1
|
Jaygude U, Hughes GM, Simpson JC. Exploring the role of the Rab network in epithelial-to-mesenchymal transition. BIOINFORMATICS ADVANCES 2024; 5:vbae200. [PMID: 39736966 PMCID: PMC11684074 DOI: 10.1093/bioadv/vbae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions. Results We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest. Availability and implementation Source code for resnet is freely available at https://github.com/Unmani199/resnet.
Collapse
Affiliation(s)
- Unmani Jaygude
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Smith JP, Paxton R, Medrano S, Sheffield NC, Sequeira-Lopez MLS, Ariel Gomez R. Inhibition of Renin Expression Is Regulated by an Epigenetic Switch From an Active to a Poised State. Hypertension 2024; 81:1869-1882. [PMID: 38989586 PMCID: PMC11337216 DOI: 10.1161/hypertensionaha.124.22886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Renin-expressing cells are myoendocrine cells crucial for the maintenance of homeostasis. Renin is regulated by cAMP, p300 (histone acetyltransferase p300)/CBP (CREB-binding protein), and Brd4 (bromodomain-containing protein 4) proteins and associated pathways. However, the specific regulatory changes that occur following inhibition of these pathways are not clear. METHODS We treated As4.1 cells (tumoral cells derived from mouse juxtaglomerular cells that constitutively express renin) with 3 inhibitors that target different factors required for renin transcription: H-89-dihydrochloride, PKA (protein kinase A) inhibitor; JQ1, Brd4 bromodomain inhibitor; and A-485, p300/CBP inhibitor. We performed assay for transposase-accessible chromatin with sequencing (ATAC-seq), single-cell RNA sequencing, cleavage under targets and tagmentation (CUT&Tag), and chromatin immunoprecipitation sequencing for H3K27ac (acetylation of lysine 27 of the histone H3 protein) and p300 binding on biological replicates of treated and control As4.1 cells. RESULTS In response to each inhibitor, Ren1 expression was significantly reduced and reversible upon washout. Chromatin accessibility at the Ren1 locus did not markedly change but was globally reduced at distal elements. Inhibition of PKA led to significant reductions in H3K27ac and p300 binding specifically within the Ren1 super-enhancer region. Further, we identified enriched TF (transcription factor) motifs shared across each inhibitory treatment. Finally, we identified a set of 9 genes with putative roles across each of the 3 renin regulatory pathways and observed that each displayed differentially accessible chromatin, gene expression, H3K27ac, and p300 binding at their respective loci. CONCLUSIONS Inhibition of renin expression in cells that constitutively synthesize and release renin is regulated by an epigenetic switch from an active to poised state associated with decreased cell-cell communication and an epithelial-mesenchymal transition. This work highlights and helps define the factors necessary for renin cells to alternate between myoendocrine and contractile phenotypes.
Collapse
Affiliation(s)
- Jason P. Smith
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia
| | - Robert Paxton
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Silvia Medrano
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia
| | - Nathan C. Sheffield
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | | | - R. Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
3
|
Li J, Wang H, Lu Q, Han J, Xu H, Sun P, Xu Q, Huang J, Ji J. Lysosome-Related Genes and RNF19B as Prognostic Markers for Survival and Immunotherapy Efficacy in Hepatocellular Carcinoma. Clin Transl Gastroenterol 2024; 15:e1. [PMID: 38546132 PMCID: PMC11196081 DOI: 10.14309/ctg.0000000000000701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/18/2024] [Indexed: 06/26/2024] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) poses a considerable worldwide health concern due to its associated high risk of death. The heterogeneity of HCC poses challenges in developing practical risk stratification tools and identifying prognostic markers for personalized targeted treatments. Recently, lysosomes were shown to be crucial contributors to numerous cellular activities, including tumor initiation and immune response regulation. We aimed to construct a reliable prognostic signature based on lysosome-related genes and determine its association with the immune microenvironment. METHODS We comprehensively analyzed lysosome-related genes in HCC to investigate their influence on patient survival and the tumor immune microenvironment. A prognostic signature comprising 14 genes associated with lysosomes was created to estimate the survival outcomes of individuals with HCC. In addition, we verified the prognostic importance of Ring Finger Protein 19B (RNF19B) in patients with HCC through multiplex immunohistochemistry analysis. RESULTS Our constructed lysosome-related prediction model could significantly discriminate between HCC patients with good and poor survival outcomes ( P < 0.05). We also found that elevated RNF19B expression was linked to unfavorable prognostic outcomes and showed a connection with specific clinicopathological characteristics. Moreover, it was observed that RNF19B could facilitate the transformation of macrophages into M2-polarized macrophages and showed a significant positive correlation with PD-1 and CTLA-4. DISCUSSION In summary, our study proposes that the expression of lysosome-related genes is associated with the immune microenvironment, serving as a predictor for HCC patient survival. Meanwhile, RNF19B was identified as a novel prognostic marker for predicting overall survival and immunotherapy effects in patients with HCC.
Collapse
Affiliation(s)
- Jieying Li
- Department of Pathology, Medical School of Nantong University & Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Hui Wang
- Department of Pathology, Medical School of Nantong University & Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Qian Lu
- Department of General Surgery, Tongzhou People's Hospital, Nantong, Jiangsu Province, China
| | - Jiayi Han
- Department of Pathology, Medical School of Nantong University & Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Xu
- Department of Pathology, Medical School of Nantong University & Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Pingping Sun
- Department of Clinical Biobank & The Institute of Oncology, the Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Qiang Xu
- Department of Pathology, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, China
| | - Jianfei Huang
- Department of Clinical Biobank & The Institute of Oncology, the Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
4
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
5
|
Ostrowska-Podhorodecka Z, Ali A, Norouzi M, Ding I, Abbasi S, Arora PD, Wong THF, Magalhaes M, McCulloch CA. Vimentin-mediated myosin 10 aggregation at tips of cell extensions drives MT1-MMP-dependent collagen degradation in colorectal cancer. FASEB J 2023; 37:e23097. [PMID: 37440280 DOI: 10.1096/fj.202300672r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Colorectal cancer (CRC) is a high prevalence adenocarcinoma with progressive increases in metastasis-related mortality, but the mechanisms governing the extracellular matrix (ECM) degradation important for metastasis in CRC are not well-defined. We investigated a functional relationship between vimentin (Vim) and myosin 10 (Myo10), and whether this relationship is associated with cancer progression. We tested the hypothesis that Vim regulates the aggregation of Myo10 at the tips of cell extensions, which increases membrane-type 1 matrix metalloproteinase (MT1-MMP)-associated local collagen proteolysis and ECM degradation. Analysis of CRC samples revealed colocalization of Vim with Myo10 and MT1-MMP in cell extensions adjacent to sites of collagen degradation, suggesting an association with local cell invasion. We analyzed cultured CRC cells and fibroblasts and found that Vim accelerates aggregation of Myo10 at cell tips, which increases the cell extension rate. Vim stabilizes the interaction of Myo10 with MT1-MMP, which in turn increases collagenolysis. Vim depletion reduced the aggregation of Myo10 at the cell extension tips and MT1-MMP-dependent collagenolysis. We propose that Vim interacts with Myo10, which in turn associates with MT1-MMP to facilitate the transport of these molecules to the termini of cell extensions and there enhance cancer invasion of soft connective tissues.
Collapse
Affiliation(s)
| | - Aiman Ali
- Oral Pathology and Oral Medicine, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Masoud Norouzi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Isabel Ding
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Sevil Abbasi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Pamma D Arora
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Timothy H F Wong
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Marco Magalhaes
- Oral Pathology and Oral Medicine, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Cancer Invasion and Metastasis Laboratory, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Dental and Maxillofacial Sciences Department, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
6
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
7
|
Liu Y, Ma J, Wang X, Liu P, Cai C, Han Y, Zeng S, Feng Z, Shen H. Lipophagy-related gene RAB7A is involved in immune regulation and malignant progression in hepatocellular carcinoma. Comput Biol Med 2023; 158:106862. [PMID: 37044053 DOI: 10.1016/j.compbiomed.2023.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND RAB7A (RAS-related in Brain 7A) is an important member of the RAS oncogene family. However, the correlation between RAB7A and the development and immune infiltration of hepatocellular carcinoma (HCC) has rarely been studied. Here, we studied the role of RAB7A in HCC through bioinformatics analysis, real-world cohort validation, and in vitro experimental exploration. MATERIALS AND METHODS The RAB7A expression level was analyzed through TCGA, HPA and TISIDB databases. TIMER and TISCH were used to analyze the correlation between RAB7A and tumor immune microenvironment. The expression of RAB7A was detected through real-time PCR and western blotting. The cell proliferation was detected by EdU and CCK8. Wound-healing and transwell assays were used to test the invasion and migration ability. Cell cycle distribution and reactive oxygen species (ROS) content were analyzed by flow cytometry. Identification of epithelial-mesenchymal transition (EMT) was performed by immunofluorescence double staining. Immunohistochemistry (IHC) was used to evaluate the correlation between RAB7A and immune checkpoints. RESULTS RAB7A is upregulated in most of the tumor types, and the upregulation of RAB7A is associated with a poorer prognosis in many cancers. The results showed that RAB7A was significantly positively correlated with the infiltration of macrophages and cancer-associated fibroblasts (CAFs), but negatively correlated with M2-type macrophages in most tumors. The single-cell atlas also revealed the distribution and proportion of RAB7A in immune cells of HCC. The in vitro experiments suggested that RAB7A was increased in HCC tissue and cell lines. The knockdown of RAB7A inhibited the activation of the PIK3CA-AKT pathway and suppressed the expression of CDK4, CDK6 and CCNA2. Knockdown of RAB7A induced G0/G1 arrest and ROS accumulation in HCC. In addition, overexpression of RAB7A enhanced migration and invasion by inducing EMT. The real-world cohort showed that the expression level of RAB7A was positively correlated with the expression levels of TGFBR1 and PD-L1. CONCLUSIONS RAB7A may serve as a potential tumor prognostic and immune infiltration-related biomarker, predicting immunotherapy efficacy in certain cancer types, especially in HCC. Besides, RAB7A was a multi-pathway target involved in the malignant progression of HCC.
