1
|
Al Ashmar S, Anlar GG, Krzyslak H, Djouhri L, Kamareddine L, Pedersen S, Zeidan A. Proteomic Analysis of Prehypertensive and Hypertensive Patients: Exploring the Role of the Actin Cytoskeleton. Int J Mol Sci 2024; 25:4896. [PMID: 38732116 PMCID: PMC11084483 DOI: 10.3390/ijms25094896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 05/13/2024] Open
Abstract
Hypertension is a pervasive and widespread health condition that poses a significant risk factor for cardiovascular disease, which includes conditions such as heart attack, stroke, and heart failure. Despite its widespread occurrence, the exact cause of hypertension remains unknown, and the mechanisms underlying the progression from prehypertension to hypertension require further investigation. Recent proteomic studies have shown promising results in uncovering potential biomarkers related to disease development. In this study, serum proteomic data collected from Qatar Biobank were analyzed to identify altered protein expression between individuals with normal blood pressure, prehypertension, and hypertension and to elucidate the biological pathways contributing to this disease. The results revealed a cluster of proteins, including the SRC family, CAMK2B, CAMK2D, TEC, GSK3, VAV, and RAC, which were markedly upregulated in patients with hypertension compared to those with prehypertension (fold change ≥ 1.6 or ≤-1.6, area under the curve ≥ 0.8, and q-value < 0.05). Pathway analysis showed that the majority of these proteins play a role in actin cytoskeleton remodeling. Actin cytoskeleton reorganization affects various biological processes that contribute to the maintenance of blood pressure, including vascular tone, endothelial function, cellular signaling, inflammation, fibrosis, and mechanosensing. Therefore, the findings of this study suggest a potential novel role of actin cytoskeleton-related proteins in the progression from prehypertension to hypertension. The present study sheds light on the underlying pathological mechanisms involved in hypertension and could pave the way for new diagnostic and therapeutic approaches for the treatment of this disease.
Collapse
Affiliation(s)
- Sarah Al Ashmar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Gulsen Guliz Anlar
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Hubert Krzyslak
- Department of Clinical Biochemistry, Aalborg University Hospital, 9000 Aalborg, Denmark;
| | - Laiche Djouhri
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Shona Pedersen
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| | - Asad Zeidan
- Department of Basic Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; (S.A.A.); (G.G.A.); (L.D.)
| |
Collapse
|
2
|
Nguyen MT, Dash R, Jeong K, Lee W. Role of Actin-Binding Proteins in Skeletal Myogenesis. Cells 2023; 12:2523. [PMID: 37947600 PMCID: PMC10650911 DOI: 10.3390/cells12212523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Maintenance of skeletal muscle quantity and quality is essential to ensure various vital functions of the body. Muscle homeostasis is regulated by multiple cytoskeletal proteins and myogenic transcriptional programs responding to endogenous and exogenous signals influencing cell structure and function. Since actin is an essential component in cytoskeleton dynamics, actin-binding proteins (ABPs) have been recognized as crucial players in skeletal muscle health and diseases. Hence, dysregulation of ABPs leads to muscle atrophy characterized by loss of mass, strength, quality, and capacity for regeneration. This comprehensive review summarizes the recent studies that have unveiled the role of ABPs in actin cytoskeletal dynamics, with a particular focus on skeletal myogenesis and diseases. This provides insight into the molecular mechanisms that regulate skeletal myogenesis via ABPs as well as research avenues to identify potential therapeutic targets. Moreover, this review explores the implications of non-coding RNAs (ncRNAs) targeting ABPs in skeletal myogenesis and disorders based on recent achievements in ncRNA research. The studies presented here will enhance our understanding of the functional significance of ABPs and mechanotransduction-derived myogenic regulatory mechanisms. Furthermore, revealing how ncRNAs regulate ABPs will allow diverse therapeutic approaches for skeletal muscle disorders to be developed.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea;
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (M.T.N.); (K.J.)
