). Delayed enalapril treatment reduced chronic myocardial TSPO signal, consistent with alleviated mitochondrial stress. Early enalapril therapy tended to lower TSPO signal in the failing myocardium at 8 weeks after MI (p = 0.090) without an effect on chronic neuroinflammation. Conclusions Whole-body TSPO PET identifies myocardial macrophage infiltration and neuroinflammation after MI, and altered cardiomyocyte mitochondrial density in chronic heart failure. Improved chronic cardiac outcome by enalapril treatment derives partially from acute anti-inflammatory activity with complementary benefits in later stages. Whereas early ACE inhibitor therapy lowers acute neuroinflammation, chronic alleviation is not achieved by early or delayed ACE inhibitor therapy, suggesting a more complex mechanism underlying recurrent neuroinflammation in ischemic heart failure. Electronic supplementary material The online version of this article (10.1007/s00259-020-04736-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Borchert
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Annika Hess
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Mario Lukačević
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany.
| |
Collapse
|
26
|
Attia S, Narberhaus C, Schaaf H, Streckbein P, Pons-Kühnemann J, Schmitt C, Neukam FW, Howaldt HP, Böttger S. Long-Term Influence of Platelet-Rich Plasma (PRP) on Dental Implants after Maxillary Augmentation: Retrospective Clinical and Radiological Outcomes of a Randomized Controlled Clinical Trial. J Clin Med 2020; 9:E355. [PMID: 32012904 PMCID: PMC7073889 DOI: 10.3390/jcm9020355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/30/2022] Open
Abstract
: The long-term clinical and radiological outcomes of dental implants inserted in augmented bone treated with platelet-rich plasma (PRP) has not been well addressed in the literature yet. This study is based on a collection of patients from a randomized controlled trial (RCT) that did not report any short-term positive effects of PRP on bone healing after sinus lift surgery using autologous iliac crest bone graft. This study aimed to evaluate the long-term impact of PRP regarding clinical and radiological outcomes on the inserted implants in the previous RCT. For this evaluation, we considered the following variables: plaque index, probing depth, bleeding index, mobility grade, Periotest® values, and radiological bone loss. Out of 53 patients (n = 306 implants) included in the previous study we were able to reinvestigate 37 patients (n = 210 implants) in two centers (31 in Giessen, Germany and 6 in Erlangen, Germany). Clinical and radiographic parameters suggested overall healthy conditions of the peri-implant tissue. The PRP-group and the control group did not differ significantly in the majority of the parameters. The overall evaluation showed that result data of the PRP-group was inferior to the control group in 64 percent of the evaluated parameters. The present study cannot provide evidence of a positive effect of PRP on the long-term implant clinical and radiological outcomes. In fact, a tendency towards inferior long-term results in the PRP-group was detected without reaching a significant threshold. Further controlled trials need to be conducted to investigate this correlation.
Collapse
Affiliation(s)
- Sameh Attia
- Department of Cranio Maxillofacial Surgery, Justus-Liebig University Giessen, Klinik Str. 33, 35392 Giessen, Germany
| | - Clara Narberhaus
- Department of Cranio Maxillofacial Surgery, Justus-Liebig University Giessen, Klinik Str. 33, 35392 Giessen, Germany
| | - Heidrun Schaaf
- Department of Cranio Maxillofacial Surgery, Justus-Liebig University Giessen, Klinik Str. 33, 35392 Giessen, Germany
| | - Philipp Streckbein
- Department of Cranio Maxillofacial Surgery, Justus-Liebig University Giessen, Klinik Str. 33, 35392 Giessen, Germany
| | - Jörn Pons-Kühnemann
- Medical Statistics, Institute for Medical Informatics, Faculty of Medicine, Justus-Liebig University Giessen, Rudolf-Buchheim Str. 6, 35392 Giessen, Germany
| | - Christian Schmitt
- Department of Oral and Maxillofacial Surgery, University of Erlangen, Glückstr. 11, 91054 Erlangen Germany
| | - Friedrich Wilhelm Neukam
- Department of Oral and Maxillofacial Surgery, University of Erlangen, Glückstr. 11, 91054 Erlangen Germany
| | - Hans-Peter Howaldt
- Department of Cranio Maxillofacial Surgery, Justus-Liebig University Giessen, Klinik Str. 33, 35392 Giessen, Germany
| | - Sebastian Böttger
- Department of Cranio Maxillofacial Surgery, Justus-Liebig University Giessen, Klinik Str. 33, 35392 Giessen, Germany
| |
Collapse
|
27
|
Lu S, Xiong Q, Du K, Gan X, Wang X, Yang L, Wang Y, Ge F, He S. Comparative iTRAQ proteomics revealed proteins associated with lobed fin regeneration in Bichirs. Proteome Sci 2019; 17:6. [PMID: 31832023 PMCID: PMC6869209 DOI: 10.1186/s12953-019-0153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/09/2019] [Indexed: 11/23/2022] Open
Abstract
Background Polypterus senegalus can fully regenerate its pectoral lobed fins, including a complex endoskeleton, with remarkable precision. However, despite the enormous potential of this species for use in medical research, its regeneration mechanisms remain largely unknown. Methods To identify the differentially expressed proteins (DEPs) during the early stages of lobed fin regeneration in P. senegalus, we performed a differential proteomic analysis using isobaric tag for relative and absolute quantitation (iTRAQ) approach based quantitative proteome from the pectoral lobed fins at 3 time points. Furthermore, we validated the changes in protein expression with multiple-reaction monitoring (MRM) analysis. Results The experiment yielded a total of 3177 proteins and 15,091 unique peptides including 1006 non-redundant (nr) DEPs. Of these, 592 were upregulated while 349 were downregulated after lobed fin amputation when compared to the original tissue. Bioinformatics analyses showed that the DEPs were mainly associated with Ribosome and RNA transport, metabolic, ECM-receptor interaction, Golgi and endoplasmic reticulum, DNA replication, and Regulation of actin cytoskeleton. Conclusions To our knowledge, this is the first proteomic research to investigate alterations in protein levels and affected pathways in bichirs’ lobe-fin/limb regeneration. In addition, our study demonstrated a highly dynamic regulation during lobed fin regeneration in P. senegalus. These results not only provide a comprehensive dataset on differentially expressed proteins during the early stages of lobe-fin/limb regeneration but also advance our understanding of the molecular mechanisms underlying lobe-fin/limb regeneration.