Collapse
Affiliation(s)
- Yongting Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Jiayao Ma
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Xinwen Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ping Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ziyang Feng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
8
|
Enzyme Replacement Therapy for FABRY Disease: Possible Strategies to Improve Its Efficacy. Int J Mol Sci 2023; 24:ijms24054548. [PMID: 36901983 PMCID: PMC10003632 DOI: 10.3390/ijms24054548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Enzyme replacement therapy is the only therapeutic option for Fabry patients with completely absent AGAL activity. However, the treatment has side effects, is costly, and requires conspicuous amounts of recombinant human protein (rh-AGAL). Thus, its optimization would benefit patients and welfare/health services (i.e., society at large). In this brief report, we describe preliminary results paving the way for two possible approaches: i. the combination of enzyme replacement therapy with pharmacological chaperones; and ii. the identification of AGAL interactors as possible therapeutic targets on which to act. We first showed that galactose, a low-affinity pharmacological chaperone, can prolong AGAL half-life in patient-derived cells treated with rh-AGAL. Then, we analyzed the interactomes of intracellular AGAL on patient-derived AGAL-defective fibroblasts treated with the two rh-AGALs approved for therapeutic purposes and compared the obtained interactomes to the one associated with endogenously produced AGAL (data available as PXD039168 on ProteomeXchange). Common interactors were aggregated and screened for sensitivity to known drugs. Such an interactor-drug list represents a starting point to deeply screen approved drugs and identify those that can affect (positively or negatively) enzyme replacement therapy.
Collapse
|
9
|
Piper B, Bogamuwa S, Hossain T, Farkas D, Rosas L, Green A, Newcomb G, Sun N, Horowitz JC, Bhagwani AR, Yang H, Kudryashova TV, Rojas M, Mora AL, Yan P, Mallampalli RK, Goncharova EA, Eckmann DM, Farkas L. RAB7 deficiency impairs pulmonary artery endothelial function and promotes pulmonary hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.526842. [PMID: 36778418 PMCID: PMC9915659 DOI: 10.1101/2023.02.03.526842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with limited treatment options. Endothelial dysfunction plays a central role in development and progression of PAH, yet the underlying mechanisms are incompletely understood. The endosome-lysosome system is important to maintain cellular health and the small GTPase RAB7 regulates many functions of this system. Here, we explored the role of RAB7 in endothelial cell (EC) function and lung vascular homeostasis. We found reduced expression of RAB7 in ECs from PAH patients. Endothelial haploinsufficiency of RAB7 caused spontaneous PH in mice. Silencing of RAB7 in ECs induced broad changes in gene expression revealed via RNA sequencing and RAB7 silenced ECs showed impaired angiogenesis, expansion of a senescent cell fraction, combined with impaired endolysosomal trafficking and degradation, which suggests inhibition of autophagy at the pre-degradation level. Further, mitochondrial membrane potential and oxidative phosphorylation were decreased, and glycolysis was enhanced. Treatment with the RAB7 activator ML-098 reduced established PH in chronic hypoxia/SU5416 rats. In conclusion, we demonstrate here for the first time the fundamental impairment of EC function by loss of RAB7 that leads to PH and show RAB7 activation as a potential therapeutic strategy in a preclinical model of PH.
Collapse
|
10
|
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23137206. [PMID: 35806209 PMCID: PMC9267071 DOI: 10.3390/ijms23137206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.
Collapse
|
11
|
Rab33b-exocyst interaction mediates localized secretion for focal adhesion turnover and cell migration. iScience 2022; 25:104250. [PMID: 35521520 PMCID: PMC9061791 DOI: 10.1016/j.isci.2022.104250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/17/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022] Open
Abstract
Rab proteins are well known regulators of intracellular trafficking; however, more and more studies point to their function also in other cellular processes, including cell migration. In this work, we have performed an siRNA screen to identify Rab proteins that influence cell migration. The screen revealed Rab33b as the strongest candidate that affected cell motility. Rab33b has been previously reported to localize at the Golgi apparatus to regulate Golgi-to-ER retrograde trafficking and Golgi homeostasis. We revealed that Rab33b also mediates post-Golgi transport to the plasma membrane. We further identified Exoc6, a subunit of the exocyst complex, as an interactor of Rab33b. Moreover, our data indicate that Rab33b regulates focal adhesion dynamics by modulating the delivery of cargo such as integrins to focal adhesions. Altogether, our results demonstrate a role for Rab33b in cell migration by regulating the delivery of integrins to focal adhesions through the interaction with Exoc6. RNAi screen reveals a role for Rab33b in cell migration Rab33b influences focal adhesion dynamics Rab33b interacts with the exocyst subunit Exoc6 Rab33b together with Exoc6 mediates the delivery of β1 integrin to adhesion points
Collapse
|
12
|
Surolia R, Antony VB. Pathophysiological Role of Vimentin Intermediate Filaments in Lung Diseases. Front Cell Dev Biol 2022; 10:872759. [PMID: 35573702 PMCID: PMC9096236 DOI: 10.3389/fcell.2022.872759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Vimentin intermediate filaments, a type III intermediate filament, are among the most widely studied IFs and are found abundantly in mesenchymal cells. Vimentin intermediate filaments localize primarily in the cytoplasm but can also be found on the cell surface and extracellular space. The cytoplasmic vimentin is well-recognized for its role in providing mechanical strength and regulating cell migration, adhesion, and division. The post-translationally modified forms of Vimentin intermediate filaments have several implications in host-pathogen interactions, cancers, and non-malignant lung diseases. This review will analyze the role of vimentin beyond just the epithelial to mesenchymal transition (EMT) marker highlighting its role as a regulator of host-pathogen interactions and signaling pathways for the pathophysiology of various lung diseases. In addition, we will also examine the clinically relevant anti-vimentin compounds and antibodies that could potentially interfere with the pathogenic role of Vimentin intermediate filaments in lung disease.
Collapse
Affiliation(s)
| | - Veena B. Antony
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Huang S, Deng W, Wang P, Yan Y, Xie C, Cao X, Chen M, Zhang C, Shi D, Dong Y, Cheng P, Xu H, Zhu W, Hu Z, Tang B, Zhu J. Fermitin family member 2 promotes melanoma progression by enhancing the binding of p-α-Pix to Rac1 to activate the MAPK pathway. Oncogene 2021; 40:5626-5638. [PMID: 34321603 PMCID: PMC8445820 DOI: 10.1038/s41388-021-01954-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 06/06/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023]
Abstract
We identified fermitin family member 2 (FERMT2, also known as kindlin-2) as a potential target in A375 cell line by siRNA library screening. Drugs that target mutant BRAF kinase lack durable efficacy in the treatment of melanoma because of acquired resistance, thus the identification of novel therapeutic targets is needed. Immunohistochemistry was used to identify kindlin-2 expression in melanoma samples. The interaction between kindlin-2 and Rac1 or p-Rac/Cdc42 guanine nucleotide exchange factor 6 (α-Pix) was investigated. Finally, the tumor suppressive role of kindlin-2 was validated in vitro and in vivo. Analysis of clinical samples and Oncomine data showed that higher levels of kindlin-2 predicted a more advanced T stage and M stage and facilitated metastasis and recurrence. Kindlin-2 knockdown significantly inhibited melanoma growth and migration, whereas kindlin-2 overexpression had the inverse effects. Further study showed that kindlin-2 could specifically bind to p-α-Pix(S13) and Rac1 to induce a switch from the inactive Rac1-GDP conformation to the active Rac1-GTP conformation and then stimulate the downstream MAPK pathway. Moreover, we revealed that a Rac1 inhibitor suppressed melanoma growth and metastasis and the combination of the Rac1 inhibitor and vemurafenib resulted in a better therapeutic outcome than monotherapy in melanoma with high kindlin-2 expression and BRAF mutation. Our results demonstrated that kindlin-2 promoted melanoma progression, which was attributed to specific binding to p-α-Pix(S13) and Rac1 to stimulate the downstream MAPK pathway. Thus, kindlin-2 could be a potential therapeutic target for treating melanoma.