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Republic of Korea
| |
Collapse
|
3
|
Sandouk A, Xu Z, Baruah S, Tremblay M, Hopkins JB, Chakravarthy S, Gakhar L, Schnicker NJ, Houtman JCD. GRB2 dimerization mediated by SH2 domain-swapping is critical for T cell signaling and cytokine production. Sci Rep 2023; 13:3505. [PMID: 36864087 PMCID: PMC9981690 DOI: 10.1038/s41598-023-30562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
GRB2 is an adaptor protein required for facilitating cytoplasmic signaling complexes from a wide array of binding partners. GRB2 has been reported to exist in either a monomeric or dimeric state in crystal and solution. GRB2 dimers are formed by the exchange of protein segments between domains, otherwise known as "domain-swapping". Swapping has been described between SH2 and C-terminal SH3 domains in the full-length structure of GRB2 (SH2/C-SH3 domain-swapped dimer), as well as between α-helixes in isolated GRB2 SH2 domains (SH2/SH2 domain-swapped dimer). Interestingly, SH2/SH2 domain-swapping has not been observed within the full-length protein, nor have the functional influences of this novel oligomeric conformation been explored. We herein generated a model of full-length GRB2 dimer with an SH2/SH2 domain-swapped conformation supported by in-line SEC-MALS-SAXS analyses. This conformation is consistent with the previously reported truncated GRB2 SH2/SH2 domain-swapped dimer but different from the previously reported, full-length SH2/C-terminal SH3 (C-SH3) domain-swapped dimer. Our model is also validated by several novel full-length GRB2 mutants that favor either a monomeric or a dimeric state through mutations within the SH2 domain that abrogate or promote SH2/SH2 domain-swapping. GRB2 knockdown and re-expression of selected monomeric and dimeric mutants in a T cell lymphoma cell line led to notable defects in clustering of the adaptor protein LAT and IL-2 release in response to TCR stimulation. These results mirrored similarly-impaired IL-2 release in GRB2-deficient cells. These studies show that a novel dimeric GRB2 conformation with domain-swapping between SH2 domains and monomer/dimer transitions are critical for GRB2 to facilitate early signaling complexes in human T cells.
Collapse
Affiliation(s)
- Aline Sandouk
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Zhen Xu
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Sankar Baruah
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Mikaela Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Jesse B Hopkins
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Srinivas Chakravarthy
- Biophysics Collaborative Access Team, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Lokesh Gakhar
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biochemistry and Molecular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nicholas J Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Chang SY, Han SZ, Choe HM, Gao K, Jin ZY, Liu XY, Yang LH, Lv ST, Yin XJ, Quan LH, Kang JD. miR-320 regulates myogenesis by targeting growth factor receptor-bound protein-2 and ameliorates myotubes atrophy. Int J Biochem Cell Biol 2022; 147:106212. [PMID: 35439649 DOI: 10.1016/j.biocel.2022.106212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Loss of muscle mass can lead to diseases such as sarcopenia, diabetes, and obesity, which can worsen the quality of life and increase the incidence of disease. Therefore, understanding the mechanism underlying skeletal muscle differentiation is vital to prevent muscle diseases. We previously found that microRNA-320 (miR-320) is highly expressed in the lean muscle-type pigs, but its regulatory role in myogenesis remains unclear. The bioinformatics prediction indicated that miR-320 could bind to the 3 'untranslated region of growth factor receptor-bound protein-2 (Grb2). We hypothesized that miR-320 targets Grb2 to regulate myoblasts differentiation. To verify this, we transfected miR-320 mimic and inhibitor into C2C12 myoblasts to assess the role of miR-320 during myoblasts differentiation. We used real-time qPCR, luciferase reporter assays, and western blotting to confirm that miR-320 directly targets Grb2 to promote myoblasts differentiation. Moreover, by using a dexamethasone-induced atrophic model of myotubes, we discovered that miR-320 promotes the repair of damaged myotubes. Our findings expand understanding of miRNAs and genes related to regulating skeletal muscle differentiation, and provide insight into underlying therapeutic strategies for muscle diseases.
Collapse
Affiliation(s)
- Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Hak-Myong Choe
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Kai Gao
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Zheng-Yun Jin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Xin-Yue Liu
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Liu-Hui Yang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Si-Tong Lv
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China.
| |
Collapse
|
5
|
Moustogiannis A, Philippou A, Taso O, Zevolis E, Pappa M, Chatzigeorgiou A, Koutsilieris M. The Effects of Muscle Cell Aging on Myogenesis. Int J Mol Sci 2021; 22:ijms22073721. [PMID: 33918414 PMCID: PMC8038215 DOI: 10.3390/ijms22073721] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
The process of myogenesis gradually deteriorates as the skeletal muscle ages, contributing to muscle mass loss. The aim of this study is to investigate the effect of senescence/aging on skeletal myogenesis, in vitro. A model of multiple cell divisions of C2C12 myoblasts was used to replicate cell senescence. Control and aged myoblasts were investigated during myogenesis, i.e., at days 0, 2, and 6of differentiation. SA-β-gal activity and comet assay were used as markers of aging and DNA damage. Flow cytometry was performed to characterize potential differences in cell cycle between control and aged cells. Alterations in the mRNA and/or protein expression of myogenic regulatory factors (MRFs), IGF-1 isoforms, apoptotic, atrophy, inflammatory, metabolic and aging-related factors were evaluated. Compared with the control cells, aged myoblasts exhibited G0/G1 cell cycle arrest, DNA damage, increased SA-β-gal activity, and increased expression of aging-related factors p16 and p21 during differentiation. Moreover, aged myoblasts showed a reduction in the expression of MRFs and metabolic/anabolic factors, along with an increased expression of apoptotic, atrophy and inflammatory factors. A diminished differentiation capacity characterized the aged myoblasts which, in combination with the induction of apoptotic and atrophy factors, indicated a disrupted myogenic lineage in the senescent muscle cells.