Collapse
Affiliation(s)
- Suxiang Lu
- 1Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei China.,2Present address: Medical College of Pingdingshan University, Pingdingshan, 467000 Henan Province China
| | - Qian Xiong
- 3Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Kang Du
- 1Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Xiaoni Gan
- 1Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Xuzhen Wang
- 1Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Liandong Yang
- 1Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Ying Wang
- 1Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Feng Ge
- 3Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| | - Shunping He
- 1Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 Hubei China
| |
Collapse
|
28
|
Forte E, Furtado MB, Rosenthal N. The interstitium in cardiac repair: role of the immune-stromal cell interplay. Nat Rev Cardiol 2019; 15:601-616. [PMID: 30181596 DOI: 10.1038/s41569-018-0077-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiac regeneration, that is, restoration of the original structure and function in a damaged heart, differs from tissue repair, in which collagen deposition and scar formation often lead to functional impairment. In both scenarios, the early-onset inflammatory response is essential to clear damaged cardiac cells and initiate organ repair, but the quality and extent of the immune response vary. Immune cells embedded in the damaged heart tissue sense and modulate inflammation through a dynamic interplay with stromal cells in the cardiac interstitium, which either leads to recapitulation of cardiac morphology by rebuilding functional scaffolds to support muscle regrowth in regenerative organisms or fails to resolve the inflammatory response and produces fibrotic scar tissue in adult mammals. Current investigation into the mechanistic basis of homeostasis and restoration of cardiac function has increasingly shifted focus away from stem cell-mediated cardiac repair towards a dynamic interplay of cells composing the less-studied interstitial compartment of the heart, offering unexpected insights into the immunoregulatory functions of cardiac interstitial components and the complex network of cell interactions that must be considered for clinical intervention in heart diseases.
Collapse
Affiliation(s)
| | | | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA. .,National Heart and Lung Institute, Imperial College London, Faculty of Medicine, Imperial Centre for Translational and Experimental Medicine, London, UK.
| |
Collapse
|
29
|
Oliveira KMC, Barker JH, Berezikov E, Pindur L, Kynigopoulos S, Eischen-Loges M, Han Z, Bhavsar MB, Henrich D, Leppik L. Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model. Sci Rep 2019; 9:11433. [PMID: 31391536 PMCID: PMC6685943 DOI: 10.1038/s41598-019-47389-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Different species respond differently to severe injury, such as limb loss. In species that regenerate, limb loss is met with complete restoration of the limbs’ form and function, whereas in mammals the amputated limb’s stump heals and scars. In in vitro studies, electrical stimulation (EStim) has been shown to promote cell migration, and osteo- and chondrogenesis. In in vivo studies, after limb amputation, EStim causes significant new bone, cartilage and vessel growth. Here, in a rat model, the stumps of amputated rat limbs were exposed to EStim, and we measured extracellular matrix (ECM) deposition, macrophage distribution, cell proliferation and gene expression changes at early (3 and 7 days) and later stages (28 days). We found that EStim caused differences in ECM deposition, with less condensed collagen fibrils, and modified macrophage response by changing M1 to M2 macrophage ratio. The number of proliferating cells was increased in EStim treated stumps 7 days after amputation, and transcriptome data strongly supported our histological findings, with activated gene pathways known to play key roles in embryonic development and regeneration. In conclusion, our findings support the hypothesis that EStim shifts injury response from healing/scarring towards regeneration. A better understanding of if and how EStim controls these changes, could lead to strategies that replace scarring with regeneration.