Collapse
Affiliation(s)
- Shaobin Huang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Peng Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Chuanbo Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaoling Cao
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Dingbo Shi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yunxian Dong
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pu Cheng
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hailin Xu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenkai Zhu
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Zhicheng Hu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Bing Tang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Jiayuan Zhu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
14
|
Vimentin-Rab7a Pathway Mediates the Migration of MSCs and Lead to Therapeutic Effects on ARDS. Stem Cells Int 2021; 2021:9992381. [PMID: 34367295 PMCID: PMC8342148 DOI: 10.1155/2021/9992381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/14/2021] [Indexed: 01/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is difficult to treat and has a high mortality rate. Mesenchymal stem cells (MSCs) have an important therapeutic effect in ARDS. While the mechanism of MSC migration to the lungs remains unclear, the role of MSCs is of great clinical significance. To this end, we constructed vimentin knockout mice, extracted bone MSCs from the mice, and used them for the treatment of LPS-induced ARDS. H&E staining and Masson staining of mouse lung tissue allowed us to assess the degree of damage and fibrosis of mouse lung tissue. By measuring serum TNF-α, TGF-β, and INF-γ, we were able to monitor the release of inflammatory factors. Finally, through immunoprecipitation and gene knockout experiments, we identified upstream molecules that regulate vimentin and elucidated the mechanism that mediates MSC migration. As a result, we found that MSCs from wild-type mice can significantly alleviate ARDS and reduce lung inflammation, while vimentin gene knockout reduced the therapeutic effect of MSCs in ARDS. Cytological experiments showed that vimentin gene knockout can significantly inhibit the migration of MSCs and showed that it changes the proliferation and differentiation status of MSCs. Further experiments found that vimentin's regulation of MSC migration is mainly mediated by Rab7a. Rab7a knockout blocked the migration of MSCs and weakened the therapeutic effect of MSCs in ARDS. In conclusion, we have shown that the Vimentin-Rab7a pathway mediates migration of MSCs and leads to therapeutic effects in ARDS.
Collapse
|
15
|
Kreis J, Wielath FM, Vick P. Rab7 is required for mesoderm patterning and gastrulation in Xenopus. Biol Open 2021; 10:269049. [PMID: 34096568 PMCID: PMC8325926 DOI: 10.1242/bio.056887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Early embryogenesis requires tightly controlled temporal and spatial coordination of cellular behavior and signaling. Modulations are achieved at multiple levels, from cellular transcription to tissue-scale behavior. Intracellularly, the endolysosomal system emerges as an important regulator at different levels, but in vivo studies are rare. In the frog Xenopus, little is known about the developmental roles of endosomal regulators, or their potential involvement in signaling, especially for late endosomes. Here, we analyzed a hypothesized role of Rab7 in this context, a small GTPase known for its role as a late endosomal regulator. First, rab7 showed strong maternal expression. Following localized zygotic transcript enrichment in the mesodermal ring and neural plate, it was found in tailbud-stage neural ectoderm, notochord, pronephros, eyes and neural crest tissues. Inhibition resulted in strong axis defects caused by a requirement of rab7 for mesodermal patterning and correct gastrulation movements. To test a potential involvement in growth factor signaling, we analyzed early Wnt-dependent processes in the mesoderm. Our results suggest a selective requirement for ligand-induced Wnt activation, implicating a context-dependent role of Rab7. Summary: The late endosomal regulator Rab7 is required for gastrulation movements and axis elongation in Xenopus by regulating early mesoderm patterning.
Collapse
Affiliation(s)
- Jennifer Kreis
- Department of Zoology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Fee M Wielath
- Department of Zoology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Philipp Vick
- Department of Zoology, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
16
|
Romano R, Calcagnile M, Margiotta A, Franci L, Chiariello M, Alifano P, Bucci C. RAB7A Regulates Vimentin Phosphorylation through AKT and PAK. Cancers (Basel) 2021; 13:cancers13092220. [PMID: 34066419 PMCID: PMC8125308 DOI: 10.3390/cancers13092220] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary RAB7A (RAs-related in Brain 7A) is a master regulator of intracellular traffic controlling transport to late endosomes and lysosomes, two organelles of the endocytic pathway important for degradation. Thanks to this function, RAB7A is also involved in cellular processes linked to cancer, such as apoptosis, cytoskeletal reorganization, and cell migration. Therefore, the interest in the role of RAB7A in cancer progression is increasing. Previously, we demonstrated that RAB7A regulates phosphorylation and assembly of vimentin, a cytoskeletal intermediate filament protein, which is also an important mesenchymal marker of cancer cells. The aim of the present study is the identification of the kinases responsible for vimentin phosphorylation whose activity is affected by the modulation of RAB7A expression. We found that RAB7A is able to regulate AKT (also called protein kinase B or PKB) and PAK1 (P21-Activated Kinase 1) and several of their downstream effectors, which control proliferation, apoptosis, survival, migration, and invasion. These data suggest that RAB7A could have a key role in cancer development. Abstract RAB7A is a small GTPase that controls the late endocytic pathway but also cell migration through RAC1 (Ras-related C3 botulinum toxin substrate 1) and vimentin. In fact, RAB7A regulates vimentin phosphorylation at different sites and vimentin assembly, and, in this study, we identified vimentin domains interacting with RAB7A. As several kinases could be responsible for vimentin phosphorylation, we investigated whether modulation of RAB7A expression affects the activity of these kinases. We discovered that RAB7A regulates AKT and PAK1, and we demonstrated that increased vimentin phosphorylation at Ser38 (Serine 38), observed upon RAB7A overexpression, is due to AKT activity. As AKT and PAK1 are key regulators of several cellular events, we investigated if RAB7A could have a role in these processes by modulating AKT and PAK1 activity. We found that RAB7A protein levels affected beta-catenin and caspase 9 expression. We also observed the downregulation of cofilin-1 and decreased matrix metalloproteinase 2 (MMP2) activity upon RAB7A silencing. Altogether these results demonstrate that RAB7A regulates AKT and PAK1 kinases, affecting their downstream effectors and the processes they regulate, suggesting that RAB7A could have a role in a number of cancer hallmarks.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Azzurra Margiotta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Lorenzo Franci
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.F.); (M.C.)
- Core Research Laboratory (CRL), Istituto per lo Studio, La Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Mario Chiariello
- Istituto di Fisiologia Clinica (IFC), Consiglio Nazionale delle Ricerche (CNR), 53100 Siena, Italy; (L.F.); (M.C.)
- Core Research Laboratory (CRL), Istituto per lo Studio, La Prevenzione e la Rete Oncologica (ISPRO), 53100 Siena, Italy
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy; (R.R.); (M.C.); (A.M.); (P.A.)
- Correspondence: ; Tel.: +39-0832-298900
| |
Collapse
|
17
|
Erasmus JC, Smolarczyk K, Brezovjakova H, Mohd-Naim NF, Lozano E, Matter K, Braga VMM. Rac1-PAK1 regulation of Rab11 cycling promotes junction destabilization. J Cell Biol 2021; 220:212034. [PMID: 33914026 PMCID: PMC8091128 DOI: 10.1083/jcb.202002114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Rac1 GTPase is hyperactivated in tumors and contributes to malignancy. Rac1 disruption of junctions requires its effector PAK1, but the precise mechanisms are unknown. Here, we show that E-cadherin is internalized via micropinocytosis in a PAK1–dependent manner without catenin dissociation and degradation. In addition to internalization, PAK1 regulates E-cadherin transport by fine-tuning Rab small GTPase function. PAK1 phosphorylates a core Rab regulator, RabGDIβ, but not RabGDIα. Phosphorylated RabGDIβ preferentially associates with Rab5 and Rab11, which is predicted to promote Rab retrieval from membranes. Consistent with this hypothesis, Rab11 is activated by Rac1, and inhibition of Rab11 function partially rescues E-cadherin destabilization. Thus, Rac1 activation reduces surface cadherin levels as a net result of higher bulk flow of membrane uptake that counteracts Rab11-dependent E-cadherin delivery to junctions (recycling and/or exocytosis). This unique small GTPase crosstalk has an impact on Rac1 and PAK1 regulation of membrane remodeling during epithelial dedifferentiation, adhesion, and motility.
Collapse
Affiliation(s)
- Jennifer C Erasmus
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Kasia Smolarczyk
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Helena Brezovjakova
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Noor F Mohd-Naim
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Encarnación Lozano
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London, UK
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
18
|
Ostrowska-Podhorodecka Z, McCulloch CA. Vimentin regulates the assembly and function of matrix adhesions. Wound Repair Regen 2021; 29:602-612. [PMID: 33887795 DOI: 10.1111/wrr.12920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The intermediate filament protein vimentin is a widely used phenotypic marker for identifying cells of the mesenchymal linkage such as fibroblasts and myofibroblasts, but the full repertoire of vimentin's functional attributes has not been fully explored. Here we consider how vimentin, in addition to its contributions to mechanical stabilization of cell structure, also helps to control the assembly of cell adhesions and migration through collagen matrices. While the assembly and function of matrix adhesions are critical for the differentiation of myofibroblasts and many other types of adherent cells, a potential mechanism that explains how vimentin affects the recruitment and abundance of centrally important proteins in cell adhesions has been elusive. Here we review recent data indicating that vimentin plays a central regulatory role in the assembly of focal adhesions which form in response to the attachment to collagen. We show that in particular, vimentin is a key organizer of the β1 integrin adhesive machinery, which affects cell migration through collagen. This review provides a comprehensive picture of the surprisingly broad array of processes and molecules with which vimentin interacts to affect cell function in the context of fibroblast and myofibroblast adhesion and migration on collagen.