Collapse
Affiliation(s)
- Athanasios Moustogiannis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
- Correspondence: ; Tel.: +30-210-7462690; Fax: +30-210-7462571
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Orjona Taso
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Evangelos Zevolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Maria Pappa
- First Department of Propaedeutic Internal Medicine, Joint Rheumatology Program, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 MicrasAsias, 115 27 Goudi-Athens, Greece; (A.P.); (O.T.); (E.Z.); (A.C.); (M.K.)
| |
Collapse
|
6
|
Kumar A, Xie L, Ta CM, Hinton AO, Gunasekar SK, Minerath RA, Shen K, Maurer JM, Grueter CE, Abel ED, Meyer G, Sah R. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. eLife 2020; 9:58941. [PMID: 32930093 PMCID: PMC7541086 DOI: 10.7554/elife.58941] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
Maintenance of skeletal muscle is beneficial in obesity and Type 2 diabetes. Mechanical stimulation can regulate skeletal muscle differentiation, growth and metabolism; however, the molecular mechanosensor remains unknown. Here, we show that SWELL1 (Lrrc8a) functionally encodes a swell-activated anion channel that regulates PI3K-AKT, ERK1/2, mTOR signaling, muscle differentiation, myoblast fusion, cellular oxygen consumption, and glycolysis in skeletal muscle cells. LRRC8A over-expression in Lrrc8a KO myotubes boosts PI3K-AKT-mTOR signaling to supra-normal levels and fully rescues myotube formation. Skeletal muscle-targeted Lrrc8a KO mice have smaller myofibers, generate less force ex vivo, and exhibit reduced exercise endurance, associated with increased adiposity under basal conditions, and glucose intolerance and insulin resistance when raised on a high-fat diet, compared to wild-type (WT) mice. These results reveal that the LRRC8 complex regulates insulin-PI3K-AKT-mTOR signaling in skeletal muscle to influence skeletal muscle differentiation in vitro and skeletal myofiber size, muscle function, adiposity and systemic metabolism in vivo.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| | - Litao Xie
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| | - Chau My Ta
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| | - Antentor O Hinton
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, United States.,Division of Endocrinology and Metabolism, Iowa City, United States
| | - Susheel K Gunasekar
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| | - Rachel A Minerath
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, United States.,Division of Cardiology, University of Iowa, Iowa City, United States
| | - Karen Shen
- Program in Physical Therapy and Departments of Neurology, Biomedical Engineering and Orthopedic Surgery, Washington University in St. Louis, St. Louis, United States
| | - Joshua M Maurer
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| | - Chad E Grueter
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, United States.,Division of Cardiology, University of Iowa, Iowa City, United States
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, United States.,Division of Endocrinology and Metabolism, Iowa City, United States
| | - Gretchen Meyer
- Program in Physical Therapy and Departments of Neurology, Biomedical Engineering and Orthopedic Surgery, Washington University in St. Louis, St. Louis, United States
| | - Rajan Sah
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
7
|
Cracknell T, Mannsverk S, Nichols A, Dowle A, Blanco G. Proteomic resolution of IGFN1 complexes reveals a functional interaction with the actin nucleating protein COBL. Exp Cell Res 2020; 395:112179. [PMID: 32768501 PMCID: PMC7584501 DOI: 10.1016/j.yexcr.2020.112179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 01/09/2023]
Abstract
The Igfn1 gene produces multiple proteins by alternative splicing predominantly expressed in skeletal muscle. Igfn1 deficient clones derived from C2C12 myoblasts show reduced fusion index and morphological differences compared to control myotubes. Here, we first show that G:F actin ratios are significantly higher in differentiating IGFN1-deficient C2C12 myoblasts, suggesting that fusion and differentiation defects are underpinned by deficient actin remodelling. We obtained pull-downs from skeletal muscle with IGFN1 fragments and applied a proteomics approach. The proteomic composition of IGFN1 complexes identified the cytoskeleton and an association with the proteasome as the main networks. The actin nucleating protein COBL was selected for further validation. COBL is expressed in C2C12 myoblasts from the first stages of myoblast fusion but not in proliferating cells. COBL is also expressed in adult muscle and, as IGFN1, localizes to the Z-disc. We show that IGFN1 interacts, stabilizes and colocalizes with COBL and prevents the ability of COBL to form actin ruffles in COS7 cells. COBL loss of function C2C12-derived clones are able to fuse, therefore indicating that COBL or the IGFN1/COBL interaction are not essential for myoblast fusion.
Collapse
Affiliation(s)
| | - Steinar Mannsverk
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Angus Nichols
- Department of Biology, University of York, York, YO32 5UQ, UK
| | - Adam Dowle
- Technology Facility, Department of Biology, University of York, York, YO32 5UQ, UK
| | - Gonzalo Blanco
- Department of Biology, University of York, York, YO32 5UQ, UK.
| |
Collapse
|