Collapse
Affiliation(s)
- K M C Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - J H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - E Berezikov
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - L Pindur
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany.,Department of Plastic, Hand and Reconstructive Surgery, BG Trauma Center Frankfurt am Main gGmbH, Frankfurt am Main, Germany
| | - S Kynigopoulos
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M Eischen-Loges
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - Z Han
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M B Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - D Henrich
- Department of Trauma, Hand and Reconstructive Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - L Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
30
|
Brandt EB, Bashar SJ, Mahmoud AI. Stimulating ideas for heart regeneration: the future of nerve-directed heart therapy. Bioelectron Med 2019; 5:8. [PMID: 32232098 PMCID: PMC7098228 DOI: 10.1186/s42234-019-0024-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Ischemic heart disease is the leading cause of death worldwide. The blockade of coronary arteries limits oxygen-rich blood to the heart and consequently there is cardiomyocyte (CM) cell death, inflammation, fibrotic scarring, and myocardial remodeling. Unfortunately, current therapeutics fail to effectively replace the lost cardiomyocytes or prevent fibrotic scarring, which results in reduced cardiac function and the development of heart failure (HF) in the adult mammalian heart. In contrast, neonatal mice are capable of regenerating their hearts following injury. However, this regenerative response is restricted to the first week of post-natal development. Recently, we identified that cholinergic nerve signaling is necessary for the neonatal mouse cardiac regenerative response. This demonstrates that cholinergic nerve stimulation holds significant potential as a bioelectronic therapeutic tool for heart disease. However, the mechanisms of nerve directed regeneration in the heart remain undetermined. In this review, we will describe the historical evidence of nerve function during regeneration across species. Specifically, we will focus on the emerging role of cholinergic innervation in modulating cardiomyocyte proliferation and inflammation during heart regeneration. Understanding the role of nerves in mammalian heart regeneration and adult cardiac remodeling can provide us with innovative bioelectronic-based therapeutic approaches for treatment of human heart disease.
Collapse
Affiliation(s)
- Emma B Brandt
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave, Room 4557, Madison, WI 53705 USA
| | - S Janna Bashar
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave, Room 4557, Madison, WI 53705 USA
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave, Room 4557, Madison, WI 53705 USA
| |
Collapse
|
31
|
Li J, Yang KY, Tam RCY, Chan VW, Lan HY, Hori S, Zhou B, Lui KO. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics 2019; 9:4324-4341. [PMID: 31285764 PMCID: PMC6599663 DOI: 10.7150/thno.32734] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The neonatal mouse heart is capable of transiently regenerating after injury from postnatal day (P) 0-7 and macrophages are found important in this process. However, whether macrophages alone are sufficient to orchestrate this regeneration; what regulates cardiomyocyte proliferation; why cardiomyocytes do not proliferate after P7; and whether adaptive immune cells such as regulatory T-cells (Treg) influence neonatal heart regeneration have less studied. Methods: We employed both loss- and gain-of-function transgenic mouse models to study the role of Treg in neonatal heart regeneration. In loss-of-function studies, we treated mice with the lytic anti-CD25 antibody that specifically depletes Treg; or we treated FOXP3DTR with diphtheria toxin that specifically ablates Treg. In gain-of-function studies, we adoptively transferred hCD2+ Treg from NOD.Foxp3hCD2 to NOD/SCID that contain Treg as the only T-cell population. Furthermore, we performed single-cell RNA-sequencing of Treg to uncover paracrine factors essential for cardiomyocyte proliferation. Results: Unlike their wild type counterparts, NOD/SCID mice that are deficient in T-cells but harbor macrophages fail to regenerate their injured myocardium at as early as P3. During the first week of injury, Treg are recruited to the injured cardiac muscle but their depletion contributes to more severe cardiac fibrosis. On the other hand, adoptive transfer of Treg results in mitigated fibrosis and enhanced proliferation and function of the injured cardiac muscle. Mechanistically, single-cell transcriptomic profiling reveals that Treg could be a source of regenerative factors. Treg directly promote proliferation of both mouse and human cardiomyocytes in a paracrine manner; and their secreted factors such as CCL24, GAS6 or AREG potentiate neonatal cardiomyocyte proliferation. By comparing the regenerating P3 and non-regenerating P8 heart, there is a significant increase in the absolute number of intracardiac Treg but the whole transcriptomes of these Treg do not differ regardless of whether the neonatal heart regenerates. Furthermore, even adult Treg, given sufficient quantity, possess the same regenerative capability. Conclusion: Our results demonstrate a regenerative role of Treg in neonatal heart regeneration. Treg can directly facilitate cardiomyocyte proliferation in a paracrine manner.