Collapse
|
19
|
Yang YC, Chien MH, Lai TC, Tung MC, Jan YH, Chang WM, Jung SM, Chen MH, Yeh CN, Hsiao M. Proteomics-based identification of TMED9 is linked to vascular invasion and poor prognoses in patients with hepatocellular carcinoma. J Biomed Sci 2021; 28:29. [PMID: 33888099 PMCID: PMC8063382 DOI: 10.1186/s12929-021-00727-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Due to the difficulties in early diagnosing and treating hepatocellular carcinoma (HCC), prognoses for patients remained poor in the past decade. In this study, we established a screening model to discover novel prognostic biomarkers in HCC patients. METHODS Candidate biomarkers were screened by liquid chromatography with tandem mass spectrometry (LC-MS/MS) analyses of five HCC normal (N)/tumor (T) paired tissues and preliminarily verified them through several in silico database analyses. Expression levels and functional roles of candidate biomarkers were respectively evaluated by immunohistochemical staining in N/T paired tissue (n = 120) and MTS, colony formation, and transwell migration/invasion assays in HCC cell lines. Associations of clinicopathological features and prognoses with candidate biomarkers in HCC patients were analyzed from GEO and TCGA datasets and our recruited cohort. RESULTS We found that the transmembrane P24 trafficking protein 9 (TMED9) protein was elevated in HCC tissues according to a global proteomic analysis. Higher messenger (m)RNA and protein levels of TMED9 were observed in HCC tissues compared to normal liver tissues or pre-neoplastic lesions. The TMED9 mRNA expression level was significantly associated with an advanced stage and a poor prognosis of overall survival (OS, p = 0.00084) in HCC patients. Moreover, the TMED9 protein expression level was positively correlated with vascular invasion (p = 0.026), OS (p = 0.044), and disease-free survival (p = 0.015) in our recruited Taiwanese cohort. In vitro, manipulation of TMED9 expression in HCC cells significantly affected cell migratory, invasive, proliferative, and colony-forming abilities. CONCLUSIONS Ours is the first work to identify an oncogenic role of TMED9 in HCC cells and may provide insights into the application of TMED9 as a novel predictor of clinical outcomes and a potential therapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. .,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-Ching Lai
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Min-Che Tung
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Yi-Hua Jan
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Wei-Ming Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.,School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ming Jung
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Huang Chen
- Department of Oncology, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 112, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chun-Nan Yeh
- Department of General Surgery and Liver Research Center, Linkou Branch, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan. .,Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
20
|
Hu J, Ding X, Tian S, Chu Y, Liu Z, Li Y, Li X, Wang G, Wang L, Wang Z. TRIM39 deficiency inhibits tumor progression and autophagic flux in colorectal cancer via suppressing the activity of Rab7. Cell Death Dis 2021; 12:391. [PMID: 33846303 PMCID: PMC8041807 DOI: 10.1038/s41419-021-03670-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
The biological function of TRIM39, a member of TRIM family, remains largely unexplored in cancer, especially in colorectal cancer (CRC). In this study, we show that TRIM39 is upregulated in tumor tissues compared to adjacent normal tissues and associated with poor prognosis in CRC. Functional studies demonstrate that TRIM39 deficiency restrains CRC progression in vitro and in vivo. Our results further find that TRIM39 is a positive regulator of autophagosome–lysosome fusion. Mechanistically, TRIM39 interacts with Rab7 and promotes its activity via inhibiting its ubiquitination at lysine 191 residue. Depletion of TRIM39 inhibits CRC progression and autophagic flux in a Rab7 activity-dependent manner. Moreover, TRIM39 deficiency suppresses CRC progression through inhibiting autophagic degradation of p53. Thus, our findings uncover the roles as well as the relevant mechanisms of TRIM39 in CRC and establish a functional relationship between autophagy and CRC progression, which may provide promising approaches for the treatment of CRC.
Collapse
Affiliation(s)
- Jia Hu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xueliang Ding
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Shaobo Tian
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yanan Chu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Zhibo Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yuqin Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaoqiong Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
21
|
Xie N, Bai Y, Qiao L, Bai Y, Wu J, Li Y, Jiang M, Xu B, Ni Z, Yuan T, Shi Y, Wu K, Xu F, Wang J, Dong L, Liu N. ARL4C might serve as a prognostic factor and a novel therapeutic target for gastric cancer: bioinformatics analyses and biological experiments. J Cell Mol Med 2021; 25:4014-4027. [PMID: 33724652 PMCID: PMC8051716 DOI: 10.1111/jcmm.16366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/24/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022] Open
Abstract
The ADP‐ribosylation factor‐like proteins (ARLs) have been proved to regulate the malignant phenotypes of several cancers. However, the exact role of ARLs in gastric cancer (GC) remains elusive. In this study, we systematically investigate the expression status, interactive relations, potential pathways, genetic variations and clinical values of ARLs in GC. We find that ARLs are significantly dysregulated in GC and involved in various cancer‐related pathways. Subsequently, machine learning models identify ARL4C as one of the two most significant clinical indicators among ARLs for GC. Furthermore, ARL4C silencing remarkably inhibits the growth and metastasis of GC cells both in vitro and in vivo. Moreover, enrichment analysis indicates that ARL4C is highly correlated with TGF‐β1 signalling. Correspondingly, TGF‐β1 treatment dramatically increases ARL4C expression and ARL4C knockdown inhibits the phosphorylation level of Smads, downstream factors of TGF‐β1. Meanwhile, the coexpression of ARL4C and TGF‐β1 worsens the prognosis of GC patients. Our work comprehensively demonstrates the crucial role of ARLs in the carcinogenesis of GC and the specific mechanisms underlying the GC‐promoting effects of TGF‐β1. More importantly, we uncover the great promise of ARL4C‐targeted therapy in improving the efficacy of TGF‐β1 inhibitors for GC patients.
Collapse
Affiliation(s)
- Ning Xie
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Yunfan Bai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Japan
| | - Lu Qiao
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Yuru Bai
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Jian Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi'an, China
| | - Bing Xu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhen Ni
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi'an, China
| | - Ting Yuan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi'an, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi'an, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Jinhai Wang
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Lei Dong
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| | - Na Liu
- Department of Gastroenterology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Key Laboratory of Gastrointestinal Motility Disorders, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Role of the V1G1 subunit of V-ATPase in breast cancer cell migration. Sci Rep 2021; 11:4615. [PMID: 33633298 PMCID: PMC7907067 DOI: 10.1038/s41598-021-84222-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
V-ATPase is a large multi-subunit complex that regulates acidity of intracellular compartments and of extracellular environment. V-ATPase consists of several subunits that drive specific regulatory mechanisms. The V1G1 subunit, a component of the peripheral stalk of the pump, controls localization and activation of the pump on late endosomes and lysosomes by interacting with RILP and RAB7. Deregulation of some subunits of the pump has been related to tumor invasion and metastasis formation in breast cancer. We observed a decrease of V1G1 and RAB7 in highly invasive breast cancer cells, suggesting a key role of these proteins in controlling cancer progression. Moreover, in MDA-MB-231 cells, modulation of V1G1 affected cell migration and matrix metalloproteinase activation in vitro, processes important for tumor formation and dissemination. In these cells, characterized by high expression of EGFR, we demonstrated that V1G1 modulates EGFR stability and the EGFR downstream signaling pathways that control several factors required for cell motility, among which RAC1 and cofilin. In addition, we showed a key role of V1G1 in the biogenesis of endosomes and lysosomes. Altogether, our data describe a new molecular mechanism, controlled by V1G1, required for cell motility and that promotes breast cancer tumorigenesis.