Collapse
Affiliation(s)
- Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y. Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rachel Chun Yee Tam
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W. Chan
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Yao Lan
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kathy O. Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Camberos V, Baio J, Bailey L, Hasaniya N, Lopez LV, Kearns-Jonker M. Effects of Spaceflight and Simulated Microgravity on YAP1 Expression in Cardiovascular Progenitors: Implications for Cell-Based Repair. Int J Mol Sci 2019; 20:E2742. [PMID: 31167392 PMCID: PMC6600678 DOI: 10.3390/ijms20112742] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023] Open
Abstract
Spaceflight alters many processes of the human body including cardiac function and cardiac progenitor cell behavior. The mechanism behind these changes remains largely unknown; however, simulated microgravity devices are making it easier for researchers to study the effects of microgravity. To study the changes that take place in cardiac progenitor cells in microgravity environments, adult cardiac progenitor cells were cultured aboard the International Space Station (ISS) as well as on a clinostat and examined for changes in Hippo signaling, a pathway known to regulate cardiac development. Cells cultured under microgravity conditions, spaceflight-induced or simulated, displayed upregulation of downstream genes involved in the Hippo pathway such as YAP1 and SOD2. YAP1 is known to play a role in cardiac regeneration which led us to investigate YAP1 expression in a sheep model of cardiovascular repair. Additionally, to mimic the effects of microgravity, drug treatment was used to induce Hippo related genes as well as a regulator of the Hippo pathway, miRNA-302a. These studies provide insight into the changes that occur in space and how the effects of these changes relate to cardiac regeneration studies.
Collapse
Affiliation(s)
- Victor Camberos
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Jonathan Baio
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Leonard Bailey
- Department of Cardiovascular and Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Nahidh Hasaniya
- Department of Cardiovascular and Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Larry V Lopez
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Mary Kearns-Jonker
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
33
|
Tan K, Zhu H, Zhang J, Ouyang W, Tang J, Zhang Y, Qiu L, Liu X, Ding Z, Deng X. CD73 Expression on Mesenchymal Stem Cells Dictates the Reparative Properties via Its Anti-Inflammatory Activity. Stem Cells Int 2019; 2019:8717694. [PMID: 31249602 PMCID: PMC6525959 DOI: 10.1155/2019/8717694] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) are not universal and may be subject to dynamic changes upon local milieus in vivo and after isolation and cultivation in vitro. Here, we demonstrate that MSC derived from murine pericardial adipose tissue (pMSC) constitute two cohorts of population distinguished by the level of CD73 expression (termed as CD73high and CD73low pMSC). Transplantation of two types of cells into mouse hearts after myocardial infarction (MI) revealed that the CD73high pMSC preferentially brought about structural and functional repair in comparison to the PBS control and CD73low pMSC. Furthermore, the CD73high pMSC displayed a pronounced anti-inflammatory activity by attenuating CCR2+ macrophage infiltration and upregulating several anti-inflammatory genes 5 days after in vivo transplantation and ex vivo cocultivation with peritoneal macrophages. The immunomodulatory effect was not seen in cocultivation experiments with pMSC derived from CD73 knockout mice (CD73-/-) but was partially blocked by pretreatment of the A2b receptor antagonist, PSB603. The results highlight a heterogeneity of the CD73 expression that may be related to its catalytic products on the modulation of the local immune response and thus provide a possible explanation to the inconsistency of the regenerative results when different sources of donor cells were used in stem cell-based therapy.
Collapse
Affiliation(s)
- Kezhe Tan
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd. 168, 200433 Shanghai, China
| | - Hongtao Zhu
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Jianfang Zhang
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Weili Ouyang
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Jianfeng Tang
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Youming Zhang
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Linlin Qiu
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Xueqing Liu
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Zhaoping Ding
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd. 168, 200433 Shanghai, China
- Institute of Molecular Cardiology, Heinrich-Heine University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Xiaoming Deng
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd. 168, 200433 Shanghai, China
| |
Collapse
|
34
|
Lai SL, Marín-Juez R, Stainier DYR. Immune responses in cardiac repair and regeneration: a comparative point of view. Cell Mol Life Sci 2019; 76:1365-1380. [PMID: 30578442 PMCID: PMC6420886 DOI: 10.1007/s00018-018-2995-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022]
Abstract
Immediately after cardiac injury, the immune system plays major roles in repair and regeneration as it becomes involved in a number of processes including damage-associated signaling, inflammation, revascularization, cardiomyocyte dedifferentiation and replenishment, and fibrotic scar formation/resolution. Recent studies have revealed that different immune responses occur in the various experimental models capable or incapable of cardiac regeneration, and that harnessing these immune responses might improve cardiac repair. In light of this concept, this review analyzes current knowledge about the immune responses to cardiac injury from a comparative perspective. Insights gained from such comparative analyses may provide ways to modulate the immune response as a potential therapeutic strategy for cardiac disease.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| |
Collapse
|
35
|
Lock MC, Darby JRT, Soo JY, Brooks DA, Perumal SR, Selvanayagam JB, Seed M, Macgowan CK, Porrello ER, Tellam RL, Morrison JL. Differential Response to Injury in Fetal and Adolescent Sheep Hearts in the Immediate Post-myocardial Infarction Period. Front Physiol 2019; 10:208. [PMID: 30890961 PMCID: PMC6412108 DOI: 10.3389/fphys.2019.00208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aim: Characterizing the response to myocardial infarction (MI) in the regenerative sheep fetus heart compared to the post-natal non-regenerative adolescent heart may reveal key morphological and molecular differences that equate to the response to MI in humans. We hypothesized that the immediate response to injury in (a) infarct compared with sham, and (b) infarct, border, and remote tissue, in the fetal sheep heart would be fundamentally different to the adolescent, allowing for repair after damage. Methods: We used a sheep model of MI induced by ligating the left anterior descending coronary artery. Surgery was performed on fetuses (105 days) and adolescent sheep (6 months). Sheep were randomly separated into MI (n = 5) or Sham (n = 5) surgery groups at both ages. We used magnetic resonance imaging (MRI), histological/immunohistochemical staining, and qRT-PCR to assess the morphological and molecular differences between the different age groups in response to infarction. Results: Magnetic resonance imaging showed no difference in fetuses for key functional parameters; however there was a significant decrease in left ventricular ejection fraction and cardiac output in the adolescent sheep heart at 3 days post-infarction. There was no significant difference in functional parameters between MRI sessions at Day 0 and Day 3 after surgery. Expression of genes involved in glucose transport and fatty acid metabolism, inflammatory cytokines as well as growth factors and cell cycle regulators remained largely unchanged in the infarcted compared to sham ventricular tissue in the fetus, but were significantly dysregulated in the adolescent sheep. Different cardiac tissue region-specific gene expression profiles were observed between the fetal and adolescent sheep. Conclusion: Fetuses demonstrated a resistance to cardiac damage not observed in the adolescent animals. The manipulation of specific gene expression profiles to a fetal-like state may provide a therapeutic strategy to treat patients following an infarction.