Collapse
|
23
|
Saito-Nakano Y, Wahyuni R, Nakada-Tsukui K, Tomii K, Nozaki T. Rab7D small GTPase is involved in phago-, trogocytosis and cytoskeletal reorganization in the enteric protozoan Entamoeba histolytica. Cell Microbiol 2020; 23:e13267. [PMID: 32975360 PMCID: PMC7757265 DOI: 10.1111/cmi.13267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Rab small GTPases regulate membrane traffic between distinct cellular compartments of all eukaryotes in a tempo‐spatially specific fashion. Rab small GTPases are also involved in the regulation of cytoskeleton and signalling. Membrane traffic and cytoskeletal regulation play pivotal role in the pathogenesis of Entamoeba histolytica, which is a protozoan parasite responsible for human amebiasis. E. histolytica is unique in that its genome encodes over 100 Rab proteins, containing multiple isotypes of conserved members (e.g., Rab7) and Entamoeba‐specific subgroups (e.g., RabA, B, and X). Among them, E. histolytica Rab7 is the most diversified group consisting of nine isotypes. While it was previously demonstrated that EhRab7A and EhRab7B are involved in lysosome and phagosome biogenesis, the individual roles of other Rab7 members and their coordination remain elusive. In this study, we characterised the third member of Rab7, Rab7D, to better understand the significance of the multiplicity of Rab7 isotypes in E. histolytica. Overexpression of EhRab7D caused reduction in phagocytosis of erythrocytes, trogocytosis (meaning nibbling or chewing of a portion) of live mammalian cells, and phagosome acidification and maturation. Conversely, transcriptional gene silencing of EhRab7D gene caused opposite phenotypes in phago/trogocytosis and phagosome maturation. Furthermore, EhRab7D gene silencing caused reduction in the attachment to and the motility on the collagen‐coated surface. Image analysis showed that EhRab7D was occasionally associated with lysosomes and prephagosomal vacuoles, but not with mature phagosomes and trogosomes. Finally, in silico prediction of structural organisation of EhRab7 isotypes identified unique amino acid changes on the effector binding surface of EhRab7D. Taken together, our data suggest that EhRab7D plays coordinated counteracting roles: a inhibitory role in phago/trogocytosis and lyso/phago/trogosome biogenesis, and an stimulatory role in adherence and motility, presumably via interaction with unique effectors. Finally, we propose the model in which three EhRab7 isotypes are sequentially involved in phago/trogocytosis.
Collapse
Affiliation(s)
- Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ratna Wahyuni
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Health, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC) and Real World Big-Data Computation Open Innovation Laboratory (RWBC-OIL), National Institute of Advance Industrial Science and Technology (AIST), Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Chen L, Xiao D, Tang F, Gao H, Li X. CAPN6 in disease: An emerging therapeutic target (Review). Int J Mol Med 2020; 46:1644-1652. [PMID: 33000175 PMCID: PMC7521557 DOI: 10.3892/ijmm.2020.4734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
As a member of the calpain protein family, calpain6 (CAPN6) is highly expressed mainly in the placenta and embryos. It plays a number of important roles in cellular processes, such as the stabilization of microtubules, the main-tenance of cell stability, the control of cell movement and the inhibition of apoptosis. In recent years, various studies have found that CAPN6 is one of the contributing factors associated with the tumorigenesis of uterine tumors and osteosarcoma, and that CAPN6 participates in the development of tumors by promoting cell proliferation and angiogenesis, and by inhibiting apoptosis, which is mainly regulated by the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway. Due to its abnormal cellular expression, CAPN6 has also been found to be associated with a number of diseases, such as white matter damage and muscular dystrophy. Therefore, CAPN6 may be a novel therapeutic target for these diseases. In the present review, the role of CAPN6 in disease and its possible use as a target in various therapies are discussed.
Collapse
Affiliation(s)
- Lin Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fajuan Tang
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hu Gao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
25
|
Giudetti AM, Guerra F, Longo S, Beli R, Romano R, Manganelli F, Nolano M, Mangini V, Santoro L, Bucci C. An altered lipid metabolism characterizes Charcot-Marie-Tooth type 2B peripheral neuropathy. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158805. [PMID: 32829064 DOI: 10.1016/j.bbalip.2020.158805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Charcot-Marie Tooth type 2B (CMT2B) is a rare inherited peripheral neuropathy caused by five missense mutations in the RAB7A gene, which encodes a small GTPase of the RAB family. Currently, no cure is available for this disease. In this study, we approached the disease by comparing the lipid metabolism of CMT2B-derived fibroblasts to that of healthy controls. We found that CMT2B cells showed increased monounsaturated fatty acid level and increased expression of key enzymes of monounsaturated and polyunsaturated fatty acid synthesis. Moreover, in CMT2B cells a higher expression of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), key enzymes of de novo fatty acid synthesis, with a concomitantly increased [1-14C]acetate incorporation into fatty acids, was observed. The expression of diacylglycerol acyltransferase 2, a rate-limiting enzyme in triacylglycerol synthesis, as well as triacylglycerol levels were increased in CMT2B compared to control cells. In addition, as RAB7A controls lipid droplet breakdown and lipid droplet dynamics have been linked to diseases, we analyzed these organelles and showed that in CMT2B cells there is a strong accumulation of lipid droplets compared to control cells, thus reinforcing our data on abnormal lipid metabolism in CMT2B. Furthermore, we demonstrated that ACC and FAS expression levels changed upon RAB7 silencing or overexpression in HeLa cells, thus suggesting that metabolic modifications observed in CMT2B-derived fibroblasts can be, at least in part, related to RAB7 mutations.
Collapse
Affiliation(s)
- Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy.
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy
| | - Raffaella Beli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Department of Neurology of Telese Terme Institute, 82037 Telese Terme, Benevento, Italy
| | - Vincenzo Mangini
- Center for Biomolecular Nanotechnologies@UniLe, Istituto Italiano di Tecnologia, 73010 Arnesano (LE), Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni n. 165, 73100 Lecce, Italy.
| |
Collapse
|
26
|
Guadagno NA, Margiotta A, Bjørnestad SA, Haugen LH, Kjos I, Xu X, Hu X, Bakke O, Margadant F, Progida C. Rab18 regulates focal adhesion dynamics by interacting with kinectin-1 at the endoplasmic reticulum. J Cell Biol 2020; 219:151855. [PMID: 32525992 PMCID: PMC7337506 DOI: 10.1083/jcb.201809020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/17/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The members of the Rab family of small GTPases are molecular switches that regulate distinct steps in different membrane traffic pathways. In addition to this canonical function, Rabs can play a role in other processes, such as cell adhesion and motility. Here, we reveal the role of the small GTPase Rab18 as a positive regulator of directional migration in chemotaxis, and the underlying mechanism. We show that knockdown of Rab18 reduces the size of focal adhesions (FAs) and influences their dynamics. Furthermore, we found that Rab18, by directly interacting with the endoplasmic reticulum (ER)-resident protein kinectin-1, controls the anterograde kinesin-1–dependent transport of the ER required for the maturation of nascent FAs and protrusion orientation toward a chemoattractant. Altogether, our data support a model in which Rab18 regulates kinectin-1 transport toward the cell surface to form ER–FA contacts, thus promoting FA growth and cell migration during chemotaxis.
Collapse
Affiliation(s)
| | | | | | | | - Ingrid Kjos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Xiaochun Xu
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xian Hu
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Felix Margadant
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
27
|
Liu H, Xu J, Yao Q, Zhang Z, Guo Q, Lin J. Rab7 Is Associated with Poor Prognosis of Gastric Cancer and Promotes Proliferation, Invasion, and Migration of Gastric Cancer Cells. Med Sci Monit 2020; 26:e922217. [PMID: 32591494 PMCID: PMC7339976 DOI: 10.12659/msm.922217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rab7 belongs to the Ras oncogene family. Many studies have shown that its dysfunction is associated with many types of malignant tumors, but its effect on the pathogenesis of gastric cancer (GC) is still unknown. Therefore, we investigated the effect and mechanism of Rab7 in GC. MATERIAL AND METHODS The expression of Rab7 in GC and adjacent tissues was detected by immunohistochemistry, Western blot analysis, and qRT-PCR. The relationship of Rab7 with clinicopathological parameters and prognosis was analyzed. The expressions of Rab7, PI3K, and AKT in GC cells were assessed by Western blot. Overexpressed and silenced GC cell lines were constructed and AGS cells were treated with LY294002. The proliferation capacity of GC cells was detected by CCK8 assay, cell cycle changes were detected by flow cytometry, and the invasion and migration abilities of GC cells were assessed by transwell assay. RESULTS The expression of Rab7 was upregulated in the samples and cells, and was positively correlated with lymph node metastasis but negatively correlated with histological differentiation and clinical prognosis. In cell function experiments, overexpression of Rab7 induced the transition from S phase to G2 phase and promoted the proliferation, invasion, and migration of GC cells. Our assessment of the molecular mechanism showed that Rab7 promoted the phosphorylation of PI3K and AKT in GC cells. Incubation with the PI3K inhibitor Ly294002 impaired the enhanced effect of Rab7 overexpression on proliferation, migration, and invasion abilities of GC cells. These results show that the Rab7 affects GC cell progression by modulating the PI3K/AKT pathway. CONCLUSIONS Rab7 could be a prognostic biomarker and therapeutic target of the PI3K/AKT pathway in GC.