Collapse
Affiliation(s)
- Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Doug A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sunthara Rajan Perumal
- Preclinical, Imaging and Research Laboratories, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Joseph B Selvanayagam
- Cardiac Imaging Research Group, Department of Heart Health, South Australian Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Mike Seed
- The Hospital for Sick Children, Division of Cardiology, Toronto, ON, Canada
| | | | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Physiology, School of Biomedical Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
36
|
Emerging Roles for Immune Cells and MicroRNAs in Modulating the Response to Cardiac Injury. J Cardiovasc Dev Dis 2019; 6:jcdd6010005. [PMID: 30650599 PMCID: PMC6462949 DOI: 10.3390/jcdd6010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
Stimulating cardiomyocyte regeneration after an acute injury remains the central goal in cardiovascular regenerative biology. While adult mammals respond to cardiac damage with deposition of rigid scar tissue, adult zebrafish and salamander unleash a regenerative program that culminates in new cardiomyocyte formation, resolution of scar tissue, and recovery of heart function. Recent studies have shown that immune cells are key to regulating pro-inflammatory and pro-regenerative signals that shift the injury microenvironment toward regeneration. Defining the genetic regulators that control the dynamic interplay between immune cells and injured cardiac tissue is crucial to decoding the endogenous mechanism of heart regeneration. In this review, we discuss our current understanding of the extent that macrophage and regulatory T cells influence cardiomyocyte proliferation and how microRNAs (miRNAs) regulate their activity in the injured heart.
Collapse
|
37
|
Richardson RJ. Parallels between vertebrate cardiac and cutaneous wound healing and regeneration. NPJ Regen Med 2018; 3:21. [PMID: 30416753 PMCID: PMC6220283 DOI: 10.1038/s41536-018-0059-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
The cellular events that contribute to tissue healing of non-sterile wounds to the skin and ischaemic injury to internal organs such as the heart share remarkable similarities despite the differences between these injury types and organs. In adult vertebrates, both injuries are characterised by a complex series of overlapping events involving multiple different cell types and cellular interactions. In adult mammals both tissue-healing processes ultimately lead to the permanent formation of a fibrotic, collagenous scar, which can have varying effects on tissue function depending on the site and magnitude of damage. Extensive scarring in the heart as a result of a severe myocardial infarction contributes to ventricular dysfunction and the progression of heart failure. Some vertebrates such as adult zebrafish, however, retain a more embryonic capacity for scar-free tissue regeneration in many tissues including the skin and heart. In this review, the similarities and differences between these different types of wound healing are discussed, with special attention on recent advances in regenerative, non-scarring vertebrate models such as the zebrafish.
Collapse
Affiliation(s)
- Rebecca J Richardson
- School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
38
|
Abstract
Death of adult cardiac myocytes and supportive tissues resulting from cardiovascular diseases such as myocardial infarction is the proximal driver of pathological ventricular remodeling that often culminates in heart failure. Unfortunately, no currently available therapeutic barring heart transplantation can directly replenish myocytes lost from the injured heart. For decades, the field has struggled to define the intrinsic capacity and cellular sources for endogenous myocyte turnover in pursuing more innovative therapeutic strategies aimed at regenerating the injured heart. Although controversy persists to this day as to the best therapeutic regenerative strategy to use, a growing consensus has been reached that the very limited capacity for new myocyte formation in the adult mammalian heart is because of proliferation of existing cardiac myocytes but not because of the activity of an endogenous progenitor cell source of some sort. Hence, future therapeutic approaches should take into consideration the fundamental biology of myocyte renewal in designing strategies to potentially replenish these cells in the injured heart.
Collapse
Affiliation(s)
| | - Jeffery D Molkentin
- From the Department of Pediatrics (R.J.V., J.D.M.)