Collapse
Affiliation(s)
- Huiyong Liu
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Jie Xu
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Qingzhi Yao
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Zhongyi Zhang
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Qiaonan Guo
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| | - Jianqing Lin
- Department of Surgical Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China (mainland)
| |
Collapse
|
28
|
Charcot-Marie-Tooth Type 2B: A New Phenotype Associated with a Novel RAB7A Mutation and Inhibited EGFR Degradation. Cells 2020; 9:cells9041028. [PMID: 32326241 PMCID: PMC7226405 DOI: 10.3390/cells9041028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023] Open
Abstract
The rare autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) is associated with mutations in the RAB7A gene, involved in the late endocytic pathway. CMT2B is characterized by predominant sensory loss, ulceromutilating features, with lesser-to-absent motor deficits. We characterized clinically and genetically a family harboring a novel pathogenic RAB7A variant and performed structural and functional analysis of the mutant protein. A 39-year-old woman presented with early-onset walking difficulties, progressive distal muscle wasting and weakness in lower limbs and only mild sensory signs. Electrophysiology demonstrated an axonal sensorimotor neuropathy. Nerve biopsy showed a chronic axonal neuropathy with moderate loss of all caliber myelinated fibers. Next-generation sequencing (NGS) technology revealed in the proband and in her similarly affected father the novel c.377A>G (p.K126R) heterozygous variant predicted to be deleterious. The mutation affects the biochemical properties of RAB7 GTPase, causes altered interaction with peripherin, and inhibition of neurite outgrowth, as for previously reported CMT2B mutants. However, it also shows differences, particularly in the epidermal growth factor receptor degradation process. Altogether, our findings indicate that this RAB7A variant is pathogenic and widens the phenotypic spectrum of CMT2B to include predominantly motor CMT2. Alteration of the receptor degradation process might explain the different clinical presentations in this family.
Collapse
|
29
|
Romano R, Rivellini C, De Luca M, Tonlorenzi R, Beli R, Manganelli F, Nolano M, Santoro L, Eskelinen EL, Previtali SC, Bucci C. Alteration of the late endocytic pathway in Charcot-Marie-Tooth type 2B disease. Cell Mol Life Sci 2020; 78:351-372. [PMID: 32280996 PMCID: PMC7867545 DOI: 10.1007/s00018-020-03510-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022]
Abstract
The small GTPase RAB7A regulates late stages of the endocytic pathway and plays specific roles in neurons, controlling neurotrophins trafficking and signaling, neurite outgrowth and neuronal migration. Mutations in the RAB7A gene cause the autosomal dominant Charcot–Marie–Tooth type 2B (CMT2B) disease, an axonal peripheral neuropathy. As several neurodegenerative diseases are caused by alterations of endocytosis, we investigated whether CMT2B-causing mutations correlate with changes in this process. To this purpose, we studied the endocytic pathway in skin fibroblasts from healthy and CMT2B individuals. We found higher expression of late endocytic proteins in CMT2B cells compared to control cells, as well as higher activity of cathepsins and higher receptor degradation activity. Consistently, we observed an increased number of lysosomes, accompanied by higher lysosomal degradative activity in CMT2B cells. Furthermore, we found increased migration and increased RAC1 and MMP-2 activation in CMT2B compared to control cells. To validate these data, we obtained sensory neurons from patient and control iPS cells, to confirm increased lysosomal protein expression and lysosomal activity in CMT2B-derived neurons. Altogether, these results demonstrate that in CMT2B patient-derived cells, the endocytic degradative pathway is altered, suggesting that higher lysosomal activity contributes to neurodegeneration occurring in CMT2B.
Collapse
Affiliation(s)
- Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Cristina Rivellini
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Rossana Tonlorenzi
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Beli
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
- Salvatore Maugeri Foundation, Institute of Telese Terme, Benevento, Italy
| | - Lucio Santoro
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Eeva-Liisa Eskelinen
- Institute of Biomedicine, University of Turku, Turku, Finland
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Stefano C Previtali
- Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy.
| |
Collapse
|
30
|
Mao D, Zhang Z, Zhao X, Dong X. Autophagy-related genes prognosis signature as potential predictive markers for immunotherapy in hepatocellular carcinoma. PeerJ 2020; 8:e8383. [PMID: 31988807 PMCID: PMC6970541 DOI: 10.7717/peerj.8383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Autophagy-related genes (ATGs) depress tumorigenesis. However, in tumor tissue, it promotes tumor progression. Here, we demonstrated that 63 ATGs were differentially expressed in normal tissues and tumor tissues of hepatocellular carcinoma (HCC), and seven prognostic-related genes were chosen to establish prognostic risk signatures. It is not just an independent prognostic factor for HCC, but also closely related to the degree of malignancy of HCC. Further, the hallmarks of PI3K–AKT–mTOR signaling was significantly enriched in the high-risk group. Moreover, AKT–pS473 and mTOR–pS2448 expression was down-regulated and correlated with patient prognosis in high-risk group. Finally, we demonstrate that the prognosis signature of ATGs is closely related to immune cell infiltration and PD-L1 expression. In conclusion, ATGs are a crucial factor in the malignant progression of HCC and will be a new prognostic marker for diagnosis and treatment. ATGs prognostic signatures are potentially useful for predicting PD-L1 therapeutic effects.
Collapse
Affiliation(s)
- Deli Mao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqiang Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
31
|
Morad G, Carman CV, Hagedorn EJ, Perlin JR, Zon LI, Mustafaoglu N, Park TE, Ingber DE, Daisy CC, Moses MA. Tumor-Derived Extracellular Vesicles Breach the Intact Blood-Brain Barrier via Transcytosis. ACS NANO 2019; 13:13853-13865. [PMID: 31479239 PMCID: PMC7169949 DOI: 10.1021/acsnano.9b04397] [Citation(s) in RCA: 333] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The restrictive nature of the blood-brain barrier (BBB) creates a major challenge for brain drug delivery with current nanomedicines lacking the ability to cross the BBB. Extracellular vesicles (EVs) have been shown to contribute to the progression of a variety of brain diseases including metastatic brain cancer and have been suggested as promising therapeutics and drug delivery vehicles. However, the ability of native tumor-derived EVs to breach the BBB and the mechanism(s) involved in this process remain unknown. Here, we demonstrate that tumor-derived EVs can breach the intact BBB in vivo, and by using state-of-the-art in vitro and in vivo models of the BBB, we have identified transcytosis as the mechanism underlying this process. Moreover, high spatiotemporal resolution microscopy demonstrated that the endothelial recycling endocytic pathway is involved in this transcellular transport. We further identify and characterize the mechanism by which tumor-derived EVs circumvent the low physiologic rate of transcytosis in the BBB by decreasing the brain endothelial expression of rab7 and increasing the efficiency of their transport. These findings identify previously unknown mechanisms by which tumor-derived EVs breach an intact BBB during the course of brain metastasis and can be leveraged to guide and inform the development of drug delivery approaches to deliver therapeutic cargoes across the BBB for treatment of a variety of brain diseases including, but not limited to, brain malignancies.
Collapse
Affiliation(s)
- Golnaz Morad
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
- Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christopher V. Carman
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Elliott J. Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02115, United States
| | - Julie R. Perlin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02115, United States
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02115, United States
| | - Nur Mustafaoglu
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Tae-Eun Park
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Donald E. Ingber
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Cassandra C. Daisy
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Marsha A. Moses
- Vascular Biology Program, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Corresponding Author:
| |
Collapse
|
32
|
Olayioye MA, Noll B, Hausser A. Spatiotemporal Control of Intracellular Membrane Trafficking by Rho GTPases. Cells 2019; 8:cells8121478. [PMID: 31766364 PMCID: PMC6952795 DOI: 10.3390/cells8121478] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
As membrane-associated master regulators of cytoskeletal remodeling, Rho GTPases coordinate a wide range of biological processes such as cell adhesion, motility, and polarity. In the last years, Rho GTPases have also been recognized to control intracellular membrane sorting and trafficking steps directly; however, how Rho GTPase signaling is regulated at endomembranes is still poorly understood. In this review, we will specifically address the local Rho GTPase pools coordinating intracellular membrane trafficking with a focus on the endo- and exocytic pathways. We will further highlight the spatiotemporal molecular regulation of Rho signaling at endomembrane sites through Rho regulatory proteins, the GEFs and GAPs. Finally, we will discuss the contribution of dysregulated Rho signaling emanating from endomembranes to the development and progression of cancer.
Collapse
|
33
|
Wang G, Hu HB, Chang Y, Huang Y, Song ZQ, Zhou SB, Chen L, Zhang YC, Wu M, Tu HQ, Yuan JF, Wang N, Pan X, Li AL, Zhou T, Zhang XM, He K, Li HY. Rab7 regulates primary cilia disassembly through cilia excision. J Cell Biol 2019; 218:4030-4041. [PMID: 31619485 PMCID: PMC6891077 DOI: 10.1083/jcb.201811136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/07/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Wang et al. identify Rab7 as a novel regulator of primary cilia disassembly. Their findings demonstrate that Rab7 localization to primary cilia is required for intraciliary F-actin polymerization, which is indispensable for the regulation of cilia ectocytosis and disassembly. The primary cilium is a sensory organelle that protrudes from the cell surface. Primary cilia undergo dynamic transitions between assembly and disassembly to exert their function in cell signaling. In this study, we identify the small GTPase Rab7 as a novel regulator of cilia disassembly. Depletion of Rab7 potently induced spontaneous ciliogenesis in proliferating cells and promoted cilia elongation during quiescence. Moreover, Rab7 performs an essential role in cilia disassembly; knockdown of Rab7 blocked serum-induced ciliary resorption, and active Rab7 was required for this process. Further, we demonstrate that Rab7 depletion significantly suppresses cilia tip excision, referred to as cilia ectocytosis, which has been identified as required for cilia disassembly. Mechanically, the failure of F-actin polymerization at the site of excision of cilia tips caused suppression of cilia ectocytosis on Rab7 depletion. Overall, our results suggest a novel function for Rab7 in regulating cilia ectocytosis and cilia disassembly via control of intraciliary F-actin polymerization.