- Howard Hughes Medical Institute (J.D.M.)
| | - Steven R Houser
- Cincinnati Children's Hospital Medical Center, OH; and the Lewis Katz School of Medicine, Cardiovascular Research Center, Temple University, Philadelphia, PA (S.R.H.)
| |
Collapse
|
39
|
Winkler T, Sass FA, Duda GN, Schmidt-Bleek K. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018; 7:232-243. [PMID: 29922441 PMCID: PMC5987690 DOI: 10.1302/2046-3758.73.bjr-2017-0270.r1] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite its intrinsic ability to regenerate form and function after injury, bone tissue can be challenged by a multitude of pathological conditions. While innovative approaches have helped to unravel the cascades of bone healing, this knowledge has so far not improved the clinical outcomes of bone defect treatment. Recent findings have allowed us to gain in-depth knowledge about the physiological conditions and biological principles of bone regeneration. Now it is time to transfer the lessons learned from bone healing to the challenging scenarios in defects and employ innovative technologies to enable biomaterial-based strategies for bone defect healing. This review aims to provide an overview on endogenous cascades of bone material formation and how these are transferred to new perspectives in biomaterial-driven approaches in bone regeneration. Cite this article: T. Winkler, F. A. Sass, G. N. Duda, K. Schmidt-Bleek. A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: The unsolved challenge. Bone Joint Res 2018;7:232–243. DOI: 10.1302/2046-3758.73.BJR-2017-0270.R1.
Collapse
Affiliation(s)
- T Winkler
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - F A Sass
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - G N Duda
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - K Schmidt-Bleek
- Julius Wolff Institute, Charité - Universitätsmedizin Berlin and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
40
|
Castellan RFP, Meloni M. Mechanisms and Therapeutic Targets of Cardiac Regeneration: Closing the Age Gap. Front Cardiovasc Med 2018; 5:7. [PMID: 29459901 PMCID: PMC5807373 DOI: 10.3389/fcvm.2018.00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
While a regenerative response is limited in the mammalian adult heart, it has been recently shown that the neonatal mammalian heart possesses a marked but transient capacity for regeneration after cardiac injury, including myocardial infarction. These findings evidence that the mammalian heart still retains a regenerative capacity and highlights the concept that the expression of distinct molecular switches (that activate or inhibit cellular mechanisms regulating tissue development and regeneration) vary during different stages of life, indicating that cardiac regeneration is an age-dependent process. Thus, understanding the mechanisms underpinning regeneration in the neonatal-infarcted heart is crucial to develop new treatments aimed at improving cardiovascular regeneration in the adult. The present review summarizes the current knowledge on the pathways and factors that are known to determine cardiac regeneration in the neonatal-infarcted heart. In particular, we will focus on the effects of microRNA manipulation in regulating cardiomyocyte proliferation and regeneration, as well as on the role of the Hippo signaling pathway and Meis1 in the regenerative response of the neonatal-infarcted heart. We will also briefly comment on the role of macrophages in scar formation of the adult-infarcted heart or their contribution for scar-free regeneration of the neonatal mouse heart after myocardial infarction. Although additional research is needed in order to identify other factors that regulate cardiovascular regeneration, these pathways represent potential therapeutic targets for rejuvenation of aging hearts and for improving regeneration of the adult-infarcted heart.
Collapse
Affiliation(s)
- Raphael F. P. Castellan
- British Heart Foundation and University of Edinburgh Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Marco Meloni
- British Heart Foundation and University of Edinburgh Centre for Cardiovascular Science, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
41
|
Hasham MG, Baxan N, Stuckey DJ, Branca J, Perkins B, Dent O, Duffy T, Hameed TS, Stella SE, Bellahcene M, Schneider MD, Harding SE, Rosenthal N, Sattler S. Systemic autoimmunity induced by the TLR7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy in a new mouse model of autoimmune heart disease. Dis Model Mech 2017; 10:259-270. [PMID: 28250051 PMCID: PMC5374321 DOI: 10.1242/dmm.027409] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Systemic autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) show significant heart involvement and cardiovascular morbidity, which can be due to systemically increased levels of inflammation or direct autoreactivity targeting cardiac tissue. Despite high clinical relevance, cardiac damage secondary to systemic autoimmunity lacks inducible rodent models. Here, we characterise immune-mediated cardiac tissue damage in a new model of SLE induced by topical application of the Toll-like receptor 7/8 (TLR7/8) agonist Resiquimod. We observe a cardiac phenotype reminiscent of autoimmune-mediated dilated cardiomyopathy, and identify auto-antibodies as major contributors to cardiac tissue damage. Resiquimod-induced heart disease is a highly relevant mouse model for mechanistic and therapeutic studies aiming to protect the heart during autoimmunity. Summary: A novel mouse model of autoimmune-mediated heart damage to study the underlying mechanisms and test therapeutic options for systemic autoimmunity.