Collapse
Affiliation(s)
- Guang Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China.,Cancer Institute, Institute of Translational Medicine, The Second Military Medical University, Shanghai, China
| | - Huai-Bin Hu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yan Chang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China.,Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yan Huang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Zeng-Qing Song
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Shi-Bo Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Liang Chen
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Cheng Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hai-Qing Tu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jin-Feng Yuan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Na Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ai-Ling Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xue-Min Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Kun He
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hui-Yan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China .,Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
34
|
Guerra F, Bucci C. Role of the RAB7 Protein in Tumor Progression and Cisplatin Chemoresistance. Cancers (Basel) 2019; 11:cancers11081096. [PMID: 31374919 PMCID: PMC6721790 DOI: 10.3390/cancers11081096] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/23/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
RAB7 is a small guanosine triphosphatase (GTPase) extensively studied as regulator of vesicular trafficking. Indeed, its role is fundamental in several steps of the late endocytic pathway, including endosome maturation, transport from early endosomes to late endosomes and lysosomes, clustering and fusion of late endosomes and lysosomes in the perinuclear region and lysosomal biogenesis. Besides endocytosis, RAB7 is important for a number of other cellular processes among which, autophagy, apoptosis, signaling, and cell migration. Given the importance of RAB7 in these cellular processes, the interest to study the role of RAB7 in cancer progression is widely grown. Here, we describe the current understanding of oncogenic and oncosuppressor functions of RAB7 analyzing cellular context and other environmental factors in which it elicits pro and/or antitumorigenic effects. We also discuss the role of RAB7 in cisplatin resistance associated with its ability to regulate the late endosomal pathway, lysosomal biogenesis and extracellular vesicle secretion. Finally, we examined the potential cancer therapeutic strategies targeting the different molecular events in which RAB7 is involved.
Collapse
Affiliation(s)
- Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| |
Collapse
|
35
|
Vestre K, Kjos I, Guadagno NA, Borg Distefano M, Kohler F, Fenaroli F, Bakke O, Progida C. Rab6 regulates cell migration and invasion by recruiting Cdc42 and modulating its activity. Cell Mol Life Sci 2019; 76:2593-2614. [PMID: 30830239 PMCID: PMC11105640 DOI: 10.1007/s00018-019-03057-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
Abstract
Rab proteins are master regulators of intracellular membrane trafficking, but they also contribute to cell division, signaling, polarization, and migration. The majority of the works describing the mechanisms used by Rab proteins to regulate cell motility involve intracellular transport of key molecules important for migration. Interestingly, a few studies indicate that Rabs can modulate the activity of Rho GTPases, important regulators for the cytoskeleton rearrangements, but the mechanisms behind this crosstalk are still poorly understood. In this work, we identify Rab6 as a negative regulator of cell migration in vitro and in vivo. We show that the loss of Rab6 promotes formation of actin protrusions and influences actomyosin dynamics by upregulating Cdc42 activity and downregulating myosin II phosphorylation. We further provide the molecular mechanism behind this regulation demonstrating that Rab6 interacts with both Cdc42 and Trio, a GEF for Cdc42. In sum, our results uncover a mechanism used by Rab proteins to ensure spatial regulation of Rho GTPase activity for coordination of cytoskeleton rearrangements required in migrating cells.
Collapse
Affiliation(s)
- Katharina Vestre
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Noemi Antonella Guadagno
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Marita Borg Distefano
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Felix Kohler
- Department of Physics, The NJORD Centre, University of Oslo, Oslo, Norway
| | | | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway.
- Centre for Immune Regulation, University of Oslo, Oslo, Norway.
| |
Collapse
|
36
|
Coordination between Rac1 and Rab Proteins: Functional Implications in Health and Disease. Cells 2019; 8:cells8050396. [PMID: 31035701 PMCID: PMC6562727 DOI: 10.3390/cells8050396] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
The small GTPases of the Rho family regulate many aspects of actin dynamics, but are functionally connected to many other cellular processes. Rac1, a member of this family, besides its known function in the regulation of actin cytoskeleton, plays a key role in the production of reactive oxygen species, in gene transcription, in DNA repair, and also has been proven to have specific roles in neurons. This review focuses on the cooperation between Rac1 and Rab proteins, analyzing how the coordination between these GTPases impact on cells and how alterations of their functions lead to disease.
Collapse
|
37
|
Knockdown of Rab7a suppresses the proliferation, migration, and xenograft tumor growth of breast cancer cells. Biosci Rep 2019; 39:BSR20180480. [PMID: 29769411 PMCID: PMC6361774 DOI: 10.1042/bsr20180480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 03/28/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is a common invasive cancer in women. Ras-related protein Rab-7a (Rab7a) is involved in late endocytic trafficking, while its role in breast cancer is largely unclear. In the present study, we investigated the role of Rab7a in breast cancer. Comparing with adjacent breast tissues, Rab7a expression was increased in breast cancer tissues. Using lentivirus-mediated knockdown strategy, we found that Rab7a silencing inhibited the proliferation and colony formation of MDA-MB-231 cells. Apoptosis and G2 cell cycle arrest were induced in Rab7a knockdown. By contrast, Rab7a suppressed the apoptosis and promoted proliferation and colony formation of MCF-7 cells. The migration of MDA-MB-231 cells was suppressed by Rab7a knockdown. In vivo, depletion of Rab7a inhibited the xenograft tumor development of MDA-MB-231 cells. Altogether, our results highlight the novel function of Rab7a in the proliferation, invasion, and xenograft tumor development of breast cancer cells.
Collapse
|
38
|
Moreno-Layseca P, Icha J, Hamidi H, Ivaska J. Integrin trafficking in cells and tissues. Nat Cell Biol 2019; 21:122-132. [PMID: 30602723 PMCID: PMC6597357 DOI: 10.1038/s41556-018-0223-z] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022]
Abstract
Cell adhesion to the extracellular matrix is fundamental to metazoan multicellularity and is accomplished primarily through the integrin family of cell-surface receptors. Integrins are internalized and enter the endocytic-exocytic pathway before being recycled back to the plasma membrane. The trafficking of this extensive protein family is regulated in multiple context-dependent ways to modulate integrin function in the cell. Here, we discuss recent advances in understanding the mechanisms and cellular roles of integrin endocytic trafficking.
Collapse
Affiliation(s)
- Paulina Moreno-Layseca
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jaroslav Icha
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
39
|
Biskou O, Casanova V, Hooper KM, Kemp S, Wright GP, Satsangi J, Barlow PG, Stevens C. The type III intermediate filament vimentin regulates organelle distribution and modulates autophagy. PLoS One 2019; 14:e0209665. [PMID: 30699149 PMCID: PMC6353089 DOI: 10.1371/journal.pone.0209665] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
The cytoskeletal protein vimentin plays a key role in positioning of organelles within the cytosol and has been linked to the regulation of numerous cellular processes including autophagy, however, how vimentin regulates autophagy remains relatively unexplored. Here we report that inhibition of vimentin using the steroidal lactone Withaferin A (WFA) causes vimentin to aggregate, and this is associated with the relocalisation of organelles including autophagosomes and lysosomes from the cytosol to a juxtanuclear location. Vimentin inhibition causes autophagosomes to accumulate, and we demonstrate this results from modulation of mechanistic target of rapamycin (mTORC1) activity, and disruption of autophagosome-lysosome fusion. We suggest that vimentin plays a physiological role in autophagosome and lysosome positioning, thus identifying vimentin as a key factor in the regulation of mTORC1 and autophagy.
Collapse
Affiliation(s)
- Olga Biskou
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Victor Casanova
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Kirsty M. Hooper
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Sadie Kemp
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Graham P. Wright
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Jack Satsangi
- Centre for Genomic & Experimental Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh, United Kingdom
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Peter G. Barlow
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
40
|
Guerra F, Paiano A, Migoni D, Girolimetti G, Perrone AM, De Iaco P, Fanizzi FP, Gasparre G, Bucci C. Modulation of RAB7A Protein Expression Determines Resistance to Cisplatin through Late Endocytic Pathway Impairment and Extracellular Vesicular Secretion. Cancers (Basel) 2019; 11:cancers11010052. [PMID: 30626032 PMCID: PMC6357196 DOI: 10.3390/cancers11010052] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/25/2018] [Accepted: 01/04/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cisplatin (CDDP) is widely used in treatment of cancer, yet patients often develop resistance with consequent therapeutical failure. In CDDP-resistant cells alterations of endocytosis and lysosomal functionality have been revealed, although their causes and contribution to therapy response are unclear. METHODS We investigated the role of RAB7A, a key regulator of late endocytic trafficking, in CDDP-resistance by comparing resistant and sensitive cells using western blotting, confocal microscopy and real time PCR. Modulation of RAB7A expression was performed by transfection and RNA interference, while CDDP sensitivity and intracellular accumulation were evaluated by viability assays and chemical approaches, respectively. Also extracellular vesicles were purified and analyzed. Finally, correlations between RAB7A and chemotherapy response was investigated in human patient samples. RESULTS We demonstrated that down-regulation of RAB7A characterizes the chemoresistant phenotype, and that RAB7A depletion increases CDDP-resistance while RAB7A overexpression decreases it. In addition, increased production of extracellular vesicles is modulated by RAB7A expression levels and correlates with reduction of CDDP intracellular accumulation. CONCLUSIONS We demonstrated, for the first time, that RAB7A regulates CDDP resistance determining alterations in late endocytic trafficking and drug efflux through extracellular vesicles.
Collapse
Affiliation(s)
- Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| | - Danilo Migoni
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| | - Giulia Girolimetti
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University Hospital S. Orsola-Malpighi, via Massarenti 9, 40138 Bologna, Italy.
| | - Anna Myriam Perrone
- Unit of Oncologic Gynecology, S. Orsola-Malpighi Hospital, via Massarenti 13, 40138 Bologna, Italy.
| | - Pierandrea De Iaco
- Unit of Oncologic Gynecology, S. Orsola-Malpighi Hospital, via Massarenti 13, 40138 Bologna, Italy.
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University Hospital S. Orsola-Malpighi, via Massarenti 9, 40138 Bologna, Italy.
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy.
| |
Collapse
|
41
|
Dufurrena Q, Bäck N, Mains R, Hodgson L, Tanowitz H, Mandela P, Eipper B, Kuliawat R. Kalirin/Trio Rho GDP/GTP exchange factors regulate proinsulin and insulin secretion. J Mol Endocrinol 2018; 62:JME-18-0048.R2. [PMID: 30407917 PMCID: PMC6494717 DOI: 10.1530/jme-18-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022]
Abstract
Key features for progression to pancreatic β-cell failure and disease are loss of glucose responsiveness and an increased ratio of secreted proinsulin to insulin. Proinsulin and insulin are stored in secretory granules (SGs) and the fine-tuning of hormone output requires signal mediated recruitment of select SG populations according to intracellular location and age. The GTPase Rac1 coordinates multiple signaling pathways that specify SG release and Rac1 activity is controlled in part by GDP/GTP exchange factors (GEFs). To explore the function of two large multidomain GEFs, Kalirin and Trio in β-cells, we manipulated their Rac1-specific GEF1 domain activity by using small molecule inhibitors and by genetically ablating Kalirin. We examined age related secretory granule behavior employing radiolabeling protocols. Loss of Kalirin/Trio function attenuated radioactive proinsulin release by reducing constitutive-like secretion and exocytosis of 2-hour old granules. At later chase times or at steady state, Kalirin/Trio manipulations decreased glucose stimulated insulin output. Finally, use of a Rac1 FRET biosensor with cultured β-cell lines, demonstrated that Kalirin/Trio GEF1 activity was required for normal rearrangement of Rac1 to the plasma membrane in response to glucose. Rac1 activation can be evoked by both glucose metabolism and signaling through the incretin glucagon-like peptide 1 (GLP-1) receptor. GLP-1 addition restored Rac1 localization/activity and insulin secretion in the absence of Kalirin, thereby assigning Kalirin's participation to stimulatory glucose signaling.
Collapse
Affiliation(s)
- Quinn Dufurrena
- Department of Medicine, Stony Brook University School of Medicine, Stony Brook, NY
| | - Nils Bäck
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Richard Mains
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Herbert Tanowitz
- Departments of Pathology, Medicine, Albert Einstein College of Medicine, Bronx, NY
| | | | - Betty Eipper
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| | - Regina Kuliawat
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
42
|
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1397-1409. [PMID: 30021127 DOI: 10.1016/j.bbamcr.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
43
|
Colecchia D, Stasi M, Leonardi M, Manganelli F, Nolano M, Veneziani BM, Santoro L, Eskelinen EL, Chiariello M, Bucci C. Alterations of autophagy in the peripheral neuropathy Charcot-Marie-Tooth type 2B. Autophagy 2018; 14:930-941. [PMID: 29130394 PMCID: PMC6103410 DOI: 10.1080/15548627.2017.1388475] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Charcot-Marie-Tooth type 2B (CMT2B) disease is a dominant axonal peripheral neuropathy caused by 5 mutations in the RAB7A gene, a ubiquitously expressed GTPase controlling late endocytic trafficking. In neurons, RAB7A also controls neuronal-specific processes such as NTF (neurotrophin) trafficking and signaling, neurite outgrowth and neuronal migration. Given the involvement of macroautophagy/autophagy in several neurodegenerative diseases and considering that RAB7A is fundamental for autophagosome maturation, we investigated whether CMT2B-causing mutants affect the ability of this gene to regulate autophagy. In HeLa cells, we observed a reduced localization of all CMT2B-causing RAB7A mutants on autophagic compartments. Furthermore, compared to expression of RAB7AWT, expression of these mutants caused a reduced autophagic flux, similar to what happens in cells expressing the dominant negative RAB7AT22N mutant. Consistently, both basal and starvation-induced autophagy were strongly inhibited in skin fibroblasts from a CMT2B patient carrying the RAB7AV162M mutation, suggesting that alteration of the autophagic flux could be responsible for neurodegeneration.
Collapse
Affiliation(s)
- David Colecchia
- a Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori-Core Research Laboratory , Signal Transduction Unit , AOU Senese , Siena , Italy
| | - Mariangela Stasi
- b Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Lecce , Italy
| | - Margherita Leonardi
- a Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori-Core Research Laboratory , Signal Transduction Unit , AOU Senese , Siena , Italy
| | - Fiore Manganelli
- c Department of Neurosciences , University of Naples "Federico II" , Naples , Italy
| | - Maria Nolano
- d Salvatore Maugeri Foundation , Institute of Telese Terme , Benevento , Italy
| | - Bianca Maria Veneziani
- e Department of Molecular Medicine and Medical Biotechnologies , University of Naples "Federico II" , Naples , Italy
| | - Lucio Santoro
- c Department of Neurosciences , University of Naples "Federico II" , Naples , Italy
| | - Eeva-Liisa Eskelinen
- f Department of Biosciences, Division of Biochemistry and Biotechnology , University of Helsinki , Helsinki , Finland
| | - Mario Chiariello
- a Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica and Istituto Toscano Tumori-Core Research Laboratory , Signal Transduction Unit , AOU Senese , Siena , Italy
| | - Cecilia Bucci
- b Department of Biological and Environmental Sciences and Technologies (DiSTeBA) , University of Salento , Lecce , Italy
| |
Collapse
|
44
|
Tebar F, Enrich C, Rentero C, Grewal T. GTPases Rac1 and Ras Signaling from Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:65-105. [PMID: 30097772 DOI: 10.1007/978-3-319-96704-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
45
|
Margiotta A, Progida C, Bakke O, Bucci C. Characterization of the role of RILP in cell migration. Eur J Histochem 2017; 61:2783. [PMID: 28735522 PMCID: PMC5460375 DOI: 10.4081/ejh.2017.2783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Rab-interacting lysosomal protein (RILP) is a regulator of late stages of endocytosis. Recent work proved that depletion of RILP promotes migration of breast cancer cells in wound healing assay, whereas its overexpression influences re-arrangements of actin cytoskeleton. Here, we further characterized the role of RILP in cell migration by analyzing several aspects of this process. We showed that RILP is fundamental also for migration of lung cancer cells regulating cell velocity. RILP silencing did not affect Golgi apparatus nor microtubules reorientation during migration. However, both RILP over-expression and expression of its mutated form, RILPC33, impair cell adhesion and spreading. In conclusion, our results demonstrate that RILP has important regulatory roles in cell motility affecting migration velocity but also in cell adhesion and cell spreading.
Collapse
Affiliation(s)
- Azzurra Margiotta
- University of Salento, Department of Biological and Environmental Sciences and Technologies.
| | | | | | | |
Collapse
|
46
|
Pompa A, De Marchis F, Pallotta MT, Benitez-Alfonso Y, Jones A, Schipper K, Moreau K, Žárský V, Di Sansebastiano GP, Bellucci M. Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology. Int J Mol Sci 2017; 18:ijms18040703. [PMID: 28346345 PMCID: PMC5412289 DOI: 10.3390/ijms18040703] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/30/2022] Open
Abstract
Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on “Unconventional Protein and Membrane Traffic” (UPMT) during 4–7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes.
Collapse
Affiliation(s)
- Andrea Pompa
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| | | | | | - Alexandra Jones
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Kerstin Schipper
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany.
| | - Kevin Moreau
- Clinical Biochemistry, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 1TN, UK.
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic.
- Institute of Experimental Botany, v.v.i., the Czech Academy of Sciences, 16502, Prague 6, Czech Republic.
| | - Gian Pietro Di Sansebastiano
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, S.P. 6, 73100 Lecce, Italy.
| | - Michele Bellucci
- Institute of Biosciences and Bioresources-Research Division of Perugia, National Research Council (CNR), via della Madonna Alta 130, 06128 Perugia, Italy.
| |
Collapse
|