Collapse
Affiliation(s)
- Muneer G Hasham
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Nicoleta Baxan
- Biological Imaging Centre, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London WC1E 6DD, UK
| | - Jane Branca
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Bryant Perkins
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Oliver Dent
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Ted Duffy
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Tolani S Hameed
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Sarah E Stella
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Mohammed Bellahcene
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Michael D Schneider
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Nadia Rosenthal
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.,National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| | - Susanne Sattler
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
| |
Collapse
|
42
|
Schell H, Duda GN, Peters A, Tsitsilonis S, Johnson KA, Schmidt-Bleek K. The haematoma and its role in bone healing. J Exp Orthop 2017; 4:5. [PMID: 28176273 PMCID: PMC5296258 DOI: 10.1186/s40634-017-0079-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/30/2017] [Indexed: 12/28/2022] Open
Abstract
Fracture treatment is an old endeavour intended to promote bone healing and to also enable early loading and regain of function in the injured limb. However, in today's clinical routine the healing potential of the initial fracture haematoma is still not fully recognized. The Arbeitsgemeinschaft für Osteosynthesefragen (AO) formed in Switzerland in 1956 formulated four AO principles of fracture treatment which are still valid today. Fracture treatment strategies have continued to evolve further, as for example the relatively new concept of minimally invasive plate osteosynthesis (MIPO). This MIPO treatment strategy harbours the benefit of an undisturbed original fracture haematoma that supports the healing process. The extent of the supportive effect of this haematoma for the bone healing process has not been considered in clinical practice so far. The rising importance of osteoimmunological aspects in bone healing supports the essential role of the initial haematoma as a source for inflammatory cells that release the cytokine pattern that directs cell recruitment towards the injured tissue. In reviewing the potential benefits of the fracture haematoma, the early development of angiogenic and osteogenic potentials within the haematoma are striking. Removing the haematoma during surgery could negatively influence the fracture healing process. In an ovine open tibial fracture model the haematoma was removed 4 or 7 days after injury and the bone that formed during the first two weeks of healing was significantly reduced in comparison with an undisturbed control. These findings indicate that whenever possible the original haematoma formed upon injury should be conserved during clinical fracture treatment to benefit from the inherent healing potential.
Collapse
Affiliation(s)
- H Schell
- Julius Wolff Institut and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - G N Duda
- Julius Wolff Institut and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - A Peters
- Julius Wolff Institut and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - S Tsitsilonis
- Julius Wolff Institut and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - K A Johnson
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia
| | - K Schmidt-Bleek
- Julius Wolff Institut and Center for Musculoskeletal Surgery Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
43
|
Sattler S. The Role of the Immune System Beyond the Fight Against Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1003:3-14. [PMID: 28667551 DOI: 10.1007/978-3-319-57613-8_1] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The immune system was identified as a protective factor during infectious diseases over a century ago. Current definitions and textbook information are still largely influenced by these early observations, and the immune system is commonly presented as a defence machinery. However, host defence is only one manifestation of the immune system's overall function in the maintenance of tissue homeostasis and system integrity. In fact, the immune system is integral part of fundamental physiological processes such as development, reproduction and wound healing, and a close crosstalk between the immune system and other body systems such as metabolism, the central nervous system and the cardiovascular system is evident. Research and medical professionals in an expanding range of areas start to recognise the implications of the immune system in their respective fields.This chapter provides a brief historical perspective on how our understanding of the immune system has evolved from a defence system to an overarching surveillance machinery to maintain tissue integrity. Current perspectives on the non-defence functions of classical immune cells and factors will also be discussed.
Collapse
Affiliation(s)
- Susanne Sattler
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
44
|
Ackerman JE, Best KT, O'Keefe RJ, Loiselle AE. Deletion of EP4 in S100a4-lineage cells reduces scar tissue formation during early but not later stages of tendon healing. Sci Rep 2017; 7:8658. [PMID: 28819185 PMCID: PMC5561254 DOI: 10.1038/s41598-017-09407-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Tendon injuries heal via scar tissue rather than regeneration. This healing response forms adhesions between the flexor tendons in the hand and surrounding tissues, resulting in impaired range of motion and hand function. Mechanistically, inflammation has been strongly linked to adhesion formation, and Prostaglandin E2 (PGE2) is associated with both adhesion formation and tendinopathy. In the present study we tested the hypothesis that deletion of the PGE2 receptor EP4 in S100a4-lineage cells would decrease adhesion formation. S100a4-Cre; EP4 flox/flox (EP4cKOS100a4) repairs healed with improved gliding function at day 14, followed by impaired gliding at day 28, relative to wild type. Interestingly, EP4cKOS100a4 resulted in only transient deletion of EP4, suggesting up-regulation of EP4 in an alternative cell population in these mice. Loss of EP4 in Scleraxis-lineage cells did not alter gliding function, suggesting that Scx-lineage cells are not the predominant EP4 expressing population. In contrast, a dramatic increase in α-SMA+, EP4+ double-positive cells were observed in EP4cKOS100a4 suggesting that EP4cKOS100a4 repairs heal with increased infiltration of EP4 expressing α-SMA myofibroblasts, identifying a potential mechanism of late up-regulation of EP4 and impaired gliding function in EP4cKOS100a4 tendon repairs.
Collapse
Affiliation(s)
- Jessica E Ackerman
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
| | - Katherine T Best
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America
| | - Regis J O'Keefe
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, University of Rochester, Rochester, New York, United States of America.
| |
Collapse
|
45
|
Santini MP, Forte E, Harvey RP, Kovacic JC. Developmental origin and lineage plasticity of endogenous cardiac stem cells. Development 2016; 143:1242-58. [PMID: 27095490 DOI: 10.1242/dev.111591] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT(+), PDGFRα(+), ISL1(+)and SCA1(+)cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair.
Collapse
Affiliation(s)
- Maria Paola Santini
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Elvira Forte
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Richard P Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 405 Liverpool Street, Darlinghurst 2010, Australia St Vincent's Clinical School, University of New South Wales, Kensington 2052, Australia Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington 2052, Australia
| | - Jason C Kovacic
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York City, NY, USA Stem Cells Australia, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
46
|
Godwin JW, Pinto AR, Rosenthal NA. Chasing the recipe for a pro-regenerative immune system. Semin Cell Dev Biol 2016; 61:71-79. [PMID: 27521522 DOI: 10.1016/j.semcdb.2016.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023]
Abstract
Identification of the key ingredients and essential processes required to achieve perfect tissue regeneration in humans has so far remained elusive. Injury in vertebrates induces an obligatory wound response that will precede or overlap any regeneration specific program or scarring outcome. This process shapes the cellular and molecular landscape of the tissue, influencing the success of endogenous repair pathways or for potential clinical intervention. The involvement of immune cells is also required for aspects of development extending beyond the initial inflammatory phase of wounding. It has now become clear from amphibian, fish and mammalian models of tissue injury that the type of immune response and the profile of immune cells attending the site of injury can act as the gatekeepers that determine wound repair quality. The heterogeneity among innate and adaptive immune cell populations, along with the developmental origin of these cells, form key ingredients affecting the potential for downstream repair and the suppression of fibrosis. Cell-to-cell interactions between immune cells, such as macrophages and T cells, with stem cells and mesenchymal cells are critically important for shaping this process and these exchanges, are in turn influenced by the type of injury, tissue location and developmental stage of the organism. Developmentally, mouse cardiac regeneration is restricted to early stages of postnatal life where the balance of innate to adaptive immune cells may be poised towards regeneration. In the injured adult mouse liver, specific macrophage subsets improve repair while other bone marrow derived cells can exacerbate injury. Other studies using genetically diverse mice have shown enhanced regeneration in certain strains, restricted to specific tissues. This enhanced repair is linked with expression of genes such as Insulin-like Growth Factor- 1 (IGF-1) and activin (Act 1), that both play important roles in shaping the immune system. Immune cells are now appreciated to have powerful influences on critical cell types required for regeneration success. The winning recipe for tissue regeneration is likely to be found ultimately by identifying the genetic elements and specific cell populations that limit or allow intrinsic potential. This will be essential for developing therapeutic strategies for tissue regeneration in humans.
Collapse
Affiliation(s)
- James W Godwin
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; MDI Biological Laboratory, Salisbury Cove, ME 04672, USA; Australian Regenerative Medicine Institute, Monash University, Victoria, 3800, Australia.
| | | | | |
Collapse
|
47
|
Vivien CJ, Hudson JE, Porrello ER. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen Med 2016; 1:16012. [PMID: 29302337 PMCID: PMC5744704 DOI: 10.1038/npjregenmed.2016.12] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/01/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022] Open
Abstract
There are 64,000 living species of vertebrates on our planet and all of them have a heart. Comparative analyses devoted to understanding the regenerative potential of the myocardium have been performed in a dozen vertebrate species with the aim of developing regenerative therapies for human heart disease. Based on this relatively small selection of animal models, important insights into the evolutionary conservation of regenerative mechanisms have been gained. In this review, we survey cardiac regeneration studies in diverse species to provide an evolutionary context for the lack of regenerative capacity in the adult mammalian heart. Our analyses highlight the importance of cardiac adaptations that have occurred over hundreds of millions of years during the transition from aquatic to terrestrial life, as well as during the transition from the womb to an oxygen-rich environment at birth. We also discuss the evolution and ontogeny of cardiac morphological, physiological and metabolic adaptations in the context of heart regeneration. Taken together, our findings suggest that cardiac regenerative potential correlates with a low-metabolic state, the inability to regulate body temperature, low heart pressure, hypoxia, immature cardiomyocyte structure and an immature immune system. A more complete understanding of the evolutionary context and developmental mechanisms governing cardiac regenerative capacity would provide stronger scientific foundations for the translation of cardiac regeneration therapies into the clinic.
Collapse
Affiliation(s)
- Celine J Vivien
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Centre for Cardiac and Vascular Biology, The University of Queensland, Brisbane, QLD, Australia
| | - James E Hudson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Centre for Cardiac and Vascular Biology, The University of Queensland, Brisbane, QLD, Australia
| | - Enzo R Porrello
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Centre for Cardiac and Vascular Biology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|